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ABSTRACT

This paper presents novel analytical forms of Fuss' re-
lations for bicentric polygons with an odd number of
sides and higher rotation numbers. The method is based
on Poncelet's theorem and Radi¢'s theorem and conjec-
ture concerning the connection between Fuss' relations
for different rotation numbers. Explicit analytical expres-
sions are obtained for the bicentric triskaidecagon with
k=2,4,6 and for the bicentric pentadecagon with k =2,
while complete sets of relations are established for the bi-
centric heptadecagon (k = 1,2,3,4,5,6,7,8) and ennead-
ecagon (k=1,2,3,4,5,6,7,8,9). The proposed approach
simplifies the derivation and enables a systematic extension
of known Fuss' relations to higher-order bicentric poly-
gons and new rotation numbers, confirming the validity of
Radi¢’s conjecture.

Key words: bicentric polygon, Fuss' relation, rotation
number, triskaidecagon, pentadecagon, heptadecagon, en-
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1 Introduction

A bicentric n-gon is a polygon with n sides that is both
tangential (it possesses an inscribed circle, or incircle) and
cyclic (it possesses a circumscribed circle, or circumcir-
cle). These two circles are nested, meaning that one lies
entirely within the other.

Let Ay,...,A, be a bicentric n-gon with an incircle C of
radius r centered at point /, and a circumcircle K of radius
R centered at point O. Denote by d the distance between
their centers, where the circle C lies inside the circle K.
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O Fussovim relacijama za bicentri¢ne poligone s
neparnim brojem vrhova

SAZETAK

U radu su izvedeni analiti¢ki oblici Fussovih relacija za bi-
centri¢ne poligone s neparnim brojem stranica i vi§im bro-
jevima rotacije. Metoda se temelji na Ponceletovom teo-
remu te Radi¢evom teoremu i slutnji u vezi s povezano$éu
Fussovih relacija za razli¢ite brojeve rotacije. Dobiveni su
eksplicitni analiti¢ki izrazi za bicentri¢ni trinaesterokut s
rotacijskim brojem k = 2,4,6 i za bicentri¢ni petnaeste-
rokut s rotacijskim brojem k = 2, dok su uspostavlje-
ni kompletni skupovi relacija za bicentriéni sedamneaste-
rokut (za k=1,2,3,4,5,6,7,8) i devetnaesterokut (za k =
1,2,3,4,5,6,7,8,9). PredloZeni pristup pojednostavljuje
izvodenje i omogucuje sustavno proSirenje poznatih Fusso-
vih relacija na bicentri¢ne poligone viseg reda i nove bro-
jeve rotacije, &ime se potvrduje valjanost Radiceve slutnje.

Kljuéne rijeéi: bicentri¢ni poligon, Fussova relacija,
rotacijski broj, trinaesterokut, petnaesterokut, sedam-
naesterokut, devetnaesterokut

Let T1,...,T, be the points of tangency of the sides (seg-
ments) A1A,...,A A, respectively. The lengths |A;T;|,
i=1,...,n, are called the tangent lengths of the polygon
Ar,.. . Ap If

n AT,
Zarctan (' ! ’|> =kn (1)
Py

r

where k is a positive integer satisfying k < ”2;1, the poly-
gonAyp,...,A, is said to be k-circumscribed, and £ is called
its rotation number [8]].
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The relation connecting the radii of the incircle and cir-
cumcircle, and the distance between their centers, is called
a Fuss’ relation. Throughout this paper, the notation

F,fk) (R,r,d) = 0 will consistently denote the Fuss’ relation
for a bicentric n-gon with rotation number k, relating the
radii R and r of the circumcircle and incircle and the dis-
tance d between their centers.

The problem of determining the relation between the radii
of the incircle and circumcircle and the distance between
their centers for bicentric polygons is one of the classical
topics of Euclidean geometry, originating from the results
of Euler and Fuss. Euler first derived the corresponding re-
lation for the triangle, while Nicolaus Fuss (1755-1826)
obtained analogous relations for bicentric quadrilaterals,
pentagons, hexagons, and heptagons. These expressions
are now collectively known as Fuss’ relations.

