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MARIJA ŠIMIĆ HORVATH, Faculty of Architecture, University of Zagreb, Croatia

Editorial Board
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TOMISLAV DOŠLIĆ, Faculty of Civil Engineering, University of Zagreb, Croatia
SONJA GORJANC, Faculty of Civil Engineering, University of Zagreb, Croatia
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Stellae Octangulae in Motion Revisited

ABSTRACT

It is well-known that two congruent regular tetrahedra T1
and T2 forming a Stella Octangula allow a continuous mo-
tion of T2 relative to T1 such that each edge of T2 slides
along an edge of T1. Recently the same property has been
confirmed for pairs (T1,T2) of indirect congruent tetrahedra
of general form. It turns out that this overconstrained kine-
matical systems admits besides some special one-parameter
motions also two-parameter motions. We provide a syn-
thetic analysis of the problem. Based on involved quadrics,
we study in depth the two-parameter motions and their
boundaries. Moreover, we present some generalizations of
Stellae Octangulae.

Key words: tetrahedron, Stella Octangula, Euclidean mo-
tion, two-parameter movements

MSC2020: 51N20, 51N30

Zvjezdasti oktaedari (Stellae Octangulae) u
pokretu – ponovno razmatranje

SAŽETAK

Dobro je poznato da dva tetraedra T1 i T2 koji tvore zvje-
zdasti oktaedar (Stella Octangula) dopuštaju neprekidno
gibanje tetraedra T2 s obzirom na tetraedar T1 takvo da
svaki brid tetraedra T2 klizi duž brida tetraedra T1. Ne-
davno je isto svojstvo potvr�eno za parove (T1,T2) indi-
rektno sukladnih tetraedara općeg oblika. Pokazuje se da
taj prenapregnuti kinematički sustav, osim nekih posebnih
jednoparametraskih gibanja, dopušta i dvoparametarska
gibanja. Dajemo sintetičku analizu problema. Na temelju
uključenih kvadrika detaljno proučavamo dvoparametarska
gibanja i njihove granice. Osim toga, predstavljamo neka
poopćenja zvjezdastih oktaedara.

Ključne riječi: tetraedar, zvjezdasti oktaedar (Stella Octan-
gula), euklidsko gibanje, dvoparametarski pomaci

1 Introduction

As reported in [8], during the assembly of a physical model
of the classical Stella Octangula in 1982, L. Tompos Jr.
discovered the relative movability of two regular tetrahe-
dra T1,T2 with permanent edge-contacts. Note that at this
physical model one tetrahedron encloses the other, and the
exterior tetrahedron consists of edges only (Figure 1).

Though generically six edge-contacts fix the pose of one
tetrahedron relative to the other, in the case of regular tetra-
hedra T1,T2 one tetrahedron can slide along the other such
that each edge of T1 keeps contact with an edge of T2. Ac-
cording to [11] in 1988, this overconstrained kinematic
structure admits four one-parameter motions and three two-
parameter motions that all share the initial Stella-Octangula
pose.

Later the question arose, whether the regular Stella Octan-
gula is the only one with movable tetrahedral parts. An-
swers were given in [8, 12, 13]: Starting with a generalized
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Figure 1: Two congruent regular tetrahedra T1 and T2 with
crossing edges, i.e., with six edge-contacts. The magenta
lines represent the octahedron O = T1 ∩T2

Stella Octangula consisting of congruent tetrahedra T1 and
T2, one was looking for an at least one-parameter motion of
T2 relative to T1, where the six edge-contacts are preserved.
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In [8], the authors describe analytically six distinct types
of such constrained motions in the case where the convex
hull of the Stella Octangula is a box, i.e., a rectangular par-
allelepiped. Most of these motions are rotations about axes
in particular position relative to the given box.

Below we present a synthetic approach, where one-sheeted
hyperboloids of revolution and orthogonal hyperbolic
paraboloids play an essential role. After discussing some
basic properties of such pairs of tetrahedra, we analyse in
the Sections 3 and 4 two special cases, namely two congru-
ent right three-sided pyramids and, in alignment with [8],
equifacial tetrahedra. As main topic, we focus in Sections 5
to 6 on generic tetrahedra T1 and their indirect congruent
copies T2. For tetrahedra with acute-angled faces and oth-
ers, there exist even two-parameter motions of T2 against
T1 that preserve all edge-contacts. We study necessary and
sufficient conditions and the boundaries of these motions.
Moreover, we describe included one-parameter movements
where all points’ trajectories are located in parallel planes.
Similar to the generalizations presented in [8], we finally
provide in Section 7 further examples.

2 Basic properties of two tetrahedra with six
edge-contacts

For the sake of simplicity, we introduce the following no-
tion.

Definition 1 Two tetrahedra T1 and T2 are said to have
crossing edges, if they have six mutual edge-contacts and
each contact point is an interior point of both involved
edges.

With regard to a generalization of the cube circumscribed
to a regular Stella Octangula, we can state:

Lemma 1 Two tetrahedra T1 and T2 have crossing edges
if and only if their convex hull H is a convex cuboid, i.e., a
hexahedron with six quadrangular faces.

Proof. The vertices of two tetrahedra T1,T2 with crossing
edges are already the eight vertices of their convex hull H .
Each of the six faces of H has a pair of intersecting edges
as diagonals.
Conversely, the two tetrahedra T1,T2 arise by truncating the
cuboid H in the way that the edges of the tetrahedra are
diagonals of the faces of H . At a convex cuboid each quad-
rangular face is convex, too, so that the point of intersection
between the two diagonals is an interior point of the edges,
as required in Definition 1. □

The following lemma can be seen as a dual counterpart.

Lemma 2 If two tetrahedra T1 and T2 have crossing edges,
then the intersection of the solids O := (T1 ∩T2) is a convex
octahedron. Conversely, each convex octahedron O is the
intersection of two tetrahedra with crossing edges, but not
all tetrahedral vertices need to be finite.

Proof. The intersection O of the two convex solids T1

and T2 must be convex, too. Each of the eight faces of T1

or T2 intersects the other tetrahedron along a triangle with
vertices at the coplanar contact points. Thus, the six contact
points are the vertices of O (see Figure 1).
Conversely, the eight bounding planes of any convex octahe-
dron O can be separated into two quadruples such that any
two planes ε,ϕ of the same quadruple contain octahedral
faces that share exactly one vertex. The line ε∩ϕ must
be a (proper) support line of O, i.e., it meets O only at a
single point since otherwise, due to the convexity of O, the
octahedral faces in ε and ϕ would share a line segment.
Each bounding plane ε contains a triangular face of O. Let
us assume that the four planes of the quadruple through ε
have a point P in common. Then ε intersects the three re-
maining planes along lines that connect P with the coplanar
vertices of O. At least one of them cannot be a (proper)
support line of O as it meets the closed triangular face along
a line segment. This contradiction with our assumption re-
veals, that each quadruple defines a tetrahedron, provided
that also vertices at infinity are admitted. □

2.1 A kinematic analysis

Suppose that T1 and T2 are two tetrahedra with crossing
edges. Each single edge-contact reduces the degree of free-
dom (‘dof’, for short) of T2 relative to T1 by 1. Therefore,
the Chebychev-Grübler-Kutzbach formula yields dof = 0.
In other words, T1 is generically rigid relative to T2. The
following kinematical statement shows that in general T1 is
even infinitesimally rigid relative to T2.

Theorem 1 Given two tetrahedra T1, T2 with crossing
edges, let Pi for i = 1, . . . ,6 be the six points where an edge
ei1 of T1 meets an edge ei2 ⊂ T2. Then T2 is infinitesimally
movable relative to T1 if and only if the six perpendiculars
ni through Pi to the planes spanned by ei1 and ei2 belong to
a linear complex of lines.

Remark 1 By virtue of Lemma 1, the contact points Pi are
the crossing points of the diagonals in the quadrangular
faces of the convex hull H , and the normals ni at Pi are
orthogonal to the faces.
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Proof. The tetrahedron T2 is infinitesimally movable relative
to T1, if and only if one can assign to each point attached to
T2 a velocity vector such that for any two points X ,Y their
mutual distance remains infinitesimally constant, i.e., for
the respectively assigned velocity vectors vX ,vY the differ-
ence vector vX −vY is perpendicular to the line XY .1 This is
equivalent to the statement that for all points X in space the
lines through X orthogonal to vX belong to a linear complex
of lines (see, e.g., [1, p. 162] [3, p. 292] or [6, p. 219]). The
axis of this linear complex coincides with the instantaneous
screw axis of the motion of T2 against T1.
Suppose that there exists such an infinitesimal motion of T2
relative to T1. Then, in order to preserve the edge-contact
between ei1 and ei2, the velocity vector vr

i of the point of
contact Pi relative to T2 must be parallel to ei2, while rela-
tive to T1 the velocity vector va

i of Pi is parallel to ei1. The
edge-contacts preserving motion of T2/T1 assigns to Pi the
velocity vPi = va

i −vr
i (‘absolute’ minus ‘relative’) parallel

to the plane connecting ei1 with ei2. Consequently, the line
ni through Pi and orthogonal to ei1 and ei2 belongs to the
linear complex of path-normals. This argumentation works
also in the converse direction. □

It needs to be noted that the characterization presented in
Theorem 1 makes no difference whether the meeting point
between ei1 and ei2 lies on the edges or outside on the
extending lines.

Remark 2 Referring to Theorem 1, let the set of linear line
complexes through the six perpendiculars ni, i= 1, . . . ,6, be
one- or two-dimensional. Then the local dof of infinitesimal
motions of T2 relative to T1 equals two or three.

If T2 is continuously movable against T1 like in the regular
case, then it is infinitesimally movable in each pose. In
particular, in the regular Stella-Octangula pose, the six path
normals n1, . . . ,n6 coincide with three mutually orthogonal
diameters of a regular octahedron O. This implies that even
each infinitesimal spherical motion of T2 about the common
center O preserves all edge-contacts with T1 since vO = 0.

In the following sections we only focus on pairs of con-
gruent tetrahedra (T1,T2) with crossing edges. This means
that in each pose of T2 relative to T1 there is a displacement
α : T1 → T2. We recall from the classification of congru-
ences in the Euclidean 3-space (see, e.g., [10]): If α is
orientation preserving, then it is either a translation or a
rotation or screw motion. Otherwise, α is either a reflection
in a plane σ or the commutative product of this reflection
with a translation parallel to σ or with a rotation about an
axis orthogonal to σ. The only involutive displacements are
reflections in a point, in a line or in a plane; only the second
one is orientation preserving.

3 Stellae Octangulae formed by right three-
sided pyramids

Let T1 and T2 be two congruent right three-sided pyramids
in a Stella-Octangula position, i.e., with edge-contacts at
all midpoints of edges (Figure 2, top). Then there exists a
one-parameter motion with permanent edge-contacts while
the axes of rotational symmetry are coinciding in the line a
which is supposed to be vertical. This mobility arises from
the case of regular tetrahedra treated in [11] by an affine
transformation, an appropriate scaling along the axis a. But
this time we move simultaneously both tetrahedra T1 and
T2, while the common axis a and two planes of symmetry
between T1 and T2 remain fixed, namely one plane ϕ0 or-
thogonal to a, hence horizontal, and the other ϕ1 passing
through a. Therewith, the two tetrahedra remain symmetric
with respect to (w.r.t., for short) a fixed axis, the intersection
s = ϕ0 ∩ϕ1 of the two planes of symmetry (see Figure3). 

  

 
 

 

  

 
 

Figure 2: Stella Octangula consisting of two right tetrahe-
dra T1 and T2 in the highly symmetric start position (top),
and in an intermediate position (bottom).

1Throughout the paper, XY denotes the line connecting the two points X and Y , while the symbol [XY ] stands for the segment bounded by X and Y .
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During this one-parameter motion, one vertex of each tetra-
hedron moves on the axis a, while the other vertices trace
algebraic curves on a coaxial cylinder (see Figure 4). The
octahedron O of contact points shows up in form of an
antiprism with regular triangles as base and top face (see
Figure 2, bottom). In the initial pose the six remaining faces
are congruent isosceles triangles.

For a detailed analysis of the movements of the two pyra-
mids we denote the vertices of the basis of Ti with Ai,Bi,Ci

and the apex with Di, i = 1,2. We introduce cylinder coor-
dinates with the vertical altitude a as z-axis, with the origin
O in the fixed plane ϕ0 and the zero-direction along s in
the fixed plane ϕ1 and pointing to the right in Figure 3.
The circumcircles of the base triangles of the two coaxial
tetrahedra T1 and T2 are assumed as unit circles.

Let (1,α,−hα) be the cylinder coordinates of A1 and
(1,−α,hα) that of A2. Then, the point of intersection P1 be-
tween the edges [A1D1] and [A2B2] (see Figure 3) has coor-
dinates (ρ, α, hα). The point of intersection Q = ϕ0∩A1D1

gets – because of QA1 =
1
2 (1−ρ) =: ρ – the cylinder coor-

dinates (1−ρ, α, 0), where

ρ =
1

2cos(π/3−2α)
, ρ =

cos2α+
√

3 sin2α−1
2(cos2α+

√
3 sin2α)

,

for 0 ≤ α ≤ π/3.
(1)

The choice α = π/6 yields the Stella-Octangula position.
For α = 0 the two tetrahedra are placed face to face sharing
the base triangles.

If h denotes the altitude of the two pyramids, then follows
from the proportion h : (h−2hα) = 1 : ρ

hα = h ·ρ, (2)

and furtheron with t := tanα the algebraic expression

hα(t) = h
t
(
2
√

3− t
)

2(1+2
√

3 t − t2)
, 0 ≤ t ≤

√
3. (3)

The trajectory cA1 of A1 has the cylinder coordinates
(1, α,−hα(t)) by (3).

  

 

 

  

 

 

Figure 3: Front- and top-view of the right pyramids T1 and
T2 from Figure 2. Here both, T1 and T2, translate symmetric
to the plane ϕ0 along a through hα, while rotating about
a in opposite directions through α. The top-view (bottom)
shows the images of the paths of the contact points P1 (red)
and Q (green) without restriction to the parameter interval
0 ≤ α ≤ π/3.

Theorem 2 Two congruent right three-sided pyramids T1
and T2 admit a one-parameter relative motion with six per-
manent crossings while the axes of symmetry of the two
pyramids coincide.

Remark 3 Since in each pose the pyramid T1 is symmetric
to T2 w.r.t. the axis s = ϕ0 ∩ϕ1, the relative motion T2/T1
is a symmetric roll-sliding as studied by J. Krames in [7].
The locus of s relative to T1, called base surface, is the right
conoid defined by the equation z = hα(α) according to eqs.
(2) and (1).
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Figure 4: Top- and front-view of intermediate positions of
the right pyramids T1 and T2, together with the trajectories
of the vertices of T1 and T2, shown as formally closed curves
on the unit cylinder with axis a (red: paths of vertices of T1,
purple: paths of vertices of T2).

In each pose, the reflection in s exchanges T1 and T2. There-
fore, s is also an axis of symmetry of the octahedron
O = T1 ∩ T2 with vertices at the contact points (see Fig-
ure 2). This symmetry exchanges in particular the regular
triangles, along which each tetrahedron intersects the base
of the other and which is inscribed in this base.

If the tetrahedra T1 and T2 are regular, then we have four
possibilities to choose an axis a and a fixed plane ϕ0 for per-
forming the one-parameter motion described above. So the
question arises, whether these in fact independent motions
can be embedded in a two-parameter motion. However,
according to [11] this is not the case.

4 Stellae Octangulae formed by equifaced
tetrahedra

Now the initial Stella Octangula is formed by the two tetra-
hedra T1 and T2 that can be inscribed in a rectangular box
H (Figure 5, top). This case was also extensively studied
in [8].

So the question arises, whether these in fact independent motions can be embedded 
into a more-parametric set of forced motions. In the next chapter we treat another 
special set of tetrahedra, where one derives another type of a one-parameter forced 
motion. 

3. Stellae octangulae formed by equifaced tetrahedra 

As next cases we consider pairs of indirect congruent equifaced tetrahedra ଵܶ and ଶܶ. 
In the standard position, when their edges intersect in midpoints, their common inner 
part ଵܶ ∩ ଶܶ is an equifaced octahedron ࣩ. The convex hull of  ଵܶ, ଶܶ is a rectangular 
box ℬ with edges parallel to the diagonals of  ࣩ, Figure 4 (left). We keep one diagonal 
ܽ of ࣩ fixed and interpret those edges of ଵܶ, which intersect ܽ, as diagonals of a skew 
quadrilateral consisting of the remaining edges of ଵܶ. Two opposite edges of this 
quadrilateral are generators of a hyperboloid of revolution Φଵ with axis ܽ, the other pair 
of edges defines a second hyperboloid of revolution Φଶ coaxial with ܽ, Figure 4 (right). 
Now we reflect ଵܶ at planes ߪ through ܽ. Obviously, Φଵ and  Φଶ remain fixed, and we 
receive symmetric versions ଶܶ of ଵܶ in positions, where all edges of ଶܶ must intersect 
those of ଵܶ. Having chosen ߪ suitably all intersection points are indeed inner points of 
the edge segments. Thereby “suitably” means that the reflection planes ߪ through ܽ 
must be chosen within a restricted angle-interval to ensure that the edge segments 
intersect in inner points. (For example, in Figure 4 this angle interval has the size of 
 rotates ߪ Keeping ଵܶ fixed, then ଶܶ performs a one-parameter motion, when .(ܳܣܲ∢
around a within that angle interval.  

                          
 

Figure 4: The Stella Octangula based on equifaced tetrahedra ଵܶ and ଶܶ has an equifaced octahedron in 
common, its convex hull is a right prism (left). The edges of ଵܶ, considered as a skew quadrilateral together with 
its diagonals, are generators of two hyperboloids of revolution with common axis ܽ. Reflecting ଵܶ at a plane ߪ 

through ܽ delivers ଶܶ with edges intersecting the edges of ଵܶ (right). The figure at right shows the reflection at a 
special plane ߪ delivering the standard position of ଶܶ. 

As we have three possibilities to choose axis ܽ, there are three one-parameter families 
of motions of  ଶܶ “along” ଵܶ. We collect this in 

Theorem 1: Besides the classical Stella Octangula based on regular tetrahedra ଵܶ, ଶܶ, 
which allows the four distinct one-parameter motions described in Chapter 2, those 
Stellae, which are based on equifaced tetrahedra ଵܶ, ଶܶ allow three one-parameter sets 

  

 

 

 

Figure 5: The Stella Octangula based on equifaced tetra-
hedra T1 and T2 has a rectangular box as convex hull (top).
The contact points form an equifaced octahedron. Edges of
T1 that are skew to the vertical diameter a are generators
of two hyperboloids of revolution with axis a.

The two tetrahedra are equifaced (or isosceles), i.e., all
faces are congruent (see, e.g., [5]). The reflection in the
center O of H as well as the reflections in a diameter plane
σ parallel to one face of H exchanges T1 and T2 (Figure
5, bottom). Every edge of T1 has a parallel counterpart at
T2. Reflections in the three mutually orthogonal axes of
symmetry of the box H send each tetrahedron onto itself.

The convex octahedron O = T1 ∩T2 is equifaced with di-
agonals parallel to the edges of the box H . We keep one
diagonal a of O fixed and assume that a is vertical as shown
in Figure 5, bottom. Now we focus on the quadrangle of
edges of T1 that are skew to a.
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Two extended opposite edges of this quadrangle are genera-
tors of the same regulus of a hyperboloid of revolution Φ1
with the axis a. The other pair of edges defines a second
coaxial hyperboloid of revolution Φ2. If we reflect T1 in
any plane σ through a, then Φ1 and Φ2 remain fixed while
the two reguli are exchanged. The tetrahedron T1 is sent
to a pose T2, where each extended edge of T2 intersects an
extended edge of T1. Two of these edge-contacts are fixed
on a; the other four are intersections between generators of
different reguli of one of the hyperboloids.

For a suitably chosen σ all intersection points are indeed
inner points of the edges. Thereby “suitably” means that
the plane σ through a must be chosen within a restricted
angle-interval to ensure that it intersects the edges at inner
points. For example, in Figure 5, bottom, this angle interval
equals <) PAQ, provided that PQ is a shorter side in the top
rectangle of H . If T1 remains fixed while σ rotates around
a within that angle interval, then T2 performs a continuous
rotation about a.

Since there are three possibilities to choose the axis a, we
can recall from [8]:

Theorem 3 The Stella Octangula based on equifaced tetra-
hedra T1,T2 allows three one-parameter motions of T2
against T1 that preserve the six crossings. The relative
motions T2/T1 are terminated rotations about the common
perpendiculars of opposite edges of T1.

In the initial position, the octahedron O of contact points
is centrally symmetric with mutually orthogonal diagonals
(see Figure 5, top). In the other poses O has a pair of skew,
but mutually orthogonal horizontal diagonals. They are
orthogonally intersected by the axis a being the third diag-
onal (see Figure 6). Note that parallels of these diagonals
through the center O are the axes of line reflections that
exchange T1 with T2.

Can we generalize the statement of Theorem 3? Can also
other lines a through the center of the box H serve as axes
of rotations that preserve the six edge-contacts between T1
and T2 in the Stella-Octangula pose?

Two parallel lines are generators of a one-sheeted hyper-
boloid of revolution with axis a if and only if there is a
common perpendicular that intersects a orthogonally in the
middle between the two lines. Parallel edges of the two
tetrahedra are located in opposite faces of the box H , and
the common perpendiculars of the edges are parallel to an
axis of symmetry of the box. This implies that the axis a of
any rotation in question must coincide with one axis of sym-
metry of H , and one of the three hyperboloids degenerates
in two pencils of lines. In other words, there are no other
axes of rotations passing through the center of the box.

  

 

 

 

Figure 6: Front view (top) and top view (bottom) of two
equifaced tetrahedra T1 (black) and T2 (green) with cross-
ing edges. The octahedron of contact points has a pair of
skew orthogonal diagonals with the common perpendicular
a as third diagonal. Only in the initial pose the octahedron
is centrally symmetric, and all diagonals pass through the
center.

The coming Section 5 will reveal that, contrary to Section 3,
the three rotations mentioned in Theorem 3 are included in
two-parameter motions which preserve all edge-contacts.
Moreover, according to Theorem 5 and in agreement with
[8], these two-parameter motions contain infinitely many
rotations about axes that no longer pass through the center
O of the box H .

5 Stellae Octangulae formed by tetrahedra
with acute-angled faces

Now we consider the general case of a Stella Octangula,
where a tetrahedron T1 is mapped to T2 by reflection in the
barycenter O of T1. Consequently, the two tetrahedra T1
and T2 share the midpoints of their edges. We aim at other
positions of T2 having crossing edges with T1 and obtained
by a reflection in a plane σ. Since a plane cannot meet more

8
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than four edges of T1 at inner points, edge-contacts at two
additional points away from σ are necessary.

In the following we explain this for a given sextuple of lines
L1 = (a1,b1, . . . , f1). We choose a pair of points P ∈ e1 and
Q ∈ f1 and their bisecting plane as reflection plane σ (see
Figure 7). Then, the reflection of all six lines of L1 in σ
yields a new sextuple L2 = (a2,b2, . . . , f2), which is indi-
rectly congruent to L1. Obviously, each line of L1 meets its
image in the plane σ. However, in addition the image e2 of
e1 passes through Q ∈ f1 and, vice versa, f2 meets e1 at P.

  

 

 

 
Figure 7: After reflecting a sextuple of lines L1 in the sym-
metry plane σ of two arbitrary points P ∈ e1 and Q ∈ f1 we
obtain an indirect congruent sextuple L2 and two additional
intersections at P and Q.

If e1 and f1 are skew, we get a two-parameter set of possible
lines g = PQ forming a hyperbolic congruence of lines, and
thus a two-parameter set of reflection planes σ. With regard
to our goal, we need to make sure that
(i) the reflection plane σ intersects four edges of T1 at inner
points and
(ii) the corresponding points P,Q are inner points of the
remaining two edges.
Reflection planes σ satisfying (i) and (ii) are called admis-
sible.

If the six lines of L1 are the extended edges of the tetrahe-
dron T1 and if the bisecting plane σ of two points P and
Q is admissible, then there exists in a neighbourhood a
two-dimensional domain of congruence lines g = PQ and
of admissible reflection planes σ. We will consider the
envelope of these planes in Section 5.1.

At a general Stella Octangula, the points of contact between
T1 and T2 are midpoints of the edges. They form three par-
allelograms with sides parallel to pairs of opposite edges
of T1 and T2. There is a central symmetry between T1 and
T2, but in general no planar symmetry like at the equifaced
case of Section 4. In general, the octahedron O of contact
points has no mutually orthogonal diagonals (see Figure 8).

  

 

 

 

Figure 8: At a Stella Octangula with general tetrahedra T1,
T2 the octahedron O of contact points is centrally symmetric,
and its diagonals are not mutually orthogonal.

Each plane of a diagonal parallelogram is parallel to a pair
of opposite edges of T1. This means that also the common
normal n of a pair of extended opposite edges (e1, f1) has
foot points (P,Q) symmetric to the corresponding plane
(see Figure 9). Therefore, there exists a certain open two-
parameter neighborhood of these foot points and thus a
two-dimensional manifold of planes σ, where the contact
restrictions (i) are fulfilled. One must only make sure that
(ii) both foot points (P,Q) are inner points of the corre-
sponding edges. The contrary situation, where one foot
point lies outside, is shown in Figure 10. The following
theorem presents a sufficient condition.

  

 

 

 

 

Figure 9: Front view (left) and side-view (right) of a general
tetrahedron T1, whereby four coplanar midpoints of edges
span the projection plane σ for the front view. The reflec-
tion in σ transforms T1 (black) in a tetrahedron T ′

2 (green)
that in general is different from the centrally symmetric T2

forming the Stella Octangula.

9



KoG•29–2025 H. Stachel, G. Weiss: Stellae Octangulae in Motion Revisited
 

 

 

Figure 10: Top-view of a general tetrahedron T1 with a
pair of opposite edges [AC] and [BD] parallel to the projec-
tion plane σ which contains the parallelogram of midpoints
(shaded) of the other four edges. Since the common normal
n ⊥ σ of e1 = AC and f1 = BD intersects [BD] at an exte-
rior point, T1 has obtuse angled faces. Reflecting T1 in σ
gives a tetrahedron T2, where the image f2 of f1 intersects
e1 in an exterior point.

Theorem 4 Each tetrahedron T1 with only acute-angled
faces allows three two-parameter motions T2/T1 preserving
six edge-contacts. In each of the three motions the poses
of T2 arise from T1 by reflections in a two-parameter set of
planes σ. In general, the three motions have no pose of T2
in common.

Proof. We assume that the edges [A1C1] and [B1D1] of T1
are horizontal. This means for the top view that these edges
are parallel to the projection plane. The interior of T1 should
lie under the face A1B1C1. Then the convexity of T1 implies
that in the top view the signed angle between C′

1A′
1 and

B′
1D′

1 lies between 0◦ and 180◦. Let n denote the common
perpendicular of the lines A1C1 and B1D1, and suppose that
its top view n′ lies outside the segment [A′

1C′
1], but closer to

A′
1 than to C′

1 (Figure 11, left).

A′
1

B′
1

C′
1

D′
1

n′

nA

A′
1

B′
1

C′
1

D′
1

n′

nA

nD

1

Figure 11: Illustrating the proof of Theorem 4.

If the line nA through A′
1 normal to A′

1C′
1 separates C′

1 from
D′

1, then the angle <)C′
1A′

1D′
1 is greater than 90◦. Conse-

quently, also in space the angle <)C1A1D1 is obtuse.

In the remaining case nA separates B′
1, D′

1 and C′
1 from n′.

Then the line nD through D′
1 orthogonal to B′

1D′
1 separates

A′
1 from B′

1 (Figure 11, right). This implies that the an-
gle A1D1B1 is obtuse. In other words: If one pedal point
of a common normal between opposite edges lies on the
extension of an edge, then the tetrahedron must have an
obtuse-angled face. □

Remark 4 The condition of acute-angled faces in Theorem
4 is sufficient, but not necessary since there exist tetrahe-
dra with an obtuse-angled face which nevertheless has the
pedal points of the normals between opposite edges inside
the edges. This holds, e.g., for the tetrahedron with vertices

A = ( 0.0, 0.0, 1.0), C = (2.0, 0.00, 1.0),
B = (−0.3, 1.0, 0.0), D = (0.3,−0.48, 0.0).

We obtain as pedal points of the common normal between
opposite edges

AC and BD : (0.105, 0.000, 1.000), (0.105, 0.000, 0.000),
AB and CD : (−0.041, 0.136, 0.864), (0.539,−0.412, 0.141),
DA and BC : (0.112,−0.180, 0.626), (0.569, 0.622, 0.378).

Apparently, the first two points are inner points of the
edges [AC] and [BD], and the latter four points have z-
coordinates between 0 and 1. However, there is an obtuse
angle <)CAB = 101.98◦. Moreover it needs to be men-
tioned that for the existence of admissible planes σ for a
given pair opposite edges it is not even necessary that the
bisecting plane of the foot points of the common perpen-
dicular intersects the remaining edges at inner points (note
Remark 6). A necessary and sufficient condition for the
existence of the two-parameter motion can be found below
in Theorem 6.

Note that for obtaining a standard Stella-Octangula, the
reflection of any tetrahedron T1 in its barycenter produces
its mate T2. The two-parameter motions discussed in Theo-
rem 4 need another initial pose T ′

2 : the acute-angled T1 is
reflected in a plane µ through four coplanar midpoints of
edges, and there exist three possibilities.

Lemma 3 Referring to the previous notation, all three ini-
tial poses T ′

2 of the two-parameter movements coincide with
the Stella-Octangula pose T2 if and only if T1 is equifaced.

Proof. For equifaced tetrahedra holds T ′
2 = T2 as shown in

Figure 5, bottom.
Suppose that conversely both the point reflection in the
barycenter of T1 as well as the reflection in the plane σ
passing through the midpoints of all line segments [PQ]
with P ∈ [A1C1] and Q ∈ [B1D1], take T1 to T ′

2 . Since the
barycenter as midpoint between the midpoints of A1C1
and B1D1 belongs to σ, the product of the two reflections

10
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is the reflection in the line a through the barycenter and
orthogonal to σ. This product must transform T1 onto itself.
Hence, the halfturn about a exchanges A1 with C1 and B1
with D1, so that we obtain equal lengths A1B1 =C1D1 and
A1D1 =C1B1.
If the same assumption holds for another pair
([A1B1], [C1D1]) of opposite edges, then also the last two
opposite edges have equal lengths A1C1 = B1D1. In other
words, the tetrahedron T1 is equifaced. □

Lemma 3 means, that only in the particular case of equifa-
cial tetrahedra there exists a single bifurcation between all
three two-parameter movements, namely at the common
Stella-Octangula pose.

5.1 The role of the bisecting paraboloids

In [8], the authors already proved that equifacial tetrahe-
dra with crossing edges admit infinitely many continuous
rotations that preserve the edge-contacts. The following
generalization for the generic case describes also the geo-
metric loci of the axes of these rotations.

Theorem 5 Referring to Theorem 4, for each of the
three two-parameter motions T2/T1 the admissible reflec-
tion planes σ are tangent to an orthogonal hyperbolic
paraboloid Ψ1, the bisector of the extensions e1, f1 of op-
posite edges of T1 (Figure 12). Each of these continuous
motions includes two one-parameter families of bounded
rotations. The axes of these continuous rotations of T2
against T1 are generators of Ψ1 and at the same time axes
of rotations that send e1 to f1.

Proof. The symmetry planes σ of all pairs of points P ∈ e1
and Q ∈ f1 envelop an orthogonal hyperbolic paraboloid
Ψ1, the bisector of the pair of lines (e1, f1) (see, e.g., [9,
p. 64]). Each plane σ contains two generators p and p of Ψ1.
Keeping one of these generators fixed, say p, the tangent
planes of Ψ1 along p form a pencil. Since the product of
the reflections in two planes through p is a rotation about p,
the admissible planes σ through p correspond to poses of
the tetrahedron T2 which are related by rotations about p.
According to [9, p. 64], the lines p on the bisector Ψ1 are
the axes of rotations that send e1 to f1. This agrees with
previous arguments, since p is the axis of a hyperboloid of
revolution through e1 and f1, and the reflection in a merid-
ian plane exchanges the reguli. The generators p and p
in the bisecting plane σ of P ∈ e1 and Q ∈ f1 are axes of
rotations that take in addition P to Q. □

x

y

z

V

e

f

X

PPPPPPPPPPPPPPPPP

Q

MMMMMMMMMMMMMMMMM

S

Ψ

σ

1

Figure 12: The orthogonal hyperbolic paraboloid Ψ is the
bisector of the skew lines e and f , i.e., the set of points X
satisfying Xe = X f . The plane σ of symmetry of the points
P ∈ e and Q ∈ f contacts Ψ at the point S.

Remark 5 The two-parameter motions according to The-
orem 4 are symmetric rollings since an orthogonal hyper-
bolic paraboloid Ψ2 attached to T2 is rolling2 on an indi-
rectly congruent paraboloid Ψ1 such that the two surfaces
are permanently symmetric w.r.t. the common tangent plane
σ at the point of contact. Note the difference: At the sym-
metric roll-slidings mentioned in Remark 3 the two base
surfaces are directly congruent.

In the particular case of equifacial tetrahedra, the vertex
generators of the three bisecting hyperbolic paraboloids are
parallel to the edges of the convex hull H in the Stella-
Octangula pose, i.e., of a rectangular box (see Figure5, top).
The rotations about these particular generators are exactly
the same as studied in Section 4.

6 The boundaries for admissible reflection
planes

A generic plane σ that meets the interior of the tetrahedron
T1 without passing through any vertex, separates either one
vertex from the other three or two from two. In the first case
we speak of type-1 planes, otherwise from type-2 planes
(see Figure 13). Only type-2 planes are candidates for ad-
missible planes as they meet four edges. We are going to
determine the boundaries for the set of admissible planes.

2In fact, a rolling of physical models of the paraboloids is not possible since the two surfaces penetrate each other along the common generators in the
plane of contact (see Figure 12).

11



KoG•29–2025 H. Stachel, G. Weiss: Stellae Octangulae in Motion Revisited

5.  Planes giving rise to a admissible position of ࢀ૛ versus ࢀ૚.   

A plane ߪ through an inner point P of an edge intersects either 3 concurrent edges or 
a skew quadrangle of edges in inner points. We speak of “type-1 planes” in the first 
case and of “type-2  planes” in the second case. When we intersect a tetrahedron with 
parallel planes, we find regions of these types limited by planes through a vertex of the 
tetrahedron, see Figure 11.  

