

A Generalization of the Twin Circles of Archimedes

A Generalization of the Twin Circles of Archimedes

ABSTRACT

We consider the arbelos and generalize Archimedean circles and the twin circles of Archimedes.

Key words: arbelos, Archimedean circle, k -Archimedean circle, twin circles of Archimedes, k -Archimedean twins.

MSC2020: 01A27, 51M04

Poopćenje Arhimedovih kružnica blizanaca

SAŽETAK

U radu proučavamo arbelose i dajemo poopćenje Arhimedovih kružnica i Arhimedovih kružnica blizanaca.

Ključne riječi: arbelos, Arhimedova kružnica, k -Arhimedova kružnica, Arhimedove kružnice blizanci, k -Arhimedovi blizanci

1 Introduction

For a point C on the segment AB such that $|BC| = 2a$, $|CA| = 2b$ and $|AB| = 2c$, let α , β and γ be the semicircles of diameters BC , CA and AB , respectively, constructed on the same side of AB . The area formed by the three semicircles is called an arbelos, and the radical axis of α and β is called the axis. The axis divides the arbelos into two curvilinear triangles with congruent incircles of radius ab/c . It has been believed that the two circles were studied by Archimedes, and they are called the twin circles of Archimedes (see Figure 1). Circles of radius ab/c are called Archimedean circles. In this paper we generalize Archimedean circles and the twin circles of Archimedes.

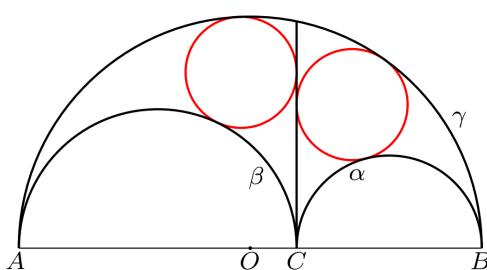


Figure 1.

We use a rectangular coordinate system with origin C such that the farthest point on α from the line AB has coordinates (a, a) . The center of γ is denoted by O .

2 k -Archimedean circle

We give a definition of a generalized Archimedean circle.

Definition 1 Let $w_k = a^2 + kab + b^2$ for a real number k . We say that a circle is k -Archimedean if it has radius

$$r_k = \frac{abc}{w_k}.$$

The incircle of the arbelos has radius

$$\frac{ab(a+b)}{a^2 + ab + b^2} = \frac{abc}{w_1}.$$

Therefore it is 1-Archimedean. The twin circles of Archimedes have radius

$$\frac{ab}{a+b} = \frac{abc}{c^2} = \frac{abc}{w_2}.$$

Therefore they are 2-Archimedean. Hence k -Archimedean circles are generalizations of those circles. 3-Archimedean circles can be found in the following problem in Wasan geometry (see Figure 2):

Problem 1. Three congruent circles of radius r touch the semicircle γ internally so that two of them touch the remaining circle externally and also touches the external common tangent of the semicircles α and β from the side opposite to the point C . Show that the following relation holds:

$$r = \frac{abc}{a^2 + 3ab + b^2}.$$

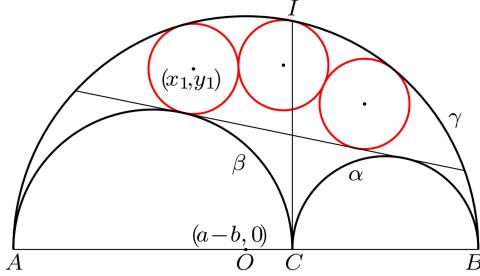


Figure 2.

The problem was proposed by Taguchi in 1817 [3]. Wasan is the Japanese mathematics developed in Edo period. For a brief introduction of Wasan geometry, see [1]. Definition 1 has been made inspired by this problem. It is obvious that r_k is a monotonically decreasing function of k .

3 k -Archimedean twins

In this section we generalize the twin circles of Archimedes. We regard that if t is a perpendicular to AB , then it is represented by the equation $x = t$ with the same symbol t .

