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ABSTRACT

We give a projective generalization of the construction
of parallelians and the thus defined conics. To any prop-
erly chosen point P and line g in the plane of a triangle
∆ = ABC, we construct six points that always lie on a conic
P , the parallelian conic P of the pivot P with respect to
∆. Further, we find the parallelian tangent conic T , the
parallelian inconic I , and two further conics D and J that
are related in a natural way with ∆ and P. Any pair out
of these conics gives rise to a certain porism and even a
chain of porisms by means of polarization. We study the
regularity and singularity as well as the relative position of
these conics with respect to the line g depending on the
choice of P and g. We also give a detailed study of the sets
of possible pivot points changing the triangle or hexagon
porisms of any pair of conics into such with one-parameter
families of quadrangles and pentagons.

Key words: parallelian, parallelian conic, porism, triangle
cubic, triangle center, algebraic transformation
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Projektivne paralelijane i s njima povezane
porizme

SAŽETAK

Dajemo projektivno poopćenje konstrukcije paralelijana
i tako definiranih konika. Za bilo koju dobro odabranu
točku P i pravac g u ravnini trokuta ∆ = ABC konstruiramo
šest točaka koje uvijek leže na jednoj konici P , paraleli-
janskoj konici P točke P s obzirom na trokut ∆. Nadalje,
nalazimo paralelijansku tangentnu koniku T , paralelijan-
sku upisanu koniku I i dvije daljnje konike D i J koje su
prirodno povezane s ∆ i P. Bilo koji par ovih konika rezultira
odre�enom porizmom, pa čak i lancem porizmi pomoću
polarizacije. Proučavamo regularnost i singularnost kao
i posebne položaje ovih konika prema pravcu g ovisno o
izboru polazne točke P i pravca g. Tako�er, dajemo de-
taljno istraživanje skupova mogućih polaznih točaka koje
mijenjaju trokutaste ili šesterokutne porizme bilo kojeg
para konika u porizme s jednoparametarskim familijama
četverokuta i peterokuta.

Ključne riječi: paralelijana, paralelijanska konika, porizma,
kubika trokuta, sredǐste trokuta, algebarska transformacija

1 Introduction

In the present paper, we shall construct several chains of
porisms that are attached to a triangle ∆ = ABC, a point
P, and a line g in a natural way. The initial steps of the
construction can be done in a purely synthetic way and the
same holds true for the proofs of the existence of the con-
ics involved. The construction (synthetic or algebraic) are
exclusively done in the framework of projective geometry.
At a later stage, we have to deploy the analytical approach.
This allows us to deduce some algebraic properties of the
porisms and some conditions on the choice of the pivot
point P.

1.1 Prior and related work

In recent years, porisms were studied mainly within the
framework of Euclidean geometry, focusing on invariants
[14, 15, 25], traces [6, 9, 11, 16, 21, 23], closure condi-
tions [7, 8], and relations to billards and Poncelet grids
[10, 26, 27, 28, 29]. Nevertheless, results concerning the
projective nature of porisms are also given in [24, 29]. An
excellent overview on the history and various approaches
towards the classical forms of porisms can be found in
[3, 5].
Occasionally, the article [1] disclosed the relations between
Euclidean parallelian conics and the related proisms. As we
shall see, all the results from [1] allow an explanation from
the superordinate standpoint of projective geometry as is
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the case with some results from the Euclidean geometry of
the triangle (cf. [20]).

1.2 Contributions of the present paper

In Section 2, we show the existence of the projectivized
parallelian conic P and the parallelian inconic I . This can
be done in a purely synthetic way. Further, the first porisms
are described and extended to the chains of porisms that
are obtained by means of polarization or by tracing the
(discrete) exponential pencil of conics spanned by I and P .

Section 3 is to show that the parallelian conic P is enclosed
by two triangles ∆U and ∆V whose six vertices lie on a
conic D . This gives rise to a triangle porism between P and
D, and consequently, this gives rise to a chain of triangle
porisms. Moreover, the six vertices of ∆U and ∆V form
a hexagon with an inconic J (provided a certain ordering
of points). Thus, we also find a further hexagon porism
independent of the hexagon porisms discovered so far.

Section 4 mentions the relations to already existing and
Euclidean cases.

Finally, in Section 5, we discuss all possible pairings of pro-
jectivized parallelian conics and the thus defined porisms
(and chains of porisms). In particular, we derive conditions
on the pivot point P such that certain types of porisms can
be found in between the chosen pairs of conics. We shall
not discuss whether these porisms do really exist between
regular conics or not.