 
Figure 11: When intersecting a tetrahedron with parallel planes one finds 2 regions, where  
the intersection is empty, 2 regions of type 1 – planes, and one region of type 2 – planes.  

While we possibly can use a type-2 plane as reflection plane ߪ, the discussion for type-
1 planes is based on other elementary geometric ideas. 

 

5.1 Admissible type-2 planes 

Of a tetrahedron ଵܶ with ܣ, ,ܤ ,ܥ =we consider the opposite edge lines e ܦ ݂ and ܥܣ =
ܲ as axes of a hyperbolic net of lines. We choose points ܦܤ ∈ ݁, ܳ ∈ ݂ arbitrarily as 
inner points of the edge segments [ܣ, ,[ܦ ,ܤ] ݃ and get a congruence line [ܥ = ܲܳ with 
a “midpoint” ܯ as an inner point of ଵܶ. All possible points ܯ fulfil a parallelogram in a 
plane ߤ spanned by the midpoints of the edges ܤܣ, ,ܥܤ ,ܦܥ  as these edges are ,ܣܦ
limit cases of congruence lines in consideration, see Figure 12.  

 

Figure 12: Opposite edge lines ݁, ݂ of a tetrahedron are considered as axes of a hyperbolic  
line congruence. Its congruence lines ݃ have midpoints ܯ in the plane  ߤ ∥ ݁, ݂.  

A presumptive reflection plane ߪ is normal to ݃ and contains ܯ. 

Figure 13: When intersecting a tetrahedron with parallel
planes, one finds two open regions where the intersection
is empty, two regions of type-1 planes, and one of type-2
planes.

At a given tetrahedron T (we suppress the subscripts for a
while) with vertices A,B,C,D let P ∈ [AC] and Q ∈ [BD]
be interior points of their edges. Then their midpoint M on
g = PQ is an inner point of T . All possible points M form
the interior of an parallelogram in a plane µ with the mid-
points of the edges [AB], [BC], [CD], and [DA] as vertices
(see Figure 14).

Figure 14: Segments PQ with their endpoints on opposite
edges [AC] and [BD] of the tetrahedron T have their mid-
point M in the plane µ parallel to the lines e = AC and
f = BD. A presumptive reflection plane σ is normal to
g = PQ and contains M.

Now we intersect the plane σ through M orthogonal to g
with the extended edges e = AC and f = BD. If these inter-
sections are external points, then σ is a type-2 plane as it
intersects all sides of the skew quadrangle ABCD at inner
points thus satisfying condition (i). In order to satisfy (ii),
the midpoint M of [PQ] must be an interior point of the
parallelogram T ∩µ. We summarize:

Theorem 6 Let the lines e and f be the extensions of oppo-
site edges [AC] and [BD] of the tetrahedron T , and let Ψ be
the bisecting orthogonal hyperbolic paraboloid of e and f .
Then the set of contact points S of Ψ with admissible planes
σ related to the edges [AC] and [BD] equals the interior of
the intersection of two open domains of Ψ,
a) the domain enclosed by four conics, the contact curves
of the tangent cones of Ψ with apices A,B,C,D, and
b) the domain that results from planes σ corresponding to
midpoints M in the parallelogram µ∩T1 (Figure 15).

For visualizing the two domains, we assume the lines e and
f along with the plane µ to be horizontal and inspect the top
view. Note that µ is tangent to the hyperbolic paraboloid
Ψ at its vertex V , and the generators through V are axes of
symmetry of e and f . Moreover, according to [9, p. 64]
the lines e and f are polar w.r.t. Ψ. Therefore, the tangent
cones from A,C ∈ e contact Ψ in the respective polar planes
passing through f and, vice versa, the contact curves for
B,D ∈ f lie in planes through e. These four planes enclose
the tetrahedron T ∗ that is Ψ-polar to T . The first domain
mentioned in Theorem 6 and corresponding to the condition
(i) is the intersection of Ψ with the interior of T ∗ (see Figure
15). In general, it is bounded by four hyperbolic arcs.

A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′

B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′
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D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′
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x
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V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′
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Figure 15: Top views of the tetrahedron T (black) with the
parallelogram of midpoints M (red), the polar tetrahedron
T ∗ with vertices A∗, . . . ,D∗ (blue) and the four hyperbolic
arcs (red) that enclose the first domain of the hyperbolic
paraboloid Ψ as mentioned in Theorem 6. For admissible
planes σ the midpoint M has to be chosen in the yellow
area. The green parallelogram is the top view of the four
parabolas terminating the second domain for the contact
points S with Ψ.

For determining the second domain, we choose the gen-
erators through the vertex V of Ψ as x- and y-axis of a
coordinate frame and define e and f by

z =±d and xsinα =±ycosα,
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where 2α =<) e f , and 2d equals the orthogonal distance
between e and f . This implies

Ψ : 2dz+ xysin2α = 0.

The polar plane of any point P = (ξ,η,ζ) w.r.t. Ψ satisfies

(ηx+ξy)sinαcosα+dz =−dζ. (4)

The vertices A∗,C∗ ∈ e and B∗,D∗ ∈ f of the polar tetrahe-
dron T ∗ are respectively conjugate to A,C,B,D ∈ T w.r.t.
Ψ. Thus, we obtain by (4) for A = (a, a tanα, d) the ver-
tex A∗ = (a∗, a∗ tanα, d) and for B = (b,−b tanα,−d) the
vertex B∗ = (b∗,−b∗ tanα,−d), where

aa∗ = bb∗ =
−d2

sin2 α
.

For describing the second domain, we check the relation
between any midpoint M ∈ µ and the contact point S of the
corresponding plane σ with Ψ:

Given M = (ξ,η,0), we first determine the line g through
M meeting e and f . The meeting point Q ∈ f is the point
of intersection between f and the plane connecting M with
e, which satisfies

(ξsinα−ηcosα)(z−d)+d(xsinα− ycosα) = 0.

This yields

Q = (ξ−ηcotα, η−ξ tanα,−d)
P = (ξ+ηcotα, η+ξ tanα, d) .

The bisecting plane of P and Q is

σ : ηxcotα+ξy tanα+dz = ξη(tanα+ cotα).

We obtain the contact point S of σ with Ψ as its pole by
comparing the equation of σ with (4) (see Figure 12). This
results in

S =

(
ξ

cos2 α
,

η
sin2 α

,− ξη
d sinαcosα

)
. (5)

The relation between the top views of M and S in the plane
z = 0 is affine. Hence, the second domain as locus of ad-
dmissible points S ∈ Ψ as mentioned in Theorem 6 and
corresponding to condition (ii) appears in the top view as
interior of a parallelogram. It is easy to verify that the side
lines of this parallelogram are respectively orthogonal to
e′ and f ′ and pass through the top views A′, . . . ,D′ of the
vertices of T (see Figure 15). After transforming the top
views of the four hyperbolas by the inverted affine relation
M 7→ S we find the locus of midpoints M that correspond
to admissible bisecting planes σ.
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Figure 16: At this example, the common normal of e and f
(with top view V ′) has its foot point on f outside the segment
[BD]. Nevertheless, there exist admissible reflection planes
σ. The top views of the domains for the corresponding mid-
points M and for the contact points S with the hyperbolic
paraboloid Ψ are shaded yellow.

Remark 6 The example displayed in Figure 16 demon-
strates that due to Theorem 6 a two-parameter motion can
also exist when the common perpendicular of the opposite
edge lines e, f has a foot point outside the edge. Thus, inte-
rior foot points are a sufficient, but not necessary condition
for the existence of a two-parameter motion of the type pre-
sented in Theorem 4. In other words, along with Remark 4
this means that the tetrahedra with acute-angled faces are a
proper subset of the set of tetrahedra where the foot points
of all common perpendiculars are interior points of edges.
And this is a proper subset of the set of tetrahedra which
admit three two-parameter symmetric rollings.
Referring to Figure 16, when the common perpendicular
of e and f has both footpoints outside the respective edges
[AC] and [BD], then the intersection of the two domains
mentioned in Theorem 6 must be empty as they are always
separated by one coordinate axis.

6.1 Contained planar one-parameter motions

A motion in 3-space is called planar if all point trajectories
are located in parallel planes. For example, according to
Theorem 5 all rotations about generators of the bisecting
hyperbololic paraboloids are planar motions. There are
still more planar one-parameter movements contained in
the two-parameter motions of congruent tetrahedra with
crossing edges.

We recall that for each pair of opposite edges [AC] and [BD]
of T we find admissible reflection planes σ as planes of
symmetry for points P ∈ [AC] and Q ∈ [BD]. If point Q
is kept fixed while P varies (see Figure 17, top), then the
corresponding planes σ envelop a part of a parabolic cylin-
der. This follows from the standard definition of a parabola
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(note, e.g., [2, Fig. 2.13]), since this cylinder intersects the
plane γ connecting Q with [AC] in an arc of the parabola c
with focus Q and directrix e = AC (Figure 17, bottom).

Now we construct the plane ߪ with ߪ ∋ ,ܯ ⊥ ߪ ݃ and intersect it with the edge lines ݁ 
and ݂. If these intersections are external points of the edge segments [ܣ, ,[ܥ ,ܤ]  ,[ܦ
then ߪ intersects the edge quadrilateral {ܤܣ, ,ܥܤ ,ܦܥ  is an ߪ in inner points, and {ܣܦ
admissible reflection plane. We collect this as a  

Corollary 1: The reflection of ଵܶ at the plane ߪ constructed as mentioned above gives 
a tetrahedron ଶܶ in admissible contact position, if ߪ ∩ [ܥܣ] = ∅ ∧ ߪ  ∩ [ܦܤ] = ∅ . 

As being the symmetry planes of the pair (ܲ, ܳ), the planes ߪ envelop an orthogonal 
paraboloid Ψ, the “equidistance set” of the pair (݁, ݂). Each plane ߪ contains two 
generators ݌ and ̅݌ of Ψ. Keeping one of these generators, say ݌,  fixed, the planes ߪ 
touching Ψ in points of ݃ form a pencil of planes. This means that ݌ acts as a rotation 
axis for the planes ߪ. The domain of admissible planes ߪ shows at Ψ as the intersection 
of two domains defined by ଵܶ, see Figure 13 Using the labelling of Figure 12 we 
formulate this obvious fact as 

Corollary 2:  Admissible planes ߪ touch Ψ at inner points of the intersection of two 
domains: a) the domain limited by the four conics, at which cones with vertices ܣ,  ܥ
and ܤ, ܯ with ߪ touch Ψ, and b) the domain resulting from planes ܦ ∈ ߤ ∩ ଵܶ. If the 
intersection of these domains has a not empty interior, there exists a two-parametric 
set of admissible reflection planes ߪ and two two-parametric sets of rotation axes ݌,  .̅݌

 
Figure 13: ….Opposite edge lines ݁, ݂ of a tetrahedron are considered as  

right: …axes of a hyperbolic line congruence.  

Remark 4: Let ܳ ∈ ݂ be fixed and ܲ ∈ ݁ variable, then the corresponding set {ߪ} 
envelops a part of a parabolic cylinder. We consider the cross-section of this cylinder 
with the plane ߛ = ܳ ∨ ݁  and receive an arc of a parabola ܿ based on the well-known 
elementary construction of a parabola with focus ܳ and directrix line ݁, Figure 13, right. 
With ܯ ∈ ߤ ∩ ଵܶ and ߪ ⊥ ܲܳ(= ݃) ∧ ܯ ∈ the line ℎ ߪ = ߛ ∩  is a tangent of the ߪ
parabolic arc ܿ. And this arc ܿ is limited by the points ஺ܵ, ܵ஼ according to the Corollary 
2. Plane ߪ is admissible, if ℎ ∩ ݁ is an exterior point of segment [ܣ,  In the case .[ܥ
shown Figure 14, the corresponding parabolic arc is limited by the point ܵ஼ and by that 
touching point ܶ of a tangent of ܿ through ܥ, which is between ஺ܵ and ܵ஼ . 
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elementary construction of a parabola with focus ܳ and directrix line ݁, Figure 13, right. 
With ܯ ∈ ߤ ∩ ଵܶ and ߪ ⊥ ܲܳ(= ݃) ∧ ܯ ∈ the line ℎ ߪ = ߛ ∩  is a tangent of the ߪ
parabolic arc ܿ. And this arc ܿ is limited by the points ஺ܵ, ܵ஼ according to the Corollary 
2. Plane ߪ is admissible, if ℎ ∩ ݁ is an exterior point of segment [ܣ,  In the case .[ܥ
shown Figure 14, the corresponding parabolic arc is limited by the point ܵ஼ and by that 
touching point ܶ of a tangent of ܿ through ܥ, which is between ஺ܵ and ܵ஼ . 

 

Figure 17: For given opposite edges [AC] and [BD] the lo-
cus of midpoints M of points P ∈ [AC] and Q ∈ [BD] is a
parallelogram in a plane µ parallel to AC and BD. For fixed
Q the planes of symmetry σ envelop a parabolic cylinder.

We are also able to figure out the boundaries of this
parabolic arc c (see Figure 17, top): The plane σ ⊥ PQ = g
passes through the midpoint M ∈ (µ∩T ) of [PQ] and inter-
sects γ in a tangent h of c. The required arc of c is bounded
by the points SA and SC because of P ∈ [AC]. Moreover,
h∩e has to be an exterior point of the segment [AC]. Hence,
in the case shown in Figure 18, the corresponding parabolic
arc is limited by SC and by the contact point T of a tangent
of c through C.

In the limiting case Q = B, the envelope of the planes σ
belongs to a parabolic cylinder with generators orthogo-
nal to the plane spanned by ACB. These generators have
top views orthogonal to the top view e′ of e = AC. The
parabolic cylinder contacts the hyperbolic paraboloid Ψ
along a parabola that bounds the second domain and ap-
pears in the top view as a side of the mentioned parallelo-
gram (green in Figure 15). At each point S of this parabola

the tangent must be conjugate w.r.t. Ψ to the generator of
the contacting cylinder. Conjugate lines are in a harmonic
position w.r.t. the Ψ-generators through S, which have top
views parallel to the coordinate axes. As a result, the top
view of the contacting parabola must be orthogonal to f ′,
as already documented above (see Figure 15).

When reflecting T1 on admissible planes σ with fixed point
Q ∈ f we obtain poses of T2 where the point attached to
T2 trace curves in planes parallel to the plane γ connecting
Q with e. At the same time a parabolic cylinder attached
to T2 rolls on a parabolic cylinder attached to T1 such that
the cylinders are permanently symmetric w.r.t. the plane
σ of contact. This is again a planar motion contained in
the two-parameter motion related to the pair (e, f ).3 The
corresponding midpoints M ∈ µ trace a segment parallel
to e (Figure 17), hence parallel to one side of the paral-
lelogram in µ. The symmetric parabolic-cylinder-rollings
corresponding to a fixed point P ∈ e has similar proper-
ties. In comparison, at the contained rotations according
to Theorem 5 the point S of contact between σ and the
paraboloid Ψ1 (see Figure 12) traces a generator. In the top
view, the point S′ runs along a line parallel to one coordinate
axis, and the same holds for the midpoint M′ due the affine
correspondence between these points (Figure 15).

 

Figure 14: …The rotations of ଶܶ “along” ଵܶ ( ௜ܶ equifaced) belong to the two-parametric set of general motions. 

 

5.2 Admissible type-1 planes 

Even though the geometric analysis of this problem seems rather complicated, and a 
proper analysis cannot omit calculation, it seems worthy to describe a geometric 
approach. We discuss at first the situation of two congruent but general tetrahedra ܶ ଵ =
,ܦܥܤܣ ଶܶ =  ଶ in standard position forming a Stella Octangula. It is embeddedܦଶܥଶܤଶܣ
into a parallel-epiped. We keep in mind that the congruence transformation ଵܶ → ଶܶ 
must be the product of a reflection at a plane ߩ, together with a rotation around an axis 
ݎ ⊥  In the special case .ߩ ଶ of ଶܶ are equidistant toܦ of ଵܶ and ܦ The fourth vertices .ߩ
of a Stelle Octangula position, we can use one of the space diagonals of the  parallel-
epiped as that axis ݎ ≔ ,ܦ} the symmetry plane of ߩ ଶ andܦܦ  .ଶ}, see Figure 15ܦ

 

Figure 15: The reflection of a tetrahedron Tଵ (black) at a plane ρ results in a tetrahedron തܶଶ, which is rotated  
by a half turn at the rotation axis ݎ ≔   .projecting ߩ  ଶ. (Front and side view projection with r andܦܦ

Now let a general tetrahedron ଵܶ and a type-1 plane ߝଶ be given. This plane shall act 
as presumptive base plane of ଶܶ. It intersects ଵܶ in a triangle ∆ܻܼܺ. Thereby, the base 
triangle ∆ܣଶܤଶܥଶ of ଶܶ must be subscribed to ∆ܻܼܺ and it must be congruent to the 
base triangle ∆ܥܤܣ of ଵܶ in a specific way, see Figure 16.  Again, the congruence 
transformation ܶ ଵ → ଶܶ is the product of a reflection at a plane ߪଵ together with a rotation 
around an axis ݎ ⊥  ,ଵߪ ଶ of ଶܶ must get the same distance fromܦ ଵ. The fourth vertexߪ
as ܦ of ଵܶ. 

Figure 18: The parabola’s tangent at SA does no longer
belong to an admissible bisection plane σ as it meets the
segment [AC] at an interior point.

7 Further movable pairs of congruent struc-
tures with edge-contacts

a) We follow an idea of [8] generalizing an equifaced tetra-
hedron with isosceles faces to an antiprisma over a regular

3In planar kinematics, the symmetric rolling of two parabolas has the property that the focus of the first parabola traces the directrix of the second
parabola while the directrix of the first parabola slides through the focal point of the second.
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n-gon (see Figure 19). This allows further generalizations,
as we only must demand that the pairs of opposite skew
edges of a generalized antiprisma are generators of the same
coaxial hyperboloid of revolution. Consequently, the regu-
lar top- and bottom-polygons can be similar and, to a certain
extent, even affine transforms of regular polygons. When
we move a planar polygon within its plane to another posi-
tion, then corresponding edge lines will trivially intersect,
and, of course, we can restrict the movement such that all
corresponding edges intersect at inner points.

of type-1! If this is not the case we must start with another plane, which is not parallel 
to ߝଶ and repeat the constructions mentioned up to now.  

Finally, we construct the tetrahedron ଵܶ with base triangle ∆ܣଶܤଶܥଶ. In general it will 
turn out that its edges through the fourth vertex ܦଶ are not in contact with the sides of 
,ଶܺଶܣ and that the lines ,ܥܤܣ∆ ଶܤ  ଶܻ,  ଶ. Therefore, weܦ ଶܼଶ will not intersect in vertexܥ 
should repeat the constructions above with other planes ߝଶ

ᇱ ∥  ଶ. Using a dynamicߝ
graphics software it is possible to find the path ݀ଶ of the fourth vertex ܦଶ, and finally 
those points ܦଶ, where ܣଶܺଶ, ଶܤ  ଶܻ,  ଶܼଶ meet. This can only happen for maximally oneܥ 
plane ߝଶ

ᇱ  out of the given pencil of parallel planes and deliver maximally two points of 
type ܦଶ. Whether the results are admissible or not, depends on whether ߝଶ

ᇱ  is of type-
1 or not. We can conclude that there are, in general, up to two real solutions ଶܶ, തܶଶ to 
such a plane ߝଶ

ᇱ  spanned by  properly chosen points ܺ, ܻ, ܼ, and that, in a suitable 
vicinity of ߝଶ

ᇱ  , there surely are planes out of other pencils of parallel planes, leading to 
two one-parameter sets of solution tetrahedra ଶܶ, തܶଶ. 

6.  Some more generalizations of movable indirect congruent structures  

a) Here we follow an idea of T. Tarnai [M&T] generalizing an equifaced tetrahedron 
with isosceles triangles as faces to an antiprisma over a regular n-gon, see Figure 19. 
This allows further generalizations, as  we only must demand that the pairs of opposite 
skew edges of a generalized antiprisma must be generators of the same coaxial 
hyperboloid of revolution. This means that the regular top- and bottom-polygons can 
be similar and, to a certain extent, even be affine-regular similar polygons. When we 
move a planar polygon ଵܲ in its plane to a position ଶܲ, their edge lines trivially will 
intersect, and of course we can restrict the movement such that all edge segments 
intersect in inner points. 

      

Figure 19:  Pairs of antiprisms as movable structures include also equifaced tetrahedra. Also pairs of symmetric 
tetrahedra with top- and bottom edge of different lengths allow a one-parameter set of motions, as well as pairs 

of generalized antiprisms with affine-regular top- and bottom polygon.  

b) Using the last statement for a classical pyramid ଵܲ with a convex planar polygon, 
then we can, with certain restrictions, reflect it at a plane through its altitude line ܽ 
getting a pyramid ଶܲ, which formally is in edge contact with ଵܲ. We can add therefore 
to an antiprism two pyramids at the top- and bottom-polygon, such that their vertices 
are points of the axis ܽ of the antiprism, and reflect this polyhedron ଵܲ at a plane 
through ܽ receiving polyhedron ଶܲ, we still can speak of ai pair of indirect congruent 
polyhedral with edge contact for all edges. For example, a regular icosahedron is such 
a polyhedron with the mentioned property, when we allow trivial edge contacts, too. A 
right affine transformation in direction of an axis connecting opposite vertices will not 
change that property. 
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b) Using the last statement for a classical pyramid ଵܲ with a convex planar polygon, 
then we can, with certain restrictions, reflect it at a plane through its altitude line ܽ 
getting a pyramid ଶܲ, which formally is in edge contact with ଵܲ. We can add therefore 
to an antiprism two pyramids at the top- and bottom-polygon, such that their vertices 
are points of the axis ܽ of the antiprism, and reflect this polyhedron ଵܲ at a plane 
through ܽ receiving polyhedron ଶܲ, we still can speak of ai pair of indirect congruent 
polyhedral with edge contact for all edges. For example, a regular icosahedron is such 
a polyhedron with the mentioned property, when we allow trivial edge contacts, too. A 
right affine transformation in direction of an axis connecting opposite vertices will not 
change that property. 

Figure 19: Pairs of n-sided antiprisms as movable struc-
tures include for n = 2 equifaced tetrahedra (left) and for
n = 3 octahedra (right). Also pairs of symmetric tetrahe-
dra with top- and bottom edge of different lengths allow a
one-parameter set of motions with fixed axis a, as well as
pairs of generalized antiprisms with affine-regular top- and
bottom polygons.

b) When using the last statement for a classical pyramid P1
with a convex planar basis, then we can, with certain restric-
tions, reflect it in a plane σ through its altitude a getting a
pyramid P2, which is in edge-contact with P1. Hence, we
can extend an antiprism by two pyramids at the top- and
bottom-polygon such that their apices are points of the axis
a of the antiprism. Then the reflection of this polyhedron P1
in any plane σ through a yields a congruent copy P2, which
still can move relative to P1 while keeping all edge-contacts.
For example, a regular icosahedron satisfies these condi-
tions (see Figure 20). A scaling in direction of the axis a
will not restrict the mobility.

c) Even congruent pairs of (regular) double pyramids with
a non-planar belt-polygon can be considered as movable
polyhedral edge structures, as far as the belt polygon also
suits to a generalized antiprism. A cube serves as a simple
example, when rotated around one of its spatial diagonals.
Another example is the regular pentagon dodecahedron,
seen as a truncated double pyramid (Figure 21). Obviously
the movability remains when such a structure is subjected
to a scaling in direction of the fixed axis.

d) The standard case of a pair of coaxial right pyramids
over a regular n-gon (see [11] and [12]) allows further gen-
eralizations. If h denotes the altitude of the pyramids and
they share in the initial position the base n-gons, then the
extremal distance t of their base planes is related as

t : h =
(

1− cos
π
n

)
: 1 . (6)

These pyramids P1,P2 can be embedded in two congruent
cones Ψ1,Ψ2 of revolution. When we “bend” all non-base
edges of P1 and P2 to congruent curves on Ψ1 and Ψ2, then
also these objects will allow a one-parameter set of motions
as products of appropriate rotations about and translations
along the axis, while the formula in (6) will still remain
valid.

As a next step we generalize, with restrictions, the cones
Ψ1,Ψ2 to smooth surfaces of revolution Φ1,Φ2. At first
we take their meridians m as replacements of the edges
of the pyramids P1,P2. Then again, we can replace these
meridians by a set of congruent curves on Φ1,Φ2, and we
will end up with a movable edge-curve structure.

e) We return to a) and consider equifaced tetrahedra and
regular antiprisms again. There the key property is the ex-
istence of coaxial hyperboloids of revolution. Obviously,
we can now bend the straight edges to congruent curves on
these hyperboloids and receive a movable edge-curve struc-
ture. Also here, the hyperboloids can be replaced by more
general surfaces of revolution, and, in case of antiprisms,
the edges of the top- and base polygon can be replaced by
curves, too.

It is easy to imagine such a structure on a sphere: Consider
the vertices of a regular n-gon on, say, the two polar cir-
cles of the sphere, and connect them with arcs of, e.g., a
loxodrome, a curve of constant slope, or simply with arcs
of a great circle. In this very special case of a curved edge
system the chosen arcs need not even be congruent.

According to these statements, we can replace the edges
of the cube, the regular icosahedron and the pentagon do-
decahedron (see b) by congruent curves and preserve the
movability of the curved edge structure.

Nevertheless, an explicit calculation of the motion will de-
pend on the chosen curved edges and might get lengthy. In
each pose, the instantaneous behaviour is that of an object
with the tangents as edges, and therefore it is locally an
edge structure of the types treated in the foregoing chapters.
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Figure 20:  A regular icosahedron, together with rotated versions of it at an axis connecting opposite vertices, is 
an example of a movable polyhedral edge structure, if we allow trivial edge contacts, too.  

c) Even (regular) double pyramids with a not-planar belt-polygon can be considered 
as movable polyhedral edge structures, as far as the belt polygon also suits to a 
generalized antiprism. A cube is a simple example of this type. When rotated around 
one of its space-diagonals, two such samples are in edge contact.  Another example 
is the regular pentagon-dodecahedron, seen as a truncated double pyramid. It also 
suits as one part of a pair of movable polyhedral structures, Figure 21. Obviously the 
movability remains true, if such a structure is subjected to an orthogonal affine 
transformation in direction of the common fixed axis. 

 

Figure 20:  A regular pentagon dodecahedron, together with rotated versions of it at an axis 
 connecting midpoints of opposite faces, is an example of a movable polyhedral edge structure. 

d) The standard case of a pair of coaxial right pyramids over a regular ݊-gon (see [Sta] 
and [T&M]) allows further generalizations. If the altitude of the pyramids is ℎ and they, 
in the start position have common ݊-gons, the extremal distance ݐ  of their base planes 
is related as  

:ݐ ℎ = (1 − cos ഏ
೙):ଵ.                                                 (5) 

These pyramids ଵܲ, ଶܲ can be embedded into two congruent cones Ψଵ, Ψଶ of revolution.  
When we “bend” the edges of ଵܲ, ଶܲ to congruent curves on Ψଵ, Ψଶ, keeping the base 
edges as linear segments, then also these objects will allow a one-parameter set of 
instantaneous helical motions, and formula (5) will still remain valid.  As a next step we 
generalize, with restrictions, the cones Ψଵ, Ψଶ to smooth surfaces of revolution Φଵ, Φଶ. 
At first we take their meridians ݉ as replacements of the edges of the pyramids ଵܲ, ଶܲ. 
But then again we can replace these meridians to a set of congruent curves on Φଵ, Φଶ, 
and we will end up with a movable edge-curve structure. 

e) We return to a) and consider equifaced tetrahedra and regular antiprisms again. 
There the key property is the existence of coaxial hyperboloids of revolution. Obviously 

Figure 22: A regular icosahedron together with its image under a rotation about an axis connecting opposite vertices yields
two congruent polyhedral structures which allow a relative movement while all edge-contacts are preserved.
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Figure 20:  A regular pentagon dodecahedron, together with rotated versions of it at an axis 
 connecting midpoints of opposite faces, is an example of a movable polyhedral edge structure. 

d) The standard case of a pair of coaxial right pyramids over a regular ݊-gon (see [Sta] 
and [T&M]) allows further generalizations. If the altitude of the pyramids is ℎ and they, 
in the start position have common ݊-gons, the extremal distance ݐ  of their base planes 
is related as  

:ݐ ℎ = (1 − cos ഏ
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These pyramids ଵܲ, ଶܲ can be embedded into two congruent cones Ψଵ, Ψଶ of revolution.  
When we “bend” the edges of ଵܲ, ଶܲ to congruent curves on Ψଵ, Ψଶ, keeping the base 
edges as linear segments, then also these objects will allow a one-parameter set of 
instantaneous helical motions, and formula (5) will still remain valid.  As a next step we 
generalize, with restrictions, the cones Ψଵ, Ψଶ to smooth surfaces of revolution Φଵ, Φଶ. 
At first we take their meridians ݉ as replacements of the edges of the pyramids ଵܲ, ଶܲ. 
But then again we can replace these meridians to a set of congruent curves on Φଵ, Φଶ, 
and we will end up with a movable edge-curve structure. 

e) We return to a) and consider equifaced tetrahedra and regular antiprisms again. 
There the key property is the existence of coaxial hyperboloids of revolution. Obviously 

Figure 21: Another example of a movable polyhedral edge structure consists of two congruent regular pentagon dodecahedra
sharing an axis that connects midpoints of opposite faces.

8 Conclusion

We aimed at a geometric analysis of the sliding motions,
which occur at congruent tetrahedra, forming a Stella Oct-
angula in the initial pose. We preferred geometric reasoning
against lengthy calculations. The surprising fact that the
pair of tetrahedra of a classical Stella Octangula is movable
in spite of dof = 0 caused the questions “why” and “are reg-
ular tetrahedra the only ones with that property”. We could
show that general pairs of indirect congruent tetrahedra
(T1,T2) keep their six crossings under three two-parametric
motions of T2 relative to T1. Each pose of T2 can be ob-
tained by a reflection of T1 in a tangent plane of orthogonal
hyperbolic paraboloids, and their generators act as axes of
possible rotations.

There is kind of hierarchical structure among the tetrahe-
dra T1,T2 from the most general ones to those having in
the initial Stella-Octangula pose a box as convex hull, and

finally those being regular three-sided pyramids. The latter
allow motions generated by reflections in axes orthogonal
to the common axis of symmetry of T1 and T2. The most
special case with two regular tetrahedra allows both, the
special axial reflections as well as the reflections in planes.
In all the discussed cases, the poses of T2 relative to T1

are generated by single reflections, i.e., by involutive dis-
placements. Here the question arises: “Is the assumption of
tetrahedra T1,T2 being congruent a necessary condition for
their movability?”

Moreover, one might ask for pairs of other polyhedral struc-
tures, which allow such relative motions. Besides general-
izations presented in [8], it is possible to find many other
polyhedral structures allowing at least one-parameter mo-
tions, if trivial edge-contacts are not excluded. In addition,
even structures where the edges are bent to congruent curves
can admit such sliding motions.
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ABSTRACT

In this paper, we extend the classical notion of Archimedean
circles, originally discovered by Archimedes in the arbelos,
to the broader framework of the arbelos with overhang.
By means of new constructions, we establish conditions
under which circles in this generalized setting retain the
characteristic radius property of Archimedean circles. Our
results unify and extend previous findings, revealing deeper
symmetries and structural invariants within these geometric
figures.

Key words: Archimedean circles, Arbelos, Arbelos with
Overhang
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Poopćenje Arhimedovih kružnica na arbelosu

SAŽETAK

U ovom radu proširujemo klasičan pojam Arhimedovih
kružnica, koji je izvorno otkrio Arhimed na arbelosu, na širi
okvir arbelosa s produžetkom. Pomoću novih konstrukcija
odre�ujemo uvjete pod kojima kružnice u ovom poopćenom
okruženju zadržavaju karakteristično svojstvo polumjera
Arhimedovih kružnica. Naši rezultati ujedinjuju i proširuju
prethodne rezultate, otkrivajući dublje simetrije i strukturne
invarijante unutar ovih geometrijskih figura.

Ključne riječi: Arhimedove kružnice, arbelos, arbelos s
produžetkom

1 Introduction

The arbelos, or “shoemaker’s knife”, is a classical figure
in plane geometry, first studied by Archimedes. It consists
of the region bounded by three mutually tangent semicir-
cles with collinear diameters. One of the most remarkable
aspects of the arbelos is the existence of an infinite family
of circles that share a surprising property: they all have the
same radius as a particular circle introduced by Archimedes.
These circles are now known as Archimedean circles [2].
Archimedes proved that a specific circle constructed inside
the arbelos—the so-called Archimedes’ circle—has a radius
equal to that of another circle tangent to the same bound-
aries (see Figure 1). Over the centuries, many additional
Archimedean circles have been discovered, all exhibiting
the same constancy in radius despite being derived from
different constructions.
The study of Archimedean circles continues to fascinate
geometers, both for the elegance of their construction and
for the deeper geometric principles they reveal.

A BC

D

γa

γb

ωa

ωb

Figure 1: The twin of the Archimedes’ circle on the arbelos.

A natural generalization of the classical arbelos, known as
the arbelos with overhang, was introduced by H. Okumura
in [7]. Furthermore, Okumura presented several results con-
cerning Archimedean circles within this extended frame-
work [3, 4, 5, 6]. An additional pair of Archimedean circles
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in the context of the arbelos was introduced by the present
authors in [1].

Theorem 1 (Archimedes’ circle on the arbelos with over-
hang) Let AB be a segment, and construct the semicircle
ωc with diameter AB. Let C be a point on AB, and let the
perpendicular from C to AB intersect ωc at D. On rays CA
and CB, choose points A′ and B′ respectively. Construct
semicircles ωa′ and ωb′ with diameters CA′ and CB′. This
configuration is called the arbelos with overhang. Construct
two circles: γa tangent to ωc, ωa′ , and CD; and γb tangent
to ωc, ωb′ , and CD. Then γa and γb have equal radii if and
only if AA′ = BB′.

The proof and some applications of Theorem 1 can be found
in [6].

ω′
a

ω′
b

ωc

γa

γb

A′ B′A BC

D

O

Figure 2: The twin of the Archimedes’ circle on the arbelos
with overhang.

