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ABSTRACT

The construction of a triangle center always produces cen-
tral triangles which again allow for the construction of the
respective center. Doing this infinitely many times may
in some cases lead to a known triangle center, but in the
vast majority, a new center will show up. The symbolic
computational approach is limited in many cases due to
the complexity of the computations. In order to overcome
these difficulties, we shall start with numerical approaches
towards several centers’ limits. This gives rise to some
conjectures which later allow for an exact determination of
the limit of a triangle center.
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Granične vrijednosti sredǐsta trokuta

SAŽETAK

Konstrukcija sredǐsta trokuta uvijek stvara sredǐsnje trokute
koji ponovno omogućavaju konstrukciju odgovarajućeg
sredǐsta. Ponavljanje ovog postupka beskonačno mnogo
puta može u pojedinim slučajevima dovesti do poznatog
sredǐsta trokuta, ali u velikoj većini slučajeva pojavit će
se novo sredǐste. Simbolički računski pristup je ograničen
u mnogim slučajevima zbog složenosti izračuna. Kako
bismo prevladali te teškoće, započet ćemo s numeričkim
pristupima prema graničnim vrijednostima nekoliko sredǐsta.
To dovodi do nekih pretpostavki koje kasnije omogućavaju
točno odre�ivanje granične vrijednosti sredǐsta trokuta.

Ključne riječi: sredǐste trokuta, iterativne konstrukcije,
numeričke simulacije, granična vrijednost

1 Introduction

1.1 Related and prior work

In classical and elementary geometry, usually constructions
terminate after a finite number of steps. However, some
constructions may invite us to repeat them not only once
and we may ask ourselves what will happen if we repeat
them infinitely many times. Since the constructions that
we want to repeat infinitely many times follow the same
recipe in each step, the thus produced geometric objects are
determined by means of some algorithm. Under certain cir-
cumstances, we can expect that such infinitely many times
repeated constructions will in the end lead to a useful result,
i.e., they produce a limit. Moreover, since the recipe does
not change, we may discover a certain simple generation
and construction of the limit. These could be, for example,
a chain of similar figures (cf. [13]), a geometric sequence,
perspectivities, and more as we shall see later. Many con-
structions in and around the triangle can be performed by

means of linear or rational operations, many involve square
roots (circle intersections from the constructive point of
view), and some cannot be accessed by means of the classi-
cal tools (e.g., Morley triangles and their centers).

The only algebraic approach towards iterated triangle center
constructions can be found in [1]. There, the degree d( f )
of a triangle center Z = f : ζ( f ) : ζ2( f ) is defined with the
help of Z’s generating trilinear center function f . This de-
gree either remains unchanged or changes to d(−2)−k for
the respective center in the k-th step of the iteration. Unfor-
tunately, the thus defined degree has no deeper geometric
meaning and depends on the trilinear center function, i.e., it
yields different degrees for different but equivalent represen-
tations of the same center. As we shall see, the asymptotic
behaviour of linear operators is sometimes crucial in un-
derstanding the limiting process of a triangle construction.
In [3], this is done for simplices and discloses relations to
matrix theory. [6] does not provide limits of triangle centers,
but deals with the limit shape of central triangles in some
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cases. An intricate but nevertheless interesting approach
using bivariate Fourier series for the representation of the
limit of a point and iterated pedal triangles is given in [4].

1.2 Aims and contributions of the present note

The repeated center construction in a given triangle can be
performed numerically in an easy way. We shall describe
the implementation of our numerical simulations in Sec.
2. They allow for a flexible access to the limits of various
centers under different assumptions of reference triangles.
Among others, we can use the standard reference triangle
with side lengths a = 6, b = 9, and c = 13 which allows us
to compare resulting limits with C. KIMBERLING’s search
table in the Encyclopedia of Triangle Centers (cf. [7]). We
will not give an exhaustive treatment of center limits. Just a
few well-known and low indexed centers shall be studied.
The numerical computations provide us with ideas how to
construct the centers that emerge in the limit. In Sec. 3, we
shall give exact proofs of what can be conjectured from the
numerical experiments.