2 Projective parallelians

2.1 The first porism

In the projective plane, we choose a triangle ∆ = ABC and
called it henceforth the base triangle. The union of the
three side lines [A,B], [B,C], [C,A] shall be denoted by ∆⋆.
Further a point P which is not incident with any line of
∆⋆ is chosen and called the pivot point. Then, we assume
that g /∈ ∆⋆ is a line neither incident with a vertex of ∆ nor
passing through P.

We shall label the three intersection points of ∆⋆’s lines
with g with C⋆ := g∩ [A,B] (cyclic). Now, we call the lines
[P,A⋆], [P,B⋆], and [P,C⋆] the g-parallels of [B,C], [C,A],
and [A,B] through P. The projections of P from the points
A⋆, B⋆, C⋆ onto the non-incident sides of ∆ are defined as

P1 := [P,C⋆]∩ [B,C],P2 := [P,C⋆]∩ [C,A],
P3 := [P,A⋆]∩ [C,A],P4 := [P,A⋆]∩ [A,B],
P5 := [P,B⋆]∩ [A,B],P6 := [P,B⋆]∩ [B,C].

(1)

The points P1, . . . ,P6 are the projectivized versions of the
elementary geometric parallelians (cf. [18]), and therefore,
we call them the g-parallelians of P with respect to ∆.

Figure 1: The conic P on the six g-parallelians.

With these preparations, it is rather elementary to show the
following:

Theorem 1 The g-parallelians P1, . . . , P6 are located on a
single conic P , the parallelian conic of P.

Proof. According to PASCAL’s theorem (cf. [12, p. 220]),
six points P1, . . . , P6 lie on a single conic if, and only if, the
three point U := [P1,P2]∩ [P4,P5], V := [P2,P3]∩ [P5,P6],
W := [P3,P4] ∩ [P6,P1] are collinear. By construction,
U =C⋆, V = B⋆, and W = A⋆, which are collinear (located
on g). □

Fig. 1 illustrates the contents of Thm. 1.

Figure 2: The inconic I that comes along with P .

Further, we can confirm the existence of an inscribed conic:

Theorem 2 The hexagon H1 := P2P3P6P1P4P5 is tangent
to a single conic I , the parallelian inconic of P.

Proof. We define l1 :=[P2,P3], l2 :=[P3,P6], l3 :=[P6,P1],
l4 := [P1,P4], l5 := [P4,P5], and l6 := [P5,P2], apply BRI-
ANCHON’s theorem (see [12, p. 222]), and find [l1, l2]∩
[l4, l5] = [A⋆,P], [l2, l3]∩ [l5, l6] = [C⋆,P], [l3, l4]∩ [l6, l1] =
[B⋆,P]. The latter three lines are incident with P, i.e., P
equals the Brianchon point of the six lines l1, . . . , l6. There-
fore, l1, . . . , l6 are tangents of a single conic. □
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The results of Thms. 1 and 2 give rise to a porism:

Theorem 3 The pair (P ,I ) allows for a poristic family of
hexagons with vertices on P and edges tangent to I .

Proof. The existence of a single hexagon interscribed be-
tween P and I is necessary and sufficient in order to guaran-
tee the existence of a one-parameter family of interscribed
hexagons (cf. [3, 5]). □

2.2 The first chain of porisms

For what follows, we shall describe points and lines by
homogeneous coordinates. It appears useful to assume that
the vertices of ∆ are the base points of the projective frame.
Hence, A = 1 : 0 : 0, B = 0 : 1 : 0, C = 0 : 0 : 1. The pivot
point shall be given by P = ξ : η : ζ ̸= 0 : 0 : 0 (and, since
P is not contained in any line of ∆⋆, we have ξηζ ̸= 0).
The line g can be represented by its homogeneous equation
as lx+my+ nz = 0, or equivalently, by its homogeneous
coordinates l : m : n ̸= 0 : 0 : 0 which also satisfy lmn ̸= 0,
since g shall not be incident with any vertex of ∆. Further,
we have lξ+mη+nζ ̸= 0, for P /∈ g.

It is a matter of elementary linear algebra to determine the
equations (up to non-zero multiples) of P and I (cf. [12, p.
254]). So, we find

P :
∑

cyclic
lηζ(mη+nζ)x2 −ξ(2ηζmn+ζξnl +ξηlm+ l2ξ2)yz = 0,

I :
∑

cyclic
l2(mη+nζ)2x2 −2mn(lξ+mη)(lξ+nζ)yz = 0.