Later authors extended these relations to polygons of
higher order, using various analytical, geometrical, and
computational approaches. Particularly significant are the
results of Mirko Radi¢, who developed a relatively simple
and effective method for establishing Fuss’ relations based
on Poncelet’s theorem. In papers [3]-[7], [9], Fuss’ rela-
tions were derived for bicentric polygons up ton =11, and
for certain cases with n = 13,15,17,18. However, these
results do not include all possible values of the rotation
number k. Specifically, for the bicentric triskaidecagon
(13-gon), only the cases k = 1,3,5 were known, while for
the bicentric pentadecagon (15-gon) the known cases were
k=1,3,4,5,6. The remaining cases k = 2,4,6 forn = 13
and k = 2 for n = 15 have not been obtained analytically so
far, mainly due to the computational complexity of Radi¢’s
classical method, whose algebraic expressions grow expo-
nentially with both n and even values of k.

Recent investigations have further extended the study of
bicentric and Poncelet-type polygons using computational
and algebraic methods. For instance, Dragovi¢ and Rad-
novié [2] analyzed Poncelet’s porisms through elliptic and
hyperelliptic function theory, establishing algebraic inte-
grability and modular relations for multi-rotational poly-
gons. New algebraic invariants associated with Pon-
celet—Jacobi bicentric polygons have been introduced and
studied in the work of Roitman, Garcia, and Reznik [[10],
providing additional structural insight into the geometry
underlying bicentric configurations. Compared with these
works, the present paper emphasizes a purely analytic-
geometric derivation of Fuss’ relations, providing explicit
polynomial forms for higher-order odd bicentric polygons.
This complements rather than replaces the modern compu-
tational approaches, bridging classical Euclidean geometry
with contemporary algebraic methods.

The present paper builds upon Radié’s approach and pro-
vides new analytical forms of Fuss’ relations for bicentric

polygons with an odd number of sides and higher rota-
tion numbers. The derivation is based on Poncelet’s the-
orem, Radié¢’s theorem on the connection between Fuss’
relations, and Radi¢’s conjecture on their equivalence for
different rotation numbers. Detailed statements of these
results and references to their proofs are given in Section[2]

The main contribution of this paper is the derivation of pre-
viously unknown Fuss’ relations for:

* the bicentric triskaidecagon (13-gon) with the rota-
tion numbers k = 2,4, 6,

* the bicentric pentadecagon (15-gon) with the rota-
tion number k = 2,

* the bicentric heptadecagon (17-gon) with the rota-
tion numbers k = 1,2,3,4,5,6,7,8,

* and the bicentric enneadecagon (19-gon) with the ro-
tation numbers k = 1,2,3,4,5,6,7,8,9.

In this way, the paper fills a previously unexplored part of
the set of known bicentric polygons and demonstrates the
efficiency of a generalized approach that combines Pon-
celet’s theorem with Radi¢’s results on the relationship

between the Fuss’ relations F," (R,r,d) and Fn(;]/): (R,r,d)
where p and ¢ are determined by the greatest common di-

visor of n and k.

2 Theoretical background

This section provides a concise overview of the mathemati-
cal foundations on which the results of this paper are based.
It includes the statements of Poncelet’s theorem, Radi¢’s
theorem on the connection between Fuss’ relations, and
Radi¢’s conjecture. Proofs of these theorems, and the
derivation of the associated algorithms can be found in the
cited works; therefore, only the relevant formulations and
explanations are given here. Among them, Poncelet’s the-
orem plays a central role in establishing the existence of bi-
centric polygons. This classical theorem is fundamental in
the study of bicentric polygons and underlies the existence
of closed polygons tangent to one circle and inscribed in
another.

Theorem 1 (Poncelet’s theorem) Let C and K be two cir-
cles in a plane such that one lies entirely inside the other.
Then exactly one of the following two statements holds:

a) There exists no bicentric n-gon whose incircle is C
and whose circumcircle is K.
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b) There exist infinitely many bicentric n-gons whose
incircle is C and circumcircle is K. For every point
A1 on the circle K, there exists a bicentric n-gon
A1,As, ..., A, whose incircle is C and circumcircle
is K.

A detailed proof of this classical theorem can be found in
[L] and is not repeated here.

Theorem 2 Let n and k be positive integers, and let

p=ged(nk), k=p-q.

Then the corresponding Fuss’ relations satisfy

EY (Rrd) = FYY) (R,r,d)

where n is the number of sides and k the rotation number.

That is, analytically the Fuss’ relation for a bicentric n-
gon with rotation number k is equivalent to the relation
for a smaller bicentric %-gon and rotation number g. The
proof of this theorem is given in [9], where a computational
procedure based on tangent lengths and Poncelet’s closure
condition is also presented.

