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ABSTRACT

We investigate a one-parameter family of Keplerian ellipses
in a plane sharing a fixed focus F; and passing through a
prescribed point P with identical instantaneous speed. By
means of a purely geometric construction — the reflection
of the ray Fi P in the tangent at P — the second focus F;
is located on a circle f, yielding simple loci for the cen-
ters M and the secondary vertices C,D (both circles) and
for the principal vertices A, B (conchoids of a circle). The
family admits an envelope, itself an ellipse whose semiaxes
are obtained in closed form. The configuration provides
a direct geometric interpretation of the vis-viva relation:
All members share the same semimajor axis a, and thus,
the same orbital period. When rotated about the axis F|P,
the envelope ellipses form a family of confocal ellipsoids of
revolution, thus connecting the planar Kepler construction
with the classical geometry of quadrics.
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Geometrijska konstrukcija familije Keplerovih
elipsa

SAZETAK

IstraZujemo jednoparametarsku familiju Keplerovih elipsa
u ravnini koje imaju isto zariste F; i prolaze kroz danu
to¢ku P jednakom trenutnom brzinom. Pomodu &isto geo-
metrijske konstrukcije — refleksija zrake FjP na tangenti
u to¢ki P — drugo Zariste F, leZi na kruznici f>, dobivaju
se geometrijska mjesta sredista M i sporednih tjemena
C, D (dvije kruZnice) i glavnih tjemena A, B (konhoide
kruZnice). Familija elipsi ima envelopu, takoder elipsu, &ije
su poluosi dobivene u zatvorenoj formi. Ova konfiguracija
pruZa izravno geometrijsko tuma&enje vis-viva relacije: Svi
¢lanovi dijele istu veliku glavnu poluos a, pa onda i isti
orbitni period. Kada rotiraju oko osi FiP, elipse enve-
lope tvore familiju konfokalnih rotacijskih elipsoida, ¢ime
se ravninska Keplerova konstrukcija povezuje s klasi¢nom
geometrijom kvadrika.

Kljuéne rijeci: Keplerove elipse, elipsa envelopa, konhoida,
puZ, vis-viva relacija, jednadZba energije

1 Motivation

This paper addresses certain physical relationships within
the framework of Keplerian ellipses — not only from a phys-
ical but, above all, from a geometrical point of view — and
arrives at several remarkable results. More specifically, it
focuses on applying the vis-viva equation (energy equation
of the Kepler orbit) to spatial objects, an approach that
makes it possible to describe and analyse elliptical orbits in

three-dimensional space in a fully consistent way (Fig. 1).

2 State of the Art and Related Work

The idea to organize Kepler orbits into families determined
by position and speed goes back at least to Laporte [8]],
who studied the one-parameter family of ellipses obtained
from a fixed point with equal initial speed and varying di-
rection. Butikov provided an accessible modern account of
such families and their qualitative geometry [2], and later
discussed envelopes in the context of ballistic and elliptic
trajectories [3|]. Very recently, Heckman [7] revisited the
family of Kepler ellipses through a fixed point from a geo-
metric Hamiltonian viewpoint: He showed, in particular,
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Figure 1: Family of Keplerian ellipses corresponding to the
same initial orbital speed v, but with different directions of
the velocity vector V. Each ellipse passes through the fixed
point P and has the same focus Fj.

that the locus of second foci is a circle of radius 2a — r
centered at the passing point P, that all members share the
same period, and he described a bounding ellipse for the
swept region.

To the best of our knowledge, a purely geometric construc-
tion of the common envelope ellipse for the constant-speed
family — based on reflecting the ray F P in the tangent at P
and exploiting the collinearity of P, F> and the contact point
— together with explicit loci for the centers (m), secondary
vertices (C, D), and the conchoid loci for the major vertices
(A, B), as well as the extremal configuration with maximal b
and the cusped limagon case a = d, does not appear explic-
itly in the literature cited above. The present paper provides
such a unified geometric treatment and closed formulas for
the envelope’s semiaxes.