(2)

Here, in the following, ∑
cyclic

f (l,m,n,ξ,η,ζ,x,y,z) means

the cyclic sum of f (. . .), i.e.,

∑
cyclic

f (l,m,n,ξ,η,ζ,x,y,z) := f (l,m,n,ξ,η,ζ,x,y,z)

+ f (m,n, l,η,ζ,ξ,y,z,x)+ f (n, l,m,ζ,ξ,η,z,x,y).

The variables in the argument (function) are shifted twice
cyclically and the three functions are summed up.

The conics I and P span a pencil of the third kind. The
common pole equals the pivot point P, the common polar
line p has the homogeneous coordinates

ηζ(mη+nζ) : ζξ(nζ+ lξ) : ξη(lξ+mη). (3)

It is easily verified that the three harmonic conjugates of
P with respect to the pairs (P1,P2), (P3,P4), and (P5,P6)
are collinear and line up on p. This fact yields a linear
construction of p as shown in Fig. 3.

Figure 3: Linear construction of the common polar p of P
and I : C⋆⋆ is the harmonic conjugate of P with respect to
the pair (P1,P2) and, in like manner, A⋆⋆ is the harmonic
conjugate of P with respect to (P3,P4).

Figure 4: The conic P touches g if P is chosen on the inconic
S .

Fig. 4 demonstrates that a properly chosen pivot point P
leads to a parallelian conic P that touches g. The equations
(2) of the parallelian conic and the parallelian inconic allow
us to state:

Theorem 4
1. The g-parallelian conic P touches the line g if, and only
if, the pivot point P is chosen on the g-Steiner inconic S of
∆ with the equation

S : ∑
cyclic

l2x2 −2mnyz = 0. (4)

P is singular if P is chosen on the g-Steiner circumconic

S ′ : ∑
cyclic

lmxy = 0 (5)
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and the ‘centers’ of the singular conics fulfill the g-Steiner
Deltoid

Q : ∑
cyclic

l2m2 x2y2 −2l2mnx2yz = 0. (6)

2. The g-parallelian inconic I cannot touch g for any suit-
able choice of P, i.e., P may not lie on the sides of the g-
anticomplementary triangle ∆⋆

a = {[A,A⋆], [B,B⋆], [C,C⋆]}.

Proof. 1. We compute the resultant of P ’s equation (2) and
g’s equation with respect to any of the variables x, y, or z.
The determinant of the coefficient matrix of the remaining
quadratic form is the product of the fourth power of g’s
equation and the quadratic form

∑
cyclic

l2
ξ

2 −2mnηζ

which (set equal to zero) yields the equation of S after
replacing ξ, η, ζ by x, y, z.

The regularity of P is equivalent to the regularity of its co-
efficient matrix P. Hence, P is regular if the homogeneous
coordinates ξ : η : ζ of P do not satisfy

ξηζ︸︷︷︸
=∆⋆

·(lmξη+mnηζ+nl ζξ)︸ ︷︷ ︸
=S ′

·(lξ+mη+nζ)4︸ ︷︷ ︸
=g

= 0.

Since admissible positions of P are off ∆⋆ and off g, P
may only be chosen on S ′. With the parametrization of
S ′ = n(α l +βm)α : n(α l +βm)β : −lmαβ (α : β ̸= 0 : 0)
inserted of ξ : η : ζ into the first equation of (2), we are able
to factor P ’s equation and find

Psingular :(
β2 m2(α l +βm)x−α2β lm2y−αn(α l +βm)2z

)
·(

αβ2l2mx−α2 l2(α l +βm)y+βn(α l +βm)2z
)
= 0.

The latter equation describes a pair of lines (as long as
l : m : n ̸= 0 : 0 : 0) that always intersect in

α
2 ln(α l +βm)2 : β

2 mn(α l +βm)2 : α
2
β

2 l2m2

which parametrizes the quartic S ′ given by (6).

2. In the same way, we proceed with I and find

(nζ+ lξ)(nζ+mη)(mη+ lξ)︸ ︷︷ ︸
=∆⋆

a

(lξ+mη+nζ)︸ ︷︷ ︸
=g

= 0

relating the coordinates of the pivot point P such that it
yields a parallelian inconic I touching g. If we replace ξ, η,
ζ with x, y, z, the first three factors are the equations of the
sides of ∆’s g-anticomplementary triangle ∆⋆

a and the fourth
factor yields the equation of the line g. □

If g is the ideal line of the projectively closed Euclidean
plane, the inconic S (4) described in Thm. 4 becomes the
Steiner inellipse and the corresponding parallelian conics
are then parabolas, cf. [1]. Therefore, S can be considered
the g-Steiner inconic.