2 Numerical approach

2.1 Implementation details

In order to visually explore the behaviour of different center
constructions, we developed an interactive program using
the open source game engine Godot1 which offers a flexible
framework for scripting and displaying 2D graphics that is
compatible with many different programming languages.
We chose C# because of its easy access to external libraries
and overall speed of development. Our program allows for
the repeated numerical determination of the first eleven tri-
angle centers listed in C. KIMBERLING’s encyclopedia
[7]. However, it can be extended to all those centers that
have a geometric generation.

The repreated construction of a triangle center needs a new
reference triangle in each step. In many cases, it is nec-
essary to use the Cevian or the pedal triangle. Depending
on the definition and construction of the center under con-
sideration, a base triangle different from the latter two is
chosen. We shall discuss this in more detail in Sec. 3. In our
interactive program one can either choose the pedal triangle
∆p(Xi) or the Cevian triangle ∆C(Xi) related to the triangle
center Xi as the starting triangle for the next step in the itera-
tion. The reference triangle shall not be changed during the
iteration. The Spieker point X10 is the only exception that
uses its own construction method, which will be explained
in Sec. 2.4.7.

2.2 Precision

As with any numerical approach, calculations need to be of
a certain precision to guarantee the robustness of and the
confidence in the results. What kind of target precision is
needed depends on multiple factors.
The first precision requirement stems from the values in C.
KIMBERLING’s search table. In their 6–9–13 triangle
search table, a precision of twenty decimals is used. Typ-
ically, double precision floating point numbers are stored
using 64 bits and can cover a very large range of numbers,
in C# for example this range is ∼ 10−324 to 10308. However,
their maximum precision is only around 15–17 digits [11]
and are, therefore, insufficient for our purpose. Additionally,
C# provides the decimal numeric type that is recommended
for higher precision, especially for values −1 < x < 1. This
type can store up to 28–29 digits to the right of the decimal
point. In theory, these values should be precise enough to
store results that can be compared with search table values.
However, the second requirement is defined by the preci-
sion needed by the used mathematical operations. As values
are expected to shrink rapidly, an even higher precision is
needed to guarantee that operations still result in values that
are robust according to the first requirement. After only
very few iterations of repeated triangle construction, some
decimal type results may already be indistinguishable from
zero. Particularly, any construction that involves vector
normalization or normal projection suffers greatly from low
precision. In such cases, very small vector norms can lead
to divisions by zero induced by rounding errors and prohibit
any further iteration.
One way of tackling this problem is the use of decimal
numbers with arbitrary precision. These are not included in
most programming languages by default and may need to be
imported from an external library. The Extended Numerics
package for C# by ADAM WHITE [15] is such a library that
includes an arbitrary BigDecimal type. It stores exponent
and mantissa separately as integers and calculates in base 10
rather than using the usual binary format for floating point
numbers. One particular feature of BigDecimal allows us to
truncate the result of any operation to an arbitrary decimal
point while still using the full potential range of decimals
for the calculation itself. This offers the deliberate choice to
reduce the precision in order to improve computation speed
by introducing a certain degree of rounding errors without
the risk of running out of precision during an operation.
Unfortunately, this feature does not entirely prevent the nu-
merical problems but rather delay them if further iterations
are needed. As a default, we limit the precision to around
25–50 digits to keep the program we developed interactive.
For our numerical results in Section 2.4.9, we opted for a
higher precision.

1Godot Game Engine – https://godotengine.org
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2.3 First numerical results

Along with the visuals, we looked at a variety of different
properties that could give further insight into the behaviour
of the repeated construction. For the resulting triangles, we
calculated the ratio of the side lengths and interior angles
that can reveal whether there are any systematic changes
in their overall shape, such as regularization or other obvi-
ous patterns. For the resulting centers, we create a curve
that connects subsequent centers and calculate the distance
of and angle between subsequent segments, respectively.
These two properties give hints at the tendency to converge
and if the centers are collinear. Putting all these values
together may give insights on how to tackle these construc-
tions algebraically. Additionally, we will also describe any
intermediary centers that are contained in the search table if
they are found during the construction, as these could also
be valuable information.
Note that we primarily focused on the behaviour of the 6-9-
13 triangle. Any findings we described below refer to this
triangle unless stated otherwise. When looking up search
values in KIMBERLING’s search table, we assume a tol-
erance of 10−7, meaning these values are likely to describe
the same center if their absolute difference is smaller than
this tolerance. We do so because numerical errors on either
side may hide the fact that it may be the same center. This
threshold was chosen empirically, as we found that differ-
ences are either noticeably larger than that or almost zero.
A much smaller tolerance may be applicable, especially if
we increase precision and iteration count.
A list of our calculated search values can be found in Table
1 at the end of this section.

