Next: 2. slučaj.
Up: Ortogonalne matrice trećeg reda
Previous: Ortogonalne matrice trećeg reda
  Sadržaj
  Indeks
1. slučaj.
Ako su sva tri korijena realni, onda se može
pokazati da je matrica simetrična, i tada se ona može
dijagonalizirati, pa dobivamo jedan od sljedećih oblika
Te matrice predstavljaju redom identitet, simetriju u odnosu na
ravninu kroz ishodište (sl. 1.22), simetriju u odnosu na
pravac kroz ishodište (sl. 1.23), simetriju u odnosu
ishodište (sl. 1.24).
Slika 1.22:
Simetrija u odnosu na ravninu.
|
Slika 1.23:
Simetrija u odnosu na pravac.
|
Slika 1.24:
Simetrija u odnosu na ishodište.
|
2001-10-26