In this paper, we generalize the concept of Archimedean
circles to the arbelos with overhang and investigate con-
structions that preserve the equal-radius property under this
extended configuration.

Theorem 2 Let AB be a segment, and construct the semi-
circle ωc with diameter AB. Let C be a point on the segment
AB, and let the perpendicular line d from C to AB inter-
sect ωc at D. Suppose K and L are arbitrary points on
the rays CA and CB, respectively. Construct the circles ωk
and ωl centered at K and L and passing through C. Let
A′ and B′ be the points dividing CK and CL in the same
ratio, respectively. Construct the semicircles ωa′ and ωb′

with diameters CA′ and CB′. Define M(r1) to be the circle
tangent internally to both ωk and ωc and tangent externally
to ωa′ . Define N(r2) to be the circle tangent internally to
both ωl and ωc and tangent externally to ωb′ . If the dis-
tances from the centers of M and N to the line d are d1 and
d2, respectively, then:

i)
r1

d1
=

r2

d2
;

ii) if K tends to infinity, then r1 =
a′b′

a+b′
;

iii) if L tends to infinity, then r2 =
a′b′

a′+b
;

iv) if both K and L tend to infinity, then r1 = r2 if and
only if AA′ = BB′.

Remark 1 If both K and L tend to infinity, then the semi-
circles ωa′ and ωb′ degenerate into the line CD. In this
limiting case, we obtain r1 = r2 if and only if AA′ = BB′,
which means that the semicircles ωc,ωa′ ,ωb′ form an arbe-
los with overhang (see [6]). Hence, Theorem 2 naturally
generalizes the arbelos with overhang.

OA BC

D

K LA′ B′

M

N

O1 O2

ωcωk

ωl

r1

r2

d1

d2

d

ωa′
ωb′

Figure 3: A generalization of Archimedean circles on the arbelos with overhang.
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2 Proof of Theorem 2

Proof. (See Figure 3.) Assume a < b and denote

CA′ = 2a, CB′ = 2b, AC = 2a′, AB = 2b′,

KA = k, LB = l.

Let O1, O2, and O be the midpoints of CA′, CB′, and AB,
respectively. In Cartesian coordinates, place

O(b′−a′,0), O1(−a,0), O2(b,0), K(−k−2a,0),

L(l +2b,0), M(−d1,y), N(d2,z).

Since A′ and B′ divide CK and BL in the same ratio, the
relation

k
a
=

l
b

(1)

holds.

We now consider the following distance relations:

KM2 = (KC− r1)
2

that is, (−d1 + k+2a)2 + y2 = (k+2a− r1)
2, (2)

MO2
1 = (a+ r1)

2

that is, (−d1 +a)2 + y2 = (a+ r1)
2, (3)

MO2 = (a′+b′− r1)
2

that is, (b′−a′+d1)
2 + y2 = (a′+b′− r1)

2. (4)

Subtracting (3) from (2) gives

(a+ k)d1 = r1(3a+ k). (5)

Subtracting (3) from (4) gives

(a−a′+b′)d1 + r1(a+a′+b′) = 2a′b′. (6)

Solving equations (5) and (6) for r1 yields

r1 =
a′b′(3a+ k)

2a(a−a′+2b′)+(a+b′)k
. (7)

From (5), the quotient r1/d1 is

r1

d1
=

a+ k
3a+ k

=
1+ k

a

3+ k
a

. (8)

A completely analogous computation with point L gives

r2

d2
=

1+ l
b

3+ l
b

. (9)

Using relations (1), (8), and (9), we obtain the equality

r1

d1
=

r2

d2
,

which completes the proof of part (i) of Theorem 2.

We now examine the limit as k tends to infinity. Using (7),
the expression for r1 becomes

r1 = lim
k→∞

3aa′b′+a′b′k
2a(a−a′+2b′)+(a+b′)k

= lim
k→∞

3aa′b′
k +a′b′

2a(a−a′+2b′)
k +a+b′

=
a′b′

a+b′
.

Thus part (ii) of Theorem 2 is established.

A similar limiting argument with l tending to infinity gives

r2 =
a′b′

a′+b
.

Finally, if both K and L tend to infinity, then the expressions
obtained above satisfy

r1 =
a′b′

a+b′
, r2 =

a′b′

a′+b
.

The radii r1 and r2 are equal exactly in the case where

a′b′

a+b′
=

a′b′

a′+b
.

Since a′b′ is nonzero, the equality of the two fractions oc-
curs exactly when

a+b′ = a′+b,

or equivalently when

AA′ = BB′.

This completes the proof of part (iv) of Theorem 2. □
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3 Conclusion

In this paper, we have extended the classical theory of
Archimedean circles to the generalized setting of the arbe-
los with overhang. By introducing suitable constructions,
we demonstrated that circles in this configuration retain
the defining equal-radius property, analogous to that of the
original Archimedean circles.

Our generalizations preserve the elegance and structural
harmony of the classical case while also uncovering new
symmetries and invariants inherent in the modified figure.
These results enrich the study of the arbelos and its ex-
tensions, illustrating how classical geometric phenomena
persist under broader transformations.

We hope this work encourages further exploration of
Archimedean-type configurations in other generalized ge-
ometries, thereby contributing to the continuing dialogue
between classical and modern geometry.
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ABSTRACT

This paper presents novel analytical forms of Fuss’ re-
lations for bicentric polygons with an odd number of
sides and higher rotation numbers. The method is based
on Poncelet’s theorem and Radić’s theorem and conjec-
ture concerning the connection between Fuss’ relations
for different rotation numbers. Explicit analytical expres-
sions are obtained for the bicentric triskaidecagon with
k = 2,4,6 and for the bicentric pentadecagon with k = 2,
while complete sets of relations are established for the bi-
centric heptadecagon (k = 1,2,3,4,5,6,7,8) and ennead-
ecagon (k = 1,2,3,4,5,6,7,8,9). The proposed approach
simplifies the derivation and enables a systematic extension
of known Fuss’ relations to higher-order bicentric poly-
gons and new rotation numbers, confirming the validity of
Radić’s conjecture.

Key words: bicentric polygon, Fuss’ relation, rotation
number, triskaidecagon, pentadecagon, heptadecagon, en-
neadecagon

MSC2020: 51N20, 51M15, 37J45

O Fussovim relacijama za bicentrične poligone s
neparnim brojem vrhova

SAŽETAK

U radu su izvedeni analitički oblici Fussovih relacija za bi-
centrične poligone s neparnim brojem stranica i vǐsim bro-
jevima rotacije. Metoda se temelji na Ponceletovom teo-
remu te Radićevom teoremu i slutnji u vezi s povezanošću
Fussovih relacija za različite brojeve rotacije. Dobiveni su
eksplicitni analitički izrazi za bicentrični trinaesterokut s
rotacijskim brojem k = 2,4,6 i za bicentrični petnaeste-
rokut s rotacijskim brojem k = 2, dok su uspostavlje-
ni kompletni skupovi relacija za bicentrični sedamneaste-
rokut (za k = 1,2,3,4,5,6,7,8) i devetnaesterokut (za k =
1,2,3,4,5,6,7,8,9). Predloženi pristup pojednostavljuje
izvod-enje i omogućuje sustavno proširenje poznatih Fusso-
vih relacija na bicentrične poligone vǐseg reda i nove bro-
jeve rotacije, čime se potvrd-uje valjanost Radićeve slutnje.

Ključne riječi: bicentrični poligon, Fussova relacija,
rotacijski broj, trinaesterokut, petnaesterokut, sedam-
naesterokut, devetnaesterokut

1 Introduction

A bicentric n-gon is a polygon with n sides that is both
tangential (it possesses an inscribed circle, or incircle) and
cyclic (it possesses a circumscribed circle, or circumcir-
cle). These two circles are nested, meaning that one lies
entirely within the other.

Let A1, . . . ,An be a bicentric n-gon with an incircle C of
radius r centered at point I, and a circumcircle K of radius
R centered at point O. Denote by d the distance between
their centers, where the circle C lies inside the circle K.

Let T1, . . . ,Tn be the points of tangency of the sides (seg-
ments) A1A2, . . . ,AnA1, respectively. The lengths |AiTi|,
i = 1, . . . ,n, are called the tangent lengths of the polygon
A1, . . . ,An. If

n

∑
i=1

arctan
(
|AiTi|

r

)
= kπ (1)

where k is a positive integer satisfying k ≤ n−1
2 , the poly-

gon A1, . . . ,An is said to be k-circumscribed, and k is called
its rotation number [8].
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The relation connecting the radii of the incircle and cir-
cumcircle, and the distance between their centers, is called
a Fuss’ relation. Throughout this paper, the notation
F(k)

n (R,r,d) = 0 will consistently denote the Fuss’ relation
for a bicentric n-gon with rotation number k, relating the
radii R and r of the circumcircle and incircle and the dis-
tance d between their centers.

The problem of determining the relation between the radii
of the incircle and circumcircle and the distance between
their centers for bicentric polygons is one of the classical
topics of Euclidean geometry, originating from the results
of Euler and Fuss. Euler first derived the corresponding re-
lation for the triangle, while Nicolaus Fuss (1755–1826)
obtained analogous relations for bicentric quadrilaterals,
pentagons, hexagons, and heptagons. These expressions
are now collectively known as Fuss’ relations.

Later authors extended these relations to polygons of
higher order, using various analytical, geometrical, and
computational approaches. Particularly significant are the
results of Mirko Radić, who developed a relatively simple
and effective method for establishing Fuss’ relations based
on Poncelet’s theorem. In papers [3]–[7], [9], Fuss’ rela-
tions were derived for bicentric polygons up to n = 11, and
for certain cases with n = 13,15,17,18. However, these
results do not include all possible values of the rotation
number k. Specifically, for the bicentric triskaidecagon
(13-gon), only the cases k = 1,3,5 were known, while for
the bicentric pentadecagon (15-gon) the known cases were
k = 1,3,4,5,6. The remaining cases k = 2,4,6 for n = 13
and k = 2 for n = 15 have not been obtained analytically so
far, mainly due to the computational complexity of Radić’s
classical method, whose algebraic expressions grow expo-
nentially with both n and even values of k.

Recent investigations have further extended the study of
bicentric and Poncelet-type polygons using computational
and algebraic methods. For instance, Dragović and Rad-
nović [2] analyzed Poncelet’s porisms through elliptic and
hyperelliptic function theory, establishing algebraic inte-
grability and modular relations for multi-rotational poly-
gons. New algebraic invariants associated with Pon-
celet–Jacobi bicentric polygons have been introduced and
studied in the work of Roitman, Garcia, and Reznik [10],
providing additional structural insight into the geometry
underlying bicentric configurations. Compared with these
works, the present paper emphasizes a purely analytic-
geometric derivation of Fuss’ relations, providing explicit
polynomial forms for higher-order odd bicentric polygons.
This complements rather than replaces the modern compu-
tational approaches, bridging classical Euclidean geometry
with contemporary algebraic methods.

The present paper builds upon Radić’s approach and pro-
vides new analytical forms of Fuss’ relations for bicentric

polygons with an odd number of sides and higher rota-
tion numbers. The derivation is based on Poncelet’s the-
orem, Radić’s theorem on the connection between Fuss’
relations, and Radić’s conjecture on their equivalence for
different rotation numbers. Detailed statements of these
results and references to their proofs are given in Section 2.

The main contribution of this paper is the derivation of pre-
viously unknown Fuss’ relations for:

• the bicentric triskaidecagon (13-gon) with the rota-
tion numbers k = 2,4,6,

• the bicentric pentadecagon (15-gon) with the rota-
tion number k = 2,

• the bicentric heptadecagon (17-gon) with the rota-
tion numbers k = 1,2,3,4,5,6,7,8,

• and the bicentric enneadecagon (19-gon) with the ro-
tation numbers k = 1,2,3,4,5,6,7,8,9.

In this way, the paper fills a previously unexplored part of
the set of known bicentric polygons and demonstrates the
efficiency of a generalized approach that combines Pon-
celet’s theorem with Radić’s results on the relationship
between the Fuss’ relations F(k)

n (R,r,d) and F(q)
n/p (R,r,d)

where p and q are determined by the greatest common di-
visor of n and k.

2 Theoretical background

This section provides a concise overview of the mathemati-
cal foundations on which the results of this paper are based.
It includes the statements of Poncelet’s theorem, Radić’s
theorem on the connection between Fuss’ relations, and
Radić’s conjecture. Proofs of these theorems, and the
derivation of the associated algorithms can be found in the
cited works; therefore, only the relevant formulations and
explanations are given here. Among them, Poncelet’s the-
orem plays a central role in establishing the existence of bi-
centric polygons. This classical theorem is fundamental in
the study of bicentric polygons and underlies the existence
of closed polygons tangent to one circle and inscribed in
another.

Theorem 1 (Poncelet’s theorem) Let C and K be two cir-
cles in a plane such that one lies entirely inside the other.
Then exactly one of the following two statements holds:

a) There exists no bicentric n-gon whose incircle is C
and whose circumcircle is K.
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b) There exist infinitely many bicentric n-gons whose
incircle is C and circumcircle is K. For every point
A1 on the circle K, there exists a bicentric n-gon
A1,A2, . . . ,An whose incircle is C and circumcircle
is K.

A detailed proof of this classical theorem can be found in
[1] and is not repeated here.

Theorem 2 Let n and k be positive integers, and let

p = gcd(n,k) , k = p ·q.

Then the corresponding Fuss’ relations satisfy

F(k)
n (R,r,d) = F(q)

n/p (R,r,d) ,

where n is the number of sides and k the rotation number.

That is, analytically the Fuss’ relation for a bicentric n-
gon with rotation number k is equivalent to the relation
for a smaller bicentric n

p -gon and rotation number q. The
proof of this theorem is given in [9], where a computational
procedure based on tangent lengths and Poncelet’s closure
condition is also presented.

Conjecture 1 For an odd integer n ≥ 3, the following
equalities hold for the Fuss’ relations of bicentric n-gons:

F(i)
n (R,r,d) = F( j)

n (R,r,d)

for all odd i, j with gcd(i,n) = gcd( j,n) = 1,

F(u)
n (R,r,d) = F(v)

n (R,r,d)

for all even u,v with gcd(u,n) = gcd(v,n) = 1.

In other words, all Fuss’ relations for rotation numbers
that are coprime to n are identical within the same par-
ity class (odd or even). The Conjecture 1. has been ver-
ified analytically and numerically for numerous values up
to n = 18, but it remains unproven in the general case. If
eventually proven, this Conjecture 1. would reveal a fun-
damental structural symmetry among Fuss’ relations for
bicentric n-gons. Although Conjecture 1. has not yet been
rigorously established in full generality, the results pre-
sented here rely on it as a practical working assumption.
Its validity has been confirmed for all tested configurations
through both analytical derivations and numerical verifica-
tion, which supports the conjecture’s applicability within
the scope of the present study.

Remark 1 Radić’s Conjecture 1. plays a fundamental
role in simplifying the classification of Fuss’ relations for
bicentric n-gons with an odd number of sides [9]. It ef-
fectively reduces the number of distinct analytical forms
that must be derived, since all relations within the same
parity class (odd or even rotation numbers) are conjec-
tured to coincide. In this paper, the Conjecture 1. is
adopted as a working hypothesis for the higher-order cases
(n = 13,15,17,19) of this study, and the obtained results
are in complete agreement with its predictions. Although
the general proof of the Conjecture 1. remains open, the
analytical and numerical confirmations presented here fur-
ther support its validity and may provide further evidence
supporting its eventual formal proof.

3 Method

The analytical procedure for determining the coordinates
of the vertices of a bicentric n-gon A1,A2, . . . ,An, when n
is an odd number and the rotation number k = 1, was orig-
inally presented in [3]. In this section, the method is sum-
marized, further clarified, and extended to cases of higher
rotation numbers k > 1. The procedure is based on Pon-
celet’s theorem, which guarantees the existence of a closed
polygon inscribed in one circle and tangent to another, and
on Radić’s Theorem 2. and Conjecture 1., which establish
the relationships among the corresponding Fuss’ relations
F(k)

n (R,r,d) = 0 for different values of k.

Geometric setup. According to Poncelet’s theorem, the
choice of initial point and orientation does not affect poly-
gon closure. Therefore, without loss of generality, we con-
sider a configuration symmetric with respect to the x-axis,
which passes through the centers of the two circles. The in-
circle C of radius r is centered at the point I(d,0), while the
circumcircle K of radius R is centered at the origin O(0,0).
The parameter d denotes the distance between their cen-
ters, and the inner circle C lies strictly inside the outer cir-
cle K, that is,

R ≥ d + r > 0.

This assumption guarantees that C is completely contained
within K and will later justify excluding nonphysical fac-
tors in the closure condition.

The polygon vertices A1, . . . ,An lie on K, and the sides
AiAi+1 are tangent to C.

Let ti denote the tangent to the circle C at the point of tan-
gency corresponding to the side AiAi+1, and let Ti denote
the tangency point on C. The coordinates of the first vertex
A1 are obtained as the intersection of the tangent t1, drawn
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at the point P(xp,0) on the circle C, with the circle K. The
abscissa xp depends on the parity of the rotation number:

xp =

{
d + r, if k is odd,
d − r, if k is even.

Recursive construction of vertices. Each subsequent ver-
tex Ai(xi,yi), for i = 2,3, . . . ,n, is determined as the inter-
section of the tangent ti drawn from Ai−1 to the incircle C
and the circumcircle K. The equation of the tangent ti is
obtained from two conditions:

1. the line y = ax+b passes through the known vertex
Ai−1(xi−1,yi−1), and

2. the line is tangent to the circle C.

From these conditions, the slope a and the intercept b are
obtained by solving the system:

axi−1 +b = yi−1,

r2(1+a2)− (ad +b)2 = 0.
(2)

The intersection of this tangent with the circumcircle K
gives the coordinates of the vertex Ai.

Since the polygon is symmetric with respect to the x-axis,
the vertex A(n+1)/2 lies on this axis, with the abscissa
x =−R.

Closure condition and derivation of the Fuss’ relation.
In the geometric construction of a bicentric n-gon, we con-
sider two opposite vertices, A1 and A(n+1)/2, on the circum-
circle. From each of these vertices, tangents are drawn to
an arbitrarily chosen vertex Ai on the same circle. When
the point Ai is reached by successive tangent constructions
starting from A1, it is denoted by A(1)

i . Likewise, when
the same vertex is reached by tangents constructed in the
opposite direction, starting from A(n+1)/2, it is denoted by

A((n+1)/2)
i . The superscript therefore indicates the origin

of the tangent sequence: A(1)
i corresponds to the forward

traversal originating from A1 (with successive index incre-
ments of +1), while A((n+1)/2)

i corresponds to the back-
ward traversal originating from A(n+1)/2 (with successive
decrements of −1). All intermediate vertices generated
along these two tangent sequences inherit the superscript
of their respective starting vertex.

The closure condition of the bicentric n-gon requires that
these two tangent sequences terminate at the same vertex
on the circumcircle; in other words, the points obtained
from the forward and backward constructions must coin-
cide:

A(1)
i ≡ A((n+1)/2)

i .

This geometric requirement ensures that the polygon
closes after n sides and thus satisfies Poncelet’s closure
theorem.

By equating the corresponding abscissas (and equivalently
the ordinates) of the two coinciding vertices, one obtains
the analytical closure equation

ρ(R,r,d) ·F(k)
n (R,r,d) = 0,

where ρ(R,r,d) is a non-vanishing scalar factor, and
F(k)

n (R,r,d) = 0 represents the analytical form of the Fuss’
relation for the given n and rotation number k.

This formulation expresses the precise condition for polyg-
onal closure and provides the foundation for deriving the
explicit analytical expressions of the Fuss’ relations dis-
cussed in the following sections.

Extension to higher rotation numbers. For polygons
with rotation number k> 1, the construction proceeds anal-
ogously, but the initial tangent t1 is drawn at the point
P(xp,0) chosen according to the parity of k. Each subse-
quent tangent ti is determined recursively using (2), while
the closure condition is imposed after every k steps, that is,
after k successive tangent mappings returning the polygon
to the same orientation with respect to the incircle. The
resulting equation in (R,r,d) then yields the corresponding
Fuss’ relation F(k)

n (R,r,d) = 0.

The bicentric n-gon constructed from the initial point
A1 (xp,0) thus represents the entire family of configura-
tions satisfying Poncelet’s closure condition. The same
geometric construction, with the choice xp = d + r for
odd k and xp = d − r for even k, yields all correspond-
ing Fuss’ relations for different rotation numbers. In par-
ticular, this means that the same analytical form of Fuss’
relation F(k)

n (R,r,d) = 0 applies to all polygons with ro-
tation numbers of the same parity (e.g., k = 1,3,5, . . . or
k = 2,4,6, . . .), as predicted by Conjecture 1.

This recursive–geometric procedure, combined with alge-
braic elimination of intermediate coordinates, enables the
analytic derivation of Fuss’ relations for various odd values
of n and rotation numbers k. The method thus provides a
unified analytical approach applicable to all bicentric poly-
gons that satisfy Poncelet’s closure condition.

Transition to the results. The procedure described above
enables the analytical determination of the closure condi-
tion for any bicentric n-gon satisfying Poncelet’s theorem.
By applying the method to specific values of n and k, the
corresponding Fuss’ relations F(k)

n (R,r,d) = 0 can be ex-
plicitly derived. In the following section, we present the
results obtained for the bicentric 13-gon, 15-gon, 17-gon,
and 19-gon, including several previously unknown rela-
tions corresponding to higher rotation numbers.
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4 Results

Throughout this section we use the shorthand

p =
R+d

r
, q =

R−d
r

. (3)

For a bicentric n-gon the rotation number satisfies k ∈
{1, . . . ,⌊(n− 1)/2⌋}. By Theorem 2. and Conjecture 1.,
the corresponding Fuss’ relations F(k)

n (R,r,d) = 0 group
into two parity classes (odd/even) that are identical within
each class when gcd(k,n) = 1.

Bicentric 13-gon. For the bicentric 13-gon, the admissi-
ble rotation indices are k ∈ {1,2,3,4,5,6}. According to
Theorem 2. and Conjecture 1., all Fuss relations for the bi-
centric 13-gon fall into two parity classes (odd and even):

F(1)
13 (R,r,d) = F(3)

13 (R,r,d) = F(5)
13 (R,r,d) = 0, (4)

F(2)
13 (R,r,d) = F(4)

13 (R,r,d) = F(6)
13 (R,r,d) = 0. (5)

The odd-class identity (4) was obtained in [3], here we de-
rive the corresponding even-class relation (5).

Theorem 3 (13-gon, even class) The bicentric 13-gon
with rotation number k = 2 satisfies

F(2)
13 (R,r,d) = 0,

where the explicit polynomial form in p,q is listed in Ap-
pendix A, Eq. (A.1).

Detailed proof. We work in the symmetric coordinate
setup from Section 3: the incircle

C : (x−d)2 + y2 = r2 and K : x2 + y2 = R2,

with C entirely inside K and the x-axis joining the centers
O(0,0) and I(d,0). For the even rotation number k = 2 we
start from the tangency point

P(d − r,0) ∈C,

whose tangent to C is the vertical line x = d − r. Its inter-
section with K gives the first vertex

A1 = (x1,y1) =
(
d − r,

√
R2 − (d − r)2

)
,

where the sign of the square root is chosen so that A1 lies
above the x-axis. This choice only fixes orientation and
does not affect the final closure condition.

Tangent from a given vertex and the next intersection with
K. Let Ai−1 = (x0,y0) ∈ K. A line ti : y = ax+ b passes
through Ai−1 iff b = y0 −ax0. The condition that ti is tan-
gent to C is

dist
(
I,(ti)

)2
=

(ad +b)2

1+a2 = r2 ⇐⇒ r2(1+a2)− (ad +b)2 = 0.

Substituting b = y0 − ax0 yields a quadratic equation for
the slope a:(
r2 − (d − x0)

2)a2 −2(d − x0)y0 a+
(
r2 − y2

0
)
= 0. (6)

We pick the root that continues the forward traversal of the
polygon (the other root corresponds to the opposite tan-
gent).

Once a is fixed, ti meets K at two points whose x-
coordinates are the roots of

(1+a2)x2 +2abx+(b2 −R2) = 0.

Since one root is x0, Vieta’s formulas give the other root
explicitly as

xi =
(a2 −1)x0 −2ay0

1+a2 , yi = axi +b. (7)

Equations (6)–(7) form the closed recurrence for succes-
sive vertices.

Three steps from A1. Applying (6)–(7) first with (x0,y0) =

A1, and then again from A2 to obtain A(1)
3 , we arrive (after

clearing radicals by squaring and simplifying) at rational
expressions in (R,r,d). It is convenient to use the variables
p and q introduced in (3). In these variables, the abscissa
of A(1)

3 takes the form

x(1)3 =
n(1)3

d(1)
3

, (8)

with

n(1)3 =r
(
−p7(q−1)4(q+1)2

+ p6(q2 −1)2(q3 +6q2 +3q+2)

+ p5q(q+1)2(2q4 −5q3 −4q2 +7q−4)

− p4q2(q5 +10q4 −6q3 −12q2 +5q+2)

+ p3q3(−4q4 +5q3 +6q2 +5q+8)

+ p2q4(−q3 +2q2 +q−2)

+ pq5(2q2 −3q−4)+q6(q+2)
)
,

d(1)
3 =2

(
p3(−(q−1)2)(q+1)− p2q(q+1)2

+ pq2(q+1)+q3
)2

.
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Four steps from the symmetry point. By symmetry with
respect to the x-axis, the middle vertex of the 13-gon is

A(13+1)/2 = A7 = (−R,0).

Starting from A7 and iterating (6)–(7) three times forward
(to A(7)

6 ,A(7)
5 ,A(7)

4 ) and once more to reach A(7)
3 , we obtain

x(7)3 =
n(7)3

d(7)
3

, (9)

with

n(7)3 =r(p+q)
(

p16(q2 −1)4(q8 −20q6 −26q4 −20q2 +1)

−8p14q2(q2 −1)4(q6 −5q4 −9q2 −3)

+4p12q4(q2 −1)2(7q8 +8q6 +50q4 +40q2 −9)

−8p10q6(q2 −1)2(7q6 +29q4 +49q2 +11)

+2p8q8(35q8 +60q6 −158q4 −68q2 +99)

−8p6q10(7q6 −3q4 −31q2 +11)

+4p4q12(7q4 −18q2 −9)−8p2q14(q2 −3)+q16
)
,

d(7)
3 =2

(
p8(q2 −1)2(q4 +6q2 +1)

−4p6q2(q2 −1)2(q2 +1)

+ p4(6q8 −4q6 +6q4)−4p2(q8 +q6)+q8
)2

.

Poncelet closure and factorization. Poncelet’s closure for
the bicentric 13-gon with k = 2 requires that the two con-
structions agree at the same point on K, hence

x(1)3 = x(7)3 .

Clearing denominators in (8)–(9) and simplifying, we ob-
tain a polynomial equation in (R,r,d) which factors as

(d − r+R) ·
(
d2 −2rR−R2) ·F(2)

13 (R,r,d) = 0, (10)

where F(2)
13 (R,r,d) is the polynomial displayed in (A.1).

Excluding extraneous factors. Because C lies strictly in-
side K, we have R ≥ d + r with r > 0. The factor d − r+
R = 0 would imply R = r−d ≤ r+(−d)< r+d, contra-
dicting R ≥ d + r unless r = 0 (degenerate). Moreover,

d2 −2rR−R2 ≤ d2 −2r(d + r)− (d + r)2 =−
(
4dr+3r2)< 0,

so d2 − 2rR−R2 = 0 is impossible under the nesting as-
sumption. Hence the only admissible factor in (10) is

F(2)
13 (R,r,d) = 0,

which is exactly the claimed Fuss’ relation for the 13-gon
with rotation number k = 2.

This completes the detailed analytic derivation. □

Graphical examples. For illustration, we present a con-
crete bicentric configuration corresponding to the analyti-
cally and numerically verified configuration of the 13-gon
with rotation number k = 2. With R = 1 and d = 0.1, solv-
ing F(2)

13 (R,r,d) = 0 yields

r13,2 = 0.856554,

while, according to the even-class relations (5), the corre-
sponding radii for higher even rotation numbers are

r13,4 = 0.561780, r13,6 = 0.119618.

Figure 1 illustrates the configuration for k = 2.

A12
A6

A13

A7

A1

A8
A2

A9

A3
(1)

= A3
(7)

A10

A4

A11

A5

O I(0,d)

R rK

C

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1: Bicentric 13-gon for R = 1, d = 0.1, r13,2 =
0.856554, and rotation number k = 2. The incircle C is
tangent to all sides of the polygon, and the circumcircle K
passes through all vertices A1, . . . ,A13. The centers O and
I are aligned on the x-axis. The polygon closes precisely
after 13 tangents, confirming the analytical and numerical
validity of the derived relation F(2)

13 (R,r,d) = 0.

Bicentric 15-gon. For the bicentric 15-gon, the admissi-
ble rotation indices are k ∈ {1,2,3,4,5,6,7}. According
to Theorem 2. and Conjecture 1., all Fuss’ relations for the
bicentric 15-gon fall into four parity classes:

F(1)
15 (R,r,d) = F(7)

15 (R,r,d) = 0, (11)

F(3)
15 (R,r,d) = F(1)

5 (R,r,d) = 0 (12)

F(5)
15 (R,r,d) = F(1)

3 (R,r,d) = 0 , (13)

F(2)
15 (R,r,d) = F(4)

15 (R,r,d) = 0. (14)

Identity (11) was obtained in [3], and the identities (12)
and (13) were obtained in [9]. Here we derive the identity
(14).
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Theorem 4 For a bicentric 15-gon with circumcircle of
radius R, incircle of radius r, and distance d between their
centers, the corresponding Fuss’ relations satisfy:

F(2)
15 (R,r,d) = F(4)

15 (R,r,d) = 0.

The explicit analytical forms of these relations are pro-
vided in Appendix A, Eq. (A.2).

Proof. The proof follows the same analytic–geometric
procedure as in Theorem 3. The coordinates of the ver-
tices Ai(xi,yi) are determined recursively from the tangent
condition (2) for the bicentric configuration with n = 15.
The closure condition is imposed by equating the ab-
scissas (and, equivalently, the ordinates) of the vertices
A(1)

3 (x(1)3 ,y(1)3 ) and A(7)
3 (x(7)3 ,y(7)3 ), obtained from tangents

drawn from A1 and A(n+1)/2. Since both k = 2 and k = 4
correspond to even rotation numbers, the geometric con-
struction and algebraic elimination are completely anal-
ogous to those in Theorem 3 (the 13-gon case), differ-
ing only in the degree of the resulting polynomial in r.
After simplification, the equations F(2)

15 (R,r,d) = 0 and

F(4)
15 (R,r,d) = 0 are obtained. □

Bicentric 17-gon. For the bicentric 17-gon, the admissible
rotation indices are k ∈ {1,2,3,4,5,6,7,8}. According to
Theorem 2. and Conjecture 1., all Fuss relations for the bi-
centric 17-gon can be grouped into two parity classes: one
corresponding to odd rotation numbers (k = 1,3,5,7) and
the other to even rotation numbers (k = 2,4,6,8). Each
class satisfies a distinct analytical form of the Fuss’ rela-
tion, which is common to all members of that class. In the
following theorem, we present the proof that covers both
cases, demonstrating the validity of the relations for odd
and even rotation numbers.

Theorem 5 For a bicentric 17-gon with circumcircle of
radius R, incircle of radius r, and distance d between their
centers, the corresponding Fuss’ relations satisfy:

F(1)
17 (R,r,d)=F(3)

17 (R,r,d)=F(5)
17 (R,r,d)=F(7)

17 (R,r,d)= 0,

for odd rotation numbers k = 1,3,5,7, and

F(2)
17 (R,r,d)=F(4)

17 (R,r,d)=F(6)
17 (R,r,d)=F(8)

17 (R,r,d)= 0,

for even rotation numbers k = 2,4,6,8. The explicit ana-
lytical forms of these relations are given in Appendix A as
Eq. (A.3) for the odd rotation numbers (k = 1,3,5,7) and
Eq. (A.4) for the even rotation numbers (k = 2,4,6,8).

Proof. For the odd rotation numbers k = 1,3,5,7, the
proof proceeds analogously to the case k = 1 discussed for
the 13-gon and 15-gon in [3]. The first tangent t1 is drawn

at the point P(r + d,0) on the incircle C, and the subse-
quent tangents determine the vertices Ai recursively using
system (2). The closure condition is imposed by equating
the abscissas of the vertices obtained from A1 and A(n+1)/2,

ensuring that A(1)
i ≡ A(n+1)/2

i . Since all considered rota-
tion numbers are odd, the geometric symmetry and ana-
lytic form of the procedure remain identical, leading to the
family of relations listed above, which coincide according
to Conjecture 1. □

Bicentric 19-gon. For the bicentric 19-gon, the admis-
sible rotation indices are k ∈ {1,2,3,4,5,6,7,8,9}. Ac-
cording to Theorem 2. and Conjecture 1., all Fuss’ re-
lations for the bicentric 19-gon can be grouped into two
parity classes: one corresponding to odd rotation numbers
(k = 1,3,5,7,9) and the other to even rotation numbers
(k = 2,4,6,8). Each class satisfies a distinct analytical
form of the Fuss relation, which is common to all mem-
bers of that class. In the following theorem, we present the
proof that covers both cases, demonstrating the validity of
the relations for odd and even rotation numbers.

Theorem 6 For a bicentric 19-gon with circumcircle of
radius R, incircle of radius r, and distance d between their
centers, the corresponding Fuss’ relations satisfy:

F(1)
19 (R,r,d) = F(3)

19 (R,r,d) = F(5)
19 (R,r,d)

= F(7)
19 (R,r,d) = F(9)

19 (R,r,d) = 0,

for odd rotation numbers k = 1,3,5,7,9, and

F(2)
19 (R,r,d) = F(4)

19 (R,r,d) = F(6)
19 (R,r,d)

= F(8)
19 (R,r,d) = 0,

for even rotation numbers k = 2,4,6,8. The explicit an-
alytical forms of these relations are given in Appendix A
as Eq. (A.5) for the odd rotation numbers (k = 1,3,5,7,9)
and Eq. (A.6) for the even rotation numbers (k = 2,4,6,8).