2.3.1 Incenter X1

Repeatedly constructing the incenter quickly leads to a
regularization of the resulting triangles for both pedal and
Cevian triangle construction (cf. Thm. 1). While both con-
structions seem to converge, neither of the two points de-
termined numerically is contained in the search table. Only
the incenter of the intouch triangle, i.e., the incenter of the
intouch triangle known as X177 (cf. [7, 8]) appears in the
search table.

2.3.2 Centroid X2

In the case of the centroid X2, the medial triangle ∆m of
∆ equals the Cevian triangle ∆C(X2). Consequently, the
second centroid is that of ∆m which equals X2. Hence, re-
peating the centroid construction with the Cevian triangle
returns the centroid X2 of ∆ in the limit.
The pedal triangle construction on the other hand exhibits a
different behaviour. It quickly regularizes the triangles after
around four iterations, while the distance between each new
centroid is indistinguishable from zero as early as seven it-
erations, finalizing the convergence. The point the centroids

converge towards is not contained in the search table. On
the second iteration the created center is X373.

2.4 Circumcenter X3

Repeating the circumcenter construction using the Cevian
triangles as the reference triangles, we observe an overall
chaotic behaviour. The triangle center X23719 is the circum-
center of ∆m and appears as the circumcenter in the second
step of the iteration (cf. Fig. 1).

Figure 1: The chaotic path of the circumcenter of its prede-
cessor’s Cevian triangle: Only two points in the sequence
are known.

In contrast, the pedal triangle construction exhibits a very
obvious convergence towards the centroid X2. Now, all in-
termediate points are collinear centers located on the Euler
line. The first five centers after following the circumcenter
can be found in the search table and are in order of their
construction X5,X140,X3628,X16239,X61877. They lie on the
Euler line as well as all subsequent centers do, see Thm. 2.

2.4.1 Orthocenter X4

In this particular case, we have ∆C(X4) = ∆p(X4) = ∆o.
Let now ∆o = A′B′C′ such that A′ ∈ [B,C] (cyclic). Fur-
ther, <)AA′C = <)BB′C = π

2 . If α, β, γ denote the interior
angles of ∆, then <)A′AC = <)B′BC = π

2 − γ, since A, C′,
A′, C and B, C′, B′, C are concyclic. Thus, <)A′C′B′ =
<)A′AC+<)B′BC = π− γ (cyclic). From that, we can de-
duce that the interior angles of the k-th orthic triangle are
equal to

α(k) = (−1)k+1
π+(−2)k

α mod 2π (cyclic).

This means that the orthic triangles rotate with exponen-
tial speed. Besides, it is by no means guaranteed that the
orthic triangle at some level stays within the interior of its
predecessor. The same holds true for the orthocenter.
A very special result is due to NEUBERG (see [2]): The
third pedal triangle of a fixed point with respect to a given
triangle ∆ is similar to ∆. Unfortunately, NEUBERG’s result
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deals with a fixed point whose pedal triangles are stud-
ied. Here, and in the following, the point whose pedals or
Cevians are used changes from step to step.
Clearly, the orthocenter reaches a limit in the case of an
equilateral triangle ∆. We shall not discuss right and isosce-
les triangles here.
The second step of the iteration, yields X52 as the ortho-
center of the orthic triangle which fits with the results in
[7, 8].

2.4.2 Nine-point center X5

Constructing this center repeatedly exhibits very chaotic
behaviour for both construction types of reference triangles.
While the construction based on ∆C(X5) does not seem to
have any obvious patterns, the construction based on the
pedal triangle appears to regularize the reference triangles.
This happens much slower compared to other center con-
structions that do so. The second nine-point center found
using pedal triangles equals X13365 which is referred to as
Point Beid 48 in [7].

2.4.3 Symmedian point X6

The Symmedian point has a very interesting behaviour.
While the Cevian triangle construction only leads to a regu-
larization, the pedal triangle construction has a more unique
behaviour. Its center points move on a zig-zag curve with a
constant interior angle of 129.4365 degrees finally converg-
ing towards the center X1285. Notably, on the second step of
the iteration the created center can be recognized as X18907
in the search table.