Here, we shall also remark that the g-Steiner deltoid Q
is the image of g-Yff inconic ∑

cyclic
x2 − 2yz = 0 under the

g-isogonal transformation x → mnyz, y → nl zx, z → lmxy.
Fig. 5 shows the g-Steiner circumconic S ′ and its g-isogonal
image Q .

Figure 5: The g-anticomplementary triangle ∆a = A′′B′′C′′,
the g-Steiner circumconic S ′, and its g-isogonal image Q
(the g-Steiner deltoid).

The intersections of subsequent tangents ti to P at points Pi

define (among others) the six points

T23 := t2 ∩ t3, T36 := t3 ∩ t6, T61 := t6 ∩ t1,
T14 := t1 ∩ t4, T45 := t4 ∩ t5, T56 := t5 ∩ t6,

(7)

which lie on a single conic T with the equation

T : ∑
cyclic

lmn(mη+nζ)(3lξ+mη+nζ)η2ζ2x2 =

∑
cyclic

lξ2

(
(2mnηζ)2+

(
∑
cyclic

lmξη((lξ+mη)2 +6mnηζ)
))

yz.

(8)

We call T the g-parallelian tangent conic of P. It is obvious
that T is the polar image of I ⋆ (i.e., the dual of the conic I
or the set of tangents of I ).
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2.3 An elliptic sextic

In a way similar to the proof of Thm. 4, we can show that
T is tangent to g if the pivot point P is chosen on the sextic

ST : ∑
cyclic

l2m2x2y2(lx−my)2 +2l3mnx3yz(lx−my−nz) =

6l2m2n2x2y2z2. (9)

An example of such a sextic ST is displayed in Fig. 6. The
sextic is shown together with a certain pivot point P, the
corresponding parallelian conic P , and the parallelian tan-
gent conic T which touches g since the pivot P is chosen
on the sextic ST in Fig. 7.

Figure 6: The sextic ST as the locus of pivot points P whose
g-parallelian tangent conic T touches g.

Figure 7: The g-parallelian tangent conic T touches g,
since it corresponds to a pivot point P ∈ ST .

The curve ST has three ordinary double points at the ver-
tices of ∆. Further, it carries three tacnodes at the ver-
tices DA, DB, DC of the Cevian triangle of the triangle
pole of g with respect to ∆. At any of these tacnodes,
two linear branches emerge. For one of them, the node
is a flat point (i.e., it has a local expansion of the form

(t, t4+O(t5)), cf. [2, 4], only for the flat point branch). The
lines [A,A⋆] (cyclic) are the tangents at the flat points A
(cyclic). ST ’s tangents to the linear branches at the ordinary
double points DC ∈ [A,B] (cyclic) pass through the points
A⋆⋆ := [A,DA]∩ g and B⋆⋆ := [B,DB]∩ g (cyclic). More-
over, any pair of ordinary double points on ST is collinear
with a star point, i.e., DA, DB, C⋆ (cyclic) are collinear (see
Fig. 6).

2.4 The iteration of the porism

If I, P, and T denote the coefficient matrices of the conics
I , P , and T , we first note that they are regular, provided
the proper choice of the pivot point P, i.e., P not on any
side of ∆ or ∆⋆

a and also not on the g-Steiner circumconic
S ′. Further, we can verify the following matrix identity

PI−1P = λT

with

λ =−
∑

cyclic
lξ

4lmn ∏
cyclic

lξ+mη

which depends on P and g solely. (The cyclic product is
explained in nearly the same way as the cyclic sum.) This
expresses what is clear from the construction: The conic T
is the polar image of I with respect to P . Moreover, from
I and P , we can construct the “next” circumscribed conic,
say U, by repeating the polarization, or in more simple
terms, by once again intersecting neighboring tangents of
T in order to obtain a further sextuple of conconic points.
Hence, we can state:

Theorem 5 The parallelian inconic I and the parallelian
conic P span an exponential pencil of conics in which any
pair of subsequent conics allows for a poristic family of
hexagons.

Proof. We have already found that λT = PI−1P holds (with
some λ depending on P and g). According to [13], the coef-
ficient matrices M of the conics in the exponential pencil
spanned by I and P are obtained from I and P as

M(k) = P(I−1P)k−1, k ∈ Z.