Conjecture 1 For an odd integer n > 3, the following
equalities hold for the Fuss’ relations of bicentric n-gons:

F(R,r,d) = Y (R, r,d)
Sorall odd i, j with ged(i,n) = ged(j,n) =1,
(u) _r®
Fn (R7rad) —Fn (Rar7d)

Sor all even u,v with gcd(u,n) = ged(v,n) = 1.

In other words, all Fuss’ relations for rotation numbers
that are coprime to n are identical within the same par-
ity class (odd or even). The Conjecture[I] has been ver-
ified analytically and numerically for numerous values up
to n = 18, but it remains unproven in the general case. If
eventually proven, this Conjecture [I| would reveal a fun-
damental structural symmetry among Fuss’ relations for
bicentric n-gons. Although Conjecture[] has not yet been
rigorously established in full generality, the results pre-
sented here rely on it as a practical working assumption.
Its validity has been confirmed for all tested configurations
through both analytical derivations and numerical verifica-
tion, which supports the conjecture’s applicability within
the scope of the present study.
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Remark 1 Radi¢’s Conjecture plays a fundamental
role in simplifying the classification of Fuss’ relations for
bicentric n-gons with an odd number of sides [9)]. It ef-
fectively reduces the number of distinct analytical forms
that must be derived, since all relations within the same
parity class (odd or even rotation numbers) are conjec-
tured to coincide. In this paper, the Conjecture is
adopted as a working hypothesis for the higher-order cases
(n=13,15,17,19) of this study, and the obtained results
are in complete agreement with its predictions. Although
the general proof of the Conjecture[l] remains open, the
analytical and numerical confirmations presented here fur-
ther support its validity and may provide further evidence
supporting its eventual formal proof.

3 Method

The analytical procedure for determining the coordinates
of the vertices of a bicentric n-gon A1,A»,...,A,, when n
is an odd number and the rotation number k = 1, was orig-
inally presented in [3]]. In this section, the method is sum-
marized, further clarified, and extended to cases of higher
rotation numbers k > 1. The procedure is based on Pon-
celet’s theorem, which guarantees the existence of a closed
polygon inscribed in one circle and tangent to another, and
on Radi¢’s Theorem 2] and Conjecture [T}, which establish
the relationships among the corresponding Fuss’ relations

R (R,r,d) = 0 for different values of k.

Geometric setup. According to Poncelet’s theorem, the
choice of initial point and orientation does not affect poly-
gon closure. Therefore, without loss of generality, we con-
sider a configuration symmetric with respect to the x-axis,
which passes through the centers of the two circles. The in-
circle C of radius r is centered at the point /(d,0), while the
circumcircle K of radius R is centered at the origin O(0,0).
The parameter d denotes the distance between their cen-
ters, and the inner circle C lies strictly inside the outer cir-
cle K, that is,

R>d+r>0.

This assumption guarantees that C is completely contained
within K and will later justify excluding nonphysical fac-
tors in the closure condition.

The polygon vertices Aj,...,A, lie on K, and the sides
AjAi41 are tangent to C.

Let #; denote the tangent to the circle C at the point of tan-
gency corresponding to the side A;A;+1, and let 7; denote
the tangency point on C. The coordinates of the first vertex
A1 are obtained as the intersection of the tangent 1, drawn
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at the point P(x,,0) on the circle C, with the circle K. The
abscissa x,, depends on the parity of the rotation number:

d+r,
X, =
P d—r,

Recursive construction of vertices. Each subsequent ver-
tex A;(x;,yi), for i =2,3,...,n, is determined as the inter-
section of the tangent #; drawn from A;_; to the incircle C
and the circumcircle K. The equation of the tangent ¢; is
obtained from two conditions:

if k is odd,
if k is even.

1. the line y = ax + b passes through the known vertex
Ai-1(xi—1,Yi-1), and

2. the line is tangent to the circle C.

From these conditions, the slope a and the intercept b are
obtained by solving the system:

axi1+b=y,

2
?(1+a*) — (ad+b)*> =0. @

The intersection of this tangent with the circumcircle K
gives the coordinates of the vertex A;.