Proof. For even rotation numbers, the proof follows
the same analytic–geometric principle as in Theorem 3.
The initial tangent is drawn at the point P(d − r,0) on
the incircle C, corresponding to the even-k configura-
tion. Each subsequent vertex is determined using the
tangent condition (2), while the closure condition is es-
tablished by equating the abscissas of the vertices ob-
tained from opposite sides of the symmetric configura-
tion (for example, A(1)

3 and A(9)
3 for n = 17). The analyt-

ical elimination of the coordinates yields polynomial re-
lations in (R,r,d), producing the functions F(2)

17 (R,r,d) =

0, F(4)
17 (R,r,d) = 0, F(6)

17 (R,r,d) = 0, F(8)
17 (R,r,d) =

0, and analogously F(2)
19 (R,r,d) = 0, F(4)

19 (R,r,d) = 0,
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F(6)
19 (R,r,d) = 0, F(8)

19 (R,r,d) = 0. For k = 2, the construc-
tion reduces exactly to the case described in Theorem 3.,
while for higher even k the algebraic form remains analo-
gous but of higher order. □

Discussion. The results obtained for n = 15, n = 17,
and n = 19 confirm the general validity of the analytical
method described in Section 3. All relations exhibit the ex-
pected symmetry with respect to the parity of the rotation
number and reduce to simpler forms for specific (n,k) pairs
according to Radić’s theorem 2. These findings, together
with the detailed derivation for the 13-gon, complete the
analytical description of Fuss’ relations for bicentric poly-
gons with an odd number of sides up to n = 19.

The cases n = 13 with k = 2,4,6 and n = 15 with k = 2 had
not been reported previously in the literature. The reason
lies primarily in the rapidly increasing algebraic complex-
ity of the closure condition F(k)

n (R,r,d) = 0 as both n and
k increase, leading to polynomial equations of extremely
high degree. The resulting polynomials reach very high
algebraic degrees, which makes symbolic derivations in-
creasingly intractable without computer algebra assistance.
Earlier studies, such as [6]–[7], [9], were therefore lim-
ited to lower-degree cases due to these computational con-
straints. The present work extends those results by deriv-
ing explicit analytical expressions for the previously unre-
solved configurations.

Graphical representations of the bicentric 15-gon (k =
2,4), the bicentric 17-gon (k = 1–8), and the bicentric 19-
gon (k = 1–9) are provided in Appendix A.3. These figures
illustrate the analytically derived bicentric configurations
and visually confirm the polygonal closure predicted by
the corresponding Fuss’ relations. The numerical values
of the incircle radii, computed for R = 1 and d = 0.1, are
listed in Appendix A.2, providing quantitative verification
of the analytical results.

5 Conclusion

New analytical forms of the Fuss’ relations F(k)
n (R,r,d) =

0 have been derived for bicentric polygons with an odd

number of sides and higher rotation numbers. Building
upon Poncelet’s theorem and Radić’s theoretical frame-
work, the proposed method allows the derivation of closed-
form relations for previously unknown cases of the 13-gon,
15-gon, 17-gon, and 19-gon.

The proofs demonstrate how the analytic–geometric con-
struction, combined with algebraic elimination, naturally
yields the closure condition ρ(R,r,d)F(k)

n (R,r,d) = 0,
from which the analytical expressions follow directly. One
detailed proof (Theorem 4.1) was presented in full detail,
while subsequent theorems were obtained analogously by
applying the same geometric principle for different rota-
tion numbers.

Numerical and graphical verifications confirmed the va-
lidity of all derived relations, illustrating complete con-
sistency between analytical derivation and computational
results. The unified approach developed here provides a
clear, extensible framework for deriving Fuss’ relations of
higher order and may serve as a basis for future generaliza-
tions to other classes of bicentric and Poncelet-type poly-
gons.

Beyond its theoretical interest, the presented framework
has potential applications in computational geometry and
design. The explicit analytical forms of Fuss’ relations can
be implemented in symbolic computation software to auto-
matically generate bicentric configurations satisfying Pon-
celet’s closure condition. Moreover, such relations may
find use in computer-aided design of circular mechanisms,
in the geometric modeling of conic envelopes, and in the
study of discrete dynamical systems arising from Poncelet-
type polygons. These aspects provide a promising direc-
tion for future interdisciplinary research.
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orcid.org/0000-0002-9011-1892
e-mail: mandi.orlic@tvz.hr

University of Applied Sciences
Av. V. Holjevca 15, Zagreb, Croatia

APENDIX A. Fuss’ relations, numerical and graphical results

A.1. Analytical forms of Fuss’ relations

In all Fuss’ relations presented below, the substitution p = R+d
r , q = R−d

r is used. The following analytical expressions
correspond to the bicentric polygons derived in Section 4.

F(2)
13 (R,r,d) =(q−1)12(q+1)9 p21 − (q−1)6q(q+1)10 (3q4 +10q2 +3

)
p20 −2(q−1)6q2(q+1)9 (3q4 −4q3 +10q2

−4q+3) p19 +2(q−1)6q3(q+1)4
(

13q8 +36q7 +124q6 +156q5 +238q4 +156q3 +124q2 +36q+13
)

p18

+(q−1)6q4(q+1)5
(

9q6 +66q5 +71q4 +92q3 +71q2 +66q+9
)

p17 − (q−1)6q5(q+1)4
(

99q6 +118q5 +493q4

+308q3 +493q2 +118q+99
)

p16 +8(q−1)2q6(q+1)5
(

3q8 −8q7 +34q6 −32q5 +38q4 −32q3 +34q2 −8q+3
)

p15

+8(q−1)2q7(q+1)4
(

27q8 −84q7 +166q6 −252q5 +318q4 −252q3 +166q2 −84q+27
)

p14 −2(q−1)2q8(q+1)5
(

63q6

−34q5 +169q4 −76q3 +169q2 −34q+63
)

p13 −2(q−1)2q9(q+1)4
(

147q6 −370q5 +709q4 −684q3 +709q2

−370q+147) p12 +4(q−1)2q10
(

63q9 +255q8 +536q7 +776q6 +930q5 +930q4 +776q3 +536q2 +255q+63
)

p11

+4q11 (q2 −1
)2

(
63q6 +38q5 +61q4 +188q3 +61q2 +38q+63

)
p10 −2(q−1)2q12

(
147q7 +449q6 +867q5 +1097q4

+1097q3 +867q2 +449q+147
)

p9 −2q13 (q2 −1
)2 (

63q4 +120q3 +74q2 +120q+63
)

p8 +8q14
(

27q7 +q6 +5q5 −33q4

−33q3 +5q2 +q+27
)

p7 +8q15(q+1)2 (3q4 +4q3 −16q2 +4q+3
)

p6 +q16
(
−99q5 +57q4 +26q3 +26q2 +57q−99

)
p5

+q17(q+1)2 (9q2 +2q+9
)

p4 +2q18 (13q3 −5q2 −5q+13
)

p3 −6q19(q+1)2 p2 −3q20(q+1)p+q21 = 0 .

(A.1)

F(2)
15 (R,r,d) =(q−1)10(q+1)14 p24 +4(q−1)8q(q+1)7

(
q8 −q7 +14q6 +q5 +34q4 +q3 +14q2 −q+1

)
p23

−4q2 (q2 −1
)6

(
q10 −8q9 −3q8 −64q7 +2q6 −112q5 +2q4 −64q3 −3q2 −8q+1

)
p22 −4(q−1)6q3(q+1)5(

9q10 +8q9 +37q8 +64q7 −46q6 +112q5 −46q4 +64q3 +37q2 +8q+9
)

p21 −2(q−1)6q4(q+1)4 (7q10

+116q9 +323q8 +608q7 +1078q6 +856q5 +1078q4 +608q3 +323q2 +116q+7
)

p20 +4(q−1)6q5(q+1)3(
35q10 +121q9 +211q8 +340q7 +458q6 +230q5 +458q4 +340q3 +211q2 +121q+35

)
p19

+4(q−1)6q6(q+1)4
(

35q8 +132q7 +444q6 +412q5 +898q4 +412q3 +444q2 +132q+35
)

p18

−4(q−1)6q7(q+1)3
(

75q8 +212q7 +444q6 +332q5 +818q4 +332q3 +444q2 +212q+75
)

p17
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− (q−1)4q8(q+1)2
(

465q10 +474q9 +1773q8 −168q7 −1726q6 −612q5 −1726q4 −168q3 +1773q2

+474q+465) p16 +8(q−1)2q9(q+1)3
(

45q10 −147q9 +309q8 −876q7 +1534q6 −1858q5 +1534q4

−876q3 +309q2 −147q+45
)

p15 +8q10 (q2 −1
)2

(
111q10 −196q9 −163q9 −255q8 −726q7 −110q6

−110q5 −726q4 +243q8 −288q7 +30q6 +328q5 +30q4 −288q3 +243q2 −196q+111
)

p14

−8(q−1)2q11 (21q11 −175q10 −255q3 −163q2 −175q+21
)

p13 −4q12 (q2 −1
)2 (

273q8 −434q7

+504q6 −142q5 +302q4 −142q3 +504q2 −434q+273
)

p12 −8(q−1)2q13 (21q9 +238q8 +383q7

+237q6 +625q5 +625q4 +237q3 +383q2 +238q+21
)

p11 +8q14 (q2 −1
)2

(
111q6 −102q5 +177q4

−4q3 +177q2 −102q+111
)

p10 +8(q−1)2q15
(

45q7 +147q6 +345q5 +247q4 +247q3 +345q2 +147q

+45) p9 −q16 (q2 −1
)2 (

465q4 −52q3 +630q2 −52q+465
)

p8 −4(q−1)2q17
(

75q5 +88q4 +253q3

+253q2 +88q+75
)

p7 +4q18 (q2 −1
)2 (

35q2 +16q+35
)

p6 +4(q−1)2q19 (35q3 +19q2 +19q+35
)

p5

−2q20(q+1)2 (7q2 −16q+7
)

p4 −4q21 (9q3 −8q2 −8q+9
)

p3 −4q22(q+1)2 p2 +4q23(q+1)p+q24 = 0 .

F(1)
17 (R,r,d) =(q−1)16(q+1)20 p36 +4(q−1)17q(q+1)12

(
q6 +7q4 +7q2 +1

)
p35 −2(q−1)16q2(q+1)12(

5q6 +10q5 +35q4 +28q3 +35q2 +10q+5
)

p34 −4(q−1)9q3(q+1)12 (15q12 −60q11 +294q10 −588q9

+1377q8 −1656q7 +2260q6 −1656q5 +1377q4 −588q3 +294q2 −60q+15
)

p33 +(q−1)10q4(q+1)12 (25q10

−274q9 +517q8 −1176q7 +1506q6 −2220q5 +1506q4 −1176q3 +517q2 −274q+25
)

p32 +32(q−1)9q5(q+1)12(
13q10 −26q9 +149q8 −178q7 +438q6 −312q5 +438q4 −178q3 +149q2 −26q+13

)
p31 +16(q−1)10q6(q+1)6(

9q14 +42q13 +234q12 +410q11 +892q10 +1214q9 +1937q8 +1788q7 +1937q6 +1214q5 +892q4 +410q3 +234q2

+42q+9) p30 −32(q−1)9q7(q+1)6 (55q14 +250q13 +820q12 +2074q11 +4234q10 +6542q9 +8843q8 +9660q7

+8843q6 +6542q5 +4234q4 +2074q3 +820q2 +250q+55
)

p29 −4(q−1)10q8(q+1)6 (355q12 +480q11 +3066q10

+3376q9 +9725q8 +8176q7 +15180q6 +8176q5 +9725q4 +3376q3 +3066q2 +480q+355
)

p28

+16(q−1)9q9(q+1)6
(

315q12 +1294q11 +4118q10 +8258q9 +15389q8 +19696q7 +22948q6 +19696q5 +15389q4

+8258q3 +4118q2 +1294q+315
)

p27 +8(q−1)4q10(q+1)6
(

749q16 −3476q15 +10942q14 −25756q13 +51400q12

−84404q11 +125282q10 −154652q9 +168022q8 −154652q7 +125282q6 −84404q5 +51400q4 −25756q3 +10942q2

−3476q+749) p26 −16(q−1)5q11(q+1)6 (637q14 −586q13 +2257q12 −6544q11 +8415q10 −15142q9 +18387q8

−15872q7 +18387q6 −15142q5 +8415q4 −6544q3 +2257q2 −586q+637
)

p25 −4(q−1)4q12(q+1)6 (4095q14

−15830q13 +50625q12 −103812q11 +201091q10 −285930q9 +388285q8 −403320q7 +388285q6 −285930q5

+201091q4 −103812q3 +50625q2 −15830q+4095
)

p24 +32(q−1)5q13(q+1)6 (455q12 −1020q11 +2206q10

−5862q9 +7453q8 −9822q7 +11388q6 −9822q5 +7453q4 −5862q3 +2206q2 −1020q+455
)

p23

+16(q−1)4q14(q+1)6
(

2015q12 −5812q11 +19561q10 −32800q9 +62365q8 −71980q7 +89910q6 −71980q5

+62365q4 −32800q3 +19561q2 −5812q+2015
)

p22 −32(q−1)5q15(q+1)2 (429q14 +110q13 −1298q12

−3398q11 −7160q10 −6470q9 −3235q8 −2500q7 −3235q6 −6470q5 −7160q4 −3398q3 −1298q2 +110q

+429) p21 −2(q−1)4q16(q+1)2 (23881q14 +47718q13 +126203q12 +283116q11 +412761q10 +633018q9

+786787q8 +763368q7 +786787q6 +633018q5 +412761q4 +283116q3 +126203q2 +47718q+23881
)

p20

+8(q−1)5q17(q+1)2
(

715q12 −1870q11 −11110q10 −15406q9 −22747q8 −20356q7 −17172q6 −20356q5

−22747q4 −15406q3 −11110q2 −1870q+715
)

p19 +4(q−1)4q18(q+1)2 (13585q12 +35200q11 +80542q10

+163952q9 +235663q8 +293392q7 +340868q6 +293392q5 +235663q4 +163952q3 +80542q2 +35200q

+13585) p18 +8(q−1)5q19(q+1)2
(

715q10 +2134q9 +10483q8 +10464q7 +14658q6 +12564q5 +14658q4
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+10464q3 +10483q2 +2134q+715
)

p17 −2(q−1)4q20(q+1)2 (23881q10 +66594q9 +141933q8 +241640q7

+335562q6 +337644q5 +335562q4 +241640q3 +141933q2 +66594q+23881
)

p16

−32q21
(

429q15 −891q14 +1089q13 −1521q12 −57q11 +2541q10 −1567q9 −235q8 +235q7 +1567q6

−2541q5 +57q4 +1521q3 −1089q2 +891q−429
)

p15 +16q22 (q2 −1
)2 (

2015q10 +1130q9 +2360q8

−2282q7 +889q6 −8288q5 +889q4 −2282q3 +2360q2 +1130q+2015
)

p14 +16(q−1)4q14(q+1)6(
2015q12 −5812q11 +19561q10 −32800q9 +62365q8 −71980q7 +89910q6 −71980q5 +62365q4 −32800q3

+19561q2 −5812q+2015
)

p22 −32(q−1)5q15(q+1)2 (429q14 +110q13 −1298q12 −3398q11 −7160q10

−6470q9 −3235q8 −2500q7 −3235q6 −6470q5 −7160q4 −3398q3 −1298q2 +110q+429
)

p21

−2(q−1)4q16(q+1)2 (23881q14 +47718q13 +126203q12 +283116q11 +412761q10 +633018q9 +786787q8

+763368q7 +786787q6 +633018q5 +412761q4 +283116q3 +126203q2 +47718q+23881
)

p20 +8(q−1)5q17(q+1)2(
715q12 −1870q11 −11110q10 −15406q9 −22747q8 −20356q7 −17172q6 −20356q5 −22747q4 −15406q3 −11110q2

−1870q+715) p19 +4(q−1)4q18(q+1)2 (13585q12 +35200q11 +80542q10 +163952q9 +235663q8 +293392q7

+340868q6 +293392q5 +235663q4 +163952q3 +80542q2 +35200q+13585
)

p18

+8(q−1)5q19(q+1)2
(

715q10 +2134q9 +10483q8 +10464q7 +14658q6 +12564q5 +14658q4 +10464q3 +10483q2

+2134q+715) p17 −2(q−1)4q20(q+1)2
(

23881q10 +66594q9 +141933q8 +241640q7 +335562q6 +337644q5

+335562q4 +241640q3 +141933q2 +66594q+23881
)

p16 −32q21
(

429q15 −891q14 +1089q13 −1521q12

−57q11 +2541q10 −1567q9 −235q8 +235q7 +1567q6 −2541q5 +57q4 +1521q3 −1089q2 +891q−429
)

p15

+16q22 (q2 −1
)2

(
2015q10 +1130q9 +2360q8 −2282q7 +889q6 −8288q5 +889q4 −2282q3 +2360q2 +1130q+2015

)
p14

+32q23(q+1)2
(

455q11 −1865q10 +4032q9 −6340q8 +8305q7 −9243q6 +9243q5 −8305q4 +6340q3 −4032q2

+1865q−455) p13 −4q24 (q2 −1
)2

(
4095q8 −204q7 +4704q6 −10900q5 +4034q4 −10900q3 +4704q2 −204q+4095

)
p12

−16q25(q+1)2
(

637q9 −2263q8 +4598q7 −6486q6 +7648q5 −7648q4 +6486q3 −4598q2 +2263q−637
)

p11

+8q26 (q2 −1
)2

(
749q6 −698q5 +925q4 −2200q3 +925q2 −698q+749

)
p10 +16q27(q+1)2

(
315q7 −865q6 +1605q5

−1999q4 +1999q3 −1605q2 +865q−315
)

p9 −4(q−1)2q28
(

355q6 +30q5 −559q4 −452q3 −559q2 +30q+355
)

p8

−32q29
(

55q7 +3q6 +7q5 +57q4 −57q3 −7q2 −3q−55
)

p7 +16(q−1)2q30 (9q4 −8q3 −41q2 −8q+9
)

p6

+32q31
(

13q5 +7q4 −3q3 +3q2 −7q−13
)

p5 +5(q−1)2q32 (5q2 −2q+5
)

p4 −20q33 (3q3 +q2 −q−3
)

p3

−10(q−1)2q34 p2 +4(q−1)q35 p+q36 = 0

F(2)
17 (R,r,d) =(q−1)20(q+1)16 p36 −4(q−1)12q(q+1)17

(
q6 +7q4 +7q2 +1

)
p35 −2(q−1)12q2(q+1)16(

5q6 −10q5 +35q4 −28q3 +35q2 −10q+5
)

p34 +4(q−1)12q3(q+1)9 (15q12 +60q11 +294q10 +588q9

+1377q8 +1656q7 +2260q6 +1656q5 +1377q4 +588q3 +294q2 +60q+15
)

p33 +(q−1)12q4(q+1)10(
25q10 +274q9 +517q8 +1176q7 +1506q6 +2220q5 +1506q4 +1176q3 +517q2 +274q+25

)
p32

−32(q−1)12q5(q+1)9
(

13q10 +26q9 +149q8 +178q7 +438q6 +312q5 +438q4 +178q3 +149q2 +26q

+13) p31 +16(q−1)6q6(q+1)10 (9q14 −42q13 +234q12 −410q11 +892q10 −1214q9 +1937q8 −1788q7

+1937q6 −1214q5 +892q4 −410q3 +234q2 −42q+9
)

p30 +32(q−1)6q7(q+1)9 (55q14 −250q13

+820q12 −2074q11 +4234q10 −6542q9 +8843q8 −9660q7 +8843q6 −6542q5 +4234q4 −2074q3 +820q2

−250q+55) p29 −4(q−1)6q8(q+1)10
(

355q12 −480q11 +3066q10 −3376q9 +9725q8 −8176q7 +15180q6

−8176q5 +9725q4 −3376q3 +3066q2 −480q+355
)

p28 −16(q−1)6q9(q+1)9 (315q12 −1294q11 +4118q10
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−8258q9 +15389q8 −19696q7 +22948q6 −19696q5 +15389q4 −8258q3 +4118q2 −1294q+315
)

p27

+8(q−1)6q10(q+1)4
(

749q16 +3476q15 +10942q14 +25756q13 +51400q12 +84404q11 +125282q10

+154652q9 +168022q8 +154652q7 +125282q6 +84404q5 +51400q4 +25756q3 +10942q2 +3476q+749
)

p26

+16(q−1)6q11(q+1)5 (637q14 +586q13 +2257q12 +6544q11 +8415q10 +15142q9 +18387q8 +15872q7

+18387q6 +15142q5 +8415q4 +6544q3 +2257q2 +586q+637
)

p25 −4(q−1)6q12(q+1)4 (4095q14

+15830q13 +50625q12 +103812q11 +201091q10 +285930q9 +388285q8 +403320q7 +388285q6

+285930q5 +201091q4 +103812q3 +50625q2 +15830q+4095
)

p24

−32(q−1)6q13(q+1)5
(

455q12 +1020q11 +2206q10 +5862q9 +7453q8 +9822q7 +11388q6 +9822q5

+7453q4 +5862q3 +2206q2 +1020q+455
)

p23 +16(q−1)6q14(q+1)4 (2015q12 +5812q11 +19561q10

+32800q9 +62365q8 +71980q7 +89910q6 +71980q5 +62365q4 +32800q3 +19561q2 +5812q+2015
)

p22

+32(q−1)2q15(q+1)5 (429q14 −110q13 −1298q12 +3398q11 −7160q10 +6470q9 −3235q8 +2500q7

−3235q6 +6470q5 −7160q4 +3398q3 −1298q2 −110q+429
)

p21 −2(q−1)2q16(q+1)4 (23881q14

−47718q13 +126203q12 −283116q11 +412761q10 −633018q9 +786787q8 −763368q7 +786787q6

−633018q5 +412761q4 −283116q3 +126203q2 −47718q+23881
)

p20 −8(q−1)2q17(q+1)5 (715q12

+1870q11 −11110q10 +15406q9 −22747q8 +20356q7 −17172q6 +20356q5 −22747q4 +15406q3

−11110q2 +1870q+715
)

p19 +4(q−1)2q18(q+1)4 (13585q12 −35200q11 +80542q10 −163952q9

+235663q8 −293392q7 +340868q6 −293392q5 +235663q4 −163952q3 +80542q2 −35200q+13585
)

p18

−8(q−1)2q19(q+1)5
(

715q10 −2134q9 +10483q8 −10464q7 +14658q6 −12564q5 +14658q4 −10464q3

+10483q2 −2134q+715
)

p17 −2(q−1)2q20(q+1)4 (23881q10 −66594q9 +141933q8 −241640q7

+335562q6 −337644q5 +335562q4 −241640q3 +141933q2 −66594q+23881
)

p16

+32(q−1)2q21
(

429q13 +1749q12 +4158q11 +8088q10 +11961q9 +13293q8 +13058q7 +13058q6

+13293q5 +11961q4 +8088q3 +4158q2 +1749q+429
)

p15 +16q22 (q2 −1
)2 (

2015q10 −1130q9

+2360q8 +2282q7 +889q6 +8288q5 +889q4 +2282q3 +2360q2 −1130q+2015
)

p14

−32(q−1)2q23
(

455q11 +1865q10 +4032q9 +6340q8 +8305q7 +9243q6 +9243q5 +8305q4

+6340q3 +4032q2 +1865q+455
)

p13 −4q24 (q2 −1
)2

(
4095q8 +204q7 +4704q6 +10900q5

+4034q4 +10900q3 +4704q2 +204q+4095
)

p12 +16(q−1)2q25
(

637q9 +2263q8 +4598q7 +6486q6

+7648q5 +7648q4 +6486q3 +4598q2 +2263q+637
)

p11 +8q26 (q2 −1
)2

(
749q6 +698q5 +925q4

+2200q3 +925q2 +698q+749
)

p10 −16(q−1)2q27
(

315q7 +865q6 +1605q5 +1999q4 +1999q3

+1605q2 +865q+315
)

p9 −4q28(q+1)2
(

355q6 −30q5 −559q4 +452q3 −559q2 −30q+355
)

p8

+32q29
(

55q7 −3q6 +7q5 −57q4 −57q3 +7q2 −3q+55
)

p7 +16q30(q+1)2 (9q4 +8q3

−41q2 +8q+9
)

p6 −32q31
(

13q5 −7q4 −3q3 −3q2 −7q+13
)

p5 +5q32(q+1)2 (5q2 +2q+5
)

p4

+20q33 (3q3 −q2 −q+3
)

p3 −10q34(q+1)2 p2 −4q35(q+1)p+q36 = 0.

F(1)
19 (R,r,d) =(q−1)25(q+1)20 p45 − (q−1)16q(q+1)20

(
5q8 +60q6 +126q4 +60q2 +5

)
p44 −2(q−1)17q2(q+1)20(

5q6 −10q5 +35q4 −28q3 +35q2 −10q+5
)

p43 +2(q−1)16q3(q+1)12 (45q14 +210q13 +1143q12 +2724q11

+7437q10 +11022q9 +17999q8 +17144q7 +17999q6 +11022q5 +7437q4 +2724q3 +1143q2 +210q+45
)

p42

− (q−1)17q4(q+1)12
(

5q12 −324q11 −838q10 −2484q9 −3349q8 −6408q7 −5972q6 −6408q5 −3349q4

−2484q3 −838q2 −324q+5
)

p41 − (q−1)16q5(q+1)12 (751q12 +1988q11 +12142q10 +18548q9 +51553q8
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+50120q7 +82052q6 +50120q5 +51553q4 +18548q3 +12142q2 +1988q+751
)

p40 +4(q−1)9q6(q+1)12 (165q18

−750q17 +3945q16 −9320q15 +25672q14 −45304q13 +89152q12 −114072q11 +159594q10 −152628q9 +159594q8

−114072q7 +89152q6 −45304q5 +25672q4 −9320q3 +3945q2 −750q+165
)

p39 +4(q−1)10q7(q+1)12
(

955q16

−4120q15 +15380q14 −44792q13 +100556q12 −179080q11 +282220q10 −357736q9 +389618q8 −357736q7

+282220q6 −179080q5 +100556q4 −44792q3 +15380q2 −4120q+955
)

p38 − (q−1)9q8(q+1)12
(

5605q16 −12720q15

+79144q14 −134992q13 +435372q12 −552944q11 +1155224q10 −1068816q9 +1564510q8 −1068816q7 +1155224q6

−552944q5 +435372q4 −134992q3 +79144q2 −12720q+5605
)

p37 − (q−1)10q9(q+1)12 (13015q14 −57594q13

+197245q12 −469636q11 +977279q10 −1469734q9 +2023725q8 −2150072q7 +2023725q6 −1469734q5 +977279q4

−469636q3 +197245q2 −57594q+13015
)

p36 +2(q−1)9q10(q+1)6 (13623q20 +58692q19 +224578q18 +644388q17

+1537387q16 +3161936q15 +5726616q14 +8736400q13 +12079710q12 +14399416q11 +15362124q10 +14399416q9

+12079710q8 +8736400q7 +5726616q6 +3161936q5 +1537387q4 +644388q3 +224578q2 +58692q+13623
)

p35

+2(q−1)10q11(q+1)6
(

15105q18 +33250q17 +68825q16 +227120q15 +458932q14 +936248q13 +1612484q12

+2079824q11 +2366638q10 +2622156q9 +2366638q8 +2079824q7 +1612484q6 +936248q5 +458932q4 +227120q3

+68825q2 +33250q+15105
)

p34 − (q−1)9q12(q+1)6

(92055q18 +383630q17 +1452895q16 +3794064q15 +8841036q14

+16031112q13 +27191804q12 +36730864q11 +46308290q10 +48125652q9 +46308290q8 +36730864q7 +27191804q6

+16031112q5 +8841036q4 +3794064q3 +1452895q2 +383630q+92055
)

p33 − (q−1)10q13(q+1)6
(

43605q16

+167220q15 +342208q14 +1128700q13 +2176220q12 +3799508q11 +5324928q10 +6750204q9 +6541086q8

+6750204q7 +5324928q6 +3799508q5 +2176220q4 +1128700q3 +342208q2 +167220q+43605
)

p32

+16(q−1)9q14(q+1)6
(

14535q16 +53048q15 +204500q14 +460152q13 +1051356q12 +1636168q11 +2599852q10

+3002376q9 +3472314q8 +3002376q7 +2599852q6 +1636168q5 +1051356q4 +460152q3 +204500q2 +53048q+14535
)

p31

+16(q−1)4q15(q+1)6
(

969q20 +9664q19 −54654q18 +152816q17 −329771q16 +491984q15 −652264q14 +928624q13

−1334686q12 +1710096q11 −1911092q10 +1710096q9 −1334686q8 +928624q7 −652264q6 +491984q5 −329771q4

+152816q3 −54654q2 +9664q+969
)

p30 −2(q−1)5q16(q+1)6
(

227715q18 −235650q17 +1366235q16 −2686160q15

+5032460q14 −10636024q13 +13987228q12 −19540144q11 +23852538q10 −22605324q9 +23852538q8 −19540144q7

+13987228q6 −10636024q5 +5032460q4 −2686160q3 +1366235q2 −235650q+227715
)

p29 +2(q−1)4q17(q+1)6(
53295q18 −333170q17 +1258535q16 −2648080q15 +5210748q14 −8023224q13 +12000716q12 −15961456q11 +20634466q10

−21500076q9 +20634466q8 −15961456q7 +12000716q6 −8023224q5 +5210748q4 −2648080q3 +1258535q2 −333170q

+53295) p28 +4(q−1)5q18(q+1)6
(

176035q16 −304880q15 +1143728q14 −2592944q13 +4381796q12 −7836752q11

+10347280q10 −12071952q9 +13810290q8 −12071952q7 +10347280q6 −7836752q5 +4381796q4 −2592944q3 +1143728q2

−304880q+176035) p27 −4(q−1)4q19(q+1)6
(

85595q16 −305012q15 +1099080q14 −2008892q13 +3983924q12

−5691028q11 +8686584q10 −9857724q9 +11570274q8 −9857724q7 +8686584q6 −5691028q5 +3983924q4 −2008892q3

+1099080q2 −305012q+85595
)

p26 +4(q−1)5q18(q+1)6
(

176035q16 −304880q15 +1143728q14 −2592944q13 +4381796q12

−7836752q11 +10347280q10 −12071952q9 +13810290q8 −12071952q7 +10347280q6 −7836752q5 +4381796q4 −2592944q3

+1143728q2 −304880q+176035
)

p27 −4(q−1)4q19(q+1)6
(

85595q16 −305012q15 +1099080q14 −2008892q13

+3983924q12 −5691028q11 +8686584q10 −9857724q9 +11570274q8 −9857724q7 +8686584q6 −5691028q5 +3983924q4

−2008892q3 +1099080q2 −305012q+85595
)

p26 −2(q−1)5q20(q+1)6 (432497q14 −1004458q13 +2946827q12

−6570372q11 +10501177q10 −15673590q9 +19962699q8 −20001720q7 +19962699q6 −15673590q5 +10501177q4 −6570372q3

+2946827q2 −1004458q+432497
)

p25 +2(q−1)4q21(q+1)2
(

314925q18 +507650q17 +1705925q16 +3630000q15

+5794180q14 +9676216q13 +12644116q12 +17459152q11 +21057910q10 +20357004q9 +21057910q8 +17459152q7
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+12644116q6 +9676216q5 +5794180q4 +3630000q3 +1705925q2 +507650q+314925
)

p24 +8(q−1)5q22(q+1)2
(

104975q16

+135200q15 +206700q14 +150960q13 −264852q12 +53296q11 +490644q10 +1067520q9 +1730826q8 +1067520q7

+490644q6 +53296q5 −264852q4 +150960q3 +206700q2 +135200q+104975
)

p23 −8(q−1)4q23(q+1)2
(

104975q16

+240500q15 +641004q14 +1312380q13 +2086220q12 +3309396q11 +4310420q10 +5043900q9 +5682762q8 +5043900q7

+4310420q6 +3309396q5 +2086220q4 +1312380q3 +641004q2 +240500q+104975
)

p22 −2(q−1)5q24(q+1)2 (314925q14

+372814q13 +338975q12 +679468q11 +320917q10 +1684114q9 +3313695q8 +3251688q7 +3313695q6 +1684114q5 +320917q4

+679468q3 +338975q2 +372814q+314925
)

p21 +2(q−1)4q25(q+1)2 (432497q14 +1132638q13 +2780427q12

+5405644q11 +8464185q10 +11947394q9 +15022667q8 +15142056q7 +15022667q6 +11947394q5 +8464185q4

+5405644q3 +2780427q2 +1132638q+432497
)

p20 +4(q−1)5q26(q+1)2 (85595q12 +127940q11 +82070q10 +330420q9

+439669q8 +712072q7 +982836q6 +712072q5 +439669q4 +330420q3 +82070q2 +127940q+85595
)

p19

−4(q−1)4q27(q+1)2 (176035q12 +465360q11 +1110750q10 +1955664q9 +2999117q8 +3584480q7

+4196964q6 +3584480q5 +2999117q4 +1955664q3 +1110750q2 +465360q+176035
)

p18

−2q28(q+1)2
(

53295q15 −114525q14 −130109q13 +897919q12 −1732589q11 +1609255q10 −682809q9

+161411q8 −161411q7 +682809q6 −1609255q5 +1732589q4 −897919q3 +130109q2 +114525q−53295
)

p17

+2q29 (q2 −1
)2

(
227715q12 +92816q11 +441422q10 −130352q9 +327981q8 −1085280q7 +253444q6 −1085280q5

+327981q4 −130352q3 +441422q2 +92816q+227715
)

p16 −16q30(q+1)2 (969q13 −11381q12 +42210q11

−82450q10 +111859q9 −107151q8 +75852q7 −75852q6 +107151q5 −111859q4 +82450q3 −42210q2 +11381q