For any integer k, M(k) and M(k+1) are the coefficient ma-
trices of two conics that allow for the same kind of porism
as I and P or P and T do:

We use the Cayley criterion [12, p. 432, Thm. 9.5.4] in order
to show that the type of porism is preserved when tracing
the discrete exponential pencil. If the coefficients of the
power series

√
det(P · t + I) = a0 +a1t +a2t2 +a3t3 + . . .

fulfill a2 = 0, I and P define a poristic triangle family;
a3 = 0 guarantees for a poristic family of interscribed quad-

rangles. If det
(

a2 a3
a3 a4

)
= 0 or det

(
a3 a4
a4 a5

)
= 0, then
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the conics I and P allow for poristic families of pentagons
or hexagons. In any case, I serves as the inconic (touched
by the sides of the polygons) and P is the circumconic
(carrying the vertices of the polygons).

Now, we show that these conditions are valid for any pair
of subsequent conics in the exponential pencil spanned by
I and P . For that purpose, we write down the discriminant
of the Cayley function for M(k+1) and M(k) and find

det(M(k+1) · t +M(k)) =

det(P(I−1P)k · t +P(I−1P)k−1) =

det(P · t +P(I−1P)−1)det
(
(I−1P)k

)
=

det(P · t + I)det
(
(I−1P)k

)
,

which shows that the above written power series is only mul-
tiplied by a constant factor det

(
(I−1P)k

)
. The same is true

for the coefficients, and since the determinants (used in the
Cayley criterion) for the porisms are homogeneous in the
power series’ coefficients, they are vanishing independent
of the choice of k. □

Figure 8: The g-parallelian conic P and the g-parallelian
inconic I constitute an exponential pencil of conics and set
the basis for an infinite chain of nested poristic families of
hexagons.

Fig. 8 shows some conics out of the chain in the discrete
exponential pencil spanned by I and P . The conic U is the
next in line: The coefficient matrix of its equation equals
U = P(I−1P)2 = TI−1P, i.e., U⋆ (U considered as its set
of tangents) is the polar image of P with regard to T . The
interscribed hexagons are also displayed. The order of the
base conics I and P does not matter. Interchanging the
matrices I and P in the usual parametrization of the expo-
nential pencil as given in [13] means traversing the pencil
in the opposite direction.

3 Tangent triangles

3.1 The triangle porism

There are two triples of tangents of the parallelian conic P
that form two triangles ∆U := U1U2U3 and ∆V := V1V2V3

with a common circumconic D . The vertices of the triangles
are defined by

U1 := t3 ∩ t5, U2 := t5 ∩ t1, U3 := t1 ∩ t3,
V1 := t2 ∩ t4, V2 := t4 ∩ t6, V3 := t6 ∩ t2.

(10)

Note that the triangle U1U2U3 and V2V3V1 (note the different
orientation) are perspective to P, while the corresponding
trilaterals are perspective to p given by (3).

The common circumconic D of the triangles ∆U and ∆V
can be described by the homogeneous equation

D :

∑
cyclic

l2mnξη2ζ2(mη+nζ)x2 + lξ2
(

2l2ξ2(m2η2 +n2ζ2)+

∑
cyclic

lmξη(l2ξ2 +m2η2)+4l2mnξ2ηζ

)
yz = 0.

(11)

Now, it is near to formulate the following result:

Theorem 6 The pair (P ,D) of conics allows for a triangle
porism.

Proof. The existence of the triangle porism is clear by the
same reasoning as used in the proof of Thm. 3. □

We can deduce some more porisms out of the previously
described one:

Theorem 7 The pair of conics (P ,D) allows for a hexagon
porism, and 3n-gon porisms with n ∈ N\{0}.

Proof. Like in the proof of Thm. 5, we use the Cayley crite-
rion [12, p. 432, Thm. 9.5.4] in order to show the existence
of porism with 3n-gons inconic P and circumconic D . For
that purpose, we extract the coefficient matrices D and P
from the equations of D and P , and expand the function√

det(t ·D+P) in a power series S = a0 +a1t +a2t2 + . . ..
The criterion for the existence of a triangle porism is a2 = 0
(which is clearly fulfilled). According to CAYLEY, the
criteria for the existence of poristic families of hexagons,
nonagons, . . . equal

det
(

a3 a4
a4 a5

)
= 0, det


a2 a3 a4 a5
a3 a4 a5 a6
a4 a5 a6 a7
a5 a6 a7 a8

= 0, . . .

which also turns out to be satisfied, as do the further criteria.
□

Poristic families of quadrangles or other polygons with a
vertex number that is not a multiple of 3 interscribed be-
tween D and P cannot occur for admissible choices of P
(see also Tab. 2).
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Figure 9: The conic D through the vertices of the tangent
triangles ∆U and ∆V of P and the inconic J of the hexagon
U1V1U2V2U3V3 both give rise to two independent families
of porisms.