Since the polygon is symmetric with respect to the x-axis,
the vertex A(, 1)/ lies on this axis, with the abscissa
x=-—-R

Closure condition and derivation of the Fuss’ relation.
In the geometric construction of a bicentric n-gon, we con-
sider two opposite vertices, Aj and A, ;1) /2, on the circum-
circle. From each of these vertices, tangents are drawn to
an arbitrarily chosen vertex A; on the same circle. When
the point A; is reached by successive tangent constructions
starting from Ay, it is denoted by AEI). Likewise, when
the same vertex is reached by tangents constructed in the
opposite direction, starting from A, )2, it is denoted by
Al 1)/2)

i

. The superscript therefore indicates the origin
of the tangent sequence: Al(l) corresponds to the forward

traversal originating from A (with successive index incre-

ments of +1), while AE("H)/ 2) corresponds to the back-
ward traversal originating from A, 1)/, (with successive
decrements of —1). All intermediate vertices generated
along these two tangent sequences inherit the superscript
of their respective starting vertex.

The closure condition of the bicentric n-gon requires that
these two tangent sequences terminate at the same vertex
on the circumcircle; in other words, the points obtained
from the forward and backward constructions must coin-
cide:

A Z pl1)/2)

l 1

This geometric requirement ensures that the polygon
closes after n sides and thus satisfies Poncelet’s closure
theorem.

By equating the corresponding abscissas (and equivalently
the ordinates) of the two coinciding vertices, one obtains
the analytical closure equation

o(R,r,d)-F* (R,r.d) =0,

where p(R,r,d) is a non-vanishing scalar factor, and

forl (R,r,d) = 0 represents the analytical form of the Fuss’
relation for the given n and rotation number k.

This formulation expresses the precise condition for polyg-
onal closure and provides the foundation for deriving the
explicit analytical expressions of the Fuss’ relations dis-
cussed in the following sections.

Extension to higher rotation numbers. For polygons
with rotation number k > 1, the construction proceeds anal-
ogously, but the initial tangent #; is drawn at the point
P(x,,0) chosen according to the parity of k. Each subse-
quent tangent #; is determined recursively using (2)), while
the closure condition is imposed after every k steps, that is,
after k successive tangent mappings returning the polygon
to the same orientation with respect to the incircle. The
resulting equation in (R, r,d) then yields the corresponding

Fuss’ relation F,,(k) (R,r,d)=0.

The bicentric n-gon constructed from the initial point
Aj (xp,0) thus represents the entire family of configura-
tions satisfying Poncelet’s closure condition. The same
geometric construction, with the choice x, = d + r for
odd k and x, = d — r for even k, yields all correspond-
ing Fuss’ relations for different rotation numbers. In par-
ticular, this means that the same analytical form of Fuss’
relation Fn(k) (R,r,d) = 0 applies to all polygons with ro-
tation numbers of the same parity (e.g., k = 1,3,5,... or
k=2,4,6,...), as predicted by Conjecture [T}

This recursive—geometric procedure, combined with alge-
braic elimination of intermediate coordinates, enables the
analytic derivation of Fuss’ relations for various odd values
of n and rotation numbers k. The method thus provides a
unified analytical approach applicable to all bicentric poly-
gons that satisfy Poncelet’s closure condition.

Transition to the results. The procedure described above
enables the analytical determination of the closure condi-
tion for any bicentric n-gon satisfying Poncelet’s theorem.
By applying the method to specific values of n and &, the
corresponding Fuss’ relations farl (R,r,d) =0 can be ex-
plicitly derived. In the following section, we present the
results obtained for the bicentric 13-gon, 15-gon, 17-gon,
and 19-gon, including several previously unknown rela-
tions corresponding to higher rotation numbers.
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4 Results

Throughout this section we use the shorthand

R+d R—d
p= ) q= } 3)

r r

For a bicentric n-gon the rotation number satisfies k €
{1,...,[(n—1)/2]}. By Theorem[2] and Conjecture [1],
the corresponding Fuss’ relations Fn(k) (R,r,d) = 0 group
into two parity classes (odd/even) that are identical within
each class when ged(k,n) = 1.

Bicentric 13-gon. For the bicentric 13-gon, the admissi-
ble rotation indices are k € {1,2,3,4,5,6}. According to
Theorem@ and Conjecture E} all Fuss relations for the bi-
centric 13-gon fall into two parity classes (odd and even):

FO R rd) = FS (R.r.d) = FS) (R.r,d) = 0, @)

FPRrd)=FY (R,r,d) = F (R,r,d) = 0. (5)

The odd-class identity was obtained in [3], here we de-
rive the corresponding even-class relation (5).