Theorem 1 For a circle δ_a (resp. δ_b) of radius r touching β (resp. α) externally, and γ internally, let t_a (resp. t_b) be the perpendicular to AB touching δ_a (resp. δ_b) from the same side as A (resp. B). Then the circles δ_a and δ_b are k -Archimedean if and only if

$$t_b - t_a = 2kr. \quad (2)$$

Proof. Let (x_a, y_a) (resp. (x_b, y_b)) be the coordinates of the center of δ_a (resp. δ_b). We have

$$(x_a + b)^2 + y_a^2 = (b + r)^2 \text{ and } (x_a - (a - b))^2 + y_a^2 = (c - r)^2.$$

Solving the equations for x_a and y_a , we have

$$(x_a, y_a) = \left(r - 2b \left(1 - \frac{r}{a} \right), \frac{2\sqrt{bc(a-r)r}}{a} \right). \quad (3)$$

Similarly, we have

$$(x_b, y_b) = \left(-r + 2a \left(1 - \frac{r}{b} \right), \frac{2\sqrt{ac(b-r)r}}{b} \right). \quad (4)$$

Therefore we have

$$t_a = -2b \left(1 - \frac{r}{a} \right), \quad t_b = 2a \left(1 - \frac{r}{b} \right).$$

Hence we have

$$\begin{aligned} \frac{t_b - t_a}{2r} - k &= \frac{a + b}{r} - \left(\frac{a}{b} + \frac{b}{a} \right) - k \\ &= \frac{c}{r} - \frac{a^2 + abk + b^2}{ab} = c \left(\frac{1}{r} - \frac{1}{r_k} \right). \end{aligned}$$

Therefore (2) and $r = r_k$ are equivalent. \square

We call the two congruent circles δ_a and δ_b in the theorem *the k -Archimedean twins*, which are generalizations of the twin circles of Archimedes. We have the next corollary (see Figure 3).

Corollary 1 If k is a positive integer in the event of Theorem 1, there are congruent circles $\delta_a = \delta_1, \delta_2, \delta_3, \dots, \delta_k = \delta_b$ and perpendiculars $t_a = t_0, t_1, t_2, \dots, t_k = t_b$ to AB such that $t_i - t_{i-1} = 2r$ for $i = 1, 2, \dots, k$ and t_{i-1} touches the circles δ_{i-1} and δ_i for $i = 2, 3, \dots, k$.

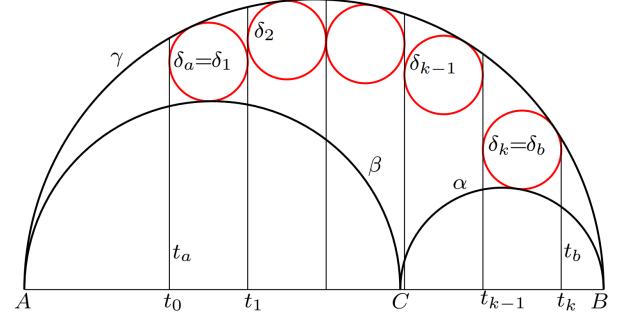
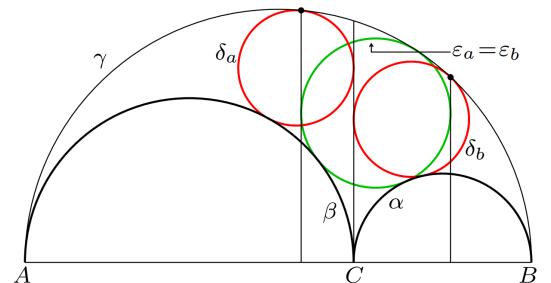
Figure 3: $k = 5$.

Figure 4: 1-Archimedean twins and 2-Archimedean twins.

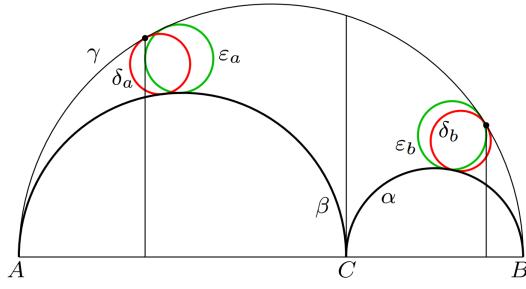


Figure 5: k -Archimedean twins and $k-1$ -Archimedean twins ($k=6$).

The next theorem shows that $k-1$ -Archimedean twins are obtained from k -Archimedean twins, and conversely (see Figures 4 and 5, where 1-Archimedean twins in Figure 4 are overlapping).

Theorem 2 Let δ_a and ϵ_a (resp. δ_b and ϵ_b) be the circles touching β (resp. α) externally, γ internally such that the perpendicular to AB touching ϵ_a (resp. ϵ_b) from the same side as A (resp. B) passes through the point of tangency of δ_a (resp. δ_b) and γ . The following statements hold.

- (i) δ_a (resp. δ_b) is k -Archimedean if and only if ϵ_a (resp. ϵ_b) is $k-1$ -Archimedean.
- (ii) δ_a and δ_b are k -Archimedean twins if and only if ϵ_a and ϵ_b are $k-1$ -Archimedean twins.