Here, we shall state explicitly that (in general) the existence
of a poristic family of triangles does not necessarily imply
the existence of a poristic family of hexagons, and vice
versa.

The union of the two triangles ∆U and ∆V can be viewed
as a degenerate hexagon. In that respect, P and D can
already serve as a base of the pencil of conics allowing
for a poristic family of hexagons. Indeed, the hexagon
H2 := U1V1U2V2U3V3 (alternately chosen vertices of ∆U
and ∆V ) is tangent to a single conic:

Theorem 8 The hexagon H2 has an inconic J with the
trilinear equation

J : ∑
cyclic

lξ2

x
= 0 (12)

which is at the same time a circumconic of the base triangle
∆.

Proof. We use the trilinear representation (10) of the ver-
tices of ∆U and ∆V in order to compute the trilinear coor-
dinates of the sides si of the hexagon. In order to find an
equation of the inconic J of H2, we compute the kernel of
the 6×6 matrix whose columns (or rows) are the Veronese
images of the trilinear coordinates of the six lines si (see
[12, p. 241]). This kernel is one-dimensional (provided that
the six lines are tangent to single conic) and a base vector
of the kernel yields the coefficients of the equation

J ⋆ : ∑
cyclic

l2
ξ

4x2 −2mnη
2
ζ

2yz = 0

of a line conic (quadratic set of lines) containing the six
sides si of H2. The corresponding point conic J is the
dual to J ⋆, and thus, the respective matrices are related by

J = J⋆−1 (cf. [12, p. 273]). Hence, J is the inconic given in
(12) and it is clearly seen that the vertices of ∆ are contained
in J . □

We can also show:

Theorem 9 The pair of conics (J ,I ) allows for poristic
families of 3n-gons.

Proof. We use the Cayley criterion (cf. [12, p. 432]) in
order to verify the contents of this theorem. □

With the help of the Cayley criterion (cf. [12, p. 432]), we
can show that the pair (D,J ) allows for a poristic family of
hexagons and even dodecagons.

The conics D and I span a pencil of the third kind. The
pivot point P equals the common pole and the common
polar line is already found as the common polar line of I
and P with the trilinear representation (3).

As a consequence of Thms. 6, 7, 8, and 9 we can state a
result on infinitely many poristic families of triangles and
hexagons:

Theorem 10
1. The pair of conics (D,P ) spans an exponential pencil
of conics and any pair of subsequent conics in the pencil
allows for a poristic family of 3n-gons.
2. The pair of conics (D,J ) spans an exponential pencil
of conics and any pair of subsequent conics in the pencil
allows for a poristic family of hexagons.
3. The pair of conics (J ,I ) spans an exponential pencil
of conics and any pair of subsequent conics in the pencil
allows for a poristic family of 3n-gons.

4 Special assumptions and cases

In this section, we shall discuss the previously mentioned
porisms in case of special choices of P and/or g. It is clear
that the choice g = a : b : c leads to the elementary geomet-
ric parallelians and the related porisms which are studied in
detail in [1]. Another even more special and in some sense
simpler case is obtained if P = 1 : 1 : 1 and g = 1 : 1 : 1. In
terms of elementary triangle geometry, P is the incenter and
g the anti-orthic axis. Moreover, g is the triangle polar of P
(with respect to the base triangle ∆).

4.1 g antiorthic axis, P = X1

The choice of P = 1 : 1 : 1 = g yields

J : ∑
cyclic

xy = 0 and I : ∑
cyclic

x2 −2yz = 0. (13)

Conics with equations of that particular form belong to the
family of Yff conics (cf. [19, 22]). The porism between I
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and J are already studied even for various finite projective
planes (see [22]) and turned out to be Universal Porisms in
the sense of N. WILDBERGER [30]. In any case, I and J
as given in (13) admit 3n-gon porisms according to Thm. 9.
The conics P , T , and D are not contained in the exponential
pencil spanned by J and I .