Theorem 3 (13-gon, even class) The bicentric 13-gon
with rotation number k = 2 satisfies

F1(32> (Rarvd) = 07

where the explicit polynomial form in p,q is listed in Ap-
pendix A, Eq. (A).

Detailed proof. We work in the symmetric coordinate
setup from Section[3} the incircle

C: (x—d)*+y*=r* and K: xX*+)y*=R?,

with C entirely inside K and the x-axis joining the centers
0(0,0) and I(d,0). For the even rotation number k = 2 we
start from the tangency point

P(d—r0)eC,

whose tangent to C is the vertical line x = d — r. Its inter-
section with K gives the first vertex

Ap=(xi,y)=(d—r, \/m),

where the sign of the square root is chosen so that A; lies
above the x-axis. This choice only fixes orientation and
does not affect the final closure condition.
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Tangent from a given vertex and the next intersection with
K. LetA;—; = (x0,y0) € K. Alinet;:y=ax+ Db passes
through A;_ iff b = yp — axp. The condition that #; is tan-
gent to C is

ad +b)?

mmMNZ(H#:ﬂ%éﬁuﬂﬂ4m+W:o

Substituting b = yg — axo yields a quadratic equation for
the slope a:

(rz— (d—xo)z)a2—2(d—xo)yoa+ (rz—y%) =0. (6)

We pick the root that continues the forward traversal of the
polygon (the other root corresponds to the opposite tan-
gent).

Once a is fixed, #; meets K at two points whose x-
coordinates are the roots of

(1+a*)x* +2abx+ (b* —R*) = 0.

Since one root is xp, Vieta’s formulas give the other root
explicitly as

a® —1xo—2a
X = @ 1)+Oa72 y07 yi =ax;+b. @)

Equations (6)—(7) form the closed recurrence for succes-
sive vertices.

Three steps from A;. Applying (€)-(7) first with (xo,yo) =
A1, and then again from A, to obtain Agl), we arrive (after
clearing radicals by squaring and simplifying) at rational
expressions in (R, r,d). It is convenient to use the variables
p and ¢ introduced in (3). In these variables, the abscissa

of Agl) takes the form
n
=5 ®)

with

n! :r(—p7(q— D*(g+1)
+0%(q" = 1)*(4° +64° +39+2)
+p°q(q+1)* (24" —5¢° — 44* +7q— 4)
— " (@ +10g" — 64> — 12¢% +5¢+2)
+p3q3(—4q4 +5¢° +6¢% +5g+ 8)
+p°q (—4 +24* +q-2)
+pq° (24> =39 —4) +q6(q+2))7

' =2(p(~(a-1)))g+ 1)~ PPalg+1)?

2 3 2
+rq (q+1)+q‘) -
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Four steps from the symmetry point. By symmetry with
respect to the x-axis, the middle vertex of the 13-gon is

A1341)2 =A7 = (—R,0).

Starting from A and iterating (6)—(7) three times forward
(to Aé7) ,Ag) ,Ay)) and once more to reach Ag), we obtain

=5 ©)

with
7
n{" =r(p+a) (p'*(a® ~ (4" ~204° ~ 264" ~ 2047 +1)

-8p"¢*(¢* — 1)*(¢° — 54" — 94 —3)

+4p" 24" (¢* —1)2(7¢% +84° + 504" +404* - 9)
—8p'%5 (4> — 1)2(7¢° +29¢" +494° + 11)
+2p%¢ (3548 +604° — 1584* — 684> +99)
—8p%¢'%(74° = 3¢* — 3147 + 11)

+4p*q" (74" — 184* —9) — 8p*q"* (4> - 3) +q16) :

7
i <2(p (- 1a* + 64>+ 1)
—4p°¢ (¢ = 1) (¢ +1)
2
+p*(64° —44° +64%) —4p* (¢* +4°) + qg) :
Poncelet closure and factorization. Poncelet’s closure for

the bicentric 13-gon with k = 2 requires that the two con-
structions agree at the same point on K, hence

Clearing denominators in (B)—(9) and simplifying, we ob-
tain a polynomial equation in (R, r,d) which factors as

_ (2 _ P2y, g _
(d—r+R)-(d*>—2rR—R*)-F5 (R,r,d) =0, (10)

where F1(32 ) (R, r,d) is the polynomial displayed in ll

Excluding extraneous factors. Because C lies strictly in-
side K, we have R > d + r with r > 0. The factor d — r +
R =0 would imply R=r—d <r+(—d) < r+d, contra-
dicting R > d + r unless r = 0 (degenerate). Moreover,

d* —2rR—R* < d* —2r(d+r) — (d+r)* = — (4dr +3r%) <0,

so d*> —2rR — R*> = 0 is impossible under the nesting as-
sumption. Hence the only admissible factor in (T0) is

F2 R, rd) =0,

which is exactly the claimed Fuss’ relation for the 13-gon
with rotation number k = 2.