−969) p15 −16q31 (q2 −1
)2

(
14535q10 −450q9 +27455q8 −32640q7 +26298q6 −69692q5 +26298q4 −32640q3

+27455q2 −450q+14535
)

p14 +q32(q+1)2
(

43605q11 −194675q10 +474095q9 −701177q8 +798466q7 −841550q6

+841550q5 −798466q4 +701177q3 −474095q2 +194675q−43605
)

p13 +q33 (q2 −1
)2 (

92055q8 −54340q7

+168844q6 −291580q5 +182330q4 −291580q3 +168844q2 −54340q+92055
)

p12 −2q34(q+1)2 (15105q9

−48033q8 +98500q7 −132452q6 +143158q5 −143158q4 +132452q3 −98500q2 +48033q−15105
)

p11

−2q35 (q2 −1
)2

(
13623q6 −15782q5 +23569q4 −39460q3 +23569q2 −15782q+13623

)
p10 +q36 (13015q9

−4095q8 +5820q7 +10900q6 −11774q5 +11774q4 −10900q3 −5820q2 +4095q−13015
)

p9 +(q−1)2q37
(

5605q6

+2370q5 −3685q4 −836q3 −3685q2 +2370q+5605
)

p8 −4q38
(

955q7 +255q6 +79q5 +651q4 −651q3 −79q2

−255q−955) p7 −4(q−1)2q39 (165q4 +76q3 −206q2 +76q+165
)

p6 +q40
(

751q5 +349q4 −66q3 +66q2 −349q

−751) p5 +5(q−1)2q41 (q2 +14q+1
)

p4 −10q42 (9q3 +q2 −q−9
)

p3 +10(q−1)2q43 p2 +5(q−1)q44 p−q45 = 0

F(2)
19 (R,r,d) =(q−1)20(q+1)25 p45 +(q−1)20q(q+1)16

(
5q8 +60q6 +126q4 +60q2 +5

)
p44

−2(q−1)20q2(q+1)17
(

5q6 +10q5 +35q4 +28q3 +35q2 +10q+5
)

p43 −2(q−1)12q3(q+1)16 (45q14 −210q13

+1143q12 −2724q11 +7437q10 −11022q9 +17999q8 −17144q7 +17999q6 −11022q5 +7437q4 −2724q3 +1143q2

−210q+45) p42 − (q−1)12q4(q+1)17
(

5q12 +324q11 −838q10 +2484q9 −3349q8 +6408q7 −5972q6 +6408q5

−3349q4 +2484q3 −838q2 +324q+5
)

p41 +(q−1)12q5(q+1)16 (751q12 −1988q11 +12142q10 −18548q9

+51553q8 −50120q7 +82052q6 −50120q5 +51553q4 −18548q3 +12142q2 −1988q+751
)

p40

+4(q−1)12q6(q+1)9
(

165q18 +750q17 +3945q16 +9320q15 +25672q14 +45304q13 +89152q12 +114072q11

+159594q10 +152628q9 +159594q8 +114072q7 +89152q6 +45304q5 +25672q4 +9320q3 +3945q2 +750q+165
)

p39

−4(q−1)12q7(q+1)10
(

955q16 +4120q15 +15380q14 +44792q13 +100556q12 +179080q11 +282220q10 +357736q9

+389618q8 +357736q7 +282220q6 +179080q5 +100556q4 +44792q3 +15380q2 +4120q+955
)

p38

− (q−1)12q8(q+1)9
(

5605q16 +12720q15 +79144q14 +134992q13 +435372q12 +552944q11 +1155224q10 +1068816q9

(A.6)
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+1564510q8 +1068816q7 +1155224q6 +552944q5 +435372q4 +134992q3 +79144q2 +12720q+5605
)

p37

+(q−1)12q9(q+1)10 (13015q14 +57594q13 +197245q12 +469636q11 +977279q10 +1469734q9 +2023725q8 +2150072q7

+2023725q6 +1469734q5 +977279q4 +469636q3 +197245q2 +57594q+13015
)

p36 +2(q−1)6q10(q+1)9 (13623q20

−58692q19 +224578q18 −644388q17 +1537387q16 −3161936q15 +5726616q14 −8736400q13 +12079710q12

−14399416q11 +15362124q10 −14399416q9 +12079710q8 −8736400q7 +5726616q6 −3161936q5 +1537387q4

−644388q3 +224578q2 −58692q+13623
)

p35 −2(q−1)6q11(q+1)10
(

15105q18 −33250q17 +68825q16 −227120q15

+458932q14 −936248q13 +1612484q12 −2079824q11 +2366638q10 −2622156q9 +2366638q8 −2079824q7 +1612484q6

−936248q5 +458932q4 −227120q3 +68825q2 −33250q+15105
)

p34 − (q−1)6q12(q+1)9 (92055q18 −383630q17

+1452895q16 −3794064q15 +8841036q14 −16031112q13 +27191804q12 −36730864q11 +46308290q10

−48125652q9 +46308290q8 −36730864q7 +27191804q6 −16031112q5 +8841036q4 −3794064q3 +1452895q2

−383630q+92055) p33 +(q−1)6q13(q+1)10
(

43605q16 −167220q15 +342208q14 −1128700q13

+2176220q12 −3799508q11 +5324928q10 −6750204q9 +6541086q8 −6750204q7 +5324928q6 −3799508q5 +2176220q4

−1128700q3 +342208q2 −167220q+43605
)

p32 +16(q−1)6q14(q+1)9
(

14535q16 −53048q15 +204500q14

+460152q13 +1051356q12 −1636168q11 +2599852q10 −3002376q9 +3472314q8 −3002376q7 +2599852q6 −1636168q5

+1051356q4 −460152q3 +204500q2 −53048q+14535
)

p31 −16(q−1)6q15(q+1)4 (969q20 −9664q19 −54654q18 −152816q17

−329771q16 −491984q15 −652264q14 −928624q13 −1334686q12 −1710096q11 −1911092q10 −1710096q9 −1334686q8

−928624q7 −652264q6 −491984q5 −329771q4 −152816q3 −54654q2 −9664q+969
)

p30

−2(q−1)6q16(q+1)5
(

227715q18 +235650q17 +1366235q16 +2686160q15 +5032460q14 +10636024q13 +13987228q12

+19540144q11 +23852538q10 +22605324q9 +23852538q8 +19540144q7 +13987228q6 +10636024q5 +5032460q4 +2686160q3

+1366235q2 +235650q+227715
)

p29 −2(q−1)6q17(q+1)4
(

53295q18 +333170q17 +1258535q16 +2648080q15 +5210748q14

+8023224q13 +12000716q12 +15961456q11 +20634466q10 +21500076q9 +20634466q8 +15961456q7 +12000716q6

+8023224q5 +5210748q4 +2648080q3 +1258535q2 +333170q+53295
)

p28 +4(q−1)6q18(q+1)5
(

176035q16

+304880q15 +1143728q14 +2592944q13 +4381796q12 +7836752q11 +10347280q10 +12071952q9 +13810290q8

+12071952q7 +10347280q6 +7836752q5 +4381796q4 +2592944q3 +1143728q2 +304880q+176035
)

p27

+4(q−1)6q19(q+1)4
(

85595q16 +305012q15 +1099080q14 +2008892q13 +3983924q12 +5691028q11 +8686584q10 +9857724q9

+11570274q8 +9857724q7 +8686584q6 +5691028q5 +3983924q4 +2008892q3 +1099080q2 +305012q+85595
)

p26

−2(q−1)6q20(q+1)5 (432497q14 +1004458q13 +2946827q12 +6570372q11 +10501177q10 +15673590q9 +19962699q8

+20001720q7 +19962699q6 +15673590q5 +10501177q4 +6570372q3 +2946827q2 +1004458q+432497
)

p25

−2(q−1)2q21(q+1)4
(

314925q18 −507650q17 +1705925q16 −3630000q15 +5794180q14 −9676216q13 +12644116q12

−17459152q11 +21057910q10 −20357004q9 +21057910q8 −17459152q7 +12644116q6 −9676216q5 +5794180q4 −3630000q3

+1705925q2 −507650q+314925
)

p24 +8(q−1)2q22(q+1)5
(

104975q16 −135200q15 +206700q14 −150960q13 −264852q12

−53296q11 +490644q10 −1067520q9 +1730826q8 −1067520q7 +490644q6 −53296q5 −264852q4 −150960q3 +206700q2

−135200q+104975) p23 +8(q−1)2q23(q+1)4
(

104975q16 −240500q15 +641004q14 −1312380q13 +2086220q12

−3309396q11 +4310420q10 −5043900q9 +5682762q8 −5043900q7 +4310420q6 −3309396q5 +2086220q4 −1312380q3

+641004q2 −240500q+104975
)

p22 −2(q−1)2q24(q+1)5 (314925q14 −372814q13 +338975q12 −679468q11 +320917q10

−1684114q9 +3313695q8 −3251688q7 +3313695q6 −1684114q5 +320917q4 −679468q3 +338975q2 −372814q+314925
)

p21

−2(q−1)2q25(q+1)4 (432497q14 −1132638q13 +2780427q12 −5405644q11 +8464185q10 −11947394q9 +15022667q8

−15142056q7 +15022667q6 −11947394q5 +8464185q4 −5405644q3 +2780427q2 −1132638q+432497
)

p20

+4(q−1)2q26(q+1)5
(

85595q12 −127940q11 +82070q10 −330420q9 +439669q8 −712072q7 +982836q6 −712072q5

+439669q4 −330420q3 +82070q2 −127940q+85595
)

p19 +4(q−1)2q27(q+1)4 (176035q12 −465360q11 +1110750q10

−1955664q9 +2999117q8 −3584480q7 +4196964q6 −3584480q5 +2999117q4 −1955664q3 +1110750q2 −465360q+176035
)

p18
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−2(q−1)2q28
(

53295q15 +114525q14 −130109q13 −897919q12 −1732589q11 −1609255q10 −682809q9 −161411q8 −161411q7

−682809q6 −1609255q5 −1732589q4 −897919q3 −130109q2 +114525q+53295
)

p17 −2q29 (q2 −1
)2 (

227715q12 −92816q11

+441422q10+130352q9+327981q8+1085280q7+253444q6+1085280q5+327981q4 +130352q3 +441422q2 −92816q+227715
)

p16

−16(q−1)2q30
(

969q13 +11381q12 +42210q11 +82450q10 +111859q9 +107151q8 +75852q7 +75852q6 +107151q5 +111859q4

+82450q3 +42210q2 +11381q+969
)

p15 +16q31 (q2 −1
)2

(
14535q10 +450q9 +27455q8 +32640q7 +26298q6 +69692q5

+26298q4 +32640q3 +27455q2 +450q+14535
)

p14 +(q−1)2q32 (43605q11 +194675q10 +474095q9 +701177q8 +798466q7

+841550q6 +841550q5 +798466q4 +701177q3 +474095q2 +194675q+43605
)

p13 −q33 (q2 −1
)2 (

92055q8 +54340q7

+168844q6 +291580q5 +182330q4 +291580q3 +168844q2 +54340q+92055
)

p12 −2(q−1)2q34 (15105q9 +48033q8 +98500q7

+132452q6 +143158q5 +143158q4 +132452q3 +98500q2 +48033q+15105
)

p11 +2q35 (q2 −1
)2

(
13623q6 +15782q5

+23569q4 +39460q3 +23569q2 +15782q+13623
)

p10 +q36
(

13015q9 +4095q8 +5820q7 −10900q6 −11774q5 −11774q4 −10900q3

+5820q2 +4095q+13015
)

p9 −q37(q+1)2
(

5605q6 −2370q5 −3685q4 +836q3 −3685q2 −2370q+5605
)

p8 −4q38
(

955q7 −255q6

+79q5 −651q4 −651q3 +79q2 −255q+955
)

p7 +4q39(q+1)2 (165q4 −76q3 −206q2 −76q+165
)

p6

+q40
(

751q5 −349q4 −66q3 −66q2 −349q+751
)

p5 −5q41(q+1)2 (q2 −14q+1
)

p4 −10q42 (9q3 −q2 −q+9
)

p3

−10q43(q+1)2 p2 +5q44(q+1)p+q45 = 0.

A.2. Numerical results and verification

All numerical computations were carried out in Wolfram Mathematica with 20-digit precision. In this paper, the values are
rounded to six significant digits. Unless otherwise stated, parameters were fixed to

R = 1, d = 0.1,

and the values of rn,k were obtained as numerical roots of the corresponding Fuss’ relations.

n k Fuss’ relation rn,k Figure
13 2 (A.1) 0.856554 Fig. 1
13 4 (A.1) 0.561780 Fig. 2
13 6 (A.1) 0.119618 Fig. 2
15 2 (A.2) 0.876400 Fig. 3
15 4 (A.2) 0.660078 Fig. 3
17 1 (A.3) 0.899948 Fig. 4
17 2 (A.4) 0.887300 Fig. 5
17 3 (A.3) 0.827988 Fig. 4
17 4 (A.4) 0.726898 Fig.5
17 5 (A.3) 0.595549 Fig. 4
17 6 (A.4) 0.441564 Fig. 5
17 7 (A.3) 0.271442 Fig. 4
17 8 (A.4) 0.091569 Fig. 5
19 1 (A.5) 0.899986 Fig. 6
19 2 (A.6) 0.893235 Fig. 7
19 3 (A.5) 0.851932 Fig. 6
19 4 (A.6) 0.773686 Fig. 7
19 5 (A.5) 0.667936 Fig. 6
19 6 (A.6) 0.541099 Fig. 7
19 7 (A.5) 0.398100 Fig. 6
19 8 (A.6) 0.243524 Fig. 7
19 9 (A.5) 0.081955 Fig. 6

Table 1: Summary of numerically verified values of rn,k for R = 1 and d = 0.1.
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A.3. Graphical results

Figures below illustrate the geometric configurations corresponding to the computed values of rn,k. All polygons are
symmetric with respect to the x-axis and are simultaneously tangent to the incircle C and inscribed in the circumcircle K.
Each figure visually confirms the bicentric property of the polygon and the validity of the derived Fuss’ relation for the
corresponding rotation number k.
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Figure 2: Symmetrical bicentric 13-gon for R = 1 and d = 0.1: (left) r13,4 = 0.561780 (k = 4); (right) r13,6 = 0.119618
(k = 6). Each configuration satisfies the corresponding even-class Fuss’ relation F(k)

13 (R,r,d) = 0.
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Figure 3: Symmetrical bicentric 15-gon for R = 1 and d = 0.1: (left) r15,2 = 0.876400 (k = 2); (right) r15,4 = 0.660078
(k = 4). Each configuration satisfies the corresponding even-class Fuss’ relation F(k)

15 (R,r,d) = 0.
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(k = 3); (third) r17,5 = 0.595549 (k = 5); (fourth) r17,7 = 0.271442 (k = 7). Each configuration satisfies the corresponding
odd-class Fuss’ relation F(k)

17 (R,r,d) = 0.
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Figure 5: Symmetrical bicentric 17-gon for R = 1 and d = 0.1: (first) r17,2 = 0.887300 (k = 2); (second) r17,4 = 0.726898
(k = 4); (third) r17,6 = 0.441564 (k = 6); (fourth) r17,8 = 0.0915694 (k = 8). Each configuration satisfies the corresponding
even-class Fuss’ relation F(k)

17 (R,r,d) = 0.
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Figure 6: Symmetrical bicentric 19-gon for R = 1 and d = 0.1: (first) r19,1 = 0.899986 (k = 1); (second) r19,3 = 0.851932
(k = 3); (third) r19,5 = 0.667936 (k = 5); (fourth) r19,7 = 0.398100 (k = 7); (fifth) r19,9 = 0.0819548 (k = 9). Each
configuration satisfies the corresponding odd-class Fuss’ relation F(k)

19 (R,r,d) = 0.
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Figure 7: Symmetrical bicentric 19-gon for R = 1 and d = 0.1: (first) r19,2 = 0.893235 (k = 2); (second) r19,4 = 0.773686
(k = 4); (third) r19,6 = 0.541099 (k = 6); (fourth) r19,8 = 0.243524 (k = 8). Each configuration satisfies the corresponding
even-class Fuss’ relation F(k)

19 (R,r,d) = 0.
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ABSTRACT

We consider the arbelos and generalize Archimedean circles
and the twin circles of Archimedes.
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Poopćenje Arhimedovih kružnica blizanaca

SAŽETAK

U radu proučavamo arbelose i dajemo poopćenje Arhime-
dovih kružnica i Arhimedovih kružnica blizanaca.

Ključne riječi: arbelos, Arhimedova kružnica, k-Arhimedo-
va kružnica, Arhimedove kružnice blizanci, k-Arhimedovi
blizanci

1 Introduction

For a point C on the segment AB such that |BC| = 2a,
|CA| = 2b and |AB| = 2c, let α, β and γ be the semicir-
cles of diameters BC, CA and AB, respectively, constructed
on the same side of AB. The area formed by the three
semicircles is called an arbelos, and the radical axis of α

and β is called the axis. The axis divides the arbelos into
two curvilinear triangles with congruent incircles of radius
ab/c. It has been believed that the two circles were stud-
ied by Archimedes, and they are called the twin circles
of Archimedes (see Figure 1). Circles of radius ab/c are
called Archimedean circles. In this paper we generalize
Archimedean circles and the twin circles of Archimedes.

Figure 1.

We use a rectangular coordinate system with origin C such
that the farthest point on α from the line AB has coordinates
(a,a). The center of γ is denoted by O.

2 k-Archimedean circle

We give a definition of a generalized Archimedean circle.

Definition 1 Let wk = a2 + kab+ b2 for a real number k.
We say that a circle is k-Archimedean if it has radius

rk =
abc
wk

.

The incircle of the arbelos has radius

ab(a+b)
a2 +ab+b2 =

abc
w1

.

Therefore it is 1-Archimedean. The twin circles of
Archimedes have radius

ab
a+b

=
abc
c2 =

abc
w2

.

Therefore they are 2-Archimedean. Hence k-Archimedean
circles are generalizations of those circles. 3-Archimedean
circles can be found in the following problem in Wasan
geometry (see Figure 2):
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Problem 1. Three congruent circles of radius r touch the
semicircle γ internally so that two of them touch the remain-
ing circle externally and also touches the external common
tangent of the semicircles α and β from the side opposite to
the point C. Show that the following relation holds:

r =
abc

a2 +3ab+b2 . (1)

Figure 2.

The problem was proposed by Taguchi in 1817 [3]. Wasan
is the Japanese mathematics developed in Edo period. For
a brief introduction of Wasan geometry, see [1]. Definition
1 has been made inspired by this problem. It is obvious that
rk is a monotonically decreasing function of k.

3 k-Archimedean twins

In this section we generalize the twin circles of Archimedes.
We regard that if t is a perpendicular to AB, then it is repre-
sented by the equation x = t with the same symbol t.

Theorem 1 For a circle δa (resp. δb) of radius r touching
β (resp. α) externally, and γ internally, let ta (resp. tb) be
the perpendicular to AB touching δa (resp. δb) from the
same side as A (resp. B). Then the circles δa and δb are
k-Archimedean if and only if

tb − ta = 2kr. (2)

Proof. Let (xa,ya) (resp. (xb,yb)) be the coordinates of the
center of δa (resp. δb). We have

(xa+b)2+y2
a =(b+r)2 and (xa−(a−b))2+y2

a =(c−r)2.

Solving the equations for xa and ya, we have

(xa,ya) =

(
r−2b

(
1− r

a

)
,

2
√

bc(a− r)r
a

)
. (3)

Similarly, we have

(xb,yb) =

(
−r+2a

(
1− r

b

)
,

2
√

ac(b− r)r
b

)
. (4)

Therefore we have

ta =−2b
(

1− r
a

)
, tb = 2a

(
1− r

b

)
.

Hence we have

tb − ta
2r

− k =
a+b

r
−
(

a
b
+

b
a

)
− k

=
c
r
− a2 +abk+b2

ab
= c
(

1
r
− 1

rk

)
.

Therefore (2) and r = rk are equivalent. □

We call the two congruent circles δa and δb in the theorem
the k-Archimedean twins, which are generalizations of the
twin circles of Archimedes. We have the next corollary (see
Figure 3).

Corollary 1 If k is a positive integer in the event of The-
orem 1, there are congruent circles δa = δ1, δ2, δ3, · · · ,
δk = δb and perpendiculars ta = t0, t1, t2, · · · , tk = tb to AB
such that ti − ti−1 = 2r for i = 1,2, · · · ,k and ti−1 touches
the circles δi−1 and δi for i = 2,3, · · · ,k.

Figure 3: k = 5.

Figure 4: 1-Archimedean twins and 2-Archimedean twins.
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Figure 5: k-Archimedean twins and k − 1-Archimedean
twins (k = 6).

The next theorem shows that k−1-Archimedean twins are
obtained from k-Archimedean twins, and conversely (see
Figures 4 and 5, where 1-Archimedean twins in Figure 4
are overlapping).

Theorem 2 Let δa and εa (resp. δb and εb) be the circles
touching β (resp. α) externally, γ internally such that the
perpendicular to AB touching εa (resp. εb) from the same
side as A (resp. B) passes through the point of tangency of
δa (resp. δb) and γ. The following statements hold.
(i) δa (resp. δb) is k-Archimedean if and only if εa (resp.
εb) is k−1-Archimedean.
(ii) δa and δb are k-Archimedean twins if and only if εa and
εb are k−1-Archimedean twins.

Proof. Let r and xa be the radius of δa and the x-coordinate
of its center, respectively. Then

xa = r−2b
(

1− r
a

)
(5)

by (3). Let e be the radius of εa. The perpendicular to AB
touching εa from the same side as A is represented by the
equation x = −2b(1− e/a). The point of tangency of γ

and δa is the external center of similitude of the two cir-
cles. Hence it has x-coordinate (−r(a−b)+ cxa)/(c− r).
Therefore we have

−2b
(

1− e
a

)
=

−r(a−b)+ cxa

c− r
.

Substituting (5) in this equation and solving the resulting
equation for 1/e, we have

1
e
=

1
r
− 1

c
.

While we have
1
c
+

1
rk−1

=
1
rk
.

Eliminating 1/c from the last two equations, we have

1
e
− 1

rk−1
=

1
r
− 1

rk
.

Therefore δa is k-Archimedean if and only if εa is k− 1-
Archimedean. The rest of (i) is proved similarly. The part
(ii) is obvious. □

4 Maximal k-Archimedean twins

We consider the maximal k-Archimedean twins. We de-
note the configuration consisting of an arbelos and k-
Archimedean twins δa and δb with their tangents ta and
tb by Tk. For Tk, the centers of δa and δb have x-coordinates
ta + rk and tb − rk, respectively. By Theorem 1 we have the
followings: If k = 1 then ta + rk = tb − rk. If k < 1 then
tb − rk < ta + rk, and if 1 < k then ta + rk < tb − rk (see
Figures 6 and 7).

Figure 6: k < 1, tb − rk < ta + rk.

Figure 7: 1 < k, ta + rk < tb − rk.

Assume a ≤ b for Tk. Then the circles δa and δb are maxi-
mal if δa and α overlap (see Figure 9). Solving the equation
rk = a for k in this case, we have

k = 1− a
b
. (6)

Therefore the k-Archimedean twins exist if and only if
1 − a/b ≤ k and the maximal k-Archimedean twins are
obtained if (6) holds. Notice that 1−a/b ≥ 1−b/a in this
event. Therefore we can say that k-Archimedean twins exist
if and only if k ≥ max(1−a/b,1−b/a). A similar result
can also be obtained in the case a > b. Therefore we have
the following theorem.
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Theorem 3 k-Archimedean twins exist if and only if

k ≥ max
(

1− a
b
,1− b

a

)
.

The maximal k-Archimedean twins are obtained if and only
if

k = max
(

1− a
b
,1− b

a

)
.

Assume a ≤ b and k = 1−a/b for Tk. Then we have rk = a
and

(xb,yb) =

(
−rk +2a

(
1− rk

b

)
,

2
√

ac(b− rk)rk

b

)

=

(
a− 2a2

b
,

2a
√

b2 −a2

b

)
by (4). While solving the equations x2 + y2 = 4a2 and
(x− (−b))2 + y2 = b2, we get that the semicircles of cen-
ter C passing through the point B meets β in the point of
coordinates (

−2a2

b
,

2a
√

b2 −a2

b

)
.

Therefore this point is one of the endpoints of the di-
ameter of δb parallel to AB (see Figure 8). Since δa =
α, the axis and ta overlap. Especially if a = b, then
max(1− a/b,1− b/a) = 0. Therefore the configuration
T0 exists, where δa and δb are the maximal 0-Archimedean
twins and overlap with α and β, respectively, and ta and tb
overlap with the axis (see Figure 9).

Figure 8: Tk (a < b,k = 1−a/b).

Figure 9: T0 (a = b).
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Appendix: Proof of Problem 1

We give a proof of Problem 1, since it was proposed with
no solution (see Figure 2). Let δi (i = 1,2,3) be the three
congruent circles, where δ1 and δ3 touch δ2 externally. Let
(xi,yi) be the coordinates of the center of the circle δi. The
point of intersection of γ and the axis is denoted by I. Let t
be the external common tangent of α and β. The line t has
an equation ([2]):

t(x,y) = (a−b)x−2
√

aby+2ab = 0.

While the point I has coordinates (0,2
√

ab), because γ

is represented by an equation (x− 2a)(x+ 2b) + y2 = 0.
Hence the line IO is perpendicular to t. Therefore I coin-
cides with the midpoint of the arc of γ cut by t, i.e., the circle
δ2 touches γ at I. Hence we have x2

2 +(y2 −2
√

ab)2 = r2

and (x2 − (a−b))2 + y2
2 = (c− r)2. Solving the two equa-

tions for x2 and y2, we have

x2 =
(a−b)r

c
, y2 =

2
√

ab(c− r)
c

. (7)

If the perpendicular from the center of δ1 to AB meet t
in a point of coordinates (x1,y′), then t(x1,y′) = 0, while
there is a real number z > 0 such that y1 = y′ + z. Then
t(x1,y1) = t(x1,y′+z) = t(x1,y′)−2

√
abz =−2

√
abz < 0.

Hence we get t(x1,y1)< 0. Therefore we have t(x1,y1)/c=
−r. We also have (x2 − x1)

2 + (y2 − y1)
2 = (2r)2 and

(x1 − (a−b))2 + y2
1 = (c− r)2. Eliminating x1 and y1 from

the three equations with (7) and solving the resulting equa-
tion for r, we get (1).
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ABSTRACT

The construction of a triangle center always produces cen-
tral triangles which again allow for the construction of the
respective center. Doing this infinitely many times may
in some cases lead to a known triangle center, but in the
vast majority, a new center will show up. The symbolic
computational approach is limited in many cases due to
the complexity of the computations. In order to overcome
these difficulties, we shall start with numerical approaches
towards several centers’ limits. This gives rise to some
conjectures which later allow for an exact determination of
the limit of a triangle center.

Key words: triangle center, iterated construction, numeri-
cal simulation, limit
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Granične vrijednosti sredǐsta trokuta

SAŽETAK

Konstrukcija sredǐsta trokuta uvijek stvara sredǐsnje trokute
koji ponovno omogućavaju konstrukciju odgovarajućeg
sredǐsta. Ponavljanje ovog postupka beskonačno mnogo
puta može u pojedinim slučajevima dovesti do poznatog
sredǐsta trokuta, ali u velikoj većini slučajeva pojavit će
se novo sredǐste. Simbolički računski pristup je ograničen
u mnogim slučajevima zbog složenosti izračuna. Kako
bismo prevladali te teškoće, započet ćemo s numeričkim
pristupima prema graničnim vrijednostima nekoliko sredǐsta.
To dovodi do nekih pretpostavki koje kasnije omogućavaju
točno odre�ivanje granične vrijednosti sredǐsta trokuta.

Ključne riječi: sredǐste trokuta, iterativne konstrukcije,
numeričke simulacije, granična vrijednost

1 Introduction

1.1 Related and prior work

In classical and elementary geometry, usually constructions
terminate after a finite number of steps. However, some
constructions may invite us to repeat them not only once
and we may ask ourselves what will happen if we repeat
them infinitely many times. Since the constructions that
we want to repeat infinitely many times follow the same
recipe in each step, the thus produced geometric objects are
determined by means of some algorithm. Under certain cir-
cumstances, we can expect that such infinitely many times
repeated constructions will in the end lead to a useful result,
i.e., they produce a limit. Moreover, since the recipe does
not change, we may discover a certain simple generation
and construction of the limit. These could be, for example,
a chain of similar figures (cf. [13]), a geometric sequence,
perspectivities, and more as we shall see later. Many con-
structions in and around the triangle can be performed by

means of linear or rational operations, many involve square
roots (circle intersections from the constructive point of
view), and some cannot be accessed by means of the classi-
cal tools (e.g., Morley triangles and their centers).

The only algebraic approach towards iterated triangle center
constructions can be found in [1]. There, the degree d( f )
of a triangle center Z = f : ζ( f ) : ζ2( f ) is defined with the
help of Z’s generating trilinear center function f . This de-
gree either remains unchanged or changes to d(−2)−k for
the respective center in the k-th step of the iteration. Unfor-
tunately, the thus defined degree has no deeper geometric
meaning and depends on the trilinear center function, i.e., it
yields different degrees for different but equivalent represen-
tations of the same center. As we shall see, the asymptotic
behaviour of linear operators is sometimes crucial in un-
derstanding the limiting process of a triangle construction.
In [3], this is done for simplices and discloses relations to
matrix theory. [6] does not provide limits of triangle centers,
but deals with the limit shape of central triangles in some
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cases. An intricate but nevertheless interesting approach
using bivariate Fourier series for the representation of the
limit of a point and iterated pedal triangles is given in [4].

1.2 Aims and contributions of the present note

The repeated center construction in a given triangle can be
performed numerically in an easy way. We shall describe
the implementation of our numerical simulations in Sec.
2. They allow for a flexible access to the limits of various
centers under different assumptions of reference triangles.
Among others, we can use the standard reference triangle
with side lengths a = 6, b = 9, and c = 13 which allows us
to compare resulting limits with C. KIMBERLING’s search
table in the Encyclopedia of Triangle Centers (cf. [7]). We
will not give an exhaustive treatment of center limits. Just a
few well-known and low indexed centers shall be studied.
The numerical computations provide us with ideas how to
construct the centers that emerge in the limit. In Sec. 3, we
shall give exact proofs of what can be conjectured from the
numerical experiments.

2 Numerical approach

2.1 Implementation details

In order to visually explore the behaviour of different center
constructions, we developed an interactive program using
the open source game engine Godot1 which offers a flexible
framework for scripting and displaying 2D graphics that is
compatible with many different programming languages.
We chose C# because of its easy access to external libraries
and overall speed of development. Our program allows for
the repeated numerical determination of the first eleven tri-
angle centers listed in C. KIMBERLING’s encyclopedia
[7]. However, it can be extended to all those centers that
have a geometric generation.

The repreated construction of a triangle center needs a new
reference triangle in each step. In many cases, it is nec-
essary to use the Cevian or the pedal triangle. Depending
on the definition and construction of the center under con-
sideration, a base triangle different from the latter two is
chosen. We shall discuss this in more detail in Sec. 3. In our
interactive program one can either choose the pedal triangle
∆p(Xi) or the Cevian triangle ∆C(Xi) related to the triangle
center Xi as the starting triangle for the next step in the itera-
tion. The reference triangle shall not be changed during the
iteration. The Spieker point X10 is the only exception that
uses its own construction method, which will be explained
in Sec. 2.4.7.

2.2 Precision

As with any numerical approach, calculations need to be of
a certain precision to guarantee the robustness of and the
confidence in the results. What kind of target precision is
needed depends on multiple factors.
The first precision requirement stems from the values in C.
KIMBERLING’s search table. In their 6–9–13 triangle
search table, a precision of twenty decimals is used. Typ-
ically, double precision floating point numbers are stored
using 64 bits and can cover a very large range of numbers,
in C# for example this range is ∼ 10−324 to 10308. However,
their maximum precision is only around 15–17 digits [11]
and are, therefore, insufficient for our purpose. Additionally,
C# provides the decimal numeric type that is recommended
for higher precision, especially for values −1 < x < 1. This
type can store up to 28–29 digits to the right of the decimal
point. In theory, these values should be precise enough to
store results that can be compared with search table values.
However, the second requirement is defined by the preci-
sion needed by the used mathematical operations. As values
are expected to shrink rapidly, an even higher precision is
needed to guarantee that operations still result in values that
are robust according to the first requirement. After only
very few iterations of repeated triangle construction, some
decimal type results may already be indistinguishable from
zero. Particularly, any construction that involves vector
normalization or normal projection suffers greatly from low
precision. In such cases, very small vector norms can lead
to divisions by zero induced by rounding errors and prohibit
any further iteration.
One way of tackling this problem is the use of decimal
numbers with arbitrary precision. These are not included in
most programming languages by default and may need to be
imported from an external library. The Extended Numerics
package for C# by ADAM WHITE [15] is such a library that
includes an arbitrary BigDecimal type. It stores exponent
and mantissa separately as integers and calculates in base 10
rather than using the usual binary format for floating point
numbers. One particular feature of BigDecimal allows us to
truncate the result of any operation to an arbitrary decimal
point while still using the full potential range of decimals
for the calculation itself. This offers the deliberate choice to
reduce the precision in order to improve computation speed
by introducing a certain degree of rounding errors without
the risk of running out of precision during an operation.
Unfortunately, this feature does not entirely prevent the nu-
merical problems but rather delay them if further iterations
are needed. As a default, we limit the precision to around
25–50 digits to keep the program we developed interactive.
For our numerical results in Section 2.4.9, we opted for a
higher precision.

1Godot Game Engine – https://godotengine.org

45



KoG•29–2025 C. Clemenz, B. Odehnal: Limits of Triangle Centers

2.3 First numerical results

Along with the visuals, we looked at a variety of different
properties that could give further insight into the behaviour
of the repeated construction. For the resulting triangles, we
calculated the ratio of the side lengths and interior angles
that can reveal whether there are any systematic changes
in their overall shape, such as regularization or other obvi-
ous patterns. For the resulting centers, we create a curve
that connects subsequent centers and calculate the distance
of and angle between subsequent segments, respectively.
These two properties give hints at the tendency to converge
and if the centers are collinear. Putting all these values
together may give insights on how to tackle these construc-
tions algebraically. Additionally, we will also describe any
intermediary centers that are contained in the search table if
they are found during the construction, as these could also
be valuable information.
Note that we primarily focused on the behaviour of the 6-9-
13 triangle. Any findings we described below refer to this
triangle unless stated otherwise. When looking up search
values in KIMBERLING’s search table, we assume a tol-
erance of 10−7, meaning these values are likely to describe
the same center if their absolute difference is smaller than
this tolerance. We do so because numerical errors on either
side may hide the fact that it may be the same center. This
threshold was chosen empirically, as we found that differ-
ences are either noticeably larger than that or almost zero.
A much smaller tolerance may be applicable, especially if
we increase precision and iteration count.
A list of our calculated search values can be found in Table
1 at the end of this section.

2.3.1 Incenter X1

Repeatedly constructing the incenter quickly leads to a
regularization of the resulting triangles for both pedal and
Cevian triangle construction (cf. Thm. 1). While both con-
structions seem to converge, neither of the two points de-
termined numerically is contained in the search table. Only
the incenter of the intouch triangle, i.e., the incenter of the
intouch triangle known as X177 (cf. [7, 8]) appears in the
search table.