4.2 g is the triangle polar line of P with respect to ∆

P is given by the homogeneous coordinates ξ : η : ζ ̸=
0 : 0 : 0, ξηζ ̸= 0, and P not on any side of the g-
anticomplementary triangle, then P’s triangle polar line
is given by ηζ : ζξ : ξη. The latter together with P com-
prises the pair of common pole and polar line of any two
out of the five g-parallelian conics we have seen so far. This
special assumption does not change the porisms that we
have discovered in the previous sections. The Cayley cri-
terion makes clear that no porisms other than such with
triangle and hexagon families will occur.

The same holds true if we choose P = ξ : η : ζ = g.

4.3 g ideal, pivot P a triangle center

If the line g is chosen as the ideal line of the plane of ∆, i.e.,
g = a : b : c, then we deal with the case of Euclidean paral-
lelians as described in [1]. However, in this case the centers
of the conics P , T , I , J , and D coincide with known tri-
angle centers if we choose a triangle center for the pivot
point. We do not aim at a complete list, some centers can be
read off from Tab. 1. The numbers Xi given to the centers
correspond to the list of triangle centers in [17, 18].

P C(P ) C(T ) C(I ) C(J ) C(D)
X1 X1001 ? X1125 X3 ?
X2 X2 X2 X2 X2 X2
X3 X182 ? X140 X1147 ?
X4 X10002 ? X5 X6523 ?
X5 X10003 ? X3628 X6663 ?
X6 X182 ? X3589 X206 ?
X7 X10004 ? X142 X17113 ?
X8 X10005 ? X10 X6552 ?
X9 X1001 ? X6666 X6600 ?
X10 X3842 ? X3634 X4075 ?
X11 X1006 ? X6667 X64440 ?
X12 ? ? X6668 ? ?
X19 ? ? X40530 X15259 ?
X20 X47381 ? X3 ? ?

Table 1: The centers of the Euclidean parallelian conics P ,
T , I , J , and D depending on certain choices of the pivot
point P as a triangle center. The line g equals the ideal
line ω = a : b : c in all cases and the numbers of the centers
equal those in [17, 18].

The question marks indicate yet unnamed triangle centers
serving as centers of various g-parallelian conics.

5 Porisms of arbitrary types between
different pairings of conics

In the following, we shall derive the conditions on the pivot
point P such that poristic families of triangles, quadrangles,
pentagons, and hexagons occur between any pair of conics
out of the five conics P , T , I , D, and J . It turns out that
these conditions are certain algebraic loci in the plane of
∆. In the majority of the cases, these loci are elliptic cubics
and elliptic sextics. in some cases, the degrees of the loci
are even higher, and then, we simply write C d for a degree
d curve.

In Table 2, we list the sets of possible pivot points for cer-
tain types of porisms. Some of these set occur frequently:
We define P2⋆ = P2 \{∆⋆,∆⋆

a}. The cubic curves that show
up regularly belong to a certain class of (triangle) cubics.
Their equations are of similar shapes and depend on two
(homogeneous) parameters:

C 3
α,β = α

(
∑

cyclic
lm(lx+my)xy

)
+β lmnxyz = 0,

α : β ̸= 0 : 0.

We note that in this linear one-parameter family of cu-
bics we find three degenerate curves. These are C 3

0,1 = ∆⋆,
C 3

1,2 = ∆⋆
a, and C 3

1,3 = S ′∩g. The family also contains the
rational cubic C1,−6 with an isolated node at l−1 : m−1 : n−1

with the complex conjugate tangents

lx+ εmy+ ε
2nz = 0 and lx+ ε

2my+ εnz = 0,

where ε is a complex (not real) cube root of 1.

Figure 10: Two examples of cubics C3, C4 housing pivot
points for parallelian conics allowing for triangle and quad-
rangle porisms between J and P .
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Fig. 10 shows two of the cubics on which a pivot point P
is to be chosen such that a triangle or quadrangle porism
between two particular conics comes into being.

The loci of pivot points possibly allowing for triangle, quad-
rangle, pentagon, and hexagon porisms are in some cases
sextic curves of the same type as the curve (9) appearing
in Section 2.3. These curves form a linear four-parameter

family with the equations

C 6
α,β,γ,δ=α

(
∑

cyclic
l2m2(l2x2+m2y2)x2y2

)

+β

(
∑

cyclic
l4mnx4yz

)
+γ

(
∑

cyclic
l3mn(my+nz)x3yz

)
+δl2m2n2 x2y2z2=0, α :β :γ :δ ̸= 0:0 :0 :0.