3 Introduction

Kepler’s discovery that the planets move in ellipses rather
than circles marks one of the most elegant links between
geometry and physics. The corresponding vis-viva relation,

2 1
(i)
r a

connects the instantaneous distance » and speed v of a body
in a central fields of gravitation with the global parameter
a, the semimajor axis of its elliptical orbit.
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We consider here, in purely geometric terms, the family of
all Keplerian ellipses that share a fixed focus F; and pass
through a given point P with identical speed. While the
tangent direction in P varies, the energy and semimajor axis
remain constant, forming a one-parameter family of ellipses.
The central question is the determination of their envelope.

It is a matter of fact that the ray F; P, when reflected in the
tangent at P, passes through the second focus F; of the cor-
responding ellipse. The line PF, then meets the envelope in
the point of contact, proving the collinearity of Fj, F>, and
the contact point and showing that all ellipses share a single
bounding ellipse.

We further describe the loci of the centers, foci, and ver-
tices of the family — circles and conchoids — and identify
the limiting cases of maximal minor axis and vanishing
eccentricity. The construction provides a concise geometric
interpretation of the vis-viva relation and unites classical
conic geometry with orbital dynamics.

4 The Vis-Viva Equation

The vis—viva relation (I)) remains the cornerstone of orbital
mechanics and is discussed in detail in modern treatments
such as Murray and Dermott [9], Roy [ 1], Danby [4], and
Vallado [12].

It states that

v2=u(2—1>, (1
T a

where

* v is the instantaneous orbital velocity of the moving
body,

e rits current distance from the focus F; (the central
mass),

* g the semimajor axis of the corresponding Kepler
ellipse,

e u= GM the gravitational parameter,

and
G =6.67430 x 10" ' m3kg~'s72

denotes the universal gravitational constant, M the mass of
the central attracting body.

Equation (1)) expresses the conservation of total mechanical
energy along a Keplerian orbit. The first term, %vz, repre-
sents the specific kinetic energy, whereas u/r denotes the
negative potential term. The relation applies equally to el-
liptical, parabolic, and hyperbolic trajectories, and reduces
to the circular case when r = a, yielding v = /u/r.
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In the form of Eq. (I), one essentially determines the orbital
speed v from the given semimajor axis a and the instanta-
neous distance r. It is noteworthy that the equation contains
no information about the direction of the velocity vector v,
it merely provides its magnitude v = ||¥||.

Conversely, if the instantaneous orbital velocity v and the
current distance r are known, the semimajor axis a of the
corresponding Keplerian ellipse can be derived directly

from Eq. (T)):

5. 2)

This inverse form is widely used in orbital mechanics to
compute the semimajor axis from position—velocity data at
any given point of the trajectory.

From a geometrical point of view, Eq. expresses that
the orbital energy —, and thus the size of the ellipse — is
completely determined by the instantaneous position and
speed of the moving body. In the plane of motion, the direc-
tion of the velocity vector V is tangent to the ellipse at the
current point, while its magnitude defines, through Eq. (I),
the scale of the entire orbit. Consequently, the value of a
derived from a single observation (r,v) uniquely determines
the corresponding ellipse, up to the spatial orientation of its
major axis.

A particularly important limiting case of Eq. (I) occurs
when the semimajor axis a tends to infinity, corresponding
to a parabolic escape trajectory. In this limit, the total
mechanical energy approaches zero, and the orbital speed
becomes the escape velocity

ve:\/z—'u . 3)
r

Any higher velocity results in a hyperbolic orbit and per-
manent escape from the gravitational field of the central
body. Conversely, for v < v, the motion remains bound,
and Eq. () yields a finite semimajor axis a.

From a purely geometrical standpoint, the escape velocity
marks the limiting case in which the semimajor axis a of the
Kepler ellipse tends to infinity. As a — oo, the ellipse grad-
ually opens, its curvature at the current point decreases, and
the second focus recedes to infinity. The ellipse thus trans-
forms smoothly into a parabola whose focus coincides with
the central mass F; and whose directrix lies at an infinite
distance.