Proof. Let r and x_a be the radius of δ_a and the x -coordinate of its center, respectively. Then

$$x_a = r - 2b \left(1 - \frac{r}{a}\right) \quad (5)$$

by (3). Let e be the radius of ϵ_a . The perpendicular to AB touching ϵ_a from the same side as A is represented by the equation $x = -2b(1 - e/a)$. The point of tangency of γ and δ_a is the external center of similitude of the two circles. Hence it has x -coordinate $(-r(a-b) + cx_a)/(c-r)$. Therefore we have

$$-2b \left(1 - \frac{e}{a}\right) = \frac{-r(a-b) + cx_a}{c-r}.$$

Substituting (5) in this equation and solving the resulting equation for $1/e$, we have

$$\frac{1}{e} = \frac{1}{r} - \frac{1}{c}.$$

While we have

$$\frac{1}{c} + \frac{1}{r_{k-1}} = \frac{1}{r_k}.$$

Eliminating $1/c$ from the last two equations, we have

$$\frac{1}{e} - \frac{1}{r_{k-1}} = \frac{1}{r} - \frac{1}{r_k}.$$

Therefore δ_a is k -Archimedean if and only if ϵ_a is $k-1$ -Archimedean. The rest of (i) is proved similarly. The part (ii) is obvious. \square

4 Maximal k -Archimedean twins

We consider the maximal k -Archimedean twins. We denote the configuration consisting of an arbelos and k -Archimedean twins δ_a and δ_b with their tangents t_a and t_b by \mathcal{T}_k . For \mathcal{T}_k , the centers of δ_a and δ_b have x -coordinates $t_a + r_k$ and $t_b - r_k$, respectively. By Theorem 1 we have the followings: If $k = 1$ then $t_a + r_k = t_b - r_k$. If $k < 1$ then $t_b - r_k < t_a + r_k$, and if $1 < k$ then $t_a + r_k < t_b - r_k$ (see Figures 6 and 7).

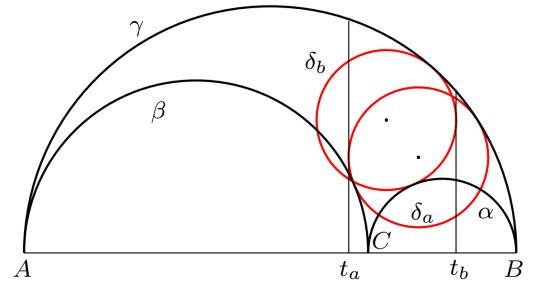


Figure 6: $k < 1$, $t_b - r_k < t_a + r_k$.

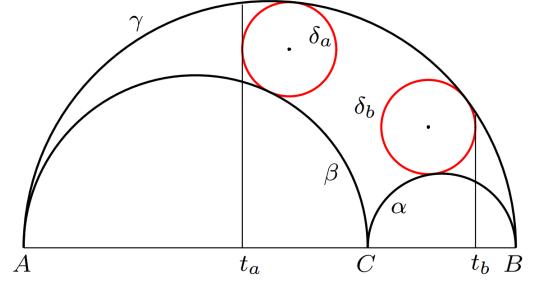


Figure 7: $1 < k$, $t_a + r_k < t_b - r_k$.

Assume $a \leq b$ for \mathcal{T}_k . Then the circles δ_a and δ_b are maximal if δ_a and α overlap (see Figure 9). Solving the equation $r_k = a$ for k in this case, we have

$$k = 1 - \frac{a}{b}. \quad (6)$$

Therefore the k -Archimedean twins exist if and only if $1 - a/b \leq k$ and the maximal k -Archimedean twins are obtained if (6) holds. Notice that $1 - a/b \geq 1 - b/a$ in this event. Therefore we can say that k -Archimedean twins exist if and only if $k \geq \max(1 - a/b, 1 - b/a)$. A similar result can also be obtained in the case $a > b$. Therefore we have the following theorem.

Theorem 3 *k*-Archimedean twins exist if and only if

$$k \geq \max \left(1 - \frac{a}{b}, 1 - \frac{b}{a} \right).$$

The maximal *k*-Archimedean twins are obtained if and only if

$$k = \max \left(1 - \frac{a}{b}, 1 - \frac{b}{a} \right).$$

Assume $a \leq b$ and $k = 1 - a/b$ for \mathcal{T}_k . Then we have $r_k = a$ and

$$\begin{aligned} (x_b, y_b) &= \left(-r_k + 2a \left(1 - \frac{r_k}{b} \right), \frac{2\sqrt{ac(b-r_k)r_k}}{b} \right) \\ &= \left(a - \frac{2a^2}{b}, \frac{2a\sqrt{b^2-a^2}}{b} \right) \end{aligned}$$