2.4.4 Gergonne point X7

The Gergonne point exhibits a regularization when using
the Cevian triangles and seems to converge towards a point
not contained in the search table.
The pedal triangle construction however looks a lot more in-
teresting as it seems to have some underlying pattern which
can be seen in Figure 2. The constructed centers seem to be
almost collinear visually, but on further inspection the an-
gle between iterations is around 178.1–178.3 degrees. The
resulting triangles visually seem to alternate between two
different shapes, one of them being similar to the starting
triangle. However, numerically there is always an additional
small deviation from those shapes after each iteration.

2.4.5 Nagel point X8

When using Cevian triangles, the construction of the Nagel
point stops after only three iterations because the resulting
triangles rapidly collapse to a line and calculations become
unstable. Even on a precision higher than the limit of the
interactive program, further iterations do not make sense.
The same is true for the pedal triangles, however, the con-
struction is possible for a few more iterations. If not for the

numerical instability, this type of construction would seem
to converge as the centers seem to follow a zig-zag curve
with each additional line of the curve slowly getting shorter
and angles between them getting smaller which can be seen
in Figure 3.

Figure 2: The trail of the Gergonne point X7: Only four
steps of the iteration are to show that the second and fourth
pedal triangle are almost similar to ∆.

Figure 3: The oscillating path of the Nagel point X8: The
corridor of “even” and “odd” points is slowly getting nar-
rower.

2.4.6 Mittenpunkt X9

Similar to the Nagel point, the construction of the Mitten-
punkt using Cevian triangles stops after only three steps.
Both share a similar construction using excircles and the
problem of triangles collapsing. Using pedal triangles in-
stead leads to a quick triangle regularization and the centers
seem to converge towards a point not found in the search
table.

2.4.7 Spieker center X10

As briefly mentioned above, we treat the repeated construc-
tion of the Spieker center differently. This is because the
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construction of this center naturally already leads to a trian-
gle that is suitable for repeated use. As the Spieker point
being the incenter of a triangle’s medial triangle, it is con-
venient to use the intouch triangle of the medial triangle
for repeated construction of the Spieker center. This subse-
quently regularizes the used triangles and the center seems
to converge on a zig-zag curve towards a point not con-
tained in the search table. The center found on the second
iteration has the same search value as X58689.

2.4.8 Feuerbach point X11

Finally, we come to the Feuerbach point, where the Cevian
construction also leads to a collapse of the triangles but with
a higher numerical stability due to different operations used
for construction. The center seems to converge towards a
point not found in the search table before eventually also be-
coming unstable. The repeated pedal triangle construction
results in an interesting pattern of periodically alternating
between similar triangle shapes but again with numerical
deviations after each iteration.

2.4.9 Search value results

As our final numerical results, we list the search value found
for each center and construction type in Table 1. We used
40 iterations of repeated center construction paired with a
precision of 80 digits. For better readability, we truncated
values in Table 1 after 20 digits right of the decimal point.
Only X3 and X6 lead to already known triangle centers in
KIMBERLING’s seach table using repeated construction
from pedal triangles and are X2 and X1285, respectively.

3 Analytical framework and first results

3.1 Proper choice of coordinates

When dealing with results from Euclidean geometry, com-
putations are preferably done in Cartesian coordinates.
Therefore, we impose the frame of reference such that the
vertices of the triangle ∆ = ABC are given by

A = (0,0), B = (c,0), C = (u,v), (1)

where u and v are subject to

u2 + v2 = b2, (u− c)2 + v2 = a2 ⇐⇒

u =
1
2c

(−a2 +b2 + c2), v =
2F
c

(2)

and a = BC, b =CA, c = AB are the side lengths of the base
triangle ∆ and F equals ∆’s area.
This setting allows an immediate switch to (exact or homo-
geneous) trilinear coordinates. The y-coordinate yP of each
point (center) is the third trilinear coordinate of this particu-
lar point P, since it is the oriented distance of P to the line
[A,B] (the x-axis). In any case, yP will be a function in a, b,
c and, cyclically replacing them according to a → b, b → c,
c → a, turns yP into the first trilinear coordinate function
of P, i.e., it becomes the trilinear distance to [B,C], and so,
we obtain the generating center function. This allows for
a comparison with the Encyclopedia of Triangle Centers
[7]. For example, the coordinates of ∆’s incenter X1 in the
present coordinate system are

