next up previous contents index
Next: I. (Oba uvjeta kinematička.) Up: Jedinstvenost rješenja Previous: Jedinstvenost rješenja   Sadržaj   Indeks


Slučaj $ \boldsymbol {q=0.}$ (nema otpora sredstva)

Jednadžba je tada

$\displaystyle \left(p(x)\,u'(x)\right)' + f(x) = 0,$

pa imamo

$\displaystyle \left(p(x)\,u'(x)\right)' = - f(x) \hspace{1cm} \left/\int_0^x
d\xi,\right.$

$\displaystyle p(x)\,u'(x) -p(0)\,u'(0) = -\int_0^x f(\xi)\,d\xi,$

$\displaystyle u'(x)= \frac{p(0)\,u'(0)}{p(x)} - \frac{1}{p(x)}\int_0^x f(\xi)\,d\xi \hspace{1cm}\left/\int_0^x d\eta,\right.$ (2.10)

$\displaystyle u(x)-u(0)= p(0)\,u'(0)\,\int_0^x \frac{d\eta}{p(\eta)} - \int_0^x
\left(\frac{1}{p({\eta})}\int_0^{\eta} f(\xi)\,d\xi\right) \,d\eta,$

tj.

$\displaystyle u(x)=u(0)+ p(0)\,u'(0)\,\int_0^x \frac{d\eta}{p(\eta)} - \int_0^x \left(\frac{1}{p({\eta})}\int_0^{\eta} f(\xi)\,d\xi\right) \,d\eta.$ (2.11)

U ovoj formuli imamo dvije neodređene veličine $ u(0)$ i $ p(0)u'(0).$ Razmotrimo sada jedinstvenost uz navedene rubne uvjete.



Subsections

2001-10-26