In this limiting configuration, the moving body possesses
just enough kinetic energy to reach infinity with zero resid-
ual speed — precisely the condition v = v, = /2u/r. Hence,

the parabolic orbit forms the natural boundary between
bound and unbound motion, connecting the family of Ke-
plerian ellipses continuously to the branch of hyperbolic
trajectories.

Remark 1 (Bound-Unbound Criterion) In order to ensure
that the curve Ky represents a closed Keplerian ellipse, the
orbital velocity v in the given point P must not exceed the
parabolic escape velocity. Quantitatively, this means that
the instantaneous velocity v may at most exceed the circular
velocity Veire by a factor of /2:

u

r

V< V2Veire  with

Vcirc =

If v= V2Veire, the resulting orbit becomes parabolic
(a — o), for v > V2 Veire, it turns into a hyperbola. This
\/2-limit provides a simple geometric criterion for distin-
guishing bounded (elliptic) from unbounded (parabolic or
hyperbolic) trajectories, and it holds universally for all cen-
tral gravitational fields for all central gravitational fields
(see [} pp. 66-68]).

In the present paper, however, we shall restrict our attention
exclusively to elliptical orbits, leaving the parabolic and
hyperbolic cases aside.

Remark 2 (Constant Period and Spatial Interpretation)
Since the semimajor axis a is identical for all members
of the considered family of Keplerian ellipses, the orbital
period T is the same for all of them as well, according to
Kepler’s third law,

3
T =2m a—.
u

Thus, all particles moving on these ellipses complete their
revolution in equal time, even though their orbital shapes
and instantaneous velocities differ.

Because the construction depends only on the line
through F\ and P, the same argument applies to any plane
containing this line. Hence the family may be regarded as a
three-dimensional system of identical orbits distributed over
all planes passing through F1P. In this sense, the model
admits a natural spatial interpretation: Each ellipse repre-
sents the projection of an orbit lying in a different orbital
plane but governed by the same gravitational parameter u
and the same total energy.

The time-evolution of the corresponding particles can be
visualized by the accompanying sequence of frames shown
in Fig. 2, and in the supplementary video available online

(134).
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Figure 2: Sequence of frames illustrating the motion of sev-
eral particles along the family of Keplerian ellipses with
identical semimajor axis a and focus Fy. Each ellipse cor-
responds to a different orientation of the tangent at P, but
all orbits share the same period T and gravitational param-
eter u, as illustrated in the supplementary video [J5].

Figure 3: Isoenergetic family of Keplerian trajectories
launched with identical speed from the same point along all
directions of a conical field of initial velocities. All orbits
share the same semimajor axis a but differ in eccentricity
and orientation. They return to the common starting point
simultaneously after one complete revolution.

Launching from the same point with identical speed along
all directions of a cone of revolution whose axis is the orbital
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tangent yields an isoenergetic family of Keplerian ellipses
with the same semimajor axis a but generally different ec-
centricities. All trajectories of this family have identical
orbital periods, since the revolution time depends solely on
the semimajor axis according to Kepler’s third law. Conse-
quently, although the eccentricities and spatial orientations
of the orbits differ, all projectiles return to their common
starting point simultaneously after one full revolution. The
resulting configuration is illustrated in Fig. 3.

The time-evolution of this isoenergetic family is illustrated
in Fig. 2, where all trajectories start simultaneously from
the same point and return to it after one full revolution. An
animated version of this figure, showing the continuous
propagation of the orbits and the simultaneous rendezvous
of the projectiles, is available as supplementary material
online.

5 Geometric Construction

Having examined the physical foundation of Keplerian mo-
tion, we now turn to a purely geometrical interpretation
of the same family of ellipses. Instead of deriving the or-
bital parameters from forces and energies, we shall describe
the entire configuration in terms of fixed points, distances,
and loci. This approach reveals several remarkable geomet-
ric properties — in particular, the existence of an envelope
ellipse that is tangent to all Keplerian ellipses of a given
family. For a comprehensive geometric treatment of conic
sections and their focal properties, see [6].