2.3.2 Centroid X2

In the case of the centroid X2, the medial triangle ∆m of
∆ equals the Cevian triangle ∆C(X2). Consequently, the
second centroid is that of ∆m which equals X2. Hence, re-
peating the centroid construction with the Cevian triangle
returns the centroid X2 of ∆ in the limit.
The pedal triangle construction on the other hand exhibits a
different behaviour. It quickly regularizes the triangles after
around four iterations, while the distance between each new
centroid is indistinguishable from zero as early as seven it-
erations, finalizing the convergence. The point the centroids

converge towards is not contained in the search table. On
the second iteration the created center is X373.

2.4 Circumcenter X3

Repeating the circumcenter construction using the Cevian
triangles as the reference triangles, we observe an overall
chaotic behaviour. The triangle center X23719 is the circum-
center of ∆m and appears as the circumcenter in the second
step of the iteration (cf. Fig. 1).

Figure 1: The chaotic path of the circumcenter of its prede-
cessor’s Cevian triangle: Only two points in the sequence
are known.

In contrast, the pedal triangle construction exhibits a very
obvious convergence towards the centroid X2. Now, all in-
termediate points are collinear centers located on the Euler
line. The first five centers after following the circumcenter
can be found in the search table and are in order of their
construction X5,X140,X3628,X16239,X61877. They lie on the
Euler line as well as all subsequent centers do, see Thm. 2.

2.4.1 Orthocenter X4

In this particular case, we have ∆C(X4) = ∆p(X4) = ∆o.
Let now ∆o = A′B′C′ such that A′ ∈ [B,C] (cyclic). Fur-
ther, <)AA′C = <)BB′C = π

2 . If α, β, γ denote the interior
angles of ∆, then <)A′AC = <)B′BC = π

2 − γ, since A, C′,
A′, C and B, C′, B′, C are concyclic. Thus, <)A′C′B′ =
<)A′AC+<)B′BC = π− γ (cyclic). From that, we can de-
duce that the interior angles of the k-th orthic triangle are
equal to

α(k) = (−1)k+1
π+(−2)k

α mod 2π (cyclic).

This means that the orthic triangles rotate with exponen-
tial speed. Besides, it is by no means guaranteed that the
orthic triangle at some level stays within the interior of its
predecessor. The same holds true for the orthocenter.
A very special result is due to NEUBERG (see [2]): The
third pedal triangle of a fixed point with respect to a given
triangle ∆ is similar to ∆. Unfortunately, NEUBERG’s result
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deals with a fixed point whose pedal triangles are stud-
ied. Here, and in the following, the point whose pedals or
Cevians are used changes from step to step.
Clearly, the orthocenter reaches a limit in the case of an
equilateral triangle ∆. We shall not discuss right and isosce-
les triangles here.
The second step of the iteration, yields X52 as the ortho-
center of the orthic triangle which fits with the results in
[7, 8].

2.4.2 Nine-point center X5

Constructing this center repeatedly exhibits very chaotic
behaviour for both construction types of reference triangles.
While the construction based on ∆C(X5) does not seem to
have any obvious patterns, the construction based on the
pedal triangle appears to regularize the reference triangles.
This happens much slower compared to other center con-
structions that do so. The second nine-point center found
using pedal triangles equals X13365 which is referred to as
Point Beid 48 in [7].

2.4.3 Symmedian point X6

The Symmedian point has a very interesting behaviour.
While the Cevian triangle construction only leads to a regu-
larization, the pedal triangle construction has a more unique
behaviour. Its center points move on a zig-zag curve with a
constant interior angle of 129.4365 degrees finally converg-
ing towards the center X1285. Notably, on the second step of
the iteration the created center can be recognized as X18907
in the search table.

2.4.4 Gergonne point X7

The Gergonne point exhibits a regularization when using
the Cevian triangles and seems to converge towards a point
not contained in the search table.
The pedal triangle construction however looks a lot more in-
teresting as it seems to have some underlying pattern which
can be seen in Figure 2. The constructed centers seem to be
almost collinear visually, but on further inspection the an-
gle between iterations is around 178.1–178.3 degrees. The
resulting triangles visually seem to alternate between two
different shapes, one of them being similar to the starting
triangle. However, numerically there is always an additional
small deviation from those shapes after each iteration.

2.4.5 Nagel point X8

When using Cevian triangles, the construction of the Nagel
point stops after only three iterations because the resulting
triangles rapidly collapse to a line and calculations become
unstable. Even on a precision higher than the limit of the
interactive program, further iterations do not make sense.
The same is true for the pedal triangles, however, the con-
struction is possible for a few more iterations. If not for the

numerical instability, this type of construction would seem
to converge as the centers seem to follow a zig-zag curve
with each additional line of the curve slowly getting shorter
and angles between them getting smaller which can be seen
in Figure 3.

Figure 2: The trail of the Gergonne point X7: Only four
steps of the iteration are to show that the second and fourth
pedal triangle are almost similar to ∆.

Figure 3: The oscillating path of the Nagel point X8: The
corridor of “even” and “odd” points is slowly getting nar-
rower.

2.4.6 Mittenpunkt X9

Similar to the Nagel point, the construction of the Mitten-
punkt using Cevian triangles stops after only three steps.
Both share a similar construction using excircles and the
problem of triangles collapsing. Using pedal triangles in-
stead leads to a quick triangle regularization and the centers
seem to converge towards a point not found in the search
table.

2.4.7 Spieker center X10

As briefly mentioned above, we treat the repeated construc-
tion of the Spieker center differently. This is because the
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construction of this center naturally already leads to a trian-
gle that is suitable for repeated use. As the Spieker point
being the incenter of a triangle’s medial triangle, it is con-
venient to use the intouch triangle of the medial triangle
for repeated construction of the Spieker center. This subse-
quently regularizes the used triangles and the center seems
to converge on a zig-zag curve towards a point not con-
tained in the search table. The center found on the second
iteration has the same search value as X58689.

2.4.8 Feuerbach point X11

Finally, we come to the Feuerbach point, where the Cevian
construction also leads to a collapse of the triangles but with
a higher numerical stability due to different operations used
for construction. The center seems to converge towards a
point not found in the search table before eventually also be-
coming unstable. The repeated pedal triangle construction
results in an interesting pattern of periodically alternating
between similar triangle shapes but again with numerical
deviations after each iteration.

2.4.9 Search value results

As our final numerical results, we list the search value found
for each center and construction type in Table 1. We used
40 iterations of repeated center construction paired with a
precision of 80 digits. For better readability, we truncated
values in Table 1 after 20 digits right of the decimal point.
Only X3 and X6 lead to already known triangle centers in
KIMBERLING’s seach table using repeated construction
from pedal triangles and are X2 and X1285, respectively.

3 Analytical framework and first results

3.1 Proper choice of coordinates

When dealing with results from Euclidean geometry, com-
putations are preferably done in Cartesian coordinates.
Therefore, we impose the frame of reference such that the
vertices of the triangle ∆ = ABC are given by

A = (0,0), B = (c,0), C = (u,v), (1)

where u and v are subject to

u2 + v2 = b2, (u− c)2 + v2 = a2 ⇐⇒

u =
1
2c

(−a2 +b2 + c2), v =
2F
c

(2)

and a = BC, b =CA, c = AB are the side lengths of the base
triangle ∆ and F equals ∆’s area.
This setting allows an immediate switch to (exact or homo-
geneous) trilinear coordinates. The y-coordinate yP of each
point (center) is the third trilinear coordinate of this particu-
lar point P, since it is the oriented distance of P to the line
[A,B] (the x-axis). In any case, yP will be a function in a, b,
c and, cyclically replacing them according to a → b, b → c,
c → a, turns yP into the first trilinear coordinate function
of P, i.e., it becomes the trilinear distance to [B,C], and so,
we obtain the generating center function. This allows for
a comparison with the Encyclopedia of Triangle Centers
[7]. For example, the coordinates of ∆’s incenter X1 in the
present coordinate system are

X1 =

(
1
2
(−a+b+ c),

2F
a+b+ c

)
. (3)

Cevian triangle Pedal triangle

X1 1.95770029904487735665 0.80433539504925636000
X2 2.62936879248871824114 1.76867523171775377550
X3 -3891699654776.25808763607293483169 2.62936879248116398887
X4 -1.02844023546083472296 -1.028440235460834722964
X5 0.76566640603164320837 1.32186957169792197941
X6 1.09217049764661208244 0.10296691685647652550
X7 0.80433539504925636000 0.15823641292070149571
X8 2.53702599581424750311 1.56932209282972051791
X9 3.12652311458376376898 2.15889133044926341090
X11 2.57245781384282079537 2.17029063766605551907

Intouch triangle of medial triangle

X10 3.19337592231807969123

Table 1: Search values per center and construction type. X10 uses its own special construction method. X3 changes value
after each iteration and does not seem to converge. For X4 Cevian and pedal construction result in the same triangles. X8,X9,
and X11 terminate after only a handful of iterations. The search values for X3 and X6 using pedal triangles are contained in
KIMBERLING’s search table and are X2 and X1285, respectively.
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Its second coordinate equals 2F
a+b+c and a cyclic shift of a,

b, c does not alter it. Further, we can cut out all factors
which are cyclically symmetric in a, b, c (here, they are F
and a+ b+ c) and we obtain the trilinear center function
of X1 which equals 1 (cf. [7, 8]). For centers with a more
intricate trilinear representation, we evaluate at the triangle
with a = 6, b = 9, c = 13 and compare with the respective
search table on [7].

When we aim at a repeated construction of triangle centers,
we have to determine a new reference triangle in each step.
There are two simple but in some sense natural choices:
1. the pedal triangle ∆p(X) of a point X whose vertices are
the orthogonal projections of X onto the sides of a triangle
∆ and
2. the Cevian triangle ∆C(X) of a point X whose vertices
are the projections of X from the vertices of a triangle to
the opposite sides.

They will serve as the reference triangles in most of the
cases we shall treat here. We shall not mix the triangles of
reference from step to step, since this may cause a chaotic
behaviour and no convergence will be observed.

The construction of a pedal triangle will fail for all centers
Xi of ∆ on the circumcircle, since these pedals lie on their
respective Simson line. The Cevian triangle and the pedal
triangle coincide if the chosen center equals the orthocenter
X4.

We are not restricted to the pedal triangle or the Cevian trian-
gle. In some cases, we may choose another central triangle
that may be related closer to the center that is repeatedly
constructed.

3.2 Algebraic results

3.2.1 Centroid

It is not worth mentioning that the centroid X2 is stable if
we repeat the construction of the centroid always using the
Cevian triangle. The Cevian triangle is the medial triangle
of its predecessor in each step and all medial and medial of
medial triangles are perspective to each other and the cen-
troid X2 serves as the perspector, while the line at infinity
takes the role of the perspectrix.

In Fig. 4, the centroid X i+1
2 is constructed as the centroid of

the pedal triangle of its predecessor. Although the polygon
X2X1

2 X2
2 . . . shows a spiraloid behaviour there is no simple

generation that can easily be detected. Simulations show
that the sequence of centroids converges and the search
value equals 1.768675231717 . . ., but there is no known
center corresponding to that.

Figure 4: The limit of X i+1
2 (∆p(X i

2)) is not yet known and
the growth rules of the polygon X2X1

2 X2
2 . . . cannot easily

be read off from the figure.

3.2.2 Incenter

The incenter of ∆ is a rather nasty chum. Although it is
given by 1 : 1 : 1 in terms of homogeneous trilinear coordi-
nates (cf. [7, 8]), for X1 has equal (oriented) distances to ∆’s
sides, its Cartesian representation (3) involves square roots
(since the triangles area F does). Repeating the construc-
tion of the incenter using the intouch triangle ∆i = ∆p(X1)
(triangle of contact points of the incircle with the side lines
of ∆) doubles the problems. Again angles have to be halved,
or equivalently, unit vectors between points whose coordi-
nates already involve square roots have to determined. The
“next” incenter is that of ∆i and is labelled X177 (and called
the 1st Mid-Arc Point) in KIMBERLING’s encyclopedia with
the trilinear center function

√
bc
√

a−b+ c
√

a+b− c(
√

b
√

a−b+ c+
√

c
√

a+b− c)

(compare the equivalent trigonometric expression in [7, 8]).

As a matter of fact, X1 always lies in the interior of ∆.
Moreover it also lies in the interior of its pedal triangle
∆p(X1) = ∆i, the intouch triangle (contact points of the in-
circle and the side lines of ∆). It also lies in the interior of its
Cevian triangle ∆C(X1) which we shall investigate later. If
we repeat the incenter construction with either ∆i or ∆C(X1),
we find a triangle center in the interior of the next intouch
or Cevian triangle. It is clear that all these central triangles
are getting smaller in each step, lie always in the interior of
the preceding triangles, and it is near to assume that both ∆i
and ∆C(X1), and X1 converge to a point after infinitely many
construction steps. Unfortunately, the algebraic complexity
even of X1(∆i) = X177 and also of X1(∆i(X177)) make clear
that an algebraic approach towards X∞

1 is hopeless.

Nonetheless, we can show that the intouch triangle reaches
a special shape in the limit:
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Figure 5: The repeated construction of the intouch trian-
gle regularizes the triangle. A limit of the incenter that
is obtained as the last intouch triangle can only be found
numerically.

Theorem 1 The repeated intouch triangle construction
yields an equilateral triangle after infinitely many steps.

Proof. We read Fig. 5 and find that AC1 = AB1, and
thus, C1AB1 is isosceles. Hence, <)AC1B1 = <)AB1C1 =
1
2 (π−α). Further, <)BC1A1 = 1

2 (π− β), and thus, γ′ :=
<)A1C1B1 = 1

2 (α+β) and the same holds true for the other
interior angles of ∆i (with cyclic replacements of all in-
volved objects and values). So, the interior angles of ∆ and
∆i are related by the linear mapping α′

β′

γ′

=
1
2

 0 1 1
1 0 1
1 1 0

 α

β

γ

 .

The symmetric coordinate matrix of this linear map-
ping can be diagonalized by T−1LT = D, where D =

diag(1,− 1
2 ,−

1
2 ) and the transformation matrix T equals 1

3 − 1
3 −1

1
3 − 1

3 0
1
3

2
3 1

 .

We can apply the linear mapping infinitely many times:
L∞ = (TDT−1)∞ = TD∞T−1 = Tdiag(1,0,0)T−1 = 1

3 U
where U is the 3×3 matrix all of whose entries are equal to
1. This means α(∞) = 1

3 (α+β+ γ) = π

3 (and cyclic) which
proves the theorem. □

3.2.3 Circumcenter

Some facts from the elementary geometry of the triangle
along with the numerical simulation indicate the following:

Theorem 2 The circumcenter X3 of ∆ converges towards
the centroid X2 of the base triangle ∆, provided that the
pedal triangle of X3 serves as the reference triangle in each
construction step.

Proof. The pedal triangle of X3 equals the medial triangle
∆m of ∆. The circumcenter of ∆m is the nine-point center X5
of ∆ and both lie on the Euler line. Hence, the circumcenter
of the pedal triangle of X5 in ∆m is the point X140 which is
just called the midpoint of X3 and X5 in C. KIMBERLING’s
Encyclopedia [7].

Consequently, X140 is also located on the Euler line and
all further circumcenters of the respective pedal triangles
gather there. Moreover, the circumcenters jump forth and
back always halving the previous segment (see Fig. 6).

Figure 6: The centroid is the circumcenter limit (above).
Some on the initial pedal (medial) triangles with their cir-
cumcircles occuring in the limit procedure (below) share
the Euler line (indicated by blue circles).

We obtain the following sequence

X0
3 = X3,

X1
3 = X5,

X2
3 = 1

2 (X
1
3 +X0

3 ) = X140,

X3
3 = 1

4 (X
2
3 +X1

3 ) = X3268,

X4
3 = 1

8 (X
3
3 +X2

3 ) = X16239,

X5
3 = 1

16 (X
4
3 +X3

3 ) = X61877,

...

and, expressing these affine combinations as sums of X1
3

and X0
3 , we find

Xk
3 =

1
2k−2

(
J (k−1)Xk−1

3 + J (k)Xk−2
3

)
,
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where J (k) = 1
3 (2

k − (−1)k) is the k-th Jacobsthal number
(cf. [14]), which approaches 1

3 2k for increasing k. Now, we
can find the limit point X∞

3 as

lim
k→∞

Xk
3 =

= 1
3 lim

k→∞

1
2k−1

(
(2k−1 − (−1)k−1X1

3 +(2k − (−1)k)X0
3
)
=

= 2
3 X5 +

1
3 X3 = X2

which completes the proof. □

From the proof of Thm. 2 we can infer:

Theorem 3 The triangle centers X5 (nine-point center),
X140, X3268, X16239, X61877, . . . in this sequence converge
towards the centroid X2 of the base triangle ∆, provided
that the pedal triangle and the circumcenter construction
are combined in each step.

The numerical simulation described in Sec. 2 indicates the
following:

Theorem 4 The Symmedian point X6 converges towards
the 1st Lemoine dilation center X1285, provided the pedal
triangle serves as the reference triangle in each step.

Proof. In order to verify the result, we compute some in-
stances of the Symmedian point and show that it traverses a
zig-zag polygon which consists of infinitely many similar
copies that terminate in X1285. The first Symmedian point
X6 is that of ∆ with coordinates

X6 =
1
2τ

(
c(−a2 +3b2 + c2),4cF

)
,

where τ := a2 +b2 + c2 and its pedal triangle has the ver-
tices (in that particular order, i.e., the first vertex on [B,C])

1
4cτ

(
c4 +8b2c2 −b4 − (a2 −b2)2,4F(a2 −b2 +3c2)

)
,

1
4cτ

(
(a2−b2−c2)(a2−b2−3c2),4F(−a2 +b2 +3c2)

)
,

1
2τ

(
c(a2 −3b2 − c2),0

)
.

The next Symmedian points are

X1
6 =

1
4cτ2

(
a6 −a4(3b2 +4c2)+a2(b2 + c2)(3b2 + c2)−b6 +8b4c2 +7b2c4 +2c6

−4(a4 −a2(2b2 + c2)+b4 −b2c2 −4c4)F

)
,

X2
6 =

1
8cτ3

(
a8 −a6(2b2 − c2)−a4(19b2 +17c2)c2 + . . .

−4F
(
a6 −a4(b2 −4c2)−a2(b2 +8c2)b2 + . . .

) ) ,

X3
6 =

1
16cτ4

(
−a10 +a8(13b2 +16c2)−2a6(17b4 +32b2c2 +25c4)+ . . .

4F
(
a8 − (12b2 +13c2)+a4(22b4 +13b2c2 +13c4)+ . . .

) ) ,

X4
6 =

1
32cτ5

(
a12 +3a10(4b2 + c2)−a8(27b4 +17b2c2 +10c4)+ . . .

−4F
(
a10 +a8(13b2 +6c2)−2a6(7b4 −24b2c2 −21c4)+ . . .

) ) .

Figure 7: The zig-zag path of the Symmedian points dithers
to X1285. The dotted lines joining the “even” and “odd”
points intersect in the similarity center X1285.

Now, we are able to verify that the polygons P012 =X6X1
6 X2

6
and P234 = X2

6 X3
6 X4

6 are similar. The scaling factor of the
similarity P012 → P234 equals

f =
12F2

τ2 =
3
4

(
1− 2

τ2

(
a4+b4+c4))< 1.

The involved pedal triangles are also similar, and thus, we
can be sure that the construction of any further part of the X i

6
polygon consists of pieces similar to the initial part. Instead
of adding a geometric sequence of vectors, we note that
the points X6, X2

6 , X4
6 , . . . and the points X1

6 , X3
6 , X5

6 , . . . are
collinear. Therefore, we intersect the lines passing through
the “odd” and “even” points in order to obtain the limit
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point
L = [X6,X2

6 ]∩ [X1
6 ,X

3
6 ] =

=
1
2c

 ⋆

−4F(a2 −b2 −3c2)(a2 −b2 +3c2)

7a4 +2a2b2 +2a2c2 +7b4 +2b2c2 +7c4

 .

Cyclically shifting a, b, c in the second coordinate func-
tion and cutting out cyclic symmetric factors (F and the

quartic polnomial in the denominator) yields the generating
trilinear center function

bc(3a2 −b2 + c2)(3a2 +b2 − c2)

and the search value 0.1029669168564765255 together
with the trilinear representation given at [7] identifies this
point as X1285. □
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A Geometric Construction of a Family of Keplerian
Ellipses

ABSTRACT

We investigate a one-parameter family of Keplerian ellipses
in a plane sharing a fixed focus F1 and passing through a
prescribed point P with identical instantaneous speed. By
means of a purely geometric construction – the reflection
of the ray F1P in the tangent at P – the second focus F2
is located on a circle f2, yielding simple loci for the cen-
ters M and the secondary vertices C,D (both circles) and
for the principal vertices A,B (conchoids of a circle). The
family admits an envelope, itself an ellipse whose semiaxes
are obtained in closed form. The configuration provides
a direct geometric interpretation of the vis-viva relation:
All members share the same semimajor axis a, and thus,
the same orbital period. When rotated about the axis F1P,
the envelope ellipses form a family of confocal ellipsoids of
revolution, thus connecting the planar Kepler construction
with the classical geometry of quadrics.

Key words: Keplerian ellipses, envelope ellipse, conchoid,
limaçon, vis-viva relation, energy equation

MSC2020: 70F15, 51A05, 51N20, 37J35

Geometrijska konstrukcija familije Keplerovih
elipsa

SAŽETAK

Istražujemo jednoparametarsku familiju Keplerovih elipsa
u ravnini koje imaju isto žarǐste F1 i prolaze kroz danu
točku P jednakom trenutnom brzinom. Pomoću čisto geo-
metrijske konstrukcije – refleksija zrake F1P na tangenti
u točki P – drugo žarǐste F2 leži na kružnici f2, dobivaju
se geometrijska mjesta sredǐsta M i sporednih tjemena
C, D (dvije kružnice) i glavnih tjemena A, B (konhoide
kružnice). Familija elipsi ima envelopu, tako�er elipsu, čije
su poluosi dobivene u zatvorenoj formi. Ova konfiguracija
pruža izravno geometrijsko tumačenje vis-viva relacije: Svi
članovi dijele istu veliku glavnu poluos a, pa onda i isti
orbitni period. Kada rotiraju oko osi F1P, elipse enve-
lope tvore familiju konfokalnih rotacijskih elipsoida, čime
se ravninska Keplerova konstrukcija povezuje s klasičnom
geometrijom kvadrika.

Ključne riječi: Keplerove elipse, elipsa envelopa, konhoida,
puž, vis-viva relacija, jednadžba energije

1 Motivation

This paper addresses certain physical relationships within

the framework of Keplerian ellipses – not only from a phys-

ical but, above all, from a geometrical point of view – and

arrives at several remarkable results. More specifically, it

focuses on applying the vis-viva equation (energy equation

of the Kepler orbit) to spatial objects, an approach that

makes it possible to describe and analyse elliptical orbits in

three-dimensional space in a fully consistent way (Fig. 1).

2 State of the Art and Related Work

The idea to organize Kepler orbits into families determined
by position and speed goes back at least to Laporte [8],
who studied the one-parameter family of ellipses obtained
from a fixed point with equal initial speed and varying di-
rection. Butikov provided an accessible modern account of
such families and their qualitative geometry [2], and later
discussed envelopes in the context of ballistic and elliptic
trajectories [3]. Very recently, Heckman [7] revisited the
family of Kepler ellipses through a fixed point from a geo-
metric Hamiltonian viewpoint: He showed, in particular,
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Figure 1: Family of Keplerian ellipses corresponding to the
same initial orbital speed v, but with different directions of
the velocity vector v⃗. Each ellipse passes through the fixed
point P and has the same focus F1.

that the locus of second foci is a circle of radius 2a− r
centered at the passing point P, that all members share the
same period, and he described a bounding ellipse for the
swept region.

To the best of our knowledge, a purely geometric construc-
tion of the common envelope ellipse for the constant-speed
family – based on reflecting the ray F1P in the tangent at P
and exploiting the collinearity of P, F2 and the contact point
– together with explicit loci for the centers (m), secondary
vertices (C,D), and the conchoid loci for the major vertices
(A,B), as well as the extremal configuration with maximal b
and the cusped limaçon case a = d, does not appear explic-
itly in the literature cited above. The present paper provides
such a unified geometric treatment and closed formulas for
the envelope’s semiaxes.

3 Introduction

Kepler’s discovery that the planets move in ellipses rather
than circles marks one of the most elegant links between
geometry and physics. The corresponding vis-viva relation,

v2 = µ
(

2
r
− 1

a

)
,

connects the instantaneous distance r and speed v of a body
in a central fields of gravitation with the global parameter
a, the semimajor axis of its elliptical orbit.

We consider here, in purely geometric terms, the family of
all Keplerian ellipses that share a fixed focus F1 and pass
through a given point P with identical speed. While the
tangent direction in P varies, the energy and semimajor axis
remain constant, forming a one-parameter family of ellipses.
The central question is the determination of their envelope.

It is a matter of fact that the ray F1P, when reflected in the
tangent at P, passes through the second focus F2 of the cor-
responding ellipse. The line PF2 then meets the envelope in
the point of contact, proving the collinearity of F1, F2, and
the contact point and showing that all ellipses share a single
bounding ellipse.

We further describe the loci of the centers, foci, and ver-
tices of the family – circles and conchoids – and identify
the limiting cases of maximal minor axis and vanishing
eccentricity. The construction provides a concise geometric
interpretation of the vis-viva relation and unites classical
conic geometry with orbital dynamics.

4 The Vis-Viva Equation

The vis–viva relation (1) remains the cornerstone of orbital
mechanics and is discussed in detail in modern treatments
such as Murray and Dermott [9], Roy [11], Danby [4], and
Vallado [12].

It states that

v2 = µ
(

2
r
− 1

a

)
, (1)

where

• v is the instantaneous orbital velocity of the moving
body,

• r its current distance from the focus F1 (the central
mass),

• a the semimajor axis of the corresponding Kepler
ellipse,

• µ = GM the gravitational parameter,

and

G = 6.67430×10−11 m3 kg−1 s−2

denotes the universal gravitational constant, M the mass of
the central attracting body.

Equation (1) expresses the conservation of total mechanical
energy along a Keplerian orbit. The first term, 1

2 v2, repre-
sents the specific kinetic energy, whereas µ/r denotes the
negative potential term. The relation applies equally to el-
liptical, parabolic, and hyperbolic trajectories, and reduces
to the circular case when r = a, yielding v =

√
µ/r.
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In the form of Eq. (1), one essentially determines the orbital
speed v from the given semimajor axis a and the instanta-
neous distance r. It is noteworthy that the equation contains
no information about the direction of the velocity vector v⃗;
it merely provides its magnitude v = ∥⃗v∥.

Conversely, if the instantaneous orbital velocity v and the
current distance r are known, the semimajor axis a of the
corresponding Keplerian ellipse can be derived directly
from Eq. (1):

1
a
=

2
r
− v2

µ
⇐⇒ a =

1
2
r
− v2

µ

. (2)

This inverse form is widely used in orbital mechanics to
compute the semimajor axis from position–velocity data at
any given point of the trajectory.

From a geometrical point of view, Eq. (2) expresses that
the orbital energy –, and thus the size of the ellipse – is
completely determined by the instantaneous position and
speed of the moving body. In the plane of motion, the direc-
tion of the velocity vector v⃗ is tangent to the ellipse at the
current point, while its magnitude defines, through Eq. (1),
the scale of the entire orbit. Consequently, the value of a
derived from a single observation (r,v) uniquely determines
the corresponding ellipse, up to the spatial orientation of its
major axis.

A particularly important limiting case of Eq. (1) occurs
when the semimajor axis a tends to infinity, corresponding
to a parabolic escape trajectory. In this limit, the total
mechanical energy approaches zero, and the orbital speed
becomes the escape velocity

ve =

√
2µ
r

. (3)

Any higher velocity results in a hyperbolic orbit and per-
manent escape from the gravitational field of the central
body. Conversely, for v < ve the motion remains bound,
and Eq. (2) yields a finite semimajor axis a.

From a purely geometrical standpoint, the escape velocity
marks the limiting case in which the semimajor axis a of the
Kepler ellipse tends to infinity. As a → ∞, the ellipse grad-
ually opens, its curvature at the current point decreases, and
the second focus recedes to infinity. The ellipse thus trans-
forms smoothly into a parabola whose focus coincides with
the central mass F1 and whose directrix lies at an infinite
distance.

In this limiting configuration, the moving body possesses
just enough kinetic energy to reach infinity with zero resid-
ual speed – precisely the condition v = ve =

√
2µ/r. Hence,

the parabolic orbit forms the natural boundary between
bound and unbound motion, connecting the family of Ke-
plerian ellipses continuously to the branch of hyperbolic
trajectories.

Remark 1 (Bound-Unbound Criterion) In order to ensure
that the curve κψ represents a closed Keplerian ellipse, the
orbital velocity v in the given point P must not exceed the
parabolic escape velocity. Quantitatively, this means that
the instantaneous velocity v may at most exceed the circular
velocity vcirc by a factor of

√
2:

v ≤
√

2vcirc with vcirc =

√
µ
r
.

If v =
√

2vcirc, the resulting orbit becomes parabolic
(a → ∞); for v >

√
2vcirc, it turns into a hyperbola. This√

2-limit provides a simple geometric criterion for distin-
guishing bounded (elliptic) from unbounded (parabolic or
hyperbolic) trajectories, and it holds universally for all cen-
tral gravitational fields for all central gravitational fields
(see [1, pp. 66–68]).

In the present paper, however, we shall restrict our attention
exclusively to elliptical orbits, leaving the parabolic and
hyperbolic cases aside.

Remark 2 (Constant Period and Spatial Interpretation)
Since the semimajor axis a is identical for all members
of the considered family of Keplerian ellipses, the orbital
period T is the same for all of them as well, according to
Kepler’s third law,

T = 2π

√
a3

µ
.

Thus, all particles moving on these ellipses complete their
revolution in equal time, even though their orbital shapes
and instantaneous velocities differ.

Because the construction depends only on the line
through F1 and P, the same argument applies to any plane
containing this line. Hence the family may be regarded as a
three-dimensional system of identical orbits distributed over
all planes passing through F1P. In this sense, the model
admits a natural spatial interpretation: Each ellipse repre-
sents the projection of an orbit lying in a different orbital
plane but governed by the same gravitational parameter µ
and the same total energy.

The time-evolution of the corresponding particles can be
visualized by the accompanying sequence of frames shown
in Fig. 2, and in the supplementary video available online
([5]).

55



KoG•29–2025 G. Glaeser: Geometric Construction of a Family of Keplerian Ellipses

Figure 2: Sequence of frames illustrating the motion of sev-
eral particles along the family of Keplerian ellipses with
identical semimajor axis a and focus F1. Each ellipse cor-
responds to a different orientation of the tangent at P, but
all orbits share the same period T and gravitational param-
eter µ, as illustrated in the supplementary video [5].

Figure 3: Isoenergetic family of Keplerian trajectories
launched with identical speed from the same point along all
directions of a conical field of initial velocities. All orbits
share the same semimajor axis a but differ in eccentricity
and orientation. They return to the common starting point
simultaneously after one complete revolution.

Launching from the same point with identical speed along
all directions of a cone of revolution whose axis is the orbital

tangent yields an isoenergetic family of Keplerian ellipses
with the same semimajor axis a but generally different ec-
centricities. All trajectories of this family have identical
orbital periods, since the revolution time depends solely on
the semimajor axis according to Kepler’s third law. Conse-
quently, although the eccentricities and spatial orientations
of the orbits differ, all projectiles return to their common
starting point simultaneously after one full revolution. The
resulting configuration is illustrated in Fig. 3.

The time-evolution of this isoenergetic family is illustrated
in Fig. 2, where all trajectories start simultaneously from
the same point and return to it after one full revolution. An
animated version of this figure, showing the continuous
propagation of the orbits and the simultaneous rendezvous
of the projectiles, is available as supplementary material
online.

5 Geometric Construction

Having examined the physical foundation of Keplerian mo-
tion, we now turn to a purely geometrical interpretation
of the same family of ellipses. Instead of deriving the or-
bital parameters from forces and energies, we shall describe
the entire configuration in terms of fixed points, distances,
and loci. This approach reveals several remarkable geomet-
ric properties – in particular, the existence of an envelope
ellipse that is tangent to all Keplerian ellipses of a given
family. For a comprehensive geometric treatment of conic
sections and their focal properties, see [6].

6 Geometrical Construction

Let us begin with the question of how to construct an ellipse
when one focus F1, the total major axis length 2a, and a
point P at a fixed distance d = |F1P| are given, together
with the tangent t at P, which forms an angle ψ with the
reference axis F1P. The solution is remarkably simple.

Since an ellipse is the locus of all points whose distances to
two fixed foci sum to the constant 2a, and since the tangent
at any point bisects the angle between the focal radii, we
proceed as follows (Fig. 4):

Construction. Define a fixed counterpoint G on the
ray F1P such that |F1G|= 2a. Reflect G about the tangent t
through P; the reflection point is F2,

F2 = Reft(G).

As the tangent direction ψ varies, G remains fixed while its
mirror image F2 moves along a circle f centered at P with
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radius

|PF2|= 2a−d.

This circle represents the locus of all possible second foci
of the family of ellipses κψ. The tangent t bisects the focal
angle,

∠GPF2 = 2ψ ⇒ ∠F1PF2 = π−2ψ.

Figure 4: Geometric construction of the ellipse κψ from the
given focus F1, the tangent t at the point P with |F1P|= d,
and the total major axis 2a. Reflect the line F1P about t
and mark on the reflected ray from P the segment of
length 2a−d to obtain the second focus F2. Equivalently,
F2 is the mirror image of the fixed point G on F1P satisfying
|F1G| = 2a. The tangent t bisects the angle ∠F1PF2 =
π − 2ψ. The construction fixes the center M, the ver-
tices A,B, and the semiaxes a,b(ψ).

7 Three Circular Loci

Fix a focus F1, a point P with |F1P| = d, and a common
semimajor axis a. For the one-parameter family {κψ} of
Kepler ellipses through P we have:

1. Locus of the second focus. Evaluating the focal sum
at X = P gives |PF2| = 2a− d. Hence the second
focus F2 runs on the circle

f2 : center P, radius 2a−d.