X1 =

(
1
2
(−a+b+ c),

2F
a+b+ c

)
. (3)

Cevian triangle Pedal triangle

X1 1.95770029904487735665 0.80433539504925636000
X2 2.62936879248871824114 1.76867523171775377550
X3 -3891699654776.25808763607293483169 2.62936879248116398887
X4 -1.02844023546083472296 -1.028440235460834722964
X5 0.76566640603164320837 1.32186957169792197941
X6 1.09217049764661208244 0.10296691685647652550
X7 0.80433539504925636000 0.15823641292070149571
X8 2.53702599581424750311 1.56932209282972051791
X9 3.12652311458376376898 2.15889133044926341090
X11 2.57245781384282079537 2.17029063766605551907

Intouch triangle of medial triangle

X10 3.19337592231807969123

Table 1: Search values per center and construction type. X10 uses its own special construction method. X3 changes value
after each iteration and does not seem to converge. For X4 Cevian and pedal construction result in the same triangles. X8,X9,
and X11 terminate after only a handful of iterations. The search values for X3 and X6 using pedal triangles are contained in
KIMBERLING’s search table and are X2 and X1285, respectively.
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Its second coordinate equals 2F
a+b+c and a cyclic shift of a,

b, c does not alter it. Further, we can cut out all factors
which are cyclically symmetric in a, b, c (here, they are F
and a+ b+ c) and we obtain the trilinear center function
of X1 which equals 1 (cf. [7, 8]). For centers with a more
intricate trilinear representation, we evaluate at the triangle
with a = 6, b = 9, c = 13 and compare with the respective
search table on [7].

When we aim at a repeated construction of triangle centers,
we have to determine a new reference triangle in each step.
There are two simple but in some sense natural choices:
1. the pedal triangle ∆p(X) of a point X whose vertices are
the orthogonal projections of X onto the sides of a triangle
∆ and
2. the Cevian triangle ∆C(X) of a point X whose vertices
are the projections of X from the vertices of a triangle to
the opposite sides.

They will serve as the reference triangles in most of the
cases we shall treat here. We shall not mix the triangles of
reference from step to step, since this may cause a chaotic
behaviour and no convergence will be observed.

The construction of a pedal triangle will fail for all centers
Xi of ∆ on the circumcircle, since these pedals lie on their
respective Simson line. The Cevian triangle and the pedal
triangle coincide if the chosen center equals the orthocenter
X4.

We are not restricted to the pedal triangle or the Cevian trian-
gle. In some cases, we may choose another central triangle
that may be related closer to the center that is repeatedly
constructed.

3.2 Algebraic results

3.2.1 Centroid

It is not worth mentioning that the centroid X2 is stable if
we repeat the construction of the centroid always using the
Cevian triangle. The Cevian triangle is the medial triangle
of its predecessor in each step and all medial and medial of
medial triangles are perspective to each other and the cen-
troid X2 serves as the perspector, while the line at infinity
takes the role of the perspectrix.

In Fig. 4, the centroid X i+1
2 is constructed as the centroid of

the pedal triangle of its predecessor. Although the polygon
X2X1

2 X2
2 . . . shows a spiraloid behaviour there is no simple

generation that can easily be detected. Simulations show
that the sequence of centroids converges and the search
value equals 1.768675231717 . . ., but there is no known
center corresponding to that.

Figure 4: The limit of X i+1
2 (∆p(X i

2)) is not yet known and
the growth rules of the polygon X2X1

2 X2
2 . . . cannot easily

be read off from the figure.

3.2.2 Incenter

The incenter of ∆ is a rather nasty chum. Although it is
given by 1 : 1 : 1 in terms of homogeneous trilinear coordi-
nates (cf. [7, 8]), for X1 has equal (oriented) distances to ∆’s
sides, its Cartesian representation (3) involves square roots
(since the triangles area F does). Repeating the construc-
tion of the incenter using the intouch triangle ∆i = ∆p(X1)
(triangle of contact points of the incircle with the side lines
of ∆) doubles the problems. Again angles have to be halved,
or equivalently, unit vectors between points whose coordi-
nates already involve square roots have to determined. The
“next” incenter is that of ∆i and is labelled X177 (and called
the 1st Mid-Arc Point) in KIMBERLING’s encyclopedia with
the trilinear center function

√
bc
√

a−b+ c
√

a+b− c(
√

b
√

a−b+ c+
√

c
√

a+b− c)

(compare the equivalent trigonometric expression in [7, 8]).