triangles quadrangles pentagons hexagons
(T ,P ) /0 /0 /0 P2⋆

(P ,T ) C 12 C 3
1,0, C 3

1,0, C 12 C 36 C 6
1,2,10,30,

C 6
1,2,2,−2, 2 C 12

(P ,I ) /0 /0 /0 P 2⋆

(I ,P ) C 12 C 3
1,1, C 3

1,4, C 12 C 36 C 6
1,2,2,2,

C 6
1,2,2,10, 3 C 12

(D,P ) P 2⋆ /0 /0 P 2⋆

(P ,D) C 3
1,1, C 3

1,4, C 12, 2 C 9, C 18 C 3
1,0, C 3

1,4,
C 6

1,2,−2,,−10 C 6
1,2,2,−2 C 6

1,2,−2,−10,
C 12, C 24

(P ,J ) C 6
1,2,−4,−5 C 3

1,−1, C 18 C 3
1,−5,

C 6
1,2,−2,−7 C 6

1,2,−4,−5, C 12

(J ,P ) C 3
4,3 C 3

10,21 C 9 C 3
4,3, C 3

16,39,
C 6

64,128,692.1257

(T ,I ) C 3
1,4 C 3

3,14 C 3
1,5, C 6

1,2,13,32 C 3
1,4, C 3

1,6, C 9

(I ,T ) C 3
1,0, C 3

1,4, C 12, C 12, C 24 2 C 9, C 18, ?
C 6

1,2,14,30 C 36

(T ,D) C 6
1,2,−4,−5 C 3

1,−1, C 18 C 3
1−54,

C 6
1,2,−2,−7 C 6

1,2,−4,−5, C 12

(D,T ) C 3
4,3 C 3

10,21 C 9 C 3
4,3, C 3

16,39,
C 6

64,128,692,1257

(T ,J ) /0 C 3
1,1, C 3

1,−7 C 3
1,−1, C 3

1,5, C 3
1,−3, C 9

C 6
1,2,−2,−7

(J ,T ) C 3
1,0, C 3

5,12, C 6
1,2,−6,−18, C 9, C 18 C 3

1,0, C 3
5,12,

C 6
3,6,64,66 C 12 C 3

3,6,64,66,
C 12, C 24

(I ,D) C 24 C 12, C 24 C 96 ?
(D,I ) /0 C 3

1,4 C 6
4,8,35,70 C 6

1,2,13,32

(J ,I ) P2⋆ /0 /0 P2⋆

(I ,J ) C 3
1,0, C 3

1,4, C 3
1,±

√
8
, 2 C 9, C 18 C 3

1,0, C 3
1,4,

C 6
1,2,−2,−10 C 6

1,2,±
√

8,±
√

8
C 6

1,2,−2,−10

C 12, C 24

(D,J ) /0 /0 /0 P2⋆

(J ,D) C 12 C 3
1,0, C 3

1,4, C 12 C 36 C 6
1,2,2,−2,

C 6
1,2,10,30,

3 C 12

Table 2: The porisms and chains of porism between various pairs of g-parallelian conics.
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The sextic curves of this type that occur as loci of pivot
points P have six double points and are of genus 1. This
is not the case for arbitrary choices of α : β : γ : δ. Three
of the six double points are ordinary nodes, the remaining
three are tacnodes. The latter carry a flat point on one of
the linear branches at the node. For details on tangents, see
Sec. 2.3.
The order of the conics in the pairs (A ,B) matters: CAY-
LEY’s criterion [12, p. 432, Thm. 9.5.4] uses the coeffi-
cients of the power series of

√
det(t ·A+B) and it is easily

verified that det(t ·B+A)=det(BA−1 ·AB−1(t ·B+A))=
det(BA−1) · det(t ·A+AB−1A) ̸= det(t ·A+B). The first
conic, here A , is assumed to be the ‘circumconic’. In many
cases, this is also justified by the fact that the circumconic
contains six points obtained as the intersection of certain
tangents of the ‘inconic’. This might be of importance in

finite geometries or in geometries over algebraically non-
closed fields.

6 Conclusion and final remarks

The porisms constructed in the previous sections are objects
of projective geometry. Their embeddings in metric (Eu-
clidean or non-Euclidean) geometries can be studied from
the projective point of view by prescribing an elliptic or
a hyperbolic involution on g. This yields the cases of Eu-
clidean and pseudo-Euclidean parallelians and the related
conics. The counterparts in elliptic and hyperbolic geome-
try are not that near. The algebraic curves given in Tab. 2
are not studied in detail and it is questionable whether these
pivot loci allow for an investigation of the corresponding
porisms. The rather high algebraic degrees may not be
helpful.
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