2. Locus of the ellipse centers. Since the center M
is the midpoint of F1F2, and F2 moves on the circle
around P, the midpoint M = 1

2 (F1 +F2) describes a
circle with half the radius and centered at the mid-
point of F1P. Writing Q for the midpoint of F1P,

m : center Q, radius a− d
2 .

3. Locus of the secondary vertices. At the secondary
vertices C,D the distances to the foci are equal by
symmetry, and |F1C|+ |F2C| = 2a yields |F1C| =
|F2C|= a (likewise for D). Hence

c : center F1, radius a,

i.e., all secondary vertices lie on the circle of radius
a about F1.

Figure 5 illustrates the configuration: The focus-locus f2
(centered at P), the center-locus m (centered at the midpoint
Q of F1P), and the circle c carrying all secondary vertices
C,D (centered at F1).

Figure 5: Three circular loci for the family {κψ}: The sec-
ond focus F2 moves on f2 (center P, radius 2a− d); the
ellipse center M moves on m (center Q, the midpoint of F1P,
radius a− d

2 ); and the secondary vertices C,D lie on the
circle c (center F1, radius a).

Figure 6: Special case a = d: The focus locus f2 (center P,
radius a), the center locus m (center Q, radius a/2), and
the circle c of minor vertices (center F1, radius a).
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Remark 3 (Special case a = d) In the special case a = d
the three circular loci simplify as follows: The second focus
runs on f2 with radius |PF2| = 2a−d = a (center P), the
ellipse centers M run on m with radius a− d

2 = a
2 (center

Q, the midpoint of F1P), and the minor vertices C,D lie on
the circle c of radius a about F1 (unchanged). The configu-
ration is illustrated in Fig. 6.
A particularly remarkable feature of this configuration is
that the lower vertices D of all ellipses coincide with the
fixed point P.

8 Focal distance and eccentricity

The midpoint M of the focal segment F1F2 is the center
of κψ, and satisfies

|F1M|= |MF2|= cψ,

which defines the linear eccentricity

cψ = 1
2

√
d2 +(2a−d)2 −2d(2a−d)cos(2ψ) .

The corresponding (dimensionless) eccentricity is

eψ =
cψ

a
.

Equation of the ellipse. The ellipse κψ has the polar equa-
tion (with origin at F1, polar angle α measured from F1P):

r(α) =
a(1− e2

ψ)

1+ eψ cos(α−ϕ)
,

where ϕ denotes the orientation of the major axis relative
to F1P.

Remark 4 (Velocity Ratios at Pericenter and Apocenter)
For every Keplerian ellipse κψ with semimajor axis a and
eccentricity eψ, the instantaneous orbital velocity follows
from the vis-viva relation

v2 = µ
(

2
r
− 1

a

)
.

At the circular radius r = a one obtains

vcirc =

√
µ
a
.

At pericenter and apocenter, where

rperi = a(1− eψ), rapo = a(1+ eψ),

the corresponding velocities are

vperi =

√
µ
a

√
1+ eψ

1− eψ

, vapo =

√
µ
a

√
1− eψ

1+ eψ

.

Hence the ratios relative to the circular velocity are

vperi

vcirc
=

√
1+ eψ

1− eψ

,
vapo

vcirc
=

√
1− eψ

1+ eψ

.

The pericentric velocity therefore exceeds the circular value,
while the apocentric velocity falls below it. At the parabolic
limit eψ → 1 the pericentric velocity approaches

√
2vcirc,

corresponding to the escape condition ([1, §2.5]).

Remark 5 (Special case a = d) If the semimajor axis
equals the focal distance to the given point, a = d, then the
major axis of κψ is aligned with the reflected ray through P,
and the axis angle equals the tangent angle:

ϕ = ψ.

In this case the eccentricity reduces to

eψ =
cψ

a
=
∣∣sinψ

∣∣,
and the vis–viva relations yield the pericentric and apocen-
tric velocities, relative to the circular speed vcirc =

√
µ/a:

vperi

vcirc
=

√
1+ |sinψ|
1−|sinψ|

,
vapo

vcirc
=

√
1−|sinψ|
1+ |sinψ|

(for ψ taken modulo π). At ψ= 0 one has vperi = vapo = vcirc
(circular case), while as |ψ| → π/2 the apocentric velocity
tends to 0 and vperi →

√
2vcirc (parabolic limit).

Proof (vis–viva only). From v2 = µ(2/r − 1/a),
with rperi,apo = a(1 ∓ eψ) and eψ = |sinψ|, one ob-
tains directly vperi = vcirc

√
(1+ eψ)/(1− eψ) and vapo =

vcirc
√

(1− eψ)/(1+ eψ).

Semiminor axis. From b2 = a2 − c2
ψ follows

b2(ψ) = d
(

a− d
2

)
+

d(2a−d)
2

cos(2ψ),

and thus,
b(ψ) = cosψ

√
d(2a−d).

Hence the semiminor axis attains its maximum for ψ = 0,
when the tangent is parallel to F1P:

bmax =
√

d(2a−d).

This value equals the geometric mean of the focal distances
d = |F1P| and (2a−d) = |PF2|. For ψ = π

2 , the points F1,
P, and F2 become collinear, the focal separation is maximal
(cψ = a), and the ellipse degenerates into a line segment.
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Summary. The family κψ is completely determined by
the parameters (a,d,ψ). The quantities ϕ, eψ, cψ, and b(ψ)
follow from the above relations. The fixed point G serves
as a convenient geometric reference: All members of the
family arise as mirror images of G with respect to their
respective tangents t(ψ).

9 The Envelope of the Family of Keplerian
Ellipses

Let κψ be one of the Kepler ellipses of the family. We mark
on it a point H as the second intersection of the ellipse with
the guiding ray PF2. For this point, the sum of the focal
distances is constant. Since

|F1H|+ |PH|=
{
|F1H|+ |F2H|

}
+ |F2P|

=
{

2a
}
+(2a−d) = 4a−d,

the point H lies on an auxiliary ellipse h with foci F1 and P
and semimajor axis 2a− d

2 . At H, the tangents to κψ and
h coincide, because in both cases the tangent is the angle
bisector of the same pair of guiding rays. Consequently,
h touches every member of the family κψ, and therefore,
constitutes the envelope of all Keplerian ellipses of this
type.

Figure 7: Geometric proof of the envelope. For each tan-
gent t through P, the reflection of the ray SP determines
the second focus F2. The intersection of the line PF2 with
the family’s outer boundary defines the point H, which lies
on the envelope ellipse h. The points P, F2, and H are
collinear.

Figure 8: The complete family of Kepler ellipses with fixed
focus F1 and identical speed at P. Each ellipse touches
the envelope h (cyan curve). The envelope itself is an el-
lipse with semimajor axis ah = 2a−d and semiminor axis
bh =

√
(2a−d)d.

The overall configuration is illustrated schematically in
Fig. 7, showing the family of ellipses for different orienta-
tions of the tangent at P and their envelope h.

Moreover, the reflection of the point of contact H in the
common tangent t always lies on the principal axis F1P, at
a distance of 4a−d from F1.

Remark 6 (On intersections within the family) Two dis-
tinct members κψ and κψ′ of the constant-speed family pass
through P but have different tangents there (for ψ ̸= ψ′),
hence the intersection at P is transveral. By Bézout’s the-
orem, two conics intersect with total multiplicity 4 in the
complex projective plane; the remaining intersection multi-
plicities are accounted for by two common (complex) tan-
gents through the fixed focus F1 in the dual picture. Thus,
neighbouring members typically meet only at P in the real
plane.

Spatial version. For each admissible tangential velocity
at P, the corresponding Kepler ellipse κψ is tangent to the
envelope ellipse h with foci F1 and P and semimajor axis
ah = 2a− d

2 . If the entire configuration is rotated about the
axis F1P, the envelope h generates an egg-shaped ellipsoid
of revolution whose focal points are F1 and P.

As the velocity in P varies, the semimajor axis a changes ac-
cording to the vis-viva relation a = µr

2µ−rv2 , so that a ranges

from 0 (for v→∞) up to d
√

2 at the parabolic limit. Hence
all Keplerian ellipses passing through the fixed point P with
any sub-parabolic velocity form a continuous one-parameter
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family of confocal egg-shaped ellipsoids of revolution – as
discussed in [10] – each touching its corresponding planar
Kepler ellipse along the generator defined by the common
tangent at P.

Remark 7 (The complete picture, a spatial arrangement of
Keplerian ellipses) Through the fixed point P there pass
infinitely many tangents t, each characterized by its spatial
orientation (two degrees of freedom) and by the magnitude
of the velocity vector (one additional degree of freedom).
Hence, the set of all Kepler ellipses passing through P forms
a three-dimensional continuum: For every direction and
speed in P there exists exactly one Keplerian orbit of the
family.

However, among these infinitely many ellipses, all those
that differ only by a rigid motion (translation or rotation)
are congruent. Thus, within this three-dimensional contin-
uum, there exists a one-dimensional subfamily of congruent
ellipses, leaving only a two-dimensional manifold of dis-
tinct shapes. Equivalently, if the semiaxes a and b are taken
as parameters, the space of all geometrically different el-
lipses is two-dimensional, corresponding to the degrees of
freedom of shape and eccentricity.

Figure 9: Rotation of the envelope ellipse h about the
axis F1P generates an egg-shaped ellipsoid of revolution.
The fixed points F1 and P serve as common foci of all such
ellipsoids, each corresponding to a Kepler ellipse κψ of
equal velocity in P. The colored layers illustrate the asso-
ciated system of confocal quadrics sharing the same focal
points F1 and P. Each planar Kepler ellipse arises as a
section through F1, P, and its corresponding focus F2.

10 Loci of the Principal Vertices A and B

We return zu the planar version. Let m be the circle of el-
lipse centers with center C (the midpoint of F1P) and radius
r0 = a− d

2 . With F1 as pole, let ϕ denote the polar direction.
The ray from F1 at angle ϕ meets m at distance

s(ϕ) = d
2 cosϕ+

√
r2

0 − ( d
2 sinϕ)2 .

The principal vertices are obtained by shifting ±a along
this ray:

rA(ϕ) = s(ϕ)+a, rB(ϕ) = |s(ϕ)−a | .

Hence both loci are conchoids of the circle m with pole F1.

Figure 10: General case: The loci of A (outer branch) and
B (inner branch) are conchoids of the center circle m with
pole F1.

Figure 11: Special case a = d: The conchoids degenerate
into a cusped Pascal snail cAB.
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Remark 8 (Identity of the two Pascal snails) For the spe-
cial case a = d, the loci of the two main vertices A and B
of the ellipses κϕ are given in polar coordinates by

rA(ϕ) = a(1+ cosϕ), rB(ϕ) = a(1− cosϕ).

Although these equations look different, they describe the
same cusped Pascal snail (a cardioid–type limaçon), merely
rotated by π:

rB(ϕ+π) = a(1+ cosϕ) = rA(ϕ).

Hence the two vertex loci coincide geometrically, each cov-
ering the same curve twice with opposite orientation. The
cusp corresponds to ϕ = 0, where A and B coincide at P,
and the maximal distance r = 2a occurs at ϕ = π.

The loci of the two main vertices A and B of all ellipses κϕ

(for the case a = d) form a single cusped Pascal snail given
in polar coordinates by r = a(1+ cosϕ). The cusp corre-
sponds to ϕ = 0, where A and B coincide at P, and the
maximal distance r = 2a occurs at ϕ = π.

In order to visualize the variation of the orbital velocity
along this curve, we now plot the apocentric speed vapo of
the corresponding ellipses κϕ above the cardioid. If the
velocity is plotted with opposite sign for −π

2 < ϕ < +π

2 ,
the surface becomes continuous and differentiable at the
parabolic limits. This orientation change reflects the nat-
ural reversal of motion along the cardioid when the orbit
passes through its side point.

For a continuous, orientation preserving plot we use the
signed apocentric speed

vor
apo(ϕ)= s(ϕ)vcirc

√
1−|sinϕ|
1+ |sinϕ|

, s(ϕ)=−sgn(cosϕ),

so that the sign flips at ϕ =±π

2 .

Conclusions and Future Work

The geometric constructions discussed above reveal a re-
markable coherence between the analytic and envelope rep-
resentations of the Kepler family. Starting from a purely
planar setting, the reflection-based construction provides
an intuitive bridge between the focal geometry of conic
sections and their dynamical interpretation.

We have presented a purely geometric treatment of a re-
markable family of Keplerian ellipses passing through a
fixed point P with identical speed. By reflecting the ray F1P
in the tangent at P we located the second focus F2 and estab-
lished a simple proof that all such ellipses share a common
bounding ellipse as their envelope. The semiaxes of this
envelope can be expressed in closed form in terms of a
and d.

Figure 12: Signed apocentric velocity over the cardioid
r = a(1+ cosϕ). The black curve is the locus of apocen-
tric vertices B (case a = d). The red ribbon shows vor

apo(ϕ),
with the sign chosen via s(ϕ) = −sgn(cosϕ), yielding a
smooth continuation through the parabolic limit vapo = 0 at
ϕ =±π

2 .

In addition, we derived the loci of the centers, foci, and
vertices of the entire family. The centers and minor ver-
tices describe circles, whereas the principal vertices trace
conchoids of the center circle, merging into a cusped Pas-
cal snail in the special case a = d. These constructions
demonstrate that classical geometry naturally reproduces
the relations known from orbital mechanics.

From a physical point of view, the constant-speed family
represents all possible bound orbits of equal total energy
starting from P. Each member corresponds to a distinct
initial direction, yet all share the same period according to
Kepler’s third law. The envelope thus provides a geometric
visualization of the energy boundary in a central field.

A three-dimensional interpretation arises when the enve-
lope ellipse h is rotated about the axis F1P, generating an
egg-shaped ellipsoid of revolution. The entire family of
Kepler ellipses can therefore be embedded into a system of
confocal quadrics sharing the same foci F1 and P, provid-
ing a spatial counterpart to the planar focal construction (cf.
Fig. 9).
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Future work may extend this approach to inclined orbital
planes and precessing ellipses, or explore analogous enve-
lope constructions for hyperbolic and parabolic trajectories.
The presented geometric framework also lends itself to edu-
cational and visual applications linking classical geometry
with dynamical systems.

Beyond the purely geometric framework presented here,
the same configuration may also be viewed in a dynamical
context. Considering, for instance, the Jupiter system with
a massless satellite (a “null moon” moving in the same or-
bital plane, the geometry of the present family arises as the
limiting case of the barycentric two-body system when the
satellite mass tends to zero. In this limit, the fixed focus F1
represents the planet, and the moving focus F2 corresponds
to the barycentre of the combined system, thus providing a
natural physical interpretation of the focal envelope. This
observation may open a link between purely geometric en-
velopes and dynamical orbital models and will be explored
in a forthcoming study.
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ABSTRACT

In this paper we investigate the number 2025 and visualize
its regularity. This is a perfect square, but a deeper look
reveals much more structure related to counting lattice
points in polygons and polyhedra. We will also discuss the
frequency of square and regular years and the uniqueness
of such a regular year number.

Key words: figure numbers, trigonal numbers, tetrahedral
numbers

MSC2020: 05A17, 52C05

O izuzetnim svojstvima broja 2025

SAŽETAK

U ovom članku proučava se broj 2025 i vizualizira nje-
gova regularnost. Ovaj broj je potpuni kvadrat, a dubljim
uvidom otkrivamo bogatu strukturu i povezujemo je s pre-
brojavanjem cjelobrojnih točaka u poligonalnim domena-
ma. Tako�er dajemo osvrt na frekvenciju pojave kvadrat-
nih i regularnih godina te jedinstvenost ovakve regularne
godine.

Ključne riječi: poligonalni broj, trigonalni broj, tetredralni
broj

1 Introduction

Number 2025 is very special. It is a perfect square, an odd
square, a square of triangular number, sum of two, three
and four squares, sum of cubes. It is a regular number, a
number that has only 3 and 5 as prime divisors since

2025 = 81 ·25 = 92 ·52 = 34 ·53

and finally, it is a product of squares. In Table 1 we give
a (noncomplete) list of sequences that contain 2025 in the
Online Encyclopedia of Integer Sequences (OEIS [8]).

Regularity of number 2025 can be visualized by polyg-
onal symmetries connected to number sequences men-
tioned. Number 2025 belongs to the class of figure num-
bers, polygonal numbers which are used for counting lat-
tice points inside polygons [1, 10].
In Section 2 we give recursions and graphical representa-
tions of some number sequences from Table 1. We show
that the predecessor 2024 and successor 2026 are also
figure numbers; 2024 is a tetrahedral number (3), while
2026 = 2 ·1013 is successor of a square number and 1013
is a centered square number, sum of consecutive squares
n2 +(n+1)2 with n = 22.

Sequence in OEIS Occurence Description of sequence 2025 =

A000290 n = 45 perfect square 452

A016754 n = 22 odd square (centered octagonal number) (2 ·22+1)2

A000537 n = 9 sum of cubes (square of triangular number)
( 9·10

2
)2

A001481 n = 626 sum of two squares 272 +362

A051037 n = 109 5-smooth number (regular number) 34 ·52

A238237 n = 2 torn number (20+25)2

A350869 n = 2 square of sum of all numbers with one digit
(
(101−1)·101

2

)2

Table 1: Occurrences of number 2025 in OEIS and corresponding formulas, [8].
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n Prime Factorization ϕ(n) n Prime Factorization ϕ(n)
2000 24 ×53 800 2013 3×11×61 1200
2001 3×23×29 1232 2014 2×19×53 936
2002 2×7×11×13 720 2015 5×13×31 1440
2003 2003 2002 2016 25 ×32 ×7 576
2004 22 ×3×167 664 2017 2017 2016
2005 5×401 1600 2018 2×1009 1008
2006 2×17×59 928 2019 3×673 1344
2007 32 ×223 1332 2020 22 ×5×101 800
2008 23 ×251 1000 2021 43×47 1932
2009 72 ×41 1680 2022 2×3×337 672
2010 2×3×5×67 528 2023 7×172 1632
2011 2011 2010 2024 23 ×11×23 880
2012 22 ×503 1004 2025 34 ×52 1080

2026 2×1013 1012
2027 2027 2026

Table 2: Prime factorization and Euler’s function ϕ(n) for 2000 ≤ n ≤ 2027.

In Section 3 we look at the fact that 2025 is the square of
the sum of digits

(0+1+2+ · · ·+9)2 = 452 = 2025

in the decimal representation system, so that it appears in
another integer sequence A238237 in OEIS [8], sequence
of numbers which, when split in two parts of equal length,
then added and squared, give the same number,

2025 = (20+25)2. (1)

In the last Section 4 we discuss the distribution of integer
sequences from the upper part of Table 1 within the natural
numbers and show that year 2025 is unique in the follow-
ing way:

Theorem 1. Consecutive integers 2024 and 2025 are the
only pair of consecutive integers such that a tetrahedral
number is predecessor of an odd square number and they
appear with the same index n = 22 in their respective inte-
ger sequences.

Graphics were made using Geogebra, Rhinoceros 3d with
Grasshopper, SAGE [7, 9].

The author would like to thank the referee for many useful
suggestions on how to improve the paper.

2 Visualizations of properties of number
2025

2.1 Divisors of 2025

1 = 30 ·50

5 = 30 ·51

25 = 30 ·52

3 = 31 ·50

15 = 31 ·51

75 = 31 ·52

9 = 32 ·50

45 = 32 ·51

225 = 32 ·52

27 = 33 ·50

135 = 33 ·51

675 = 33 ·52

81 = 34 ·50

405 = 34 ·51

2025 = 34 ·52

×3

×5

×5

Figure 1: Hasse diagram of divisors of number 2025.

Number 2025 has 15 divisors, two of which, 3 and 5, are
prime. In Figure 1, we can see the Hasse diagram of divi-
sors of 2025. In Table 2 we see prime factorization and val-
ues of Euler function ϕ(n) [3], which represents the num-
ber of numbers less than n that are relatively prime to n for
n = 2000, . . . ,2027.
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Number 2025 is smooth, it has a small set of prime divi-
sors, each of which is itself small. Regular or 5-smooth
numbers are numbers with greatest prime divisor less then
or equal to 5, so their prime factorization is

2i ·3 j ·5k, i, j,k ≥ 0.

As we can see from Table 2, 2025 is the first regular num-
ber after 2000 and the next one is 2048 = 211, a power
of 2. Regular numbers are more frequent within the natu-
ral numbers then all other integer sequences from Table 1
which have sparse, polynomial distribution, see (14). Dis-
tribution of regular numbers is of order (logn)3.

2.2 Triangular and tetrahedral numbers

Square root of 2025 is number 45, sum of digits of the dec-
imal system. This number is a triangular number, figure
number and first in the class of polygonal numbers count-
ing points in triangular lattices. Triangular numbers also
count combinations, Tn is the number of unordered pairs,
subsets with two elements, of the set with n+1 elements,

Tn =

(
n+1

2

)
=

n(n+1)
2

= 1+2+ · · ·+n (2)

and can be visualized by counting integer points in a trian-
gular lattice, Fig. 2.

k = 2 k = 3
Triangular Tetrahedral

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6
1 7 21 35 35 21
1 8 28 56 70 56
1 9 36 84 126 126
1 10 45 120 210 252
1 11 55 165 330 462

...
...

1 24 276 2024 10626 ...

Table 3: Pascal triangle P(n,k) =
(n

k

)
, n,k ≥ 0.

They appear in the Pascal triangle, Table 3, as the third
diagonal and tetrahedral numbers as the fourth.

Figure 2: Triangular lattice with T9 = 45 vertices.

From the triangular lattice in Fig. 2 we can see the recur-
sion of the number of points in the grid, Tn − Tn−1 = n,
with the rule of succession is adding a new line with n
points as we can see from light blue triangle correspond-
ing to T8 in Fig. 2. We can also observe hexagons in tri-
angular lattices. The number of hexagons is equal to the
number of interior points of the lattice since they are cen-
ter points of hexagons, so the number of hexagons is the
difference of the number of all points and boundary points,
Tn −3(n−1) = Tn−3.
Sums of first n triangular numbers are tetrahedral numbers
(A000292 in OEIS), and as the name suggests count points
in triangular pyramids, Fig. 3.

Ten =
n

∑
k=1

Tk =
n

∑
k=1

(
k

∑
i=1

i

)
=

(
n+2

3

)
=

n(n+1)(n+2)
6

.

(3)

Recursion for tetrahedral numbers is Ten+1 = Ten + Tn
which can be seen by adding a new horizontal layer to a
pyramidal lattice, Fig. 3.

Figure 3: Tetrahedron with Te4 = 20 points.

2.3 Square numbers

A perfect square is a number of form n2, n ∈N. For square
numbers we have the recursive formula

(n+1)2 = n2 +2n+1, (4)
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which can be seen visually when counting points in n× n
square lattice. We can divide n×n points of the lattice into
(n− 1)× (n− 1) square and 2n+ 1 points that will make
the last row and column, Fig. 4. We see that square num-
bers are polygonal numbers, used to count points within a
polygonal area. We can also interpret them through met-
rics, so that n2 is area of a square with side length n.
From the recursive formula (4) we see that we can repre-
sent n2 as sum of the first n odd numbers

n2 =
n

∑
k=1

(2n−1). (5)

Figure 4: Recursive generation of square and odd square
numbers as Pythagorean gnomons.

On the other hand, we can divide integer points in a square
area into two triangular areas, and the number of inte-
ger points satisfy Tn + Tn−1 = n2. In Fig. 5 we see
2025 = T45 +T44 = 1035+ 990 points divided in two tri-
angular parts of the square with side length 45.

Figure 5: 2025 points in a square grid divided into two
triangular areas.

There is another interesting appearance of triangular num-
bers. If we look at n×n square grid, then Tn is number of
rectangles found in it. A rectangle is defined by two hor-
izontal and two vertical lines, so number of rectangles is
equal to square of number of pairs chosen from set of n+1
lines found in the square grid by the product rule.

2.4 Square of triangular number is sum of cubes

Number properties, especially of harmonic whole numbers
or 3-smooth numbers were studied from ancient times and
the following formula for the sum of first n cubes was a re-
sult from the Pythagorean school. Nichomachus’ Theorem
states

13 +23 + · · ·+n3 = (1+2+ · · ·+n)2 (6)

and today this is special case of Faulhaber’s formula, [6]
saying that sum of p-th powers of first n numbers is a
rational polynomial in n of degree p+ 1. Coefficients of
this polynomial were first found by Jakob Bernoulli while
studing these Sumas potestaum and they are now called
Bernoulli numbers Bn,

n

∑
k=1

kp =
1

p+1

n

∑
i=0

(
p+1

i

)
Binp+1−i (7)

For p = 1 the sums are triangular numbers, for sum of
squares p = 2 we have square pyramidal numbers and for
p = 3, (6) squares of triangular numbers.
One interesting formula for Bernoulli numbers is as fol-
lows, [2]

Bn =
2n!
(2π)n

(
1
1n +

1
2n +

1
3n + . . .

)
. (8)

When we want to visualize eq. (6), we can look at cubes
as volumes of solid bodies or as number of points inside
cubes. We can do the same for planar formulas we have
seen earlier, so n2 is area of a square of side with length
n, or number of integer points in a (n− 1)× (n− 1) grid,
since division of a side of length n will yield n+ 1 point.
We can see in Fig. 5 how union of two triangles in a square
will not give the same area. Relationship of the area A of
polygonal domain with integer coordinates of vertices and
the number of integer points in the interior I and number of
points that lie on the boundary B is given by Pick’s theorem
[1]

A = I +
B
2
−1. (9)

For counting points in polyhedrons there is no simple for-
mula that connects discrete and continuous volume. This
is a wast subject of enumerative geometry known as Erhart
theory,[1]. In our case we can see this issue. For the cube,
volume a cube with one vertex at origin point of side length
n will give n3 and number of integer points is (n+1)3. But
if we instead look at the trirectangular tetrahedron inside a
cube, that contains one cube corner, then volume is n3/6.
Using eq. (6), we have that volume of union of 9 cubes
with side lengths from 1 to 9 is 2025, Fig. 6, and the vol-
ume od their tetrahedrons is 2025/6 ≈ 337.5. If we look at
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integer points in the cubes, there will be 3025 points and
in tetrahedrons we have Ten points so we have total of

1+4+10+20+35+56+84+120+165 = 495

points. Ratios of discrete and continuous volumes is
(1+ 1

n )
3 for cubes and (1+ 6

n +
11
n2 +

6
n3 )

3 for tetrahedrons,
so we see that in tetrahedral lattices integer points are
denser then in the cubic ones.

Figure 6: Nine cubes with sum of volumes equal to 2025.

2.5 Odd squares

Odd square numbers can be written in the form (2n+ 1)2

for n ≥ 0. Then 2025 is an odd square for n = 22. These
numbers are also called centered octagonal numbers be-
cause they count points lying on sides of octagons together
with the central point, Fig. 7.

(2n+1)2 = 4n2 +4n+1 = 4n(n+1)+1 = 8
n(n+1)

2
+1

(10)

Here we have the recursion (2n+1)2 = (2n−1)2 +8n so
adding 8n new points gives the next odd square, Fig. 4.
For number 2025 we have:

2025 = 8 ·253+1 = 8(22 ·23)+1 =
22

∑
k=1

8k+1. (11)

Figure 7: 2025 points in centered octagonal arrangement.

In Fig. 7 we can see the 2025 points from eq. (11). The
points are lying on 22 octagons, where k-th octagon has
a side divided into k parts, which together with the cen-
tral point gives 2025 points. Counting using symmetry,
it suffices to count the points strictly inside an angle of[
0, 2π

8 = π

4

〉
, which would be 1+2+ · · ·+22.

When we remove the central point, the number of remain-
ing points gives a tetrahedral number 2024 = 8 ·11 ·23.
Here the symmetry group is the dihedral group D4 of order
8, since the area inside the angle of

[
0, π

4

〉
can be rotated

four times for the angle π

4 and then mirrored by the hori-
zontal axes, which is the same symmetry of the Hasse di-
agram in Fig. 1, having 8 parallelograms or the symmetry
of coordinate system in space, where one octant generates
the space with four rotations and one reflection.

3 Interesting number digits properties of
2025

Number 45 is the sum of all numbers written with one
digit,

45 = 0+1+2+3+4+5+6+7+8+9.

In general, the sum of all numbers with the number of dig-
its less or equal to n (A037182 in OEIS) is

a(n) =
10n · (10n −1)

2
. (12)

The sum of all number with at most two digits is the sum
of all number less then 100 which is 4095 = 99 ·100/2.
Then 2025 is the smallest square of such a number
(A350869 in OEIS), which has interesting consequences
in linking operations on numbers (addition, multiplication)
and concatenation of digits to represent numbers.
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Namely, 2025 is a torn number, (A238237 in OEIS), when
we split it in two equal parts, add them and then square we
arrive at 2025 again,

2025 = 452 = (20+25)2. (13)

Another example of a torn number is 3025 = 552, the
next square of the triangular number T10 = 55. These
numbers are also called Kaprekar numbers [5]. We have
2025 = 20 ·10+2 ·10+5 = 2 ·102 +2 ·10+5.
There is another digit property, increase digit square pre-
serving property. Namely 2025 = 452 and increasing each
digit by 1 gives 3036 = 562. If we denote the decimal rep-
resentation of a number abcd = a ·103+b ·102+c ·10+d,
then ab− cd = 5 for 2025 and 3136. We have

n2 = 100ab+ cd = 100ab+ab+5 = 101ab+5

so the prime number 101 = 45 + 56 gives remainder 5
when dividing n2.

4 Square and other special years

Since we are now in the year 2025, we can ask how fre-
quent square years are, and the answer is given by the dis-
tribution of square numbers in natural numbers. Since the
difference of two consecutive squares is 2n+ 1, it is clear
that the gaps increase. Last square year was 442 = 1936,
so 2025 = 1936+ 2 · 44+ 1 comes 89 years later and for
the next one we will wait 91 years. Square years are cur-
rently in a once in a lifetime frequency and it is decaying.
In Table 2 we have prime factorization for year numbers
since the last regular year 2000.
We list some sequence elements neighboring 2025 for in-
teger sequences from Table 1:

• perfect squares

. . .1849,1936,n = 45 : 2025,2116,2290 . . .

• odd squares (centered octagonal numbers)

. . .1681,1849,n = 22 : 2025,2209,2401 . . .

• squares of triangular numbers

. . .784,1296,n = 9 : 2025,3025,4356 . . .

• regular numbers

. . .1944,2000,n = 109 : 2025,2048,2160 . . .

• tetrahedral numbers

. . .1330,1540,1771,n= 22 : 2024,2300,2600,2925 . . .

• centered square numbers 4n2 +4n+2

. . .1522,1682,1850,n= 22 : 2026,2210,2402,2602 . . .

Figure 8: Graphs of x2, (2x + 1)2,
(

x(x+1)
2

)2
,

x(x+1)(x+2)
6

and (2x+1)2 +1.

The odd squares are subset of squares so they are twice
less frequent. The fastest growing sequence are squares of
triangular numbers, their distribution is of order n4.
Distribution of regular numbers within natural numbers
differs from other sequences in Table 1; square numbers
have polynomial growth while regular numbers are more
dense and follow logarithmic growth. Some bounds re-
garding distribution of regular numbers can be found in
[4], here is one explicit bound

1
k! ∏

p≤y

logx
log p

≥ Ψ(x,y)≥ 1
k! ∏

p≤y

logX
log p

(14)

for x ≥ y ≥ 2 and x ≥ 4, where Ψ(x,y) is number of in-
tegers less of equal to x that are y-smooth and X = ∏

p≤y
p.

Next regular year will be 2048 but all other square or reg-
ular years will happen in the next century.
Another interesting question can be posed about consecu-
tive regularity we see in 2024−> 2025−> 2026, tetrahe-
dral number as predecessor of square of triangular number
and its successor 2026 is two times centered square number
C4,n =(2n+1)2+1 for n≥ 1, (A069894 in OEIS). It is also
worth mentioning the Pythagorean triple (45,1012,1013)
which is representation of 2025 as difference of squares,
2025 = 10132 −10122 and another one (27,36,45) which
represents 2025 as sum of squares. The perimeter of that
triangle with legs 27 and 36 and hypotenuse 45 equals 108
and division into triangle sides will yield ratio of 3 : 4 : 5,
so this is a derived triple 9(̇3,4,5). This year we even had
’Pythagorean date’ 16.9.’25 that relates to the first triple
(3,4,5).
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Now we will prove that (2024,2025) is the only pair of
consecutive numbers such that a tetrahedral number fol-
lowed by an odd square number at the same index in re-
spective sequences. The reason is that 2024 is the last tetra-
hedral number that is less then an odd square number in the
same index.

Proof of Theorem 1 From Fig. 8 we can see that around
n = 22, which is index of 2025 as odd square, 2024 as
tetrahedral and 2026 as twice the centered square number
is exactly where twice the centered square number become
greater then tetrahedral number of the same index. Inter-

section of graphs for
x(x+1)(x+2)

6
and (2x+ 1)2 + 1 in

Fig. 8 is

α+
169
3α

+7 ≈ 22.023

for α =

(
1
9

√
219129+426

)1
3 . For n = 22 we have

Te22 = 2024 and (2 ·22+1)2 = 2025, so

n(n+1)(n+2)
6

= (2n+1)2 −1

has an integer solution. All greater tetrahedral numbers
will be greater then odd squares, as we can see in Table
4, the difference of odd squares and tetrahedral numbers is
k(k+1)(22−k)

6 and is zero for k = 22. □

From Table 4 we see two other consecutive pairs of tetra-
hedral numbers 9 and 2600, with odd square successors 10
and 2601 respectively, where the indices differ. There is
another pair of consecutive numbers, tetrahedral Te5 = 35
and even square (T3)

2 = 36 which also have different in-
dices in corresponding sequences.
We end with final remark that year 2025 is numerically a
unique moment in history!

k (2k+1)2 Tek −k(k+1)(k−22)
6

0 1 0 1
1 9 1 8
2 25 4 21
3 49 10 39
4 81 20 61
...

...
...