As a matter of fact, X1 always lies in the interior of ∆.
Moreover it also lies in the interior of its pedal triangle
∆p(X1) = ∆i, the intouch triangle (contact points of the in-
circle and the side lines of ∆). It also lies in the interior of its
Cevian triangle ∆C(X1) which we shall investigate later. If
we repeat the incenter construction with either ∆i or ∆C(X1),
we find a triangle center in the interior of the next intouch
or Cevian triangle. It is clear that all these central triangles
are getting smaller in each step, lie always in the interior of
the preceding triangles, and it is near to assume that both ∆i
and ∆C(X1), and X1 converge to a point after infinitely many
construction steps. Unfortunately, the algebraic complexity
even of X1(∆i) = X177 and also of X1(∆i(X177)) make clear
that an algebraic approach towards X∞

1 is hopeless.

Nonetheless, we can show that the intouch triangle reaches
a special shape in the limit:
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Figure 5: The repeated construction of the intouch trian-
gle regularizes the triangle. A limit of the incenter that
is obtained as the last intouch triangle can only be found
numerically.

Theorem 1 The repeated intouch triangle construction
yields an equilateral triangle after infinitely many steps.

Proof. We read Fig. 5 and find that AC1 = AB1, and
thus, C1AB1 is isosceles. Hence, <)AC1B1 = <)AB1C1 =
1
2 (π−α). Further, <)BC1A1 = 1

2 (π− β), and thus, γ′ :=
<)A1C1B1 = 1

2 (α+β) and the same holds true for the other
interior angles of ∆i (with cyclic replacements of all in-
volved objects and values). So, the interior angles of ∆ and
∆i are related by the linear mapping α′

β′

γ′

=
1
2

 0 1 1
1 0 1
1 1 0

 α

β

γ

 .

The symmetric coordinate matrix of this linear map-
ping can be diagonalized by T−1LT = D, where D =

diag(1,− 1
2 ,−

1
2 ) and the transformation matrix T equals 1

3 − 1
3 −1

1
3 − 1

3 0
1
3

2
3 1

 .

We can apply the linear mapping infinitely many times:
L∞ = (TDT−1)∞ = TD∞T−1 = Tdiag(1,0,0)T−1 = 1

3 U
where U is the 3×3 matrix all of whose entries are equal to
1. This means α(∞) = 1

3 (α+β+ γ) = π

3 (and cyclic) which
proves the theorem. □

3.2.3 Circumcenter

Some facts from the elementary geometry of the triangle
along with the numerical simulation indicate the following:

Theorem 2 The circumcenter X3 of ∆ converges towards
the centroid X2 of the base triangle ∆, provided that the
pedal triangle of X3 serves as the reference triangle in each
construction step.

Proof. The pedal triangle of X3 equals the medial triangle
∆m of ∆. The circumcenter of ∆m is the nine-point center X5
of ∆ and both lie on the Euler line. Hence, the circumcenter
of the pedal triangle of X5 in ∆m is the point X140 which is
just called the midpoint of X3 and X5 in C. KIMBERLING’s
Encyclopedia [7].

Consequently, X140 is also located on the Euler line and
all further circumcenters of the respective pedal triangles
gather there. Moreover, the circumcenters jump forth and
back always halving the previous segment (see Fig. 6).

Figure 6: The centroid is the circumcenter limit (above).
Some on the initial pedal (medial) triangles with their cir-
cumcircles occuring in the limit procedure (below) share
the Euler line (indicated by blue circles).

We obtain the following sequence

X0
3 = X3,

X1
3 = X5,

X2
3 = 1

2 (X
1
3 +X0

3 ) = X140,

X3
3 = 1

4 (X
2
3 +X1

3 ) = X3268,

X4
3 = 1

8 (X
3
3 +X2

3 ) = X16239,

X5
3 = 1

16 (X
4
3 +X3

3 ) = X61877,

...

and, expressing these affine combinations as sums of X1
3

and X0
3 , we find

Xk
3 =

1
2k−2

(
J (k−1)Xk−1

3 + J (k)Xk−2
3

)
,
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where J (k) = 1
3 (2

k − (−1)k) is the k-th Jacobsthal number
(cf. [14]), which approaches 1

3 2k for increasing k. Now, we
can find the limit point X∞

3 as

lim
k→∞

Xk
3 =

= 1
3 lim

k→∞

1
2k−1

(
(2k−1 − (−1)k−1X1

3 +(2k − (−1)k)X0
3
)
=

= 2
3 X5 +

1
3 X3 = X2

which completes the proof. □

From the proof of Thm. 2 we can infer:

Theorem 3 The triangle centers X5 (nine-point center),
X140, X3268, X16239, X61877, . . . in this sequence converge
towards the centroid X2 of the base triangle ∆, provided
that the pedal triangle and the circumcenter construction
are combined in each step.