6 Geometrical Construction

Let us begin with the question of how to construct an ellipse
when one focus Fj, the total major axis length 2a, and a
point P at a fixed distance d = |F}P| are given, together
with the tangent ¢ at P, which forms an angle y with the
reference axis F| P. The solution is remarkably simple.

Since an ellipse is the locus of all points whose distances to
two fixed foci sum to the constant 2a, and since the tangent
at any point bisects the angle between the focal radii, we
proceed as follows (Fig. 4):

Construction. Define a fixed counterpoint G on the
ray Fy P such that |Fi G| = 2a. Reflect G about the tangent ¢
through P; the reflection point is F3,

= Ref;(G).

As the tangent direction y varies, G remains fixed while its
mirror image F, moves along a circle f centered at P with
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radius
|PF2| =2a—d.

This circle represents the locus of all possible second foci
of the family of ellipses K. The tangent ¢ bisects the focal
angle,

/GPF, = 2\|I = /FiPF,=n— 2\|I

o
C

Figure 4: Geometric construction of the ellipse Ky from the
given focus Fy, the tangent t at the point P with |F1P| = d,
and the total major axis 2a. Reflect the line F1P about t
and mark on the reflected ray from P the segment of
length 2a — d to obtain the second focus F». Equivalently,
F; is the mirror image of the fixed point G on F| P satisfying
|FiG| = 2a. The tangent t bisects the angle /F|PF, =
T — 2. The construction fixes the center M, the ver-
tices A, B, and the semiaxes a,b(y).

7 Three Circular Loci

Fix a focus Fj, a point P with |FiP| = d, and a common
semimajor axis a. For the one-parameter family {xy} of
Kepler ellipses through P we have:

1. Locus of the second focus. Evaluating the focal sum
at X = P gives |PF,| = 2a — d. Hence the second
focus F> runs on the circle

f»:  center P, radius 2a —d.

2. Locus of the ellipse centers. Since the center M
is the midpoint of Fi F>, and F> moves on the circle
around P, the midpoint M = J(F; + F») describes a
circle with half the radius and centered at the mid-
point of Fi P. Writing Q for the midpoint of F; P,

m: center Q, radius a — %.

3. Locus of the secondary vertices. At the secondary
vertices C, D the distances to the foci are equal by
symmetry, and |FiC| + |F>C| = 2a yields |FiC| =
|F2C| = a (likewise for D). Hence

c: center Fy, radius a,

i.e., all secondary vertices lie on the circle of radius
a about Fj.

Figure 5 illustrates the configuration: The focus-locus f>
(centered at P), the center-locus m (centered at the midpoint
Q of F1P), and the circle ¢ carrying all secondary vertices
C,D (centered at F}).

Figure 5: Three circular loci for the family {Ky}: The sec-
ond focus Fy moves on fy (center P, radius 2a — d); the
ellipse center M moves on m (center Q, the midpoint of F1 P,
radius a — % ); and the secondary vertices C,D lie on the
circle c (center Fy, radius a).

Figure 6: Special case a = d: The focus locus f> (center P,
radius a), the center locus m (center Q, radius a/2), and
the circle ¢ of minor vertices (center Fy, radius a).
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Remark 3 (Special case a = d) In the special case a = d
the three circular loci simplify as follows: The second focus
runs on f with radius |PF| = 2a —d = a (center P), the
ellipse centers M run on m with radius a — % = 5 (center
Q, the midpoint of F1 P), and the minor vertices C,D lie on
the circle c of radius a about Fy (unchanged). The configu-
ration is illustrated in Fig. 6.

A particularly remarkable feature of this configuration is
that the lower vertices D of all ellipses coincide with the

fixed point P.

8 Focal distance and eccentricity

The midpoint M of the focal segment Fi F; is the center
of Ky, and satisfies

|[FiM| = [MF| = cy,

which defines the linear eccentricity

ey = 3/ &+ (20— d) ~2d(2a— d)cos(2y).

The corresponding (dimensionless) eccentricity is

_ <
ey=-—_"
Equation of the ellipse. The ellipse Ky, has the polar equa-

tion (with origin at Fi, polar angle o measured from F; P):

a(lfelzl,)
~ l+eycos(a—¢)’

r()

where ¢ denotes the orientation of the major axis relative
to F1P.