This completes the detailed analytic derivation. O

Graphical examples. For illustration, we present a con-
crete bicentric configuration corresponding to the analyti-
cally and numerically verified configuration of the 13-gon
with rotation number k = 2. With R =1 and d = 0.1, solv-

ing F1(32) (R,r,d) =0 yields
r1372 = 0856554,

while, according to the even-class relations @), the corre-
sponding radii for higher even rotation numbers are

riz4a = 0.561780, 7'13,6 =0.119618.

Figure 1 illustrates the configuration for k = 2.

Arz

Figure 1: Bicentric 13-gon for R =1, d = 0.1, ri35 =
0.856554, and rotation number k = 2. The incircle C is
tangent to all sides of the polygon, and the circumcircle K
passes through all vertices Ay, ...,A13. The centers O and
I are aligned on the x-axis. The polygon closes precisely
after 13 tangents, confirming the analytical and numerical

validity of the derived relation F1(32 ) (R,r,d) =0.

Bicentric 15-gon. For the bicentric 15-gon, the admissi-
ble rotation indices are k € {1,2,3,4,5,6,7}. According
to Theorem@ and Conjecturem, all Fuss’ relations for the
bicentric 15-gon fall into four parity classes:

FYRrd)=F (R,r,d) =0, (11)
F& (R, r,d) = F" (R,r,d) =0 (12)
FY Rrd)=F" (R,r,d) =0, (13)
F2 Rrd)=F2 R,r,d)=0. (14)

Identity (TT) was obtained in [3], and the identities (12)
and (T3) were obtained in [9]]. Here we derive the identity

(T
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Theorem 4 For a bicentric 15-gon with circumcircle of
radius R, incircle of radius r, and distance d between their
centers, the corresponding Fuss’ relations satisfy:

F2 (R rd)=F2 (R,rd) =0.

The explicit analytical forms of these relations are pro-
vided in Appendix A, Eq. (A.2).

Proof. The proof follows the same analytic—geometric
procedure as in Theorem The coordinates of the ver-
tices A;(x;,y;) are determined recursively from the tangent
condition (@) for the bicentric configuration with n = 15.
The closure condition is imposed by equating the ab-
scissas (and, equivalently, the ordinates) of the vertices
A(l)(x(l) y(l)) and A(7)(x(7) ym) obtained from tangents
3 W3 )3 3 W3 5)3 )
drawn from Ay and A, 1)/2. Since both k =2 and k =4
correspond to even rotation numbers, the geometric con-
struction and algebraic elimination are completely anal-
ogous to those in Theorem [3| (the 13-gon case), differ-
ing only in the degree of the resulting polynomial in r.

After simplification, the equations Fl(sz) (R,r,d) =0 and
Fl(g ) (R,r,d) =0 are obtained. O

Bicentric 17-gon. For the bicentric 17-gon, the admissible
rotation indices are k € {1,2,3,4,5,6,7,8}. According to
Theorem[2] and Conjecture[I], all Fuss relations for the bi-
centric 17-gon can be grouped into two parity classes: one
corresponding to odd rotation numbers (k = 1,3,5,7) and
the other to even rotation numbers (k = 2,4,6,8). Each
class satisfies a distinct analytical form of the Fuss’ rela-
tion, which is common to all members of that class. In the
following theorem, we present the proof that covers both
cases, demonstrating the validity of the relations for odd
and even rotation numbers.

Theorem 5 For a bicentric 17-gon with circumcircle of
radius R, incircle of radius r, and distance d between their
centers, the corresponding Fuss’ relations satisfy:

Fly (R.rd) =Fl7 (R,rd) = F (R,r.d) = {7 (R.r.d) =0,
for odd rotation numbers k = 1,3,5,7, and
FY(Rr,d)=F (R r,d) = Fy (R.r,d) = ) (R,r,d) =0,

for even rotation numbers k = 2,4,6,8. The explicit ana-
Iytical forms of these relations are given in Appendix A as
Eq. (A3) for the odd rotation numbers (k = 1,3,5,7) and
Eq. (A.4) for the even rotation numbers (k = 2,4,6,8).