The numerical simulation described in Sec. 2 indicates the
following:

Theorem 4 The Symmedian point X6 converges towards
the 1st Lemoine dilation center X1285, provided the pedal
triangle serves as the reference triangle in each step.

Proof. In order to verify the result, we compute some in-
stances of the Symmedian point and show that it traverses a
zig-zag polygon which consists of infinitely many similar
copies that terminate in X1285. The first Symmedian point
X6 is that of ∆ with coordinates

X6 =
1
2τ

(
c(−a2 +3b2 + c2),4cF

)
,

where τ := a2 +b2 + c2 and its pedal triangle has the ver-
tices (in that particular order, i.e., the first vertex on [B,C])

1
4cτ

(
c4 +8b2c2 −b4 − (a2 −b2)2,4F(a2 −b2 +3c2)

)
,

1
4cτ

(
(a2−b2−c2)(a2−b2−3c2),4F(−a2 +b2 +3c2)

)
,

1
2τ

(
c(a2 −3b2 − c2),0

)
.

The next Symmedian points are

X1
6 =

1
4cτ2

(
a6 −a4(3b2 +4c2)+a2(b2 + c2)(3b2 + c2)−b6 +8b4c2 +7b2c4 +2c6

−4(a4 −a2(2b2 + c2)+b4 −b2c2 −4c4)F

)
,

X2
6 =

1
8cτ3

(
a8 −a6(2b2 − c2)−a4(19b2 +17c2)c2 + . . .

−4F
(
a6 −a4(b2 −4c2)−a2(b2 +8c2)b2 + . . .

) ) ,

X3
6 =

1
16cτ4

(
−a10 +a8(13b2 +16c2)−2a6(17b4 +32b2c2 +25c4)+ . . .

4F
(
a8 − (12b2 +13c2)+a4(22b4 +13b2c2 +13c4)+ . . .

) ) ,

X4
6 =

1
32cτ5

(
a12 +3a10(4b2 + c2)−a8(27b4 +17b2c2 +10c4)+ . . .

−4F
(
a10 +a8(13b2 +6c2)−2a6(7b4 −24b2c2 −21c4)+ . . .

) ) .

Figure 7: The zig-zag path of the Symmedian points dithers
to X1285. The dotted lines joining the “even” and “odd”
points intersect in the similarity center X1285.

Now, we are able to verify that the polygons P012 =X6X1
6 X2

6
and P234 = X2

6 X3
6 X4

6 are similar. The scaling factor of the
similarity P012 → P234 equals

f =
12F2

τ2 =
3
4

(
1− 2

τ2

(
a4+b4+c4))< 1.

The involved pedal triangles are also similar, and thus, we
can be sure that the construction of any further part of the X i

6
polygon consists of pieces similar to the initial part. Instead
of adding a geometric sequence of vectors, we note that
the points X6, X2

6 , X4
6 , . . . and the points X1

6 , X3
6 , X5

6 , . . . are
collinear. Therefore, we intersect the lines passing through
the “odd” and “even” points in order to obtain the limit
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point
L = [X6,X2

6 ]∩ [X1
6 ,X

3
6 ] =

=
1
2c

 ⋆

−4F(a2 −b2 −3c2)(a2 −b2 +3c2)

7a4 +2a2b2 +2a2c2 +7b4 +2b2c2 +7c4

 .

Cyclically shifting a, b, c in the second coordinate func-
tion and cutting out cyclic symmetric factors (F and the

quartic polnomial in the denominator) yields the generating
trilinear center function

bc(3a2 −b2 + c2)(3a2 +b2 − c2)

and the search value 0.1029669168564765255 together
with the trilinear representation given at [7] identifies this
point as X1285. □
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