Remark 4 (Velocity Ratios at Pericenter and Apocenter)
For every Keplerian ellipse Ky with semimajor axis a and
eccentricity ey, the instantaneous orbital velocity follows
from the vis-viva relation

2 1
of2-1)
r a

At the circular radius r = a one obtains

u

a

Veirc =
At pericenter and apocenter, where
Tperi = a(l —ey), Tapo = a(1+ey),

the corresponding velocities are

v M 1+ey T U 1—ey
Pt A g l—e\‘,7 N\ a 1+e\|,'
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Hence the ratios relative to the circular velocity are

Vperi _ [ltey  Vapo _ [1—ey
Vcirc 1- Cy ’ Vcirc I+ ey

The pericentric velocity therefore exceeds the circular value,
while the apocentric velocity falls below it. At the parabolic
limit ey — 1 the pericentric velocity approaches V2Veirer
corresponding to the escape condition ([} §2.5]).

Remark 5 (Special case a = d) If the semimajor axis
equals the focal distance to the given point, a = d, then the
major axis of Ky is aligned with the reflected ray through P,
and the axis angle equals the tangent angle:

o=y

In this case the eccentricity reduces to

ey = %‘I = |sin\|f|,

and the vis—viva relations yield the pericentric and apocen-
tric velocities, relative to the circular speed Veire = \/ 1/ a:

Vperi _ 1 + |Slnw| Vap() _ 1 - |Sin\|!|
Veire 1 —[siny]’ Veire 1+ [siny|
(for  taken modulo ). Aty = 0 one has Vperi = Vapo = Veirc

(circular case), while as || — T/2 the apocentric velocity
tends to 0 and Vperi — V2 Veire (parabolic limit).

Proof (vis—viva only). From v* = u(2/r — 1/a),
With Fperiapo = a(1 F ey) and ey = |siny|, one ob-
tains directly Vperi = Veire\/ (1 +ey) /(1 —ey) and Vapo =

Veire (1 - e\ll)/(l +e\|1)‘

Semiminor axis. From b? = a% — c‘zv follows
d d2a—d
b (y) = d(a - 2) + % cos(2y),

and thus,

b(y) =cosyy/d(2a—d).

Hence the semiminor axis attains its maximum for y = 0,
when the tangent is parallel to Fi P:

bmax = \/d(2a—d).

This value equals the geometric mean of the focal distances
d = |F1P| and (2a —d) = |PF3|. For y = %, the points F1,
P, and F; become collinear, the focal separation is maximal
(cy = a), and the ellipse degenerates into a line segment.
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Summary. The family Ky is completely determined by
the parameters (a,d, ). The quantities @, ey, ¢y, and b(y)
follow from the above relations. The fixed point G serves
as a convenient geometric reference: All members of the
family arise as mirror images of G with respect to their
respective tangents ¢ ().

9 The Envelope of the Family of Keplerian
Ellipses

Let Ky, be one of the Kepler ellipses of the family. We mark
on it a point H as the second intersection of the ellipse with
the guiding ray PF,. For this point, the sum of the focal
distances is constant. Since

|FiH|+ |PH| = {|F\H|+ |F>H| } + |F>P|
={2a}+(2a—d)=4a—d,

the point H lies on an auxiliary ellipse /& with foci F; and P
and semimajor axis 2a — % At H, the tangents to Ky, and
h coincide, because in both cases the tangent is the angle
bisector of the same pair of guiding rays. Consequently,
h touches every member of the family &y, and therefore,
constitutes the envelope of all Keplerian ellipses of this

type.

Figure 7: Geometric proof of the envelope. For each tan-
gent t through P, the reflection of the ray SP determines
the second focus F,. The intersection of the line PF; with
the family’s outer boundary defines the point H, which lies
on the envelope ellipse h. The points P, F>, and H are
collinear.