Proof. For the odd rotation numbers k = 1,3,5,7, the

proof proceeds analogously to the case k = 1 discussed for
the 13-gon and 15-gon in [3]. The first tangent #; is drawn
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at the point P(r+d,0) on the incircle C, and the subse-
quent tangents determine the vertices A; recursively using
system (2)). The closure condition is imposed by equating
the abscissas of the vertices obtained from A; and A, 1) 2,

ensuring that Al(l) = A§n+1)/ %, Since all considered rota-

tion numbers are odd, the geometric symmetry and ana-
Iytic form of the procedure remain identical, leading to the
family of relations listed above, which coincide according
to Conjecture O

Bicentric 19-gon. For the bicentric 19-gon, the admis-
sible rotation indices are k € {1,2,3,4,5,6,7,8,9}. Ac-
cording to Theorem [2] and Conjecture [I], all Fuss’ re-
lations for the bicentric 19-gon can be grouped into two
parity classes: one corresponding to odd rotation numbers
(k=1,3,5,7,9) and the other to even rotation numbers
(k =2,4,6,8). Each class satisfies a distinct analytical
form of the Fuss relation, which is common to all mem-
bers of that class. In the following theorem, we present the
proof that covers both cases, demonstrating the validity of
the relations for odd and even rotation numbers.

Theorem 6 For a bicentric 19-gon with circumcircle of
radius R, incircle of radius r, and distance d between their
centers, the corresponding Fuss’ relations satisfy:

Fl(;)(R’rvd) :Fl<93)(Rar7d) :Fl<95)(Rar7d)

(R, rd)=FY(R,r,d) =0,

for odd rotation numbers k= 1,3,5,7,9, and

F1(92)(R’r7d) = F1<g)(R,r,d) = F1<96)(Rar7d)
=FY(R,r,d) =0,

for even rotation numbers k = 2,4,6,8. The explicit an-
alytical forms of these relations are given in Appendix A
as Eq. (A.3) for the odd rotation numbers (k = 1,3,5,7,9)
and Eq. (A.6) for the even rotation numbers (k = 2,4,6,8).

Proof. For even rotation numbers, the proof follows
the same analytic—geometric principle as in Theorem [3]
The initial tangent is drawn at the point P(d — r,0) on
the incircle C, corresponding to the even-k configura-
tion. Each subsequent vertex is determined using the
tangent condition @ while the closure condition is es-
tablished by equating the abscissas of the vertices ob-
tained from opposite sides of the symmetric configura-

tion (for example, Agl) and Agg) for n = 17). The analyt-

ical elimination of the coordinates yields polynomial re-
lations in (R, r,d), producing the functions Fl(72 ) (R,rd) =
0. FY®Rrd) =0, FORrd) =0, FY(Rrd) =

0, and analogously F1(92> (R,r,d) = 0, Fl(g) (R,r,d) = 0,
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F1(96) (R,r,d) =0, Fl(g)(R, r,d) = 0. For k = 2, the construc-
tion reduces exactly to the case described in Theorem E}
while for higher even k the algebraic form remains analo-
gous but of higher order. O

Discussion. The results obtained for n = 15, n = 17,
and n = 19 confirm the general validity of the analytical
method described in Section[3l All relations exhibit the ex-
pected symmetry with respect to the parity of the rotation
number and reduce to simpler forms for specific (n, k) pairs
according to Radi¢’s theorem [2] These findings, together
with the detailed derivation for the 13-gon, complete the
analytical description of Fuss’ relations for bicentric poly-
gons with an odd number of sides up to n = 19.

The cases n =13 withk =2,4,6 and n = 15 with k =2 had
not been reported previously in the literature. The reason
lies primarily in the rapidly increasing algebraic complex-
ity of the closure condition fall (R,r,d) =0 as both n and
k increase, leading to polynomial equations of extremely
high degree. The resulting polynomials reach very high
algebraic degrees, which makes symbolic derivations in-
creasingly intractable without computer algebra assistance.
Earlier studies, such as [6]-[7], [9], were therefore lim-
ited to lower-degree cases due to these computational con-
straints. The present work extends those results by deriv-
ing explicit analytical expressions for the previously unre-
solved configurations.