by (4). While solving the equations $x^2 + y^2 = 4a^2$ and $(x - (-b))^2 + y^2 = b^2$, we get that the semicircles of center C passing through the point B meets β in the point of coordinates

$$\left(-\frac{2a^2}{b}, \frac{2a\sqrt{b^2-a^2}}{b} \right).$$

Therefore this point is one of the endpoints of the diameter of δ_b parallel to AB (see Figure 8). Since $\delta_a = \alpha$, the axis and t_a overlap. Especially if $a = b$, then $\max(1 - a/b, 1 - b/a) = 0$. Therefore the configuration \mathcal{T}_0 exists, where δ_a and δ_b are the maximal 0-Archimedean twins and overlap with α and β , respectively, and t_a and t_b overlap with the axis (see Figure 9).

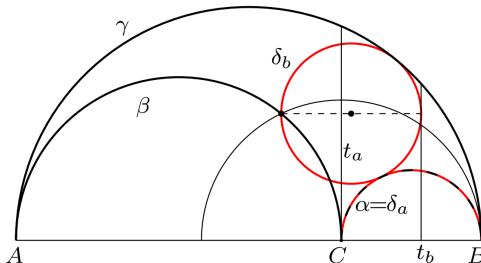


Figure 8: \mathcal{T}_k ($a < b$, $k = 1 - a/b$).

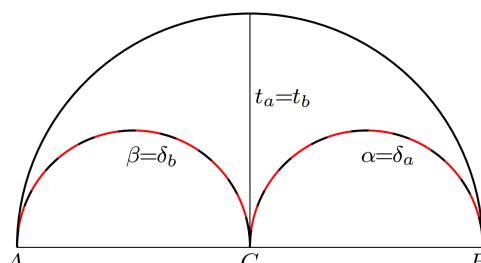


Figure 9: \mathcal{T}_0 ($a = b$).

References

- [1] OKUMURA, H., Wasan geometry. In: Sriraman, B. ed., *Handbook of the Mathematics of the Arts and Sciences*, Springer, Cham, 2020, 1–52, https://doi.org/10.1007/978-3-319-70658-0_122-1
- [2] OKUMURA, H., WATANABE, M., The twin circles of Archimedes in a skewed arbelos, *Forum Geom* **4** (2004), 229–251.
- [3] Saitama Prefectural library ed., The sangaku in Saitama, 1969, Saitama Prefectural Library.

Hiroshi Okumura

orcid.org/0000-0003-4332-0189

e-mail: hokmr@yandex.com

Takahananadai Maebashi Gunma 371-0123, Japan

Appendix: Proof of Problem 1

We give a proof of Problem 1, since it was proposed with no solution (see Figure 2). Let δ_i ($i = 1, 2, 3$) be the three congruent circles, where δ_1 and δ_3 touch δ_2 externally. Let (x_i, y_i) be the coordinates of the center of the circle δ_i . The point of intersection of γ and the axis is denoted by I . Let t be the external common tangent of α and β . The line t has an equation ([2]):

$$t(x, y) = (a - b)x - 2\sqrt{ab}y + 2ab = 0.$$

While the point I has coordinates $(0, 2\sqrt{ab})$, because γ is represented by an equation $(x - 2a)(x + 2b) + y^2 = 0$. Hence the line IO is perpendicular to t . Therefore I coincides with the midpoint of the arc of γ cut by t , i.e., the circle δ_2 touches γ at I . Hence we have $x_2^2 + (y_2 - 2\sqrt{ab})^2 = r^2$ and $(x_2 - (a - b))^2 + y_2^2 = (c - r)^2$. Solving the two equations for x_2 and y_2 , we have

$$x_2 = \frac{(a - b)r}{c}, \quad y_2 = \frac{2\sqrt{ab}(c - r)}{c}. \quad (7)$$

If the perpendicular from the center of δ_1 to AB meet t in a point of coordinates (x_1, y_1) , then $t(x_1, y_1) = 0$, while there is a real number $z > 0$ such that $y_1 = y' + z$. Then $t(x_1, y_1) = t(x_1, y' + z) = t(x_1, y') - 2\sqrt{ab}z = -2\sqrt{ab}z < 0$. Hence we get $t(x_1, y_1) < 0$. Therefore we have $t(x_1, y_1)/c = -r$. We also have $(x_2 - x_1)^2 + (y_2 - y_1)^2 = (2r)^2$ and $(x_1 - (a - b))^2 + y_1^2 = (c - r)^2$. Eliminating x_1 and y_1 from the three equations with (7) and solving the resulting equation for r , we get (1).