Figure 8: The complete family of Kepler ellipses with fixed
focus Fy and identical speed at P. Each ellipse touches
the envelope h (cyan curve). The envelope itself is an el-
lipse with semimajor axis a,, = 2a — d and semiminor axis
bp=+/(2a—d)d.

The overall configuration is illustrated schematically in
Fig. 7, showing the family of ellipses for different orienta-
tions of the tangent at P and their envelope /.

Moreover, the reflection of the point of contact H in the
common tangent ¢ always lies on the principal axis F P, at
a distance of 4a — d from Fj.

Remark 6 (On intersections within the family) Two dis-
tinct members Ky and Ky of the constant-speed family pass
through P but have different tangents there (for y # '),
hence the intersection at P is transveral. By Bézout’s the-
orem, two conics intersect with total multiplicity 4 in the
complex projective plane; the remaining intersection multi-
plicities are accounted for by two common (complex) tan-
gents through the fixed focus Fy in the dual picture. Thus,
neighbouring members typically meet only at P in the real
plane.

Spatial version. For each admissible tangential velocity
at P, the corresponding Kepler ellipse Ky, is tangent to the
envelope ellipse & with foci F; and P and semimajor axis
ap=12a— %. If the entire configuration is rotated about the
axis F1 P, the envelope h generates an egg-shaped ellipsoid
of revolution whose focal points are F; and P.

As the velocity in P varies, the semimajor axis a changes ac-

cording to the vis-viva relation a = =", so that a ranges
2u—rv

from 0 (for v— oo) up to d+/2 at the parabolic limit. Hence
all Keplerian ellipses passing through the fixed point P with
any sub-parabolic velocity form a continuous one-parameter
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family of confocal egg-shaped ellipsoids of revolution — as
discussed in — each touching its corresponding planar
Kepler ellipse along the generator defined by the common
tangent at P.

Remark 7 (The complete picture, a spatial arrangement of
Keplerian ellipses) Through the fixed point P there pass
infinitely many tangents t, each characterized by its spatial
orientation (two degrees of freedom) and by the magnitude
of the velocity vector (one additional degree of freedom).
Hence, the set of all Kepler ellipses passing through P forms
a three-dimensional continuum: For every direction and
speed in P there exists exactly one Keplerian orbit of the
family.

However, among these infinitely many ellipses, all those
that differ only by a rigid motion (translation or rotation)
are congruent. Thus, within this three-dimensional contin-
uum, there exists a one-dimensional subfamily of congruent
ellipses, leaving only a two-dimensional manifold of dis-
tinct shapes. Equivalently, if the semiaxes a and b are taken
as parameters, the space of all geometrically different el-
lipses is two-dimensional, corresponding to the degrees of
freedom of shape and eccentricity.

Figure 9: Rotation of the envelope ellipse h about the
axis F| P generates an egg-shaped ellipsoid of revolution.
The fixed points Fy and P serve as common foci of all such
ellipsoids, each corresponding to a Kepler ellipse Ky of
equal velocity in P. The colored layers illustrate the asso-
ciated system of confocal quadrics sharing the same focal
points Fy and P. Each planar Kepler ellipse arises as a
section through Fy, P, and its corresponding focus F,.
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10 Loci of the Principal Vertices A and B

We return zu the planar version. Let m be the circle of el-
lipse centers with center C (the midpoint of F; P) and radius
ro=a— %’. With Fj as pole, let ¢ denote the polar direction.
The ray from Fj at angle ¢ meets m at distance

s(9) = %cos(p—l—\/ rh— (%sin(p)z.

The principal vertices are obtained by shifting +a along
this ray:

r8(¢) = [s(9) —a]

Hence both loci are conchoids of the circle m with pole F;.

Figure 10: General case: The loci of A (outer branch) and
B (inner branch) are conchoids of the center circle m with

pole Fi.

Figure 11: Special case a = d: The conchoids degenerate
into a cusped Pascal snail cup.
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Remark 8 (Identity of the two Pascal snails) For the spe-
cial case a = d, the loci of the two main vertices A and B
of the ellipses K¢ are given in polar coordinates by

rA(@) = a(1+cosg), rg(@) = a(l —cos ).