...
21 1849 1771 78
22 2025 2024 1
23 2209 2300 -91
24 2401 2600 -199
25 2601 2925 -324
26 2809 3276 -467

Table 4: Odd squares, tetrahedral numbers and their dif-
ference.
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Projective Parallelians and Related Porisms

ABSTRACT

We give a projective generalization of the construction
of parallelians and the thus defined conics. To any prop-
erly chosen point P and line g in the plane of a triangle
∆ = ABC, we construct six points that always lie on a conic
P , the parallelian conic P of the pivot P with respect to
∆. Further, we find the parallelian tangent conic T , the
parallelian inconic I , and two further conics D and J that
are related in a natural way with ∆ and P. Any pair out
of these conics gives rise to a certain porism and even a
chain of porisms by means of polarization. We study the
regularity and singularity as well as the relative position of
these conics with respect to the line g depending on the
choice of P and g. We also give a detailed study of the sets
of possible pivot points changing the triangle or hexagon
porisms of any pair of conics into such with one-parameter
families of quadrangles and pentagons.

Key words: parallelian, parallelian conic, porism, triangle
cubic, triangle center, algebraic transformation

MSC2020: 51M15, 51M04, 14E05

Projektivne paralelijane i s njima povezane
porizme

SAŽETAK

Dajemo projektivno poopćenje konstrukcije paralelijana
i tako definiranih konika. Za bilo koju dobro odabranu
točku P i pravac g u ravnini trokuta ∆ = ABC konstruiramo
šest točaka koje uvijek leže na jednoj konici P , paraleli-
janskoj konici P točke P s obzirom na trokut ∆. Nadalje,
nalazimo paralelijansku tangentnu koniku T , paralelijan-
sku upisanu koniku I i dvije daljnje konike D i J koje su
prirodno povezane s ∆ i P. Bilo koji par ovih konika rezultira
odre�enom porizmom, pa čak i lancem porizmi pomoću
polarizacije. Proučavamo regularnost i singularnost kao
i posebne položaje ovih konika prema pravcu g ovisno o
izboru polazne točke P i pravca g. Tako�er, dajemo de-
taljno istraživanje skupova mogućih polaznih točaka koje
mijenjaju trokutaste ili šesterokutne porizme bilo kojeg
para konika u porizme s jednoparametarskim familijama
četverokuta i peterokuta.

Ključne riječi: paralelijana, paralelijanska konika, porizma,
kubika trokuta, sredǐste trokuta, algebarska transformacija

1 Introduction

In the present paper, we shall construct several chains of
porisms that are attached to a triangle ∆ = ABC, a point
P, and a line g in a natural way. The initial steps of the
construction can be done in a purely synthetic way and the
same holds true for the proofs of the existence of the con-
ics involved. The construction (synthetic or algebraic) are
exclusively done in the framework of projective geometry.
At a later stage, we have to deploy the analytical approach.
This allows us to deduce some algebraic properties of the
porisms and some conditions on the choice of the pivot
point P.

1.1 Prior and related work

In recent years, porisms were studied mainly within the
framework of Euclidean geometry, focusing on invariants
[14, 15, 25], traces [6, 9, 11, 16, 21, 23], closure condi-
tions [7, 8], and relations to billards and Poncelet grids
[10, 26, 27, 28, 29]. Nevertheless, results concerning the
projective nature of porisms are also given in [24, 29]. An
excellent overview on the history and various approaches
towards the classical forms of porisms can be found in
[3, 5].
Occasionally, the article [1] disclosed the relations between
Euclidean parallelian conics and the related proisms. As we
shall see, all the results from [1] allow an explanation from
the superordinate standpoint of projective geometry as is
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the case with some results from the Euclidean geometry of
the triangle (cf. [20]).

1.2 Contributions of the present paper

In Section 2, we show the existence of the projectivized
parallelian conic P and the parallelian inconic I . This can
be done in a purely synthetic way. Further, the first porisms
are described and extended to the chains of porisms that
are obtained by means of polarization or by tracing the
(discrete) exponential pencil of conics spanned by I and P .

Section 3 is to show that the parallelian conic P is enclosed
by two triangles ∆U and ∆V whose six vertices lie on a
conic D . This gives rise to a triangle porism between P and
D, and consequently, this gives rise to a chain of triangle
porisms. Moreover, the six vertices of ∆U and ∆V form
a hexagon with an inconic J (provided a certain ordering
of points). Thus, we also find a further hexagon porism
independent of the hexagon porisms discovered so far.

Section 4 mentions the relations to already existing and
Euclidean cases.

Finally, in Section 5, we discuss all possible pairings of pro-
jectivized parallelian conics and the thus defined porisms
(and chains of porisms). In particular, we derive conditions
on the pivot point P such that certain types of porisms can
be found in between the chosen pairs of conics. We shall
not discuss whether these porisms do really exist between
regular conics or not.

2 Projective parallelians

2.1 The first porism

In the projective plane, we choose a triangle ∆ = ABC and
called it henceforth the base triangle. The union of the
three side lines [A,B], [B,C], [C,A] shall be denoted by ∆⋆.
Further a point P which is not incident with any line of
∆⋆ is chosen and called the pivot point. Then, we assume
that g /∈ ∆⋆ is a line neither incident with a vertex of ∆ nor
passing through P.

We shall label the three intersection points of ∆⋆’s lines
with g with C⋆ := g∩ [A,B] (cyclic). Now, we call the lines
[P,A⋆], [P,B⋆], and [P,C⋆] the g-parallels of [B,C], [C,A],
and [A,B] through P. The projections of P from the points
A⋆, B⋆, C⋆ onto the non-incident sides of ∆ are defined as

P1 := [P,C⋆]∩ [B,C],P2 := [P,C⋆]∩ [C,A],
P3 := [P,A⋆]∩ [C,A],P4 := [P,A⋆]∩ [A,B],
P5 := [P,B⋆]∩ [A,B],P6 := [P,B⋆]∩ [B,C].

(1)

The points P1, . . . ,P6 are the projectivized versions of the
elementary geometric parallelians (cf. [18]), and therefore,
we call them the g-parallelians of P with respect to ∆.

Figure 1: The conic P on the six g-parallelians.

With these preparations, it is rather elementary to show the
following:

Theorem 1 The g-parallelians P1, . . . , P6 are located on a
single conic P , the parallelian conic of P.

Proof. According to PASCAL’s theorem (cf. [12, p. 220]),
six points P1, . . . , P6 lie on a single conic if, and only if, the
three point U := [P1,P2]∩ [P4,P5], V := [P2,P3]∩ [P5,P6],
W := [P3,P4] ∩ [P6,P1] are collinear. By construction,
U =C⋆, V = B⋆, and W = A⋆, which are collinear (located
on g). □

Fig. 1 illustrates the contents of Thm. 1.

Figure 2: The inconic I that comes along with P .

Further, we can confirm the existence of an inscribed conic:

Theorem 2 The hexagon H1 := P2P3P6P1P4P5 is tangent
to a single conic I , the parallelian inconic of P.

Proof. We define l1 :=[P2,P3], l2 :=[P3,P6], l3 :=[P6,P1],
l4 := [P1,P4], l5 := [P4,P5], and l6 := [P5,P2], apply BRI-
ANCHON’s theorem (see [12, p. 222]), and find [l1, l2]∩
[l4, l5] = [A⋆,P], [l2, l3]∩ [l5, l6] = [C⋆,P], [l3, l4]∩ [l6, l1] =
[B⋆,P]. The latter three lines are incident with P, i.e., P
equals the Brianchon point of the six lines l1, . . . , l6. There-
fore, l1, . . . , l6 are tangents of a single conic. □
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The results of Thms. 1 and 2 give rise to a porism:

Theorem 3 The pair (P ,I ) allows for a poristic family of
hexagons with vertices on P and edges tangent to I .

Proof. The existence of a single hexagon interscribed be-
tween P and I is necessary and sufficient in order to guaran-
tee the existence of a one-parameter family of interscribed
hexagons (cf. [3, 5]). □

2.2 The first chain of porisms

For what follows, we shall describe points and lines by
homogeneous coordinates. It appears useful to assume that
the vertices of ∆ are the base points of the projective frame.
Hence, A = 1 : 0 : 0, B = 0 : 1 : 0, C = 0 : 0 : 1. The pivot
point shall be given by P = ξ : η : ζ ̸= 0 : 0 : 0 (and, since
P is not contained in any line of ∆⋆, we have ξηζ ̸= 0).
The line g can be represented by its homogeneous equation
as lx+my+ nz = 0, or equivalently, by its homogeneous
coordinates l : m : n ̸= 0 : 0 : 0 which also satisfy lmn ̸= 0,
since g shall not be incident with any vertex of ∆. Further,
we have lξ+mη+nζ ̸= 0, for P /∈ g.

It is a matter of elementary linear algebra to determine the
equations (up to non-zero multiples) of P and I (cf. [12, p.
254]). So, we find

P :
∑

cyclic
lηζ(mη+nζ)x2 −ξ(2ηζmn+ζξnl +ξηlm+ l2ξ2)yz = 0,

I :
∑

cyclic
l2(mη+nζ)2x2 −2mn(lξ+mη)(lξ+nζ)yz = 0.

(2)

Here, in the following, ∑
cyclic

f (l,m,n,ξ,η,ζ,x,y,z) means

the cyclic sum of f (. . .), i.e.,

∑
cyclic

f (l,m,n,ξ,η,ζ,x,y,z) := f (l,m,n,ξ,η,ζ,x,y,z)

+ f (m,n, l,η,ζ,ξ,y,z,x)+ f (n, l,m,ζ,ξ,η,z,x,y).

The variables in the argument (function) are shifted twice
cyclically and the three functions are summed up.

The conics I and P span a pencil of the third kind. The
common pole equals the pivot point P, the common polar
line p has the homogeneous coordinates

ηζ(mη+nζ) : ζξ(nζ+ lξ) : ξη(lξ+mη). (3)

It is easily verified that the three harmonic conjugates of
P with respect to the pairs (P1,P2), (P3,P4), and (P5,P6)
are collinear and line up on p. This fact yields a linear
construction of p as shown in Fig. 3.

Figure 3: Linear construction of the common polar p of P
and I : C⋆⋆ is the harmonic conjugate of P with respect to
the pair (P1,P2) and, in like manner, A⋆⋆ is the harmonic
conjugate of P with respect to (P3,P4).

Figure 4: The conic P touches g if P is chosen on the inconic
S .

Fig. 4 demonstrates that a properly chosen pivot point P
leads to a parallelian conic P that touches g. The equations
(2) of the parallelian conic and the parallelian inconic allow
us to state:

Theorem 4
1. The g-parallelian conic P touches the line g if, and only
if, the pivot point P is chosen on the g-Steiner inconic S of
∆ with the equation

S : ∑
cyclic

l2x2 −2mnyz = 0. (4)

P is singular if P is chosen on the g-Steiner circumconic

S ′ : ∑
cyclic

lmxy = 0 (5)
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and the ‘centers’ of the singular conics fulfill the g-Steiner
Deltoid

Q : ∑
cyclic

l2m2 x2y2 −2l2mnx2yz = 0. (6)

2. The g-parallelian inconic I cannot touch g for any suit-
able choice of P, i.e., P may not lie on the sides of the g-
anticomplementary triangle ∆⋆

a = {[A,A⋆], [B,B⋆], [C,C⋆]}.

Proof. 1. We compute the resultant of P ’s equation (2) and
g’s equation with respect to any of the variables x, y, or z.
The determinant of the coefficient matrix of the remaining
quadratic form is the product of the fourth power of g’s
equation and the quadratic form

∑
cyclic

l2
ξ

2 −2mnηζ

which (set equal to zero) yields the equation of S after
replacing ξ, η, ζ by x, y, z.

The regularity of P is equivalent to the regularity of its co-
efficient matrix P. Hence, P is regular if the homogeneous
coordinates ξ : η : ζ of P do not satisfy

ξηζ︸︷︷︸
=∆⋆

·(lmξη+mnηζ+nl ζξ)︸ ︷︷ ︸
=S ′

·(lξ+mη+nζ)4︸ ︷︷ ︸
=g

= 0.

Since admissible positions of P are off ∆⋆ and off g, P
may only be chosen on S ′. With the parametrization of
S ′ = n(α l +βm)α : n(α l +βm)β : −lmαβ (α : β ̸= 0 : 0)
inserted of ξ : η : ζ into the first equation of (2), we are able
to factor P ’s equation and find

Psingular :(
β2 m2(α l +βm)x−α2β lm2y−αn(α l +βm)2z

)
·(

αβ2l2mx−α2 l2(α l +βm)y+βn(α l +βm)2z
)
= 0.

The latter equation describes a pair of lines (as long as
l : m : n ̸= 0 : 0 : 0) that always intersect in

α
2 ln(α l +βm)2 : β

2 mn(α l +βm)2 : α
2
β

2 l2m2

which parametrizes the quartic S ′ given by (6).

2. In the same way, we proceed with I and find

(nζ+ lξ)(nζ+mη)(mη+ lξ)︸ ︷︷ ︸
=∆⋆

a

(lξ+mη+nζ)︸ ︷︷ ︸
=g

= 0

relating the coordinates of the pivot point P such that it
yields a parallelian inconic I touching g. If we replace ξ, η,
ζ with x, y, z, the first three factors are the equations of the
sides of ∆’s g-anticomplementary triangle ∆⋆

a and the fourth
factor yields the equation of the line g. □

If g is the ideal line of the projectively closed Euclidean
plane, the inconic S (4) described in Thm. 4 becomes the
Steiner inellipse and the corresponding parallelian conics
are then parabolas, cf. [1]. Therefore, S can be considered
the g-Steiner inconic.

Here, we shall also remark that the g-Steiner deltoid Q
is the image of g-Yff inconic ∑

cyclic
x2 − 2yz = 0 under the

g-isogonal transformation x → mnyz, y → nl zx, z → lmxy.
Fig. 5 shows the g-Steiner circumconic S ′ and its g-isogonal
image Q .

Figure 5: The g-anticomplementary triangle ∆a = A′′B′′C′′,
the g-Steiner circumconic S ′, and its g-isogonal image Q
(the g-Steiner deltoid).

The intersections of subsequent tangents ti to P at points Pi

define (among others) the six points

T23 := t2 ∩ t3, T36 := t3 ∩ t6, T61 := t6 ∩ t1,
T14 := t1 ∩ t4, T45 := t4 ∩ t5, T56 := t5 ∩ t6,

(7)

which lie on a single conic T with the equation

T : ∑
cyclic

lmn(mη+nζ)(3lξ+mη+nζ)η2ζ2x2 =

∑
cyclic

lξ2

(
(2mnηζ)2+

(
∑
cyclic

lmξη((lξ+mη)2 +6mnηζ)
))

yz.

(8)

We call T the g-parallelian tangent conic of P. It is obvious
that T is the polar image of I ⋆ (i.e., the dual of the conic I
or the set of tangents of I ).
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2.3 An elliptic sextic

In a way similar to the proof of Thm. 4, we can show that
T is tangent to g if the pivot point P is chosen on the sextic

ST : ∑
cyclic

l2m2x2y2(lx−my)2 +2l3mnx3yz(lx−my−nz) =

6l2m2n2x2y2z2. (9)

An example of such a sextic ST is displayed in Fig. 6. The
sextic is shown together with a certain pivot point P, the
corresponding parallelian conic P , and the parallelian tan-
gent conic T which touches g since the pivot P is chosen
on the sextic ST in Fig. 7.

Figure 6: The sextic ST as the locus of pivot points P whose
g-parallelian tangent conic T touches g.

Figure 7: The g-parallelian tangent conic T touches g,
since it corresponds to a pivot point P ∈ ST .

The curve ST has three ordinary double points at the ver-
tices of ∆. Further, it carries three tacnodes at the ver-
tices DA, DB, DC of the Cevian triangle of the triangle
pole of g with respect to ∆. At any of these tacnodes,
two linear branches emerge. For one of them, the node
is a flat point (i.e., it has a local expansion of the form

(t, t4+O(t5)), cf. [2, 4], only for the flat point branch). The
lines [A,A⋆] (cyclic) are the tangents at the flat points A
(cyclic). ST ’s tangents to the linear branches at the ordinary
double points DC ∈ [A,B] (cyclic) pass through the points
A⋆⋆ := [A,DA]∩ g and B⋆⋆ := [B,DB]∩ g (cyclic). More-
over, any pair of ordinary double points on ST is collinear
with a star point, i.e., DA, DB, C⋆ (cyclic) are collinear (see
Fig. 6).

2.4 The iteration of the porism

If I, P, and T denote the coefficient matrices of the conics
I , P , and T , we first note that they are regular, provided
the proper choice of the pivot point P, i.e., P not on any
side of ∆ or ∆⋆

a and also not on the g-Steiner circumconic
S ′. Further, we can verify the following matrix identity

PI−1P = λT

with

λ =−
∑

cyclic
lξ

4lmn ∏
cyclic

lξ+mη

which depends on P and g solely. (The cyclic product is
explained in nearly the same way as the cyclic sum.) This
expresses what is clear from the construction: The conic T
is the polar image of I with respect to P . Moreover, from
I and P , we can construct the “next” circumscribed conic,
say U, by repeating the polarization, or in more simple
terms, by once again intersecting neighboring tangents of
T in order to obtain a further sextuple of conconic points.
Hence, we can state:

Theorem 5 The parallelian inconic I and the parallelian
conic P span an exponential pencil of conics in which any
pair of subsequent conics allows for a poristic family of
hexagons.

Proof. We have already found that λT = PI−1P holds (with
some λ depending on P and g). According to [13], the coef-
ficient matrices M of the conics in the exponential pencil
spanned by I and P are obtained from I and P as

M(k) = P(I−1P)k−1, k ∈ Z.

For any integer k, M(k) and M(k+1) are the coefficient ma-
trices of two conics that allow for the same kind of porism
as I and P or P and T do:

We use the Cayley criterion [12, p. 432, Thm. 9.5.4] in order
to show that the type of porism is preserved when tracing
the discrete exponential pencil. If the coefficients of the
power series

√
det(P · t + I) = a0 +a1t +a2t2 +a3t3 + . . .

fulfill a2 = 0, I and P define a poristic triangle family;
a3 = 0 guarantees for a poristic family of interscribed quad-

rangles. If det
(

a2 a3
a3 a4

)
= 0 or det

(
a3 a4
a4 a5

)
= 0, then
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the conics I and P allow for poristic families of pentagons
or hexagons. In any case, I serves as the inconic (touched
by the sides of the polygons) and P is the circumconic
(carrying the vertices of the polygons).

Now, we show that these conditions are valid for any pair
of subsequent conics in the exponential pencil spanned by
I and P . For that purpose, we write down the discriminant
of the Cayley function for M(k+1) and M(k) and find

det(M(k+1) · t +M(k)) =

det(P(I−1P)k · t +P(I−1P)k−1) =

det(P · t +P(I−1P)−1)det
(
(I−1P)k

)
=

det(P · t + I)det
(
(I−1P)k

)
,

which shows that the above written power series is only mul-
tiplied by a constant factor det

(
(I−1P)k

)
. The same is true

for the coefficients, and since the determinants (used in the
Cayley criterion) for the porisms are homogeneous in the
power series’ coefficients, they are vanishing independent
of the choice of k. □

Figure 8: The g-parallelian conic P and the g-parallelian
inconic I constitute an exponential pencil of conics and set
the basis for an infinite chain of nested poristic families of
hexagons.

Fig. 8 shows some conics out of the chain in the discrete
exponential pencil spanned by I and P . The conic U is the
next in line: The coefficient matrix of its equation equals
U = P(I−1P)2 = TI−1P, i.e., U⋆ (U considered as its set
of tangents) is the polar image of P with regard to T . The
interscribed hexagons are also displayed. The order of the
base conics I and P does not matter. Interchanging the
matrices I and P in the usual parametrization of the expo-
nential pencil as given in [13] means traversing the pencil
in the opposite direction.

3 Tangent triangles

3.1 The triangle porism

There are two triples of tangents of the parallelian conic P
that form two triangles ∆U := U1U2U3 and ∆V := V1V2V3

with a common circumconic D . The vertices of the triangles
are defined by

U1 := t3 ∩ t5, U2 := t5 ∩ t1, U3 := t1 ∩ t3,
V1 := t2 ∩ t4, V2 := t4 ∩ t6, V3 := t6 ∩ t2.

(10)

Note that the triangle U1U2U3 and V2V3V1 (note the different
orientation) are perspective to P, while the corresponding
trilaterals are perspective to p given by (3).

The common circumconic D of the triangles ∆U and ∆V
can be described by the homogeneous equation

D :

∑
cyclic

l2mnξη2ζ2(mη+nζ)x2 + lξ2
(

2l2ξ2(m2η2 +n2ζ2)+

∑
cyclic

lmξη(l2ξ2 +m2η2)+4l2mnξ2ηζ

)
yz = 0.

(11)

Now, it is near to formulate the following result:

Theorem 6 The pair (P ,D) of conics allows for a triangle
porism.

Proof. The existence of the triangle porism is clear by the
same reasoning as used in the proof of Thm. 3. □

We can deduce some more porisms out of the previously
described one:

Theorem 7 The pair of conics (P ,D) allows for a hexagon
porism, and 3n-gon porisms with n ∈ N\{0}.

Proof. Like in the proof of Thm. 5, we use the Cayley crite-
rion [12, p. 432, Thm. 9.5.4] in order to show the existence
of porism with 3n-gons inconic P and circumconic D . For
that purpose, we extract the coefficient matrices D and P
from the equations of D and P , and expand the function√

det(t ·D+P) in a power series S = a0 +a1t +a2t2 + . . ..
The criterion for the existence of a triangle porism is a2 = 0
(which is clearly fulfilled). According to CAYLEY, the
criteria for the existence of poristic families of hexagons,
nonagons, . . . equal

det
(

a3 a4
a4 a5

)
= 0, det


a2 a3 a4 a5
a3 a4 a5 a6
a4 a5 a6 a7
a5 a6 a7 a8

= 0, . . .

which also turns out to be satisfied, as do the further criteria.
□

Poristic families of quadrangles or other polygons with a
vertex number that is not a multiple of 3 interscribed be-
tween D and P cannot occur for admissible choices of P
(see also Tab. 2).
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Figure 9: The conic D through the vertices of the tangent
triangles ∆U and ∆V of P and the inconic J of the hexagon
U1V1U2V2U3V3 both give rise to two independent families
of porisms.

Here, we shall state explicitly that (in general) the existence
of a poristic family of triangles does not necessarily imply
the existence of a poristic family of hexagons, and vice
versa.

The union of the two triangles ∆U and ∆V can be viewed
as a degenerate hexagon. In that respect, P and D can
already serve as a base of the pencil of conics allowing
for a poristic family of hexagons. Indeed, the hexagon
H2 := U1V1U2V2U3V3 (alternately chosen vertices of ∆U
and ∆V ) is tangent to a single conic:

Theorem 8 The hexagon H2 has an inconic J with the
trilinear equation

J : ∑
cyclic

lξ2

x
= 0 (12)

which is at the same time a circumconic of the base triangle
∆.

Proof. We use the trilinear representation (10) of the ver-
tices of ∆U and ∆V in order to compute the trilinear coor-
dinates of the sides si of the hexagon. In order to find an
equation of the inconic J of H2, we compute the kernel of
the 6×6 matrix whose columns (or rows) are the Veronese
images of the trilinear coordinates of the six lines si (see
[12, p. 241]). This kernel is one-dimensional (provided that
the six lines are tangent to single conic) and a base vector
of the kernel yields the coefficients of the equation

J ⋆ : ∑
cyclic

l2
ξ

4x2 −2mnη
2
ζ

2yz = 0

of a line conic (quadratic set of lines) containing the six
sides si of H2. The corresponding point conic J is the
dual to J ⋆, and thus, the respective matrices are related by

J = J⋆−1 (cf. [12, p. 273]). Hence, J is the inconic given in
(12) and it is clearly seen that the vertices of ∆ are contained
in J . □

We can also show:

Theorem 9 The pair of conics (J ,I ) allows for poristic
families of 3n-gons.

Proof. We use the Cayley criterion (cf. [12, p. 432]) in
order to verify the contents of this theorem. □

With the help of the Cayley criterion (cf. [12, p. 432]), we
can show that the pair (D,J ) allows for a poristic family of
hexagons and even dodecagons.

The conics D and I span a pencil of the third kind. The
pivot point P equals the common pole and the common
polar line is already found as the common polar line of I
and P with the trilinear representation (3).

As a consequence of Thms. 6, 7, 8, and 9 we can state a
result on infinitely many poristic families of triangles and
hexagons:

Theorem 10
1. The pair of conics (D,P ) spans an exponential pencil
of conics and any pair of subsequent conics in the pencil
allows for a poristic family of 3n-gons.
2. The pair of conics (D,J ) spans an exponential pencil
of conics and any pair of subsequent conics in the pencil
allows for a poristic family of hexagons.
3. The pair of conics (J ,I ) spans an exponential pencil
of conics and any pair of subsequent conics in the pencil
allows for a poristic family of 3n-gons.

4 Special assumptions and cases

In this section, we shall discuss the previously mentioned
porisms in case of special choices of P and/or g. It is clear
that the choice g = a : b : c leads to the elementary geomet-
ric parallelians and the related porisms which are studied in
detail in [1]. Another even more special and in some sense
simpler case is obtained if P = 1 : 1 : 1 and g = 1 : 1 : 1. In
terms of elementary triangle geometry, P is the incenter and
g the anti-orthic axis. Moreover, g is the triangle polar of P
(with respect to the base triangle ∆).

4.1 g antiorthic axis, P = X1

The choice of P = 1 : 1 : 1 = g yields

J : ∑
cyclic

xy = 0 and I : ∑
cyclic

x2 −2yz = 0. (13)

Conics with equations of that particular form belong to the
family of Yff conics (cf. [19, 22]). The porism between I
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and J are already studied even for various finite projective
planes (see [22]) and turned out to be Universal Porisms in
the sense of N. WILDBERGER [30]. In any case, I and J
as given in (13) admit 3n-gon porisms according to Thm. 9.
The conics P , T , and D are not contained in the exponential
pencil spanned by J and I .

4.2 g is the triangle polar line of P with respect to ∆

P is given by the homogeneous coordinates ξ : η : ζ ̸=
0 : 0 : 0, ξηζ ̸= 0, and P not on any side of the g-
anticomplementary triangle, then P’s triangle polar line
is given by ηζ : ζξ : ξη. The latter together with P com-
prises the pair of common pole and polar line of any two
out of the five g-parallelian conics we have seen so far. This
special assumption does not change the porisms that we
have discovered in the previous sections. The Cayley cri-
terion makes clear that no porisms other than such with
triangle and hexagon families will occur.

The same holds true if we choose P = ξ : η : ζ = g.

4.3 g ideal, pivot P a triangle center

If the line g is chosen as the ideal line of the plane of ∆, i.e.,
g = a : b : c, then we deal with the case of Euclidean paral-
lelians as described in [1]. However, in this case the centers
of the conics P , T , I , J , and D coincide with known tri-
angle centers if we choose a triangle center for the pivot
point. We do not aim at a complete list, some centers can be
read off from Tab. 1. The numbers Xi given to the centers
correspond to the list of triangle centers in [17, 18].

P C(P ) C(T ) C(I ) C(J ) C(D)
X1 X1001 ? X1125 X3 ?
X2 X2 X2 X2 X2 X2
X3 X182 ? X140 X1147 ?
X4 X10002 ? X5 X6523 ?
X5 X10003 ? X3628 X6663 ?
X6 X182 ? X3589 X206 ?
X7 X10004 ? X142 X17113 ?
X8 X10005 ? X10 X6552 ?
X9 X1001 ? X6666 X6600 ?
X10 X3842 ? X3634 X4075 ?
X11 X1006 ? X6667 X64440 ?
X12 ? ? X6668 ? ?
X19 ? ? X40530 X15259 ?
X20 X47381 ? X3 ? ?

Table 1: The centers of the Euclidean parallelian conics P ,
T , I , J , and D depending on certain choices of the pivot
point P as a triangle center. The line g equals the ideal
line ω = a : b : c in all cases and the numbers of the centers
equal those in [17, 18].

The question marks indicate yet unnamed triangle centers
serving as centers of various g-parallelian conics.

5 Porisms of arbitrary types between
different pairings of conics

In the following, we shall derive the conditions on the pivot
point P such that poristic families of triangles, quadrangles,
pentagons, and hexagons occur between any pair of conics
out of the five conics P , T , I , D, and J . It turns out that
these conditions are certain algebraic loci in the plane of
∆. In the majority of the cases, these loci are elliptic cubics
and elliptic sextics. in some cases, the degrees of the loci
are even higher, and then, we simply write C d for a degree
d curve.

In Table 2, we list the sets of possible pivot points for cer-
tain types of porisms. Some of these set occur frequently:
We define P2⋆ = P2 \{∆⋆,∆⋆

a}. The cubic curves that show
up regularly belong to a certain class of (triangle) cubics.
Their equations are of similar shapes and depend on two
(homogeneous) parameters:

C 3
α,β = α

(
∑

cyclic
lm(lx+my)xy

)
+β lmnxyz = 0,

α : β ̸= 0 : 0.

We note that in this linear one-parameter family of cu-
bics we find three degenerate curves. These are C 3

0,1 = ∆⋆,
C 3

1,2 = ∆⋆
a, and C 3

1,3 = S ′∩g. The family also contains the
rational cubic C1,−6 with an isolated node at l−1 : m−1 : n−1

with the complex conjugate tangents

lx+ εmy+ ε
2nz = 0 and lx+ ε

2my+ εnz = 0,

where ε is a complex (not real) cube root of 1.

Figure 10: Two examples of cubics C3, C4 housing pivot
points for parallelian conics allowing for triangle and quad-
rangle porisms between J and P .
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Fig. 10 shows two of the cubics on which a pivot point P
is to be chosen such that a triangle or quadrangle porism
between two particular conics comes into being.

The loci of pivot points possibly allowing for triangle, quad-
rangle, pentagon, and hexagon porisms are in some cases
sextic curves of the same type as the curve (9) appearing
in Section 2.3. These curves form a linear four-parameter

family with the equations

C 6
α,β,γ,δ=α

(
∑

cyclic
l2m2(l2x2+m2y2)x2y2

)

+β

(
∑

cyclic
l4mnx4yz

)
+γ

(
∑

cyclic
l3mn(my+nz)x3yz

)
+δl2m2n2 x2y2z2=0, α :β :γ :δ ̸= 0:0 :0 :0.

triangles quadrangles pentagons hexagons
(T ,P ) /0 /0 /0 P2⋆

(P ,T ) C 12 C 3
1,0, C 3

1,0, C 12 C 36 C 6
1,2,10,30,

C 6
1,2,2,−2, 2 C 12

(P ,I ) /0 /0 /0 P 2⋆

(I ,P ) C 12 C 3
1,1, C 3

1,4, C 12 C 36 C 6
1,2,2,2,

C 6
1,2,2,10, 3 C 12

(D,P ) P 2⋆ /0 /0 P 2⋆

(P ,D) C 3
1,1, C 3

1,4, C 12, 2 C 9, C 18 C 3
1,0, C 3

1,4,
C 6

1,2,−2,,−10 C 6
1,2,2,−2 C 6

1,2,−2,−10,
C 12, C 24

(P ,J ) C 6
1,2,−4,−5 C 3

1,−1, C 18 C 3
1,−5,

C 6
1,2,−2,−7 C 6

1,2,−4,−5, C 12

(J ,P ) C 3
4,3 C 3

10,21 C 9 C 3
4,3, C 3

16,39,
C 6

64,128,692.1257

(T ,I ) C 3
1,4 C 3

3,14 C 3
1,5, C 6

1,2,13,32 C 3
1,4, C 3

1,6, C 9

(I ,T ) C 3
1,0, C 3

1,4, C 12, C 12, C 24 2 C 9, C 18, ?
C 6

1,2,14,30 C 36

(T ,D) C 6
1,2,−4,−5 C 3

1,−1, C 18 C 3
1−54,

C 6
1,2,−2,−7 C 6

1,2,−4,−5, C 12

(D,T ) C 3
4,3 C 3

10,21 C 9 C 3
4,3, C 3

16,39,
C 6

64,128,692,1257

(T ,J ) /0 C 3
1,1, C 3

1,−7 C 3
1,−1, C 3

1,5, C 3
1,−3, C 9

C 6
1,2,−2,−7

(J ,T ) C 3
1,0, C 3

5,12, C 6
1,2,−6,−18, C 9, C 18 C 3

1,0, C 3
5,12,

C 6
3,6,64,66 C 12 C 3

3,6,64,66,
C 12, C 24

(I ,D) C 24 C 12, C 24 C 96 ?
(D,I ) /0 C 3

1,4 C 6
4,8,35,70 C 6

1,2,13,32

(J ,I ) P2⋆ /0 /0 P2⋆

(I ,J ) C 3
1,0, C 3

1,4, C 3
1,±

√
8
, 2 C 9, C 18 C 3

1,0, C 3
1,4,

C 6
1,2,−2,−10 C 6

1,2,±
√

8,±
√

8
C 6

1,2,−2,−10

C 12, C 24

(D,J ) /0 /0 /0 P2⋆

(J ,D) C 12 C 3
1,0, C 3

1,4, C 12 C 36 C 6
1,2,2,−2,

C 6
1,2,10,30,

3 C 12

Table 2: The porisms and chains of porism between various pairs of g-parallelian conics.
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The sextic curves of this type that occur as loci of pivot
points P have six double points and are of genus 1. This
is not the case for arbitrary choices of α : β : γ : δ. Three
of the six double points are ordinary nodes, the remaining
three are tacnodes. The latter carry a flat point on one of
the linear branches at the node. For details on tangents, see
Sec. 2.3.
The order of the conics in the pairs (A ,B) matters: CAY-
LEY’s criterion [12, p. 432, Thm. 9.5.4] uses the coeffi-
cients of the power series of

√
det(t ·A+B) and it is easily

verified that det(t ·B+A)=det(BA−1 ·AB−1(t ·B+A))=
det(BA−1) · det(t ·A+AB−1A) ̸= det(t ·A+B). The first
conic, here A , is assumed to be the ‘circumconic’. In many
cases, this is also justified by the fact that the circumconic
contains six points obtained as the intersection of certain
tangents of the ‘inconic’. This might be of importance in

finite geometries or in geometries over algebraically non-
closed fields.

6 Conclusion and final remarks

The porisms constructed in the previous sections are objects
of projective geometry. Their embeddings in metric (Eu-
clidean or non-Euclidean) geometries can be studied from
the projective point of view by prescribing an elliptic or
a hyperbolic involution on g. This yields the cases of Eu-
clidean and pseudo-Euclidean parallelians and the related
conics. The counterparts in elliptic and hyperbolic geome-
try are not that near. The algebraic curves given in Tab. 2
are not studied in detail and it is questionable whether these
pivot loci allow for an investigation of the corresponding
porisms. The rather high algebraic degrees may not be
helpful.
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