Although these equations look different, they describe the
same cusped Pascal snail (a cardioid—type limacon), merely
rotated by T:

rp(@+m) = a(1+cos ) = ra(9).

Hence the two vertex loci coincide geometrically, each cov-
ering the same curve twice with opposite orientation. The
cusp corresponds to @ =0, where A and B coincide at P,
and the maximal distance r = 2a occurs at ¢ = T.

The loci of the two main vertices A and B of all ellipses K
(for the case a = d) form a single cusped Pascal snail given
in polar coordinates by r = a(1 +cos®). The cusp corre-
sponds to @ = 0, where A and B coincide at P, and the
maximal distance r = 2a occurs at ¢ = T.

In order to visualize the variation of the orbital velocity
along this curve, we now plot the apocentric speed vapo of
the corresponding ellipses K¢y above the cardioid. If the
velocity is plotted with opposite sign for —% <o < —l—%,
the surface becomes continuous and differentiable at the
parabolic limits. This orientation change reflects the nat-
ural reversal of motion along the cardioid when the orbit
passes through its side point.

For a continuous, orientation preserving plot we use the
signed apocentric speed

1 —|sing|
or = H —_— g
Vapo ) = 8(0) Ve | Ty $(0) = —sen(cosg),

so that the sign flips at @ = 3.

Conclusions and Future Work

The geometric constructions discussed above reveal a re-
markable coherence between the analytic and envelope rep-
resentations of the Kepler family. Starting from a purely
planar setting, the reflection-based construction provides
an intuitive bridge between the focal geometry of conic
sections and their dynamical interpretation.

We have presented a purely geometric treatment of a re-
markable family of Keplerian ellipses passing through a
fixed point P with identical speed. By reflecting the ray Fi P
in the tangent at P we located the second focus F, and estab-
lished a simple proof that all such ellipses share a common
bounding ellipse as their envelope. The semiaxes of this
envelope can be expressed in closed form in terms of a
and d.

Figure 12: Signed apocentric velocity over the cardioid
r=a(1+cosQ). The black curve is the locus of apocen-
tric vertices B (case a = d). The red ribbon shows vy (9),
with the sign chosen via s(¢) = —sgn(cos®), yielding a
smooth continuation through the parabolic limit v,po = 0 at
o==+71

In addition, we derived the loci of the centers, foci, and
vertices of the entire family. The centers and minor ver-
tices describe circles, whereas the principal vertices trace
conchoids of the center circle, merging into a cusped Pas-
cal snail in the special case a = d. These constructions
demonstrate that classical geometry naturally reproduces
the relations known from orbital mechanics.

From a physical point of view, the constant-speed family
represents all possible bound orbits of equal total energy
starting from P. Each member corresponds to a distinct
initial direction, yet all share the same period according to
Kepler’s third law. The envelope thus provides a geometric
visualization of the energy boundary in a central field.

A three-dimensional interpretation arises when the enve-
lope ellipse £ is rotated about the axis F| P, generating an
egg-shaped ellipsoid of revolution. The entire family of
Kepler ellipses can therefore be embedded into a system of
confocal quadrics sharing the same foci F} and P, provid-
ing a spatial counterpart to the planar focal construction (cf.
Fig. 9).
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Future work may extend this approach to inclined orbital
planes and precessing ellipses, or explore analogous enve-
lope constructions for hyperbolic and parabolic trajectories.
The presented geometric framework also lends itself to edu-
cational and visual applications linking classical geometry
with dynamical systems.

Beyond the purely geometric framework presented here,
the same configuration may also be viewed in a dynamical
context. Considering, for instance, the Jupiter system with
a massless satellite (a “null moon” moving in the same or-
bital plane, the geometry of the present family arises as the
limiting case of the barycentric two-body system when the
satellite mass tends to zero. In this limit, the fixed focus Fj
represents the planet, and the moving focus F; corresponds
to the barycentre of the combined system, thus providing a
natural physical interpretation of the focal envelope. This
observation may open a link between purely geometric en-
velopes and dynamical orbital models and will be explored
in a forthcoming study.
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