Graphical representations of the bicentric 15-gon (k =
2,4), the bicentric 17-gon (k = 1-8), and the bicentric 19-
gon (k = 1-9) are provided in Appendix A.3. These figures
illustrate the analytically derived bicentric configurations
and visually confirm the polygonal closure predicted by
the corresponding Fuss’ relations. The numerical values
of the incircle radii, computed for R =1 and d = 0.1, are
listed in Appendix A.2, providing quantitative verification
of the analytical results.

5 Conclusion

New analytical forms of the Fuss’ relations F,,(k> (R,r,d) =
0 have been derived for bicentric polygons with an odd
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APENDIX A. Fuss’ relations, numerical and graphical results

A.1. Analytical forms of Fuss’ relations

In all Fuss’ relations presented below, the substitution p = R—fd, q= @ is used. The following analytical expressions
correspond to the bicentric polygons derived in Section ]

FY (R rd) =(g = 1)2(g+1)°p*' = (g - 1°alg+1)"* (3¢* + 104 +3) 2 ~2(g — 1)°¢* (g + 1)° (3¢ — 44’ + 104°
—4g+3)p" +2(g—1)°43 (g + 1)* (13q8 +36q7 + 1245 + 1564° +238¢* + 156¢° + 124> + 364 + 13) P8
+(g—1)0g*(g+1)° (9q6+66q5+71q4+92q3 +71q2+66q+9> P~ (g— 1) (g+1)* (99q"+118q5+493q4
+308¢> +493¢% + 118 +99) p'® +8(q — 1)2¢°(g+1)° (3(]8 —8q7 +34¢5 —32¢° +38¢" —324° +344° — 8q+3) p'
+8(g—1)%¢ (g +1)* (27q8 —84¢7 +166¢° — 252¢° +318¢* — 25243 + 166> — 84 + 27) P4 —2(g— 12 (g+1)° (63q6
—34¢° +169¢" — 764> 4+ 169¢* — 34q + 63) PP =2(g-1)2¢(g+1)* (147q° —370¢° +709¢* — 6844> 4+ 70947 (A1)
—370g+147) p2 +4(g—1)%¢"° (63q9 +255¢% 4 536¢" 4 7764° 4 930¢° 4 930¢* 4 776¢° 4 536¢% 4 255¢ + 63) p'!
+ag" (1)’ (63q6 +38¢° +61* + 1884 + 614 +38q+63) P —2(q—1)%¢" (147q7 44940 + 867¢° + 10974
+1097¢° + 8674 +449¢ + 147) p° —2¢'% (% — 1)2 (63¢* +1204” +744* + 120q + 63) p* + 84" (27q7 +¢°+5¢4° —33¢*
334> +5¢° +q+27) p’ +8¢" (q+1)* (3¢* +4¢> — 164° +4q+3) p° +¢'° <799q5 +57¢* +264° +26q2+57q799) P’
+4"7(g+1)* (9¢° +2¢+9) p* +2¢"° (13¢° = 5¢* = 5q+13) p* 64" (¢ +1)*p* =3¢* (¢ + 1)p+¢* = 0.

F2 (R.nd) =(g—1)""(g+ 1) p™ +4(g— 1)¥q(g+1) (q8 —q' +14¢° +q° +34¢" + 4 + 144" —q+ 1) p?
—44? (2= 1)° (4 =8¢ =3¢ —64g +24° — 1124 +2¢* ~64¢° =3¢ — 8¢+ 1) p™ —4(g— 1’ (g + 1)°
(94" +84° +374" + 6447 — 46¢° + 112¢° — 46* + 644’ + 374 +84+9) p*' ~2(g—1)°¢* (g + )" (74"
+116¢° +323¢% +608¢" + 10784° +856¢° + 10784* + 608> +3234% + 1 16q+7) PP +4(g—1)°¢(q+1) (A2)
(35q‘°+ 121¢° +211¢% + 34047 +458¢° +2304° 4 458¢* +340¢° +2114% + 121q+3s) Y
Fa(g— 108 (g+1)* (355178 1327 + 44448 +4124° +898¢" +4124° + 4444 + 132q+35> p'8

—4(g—1)°q7 (g +1)3 (75q8 +2127 +44445 +332¢° + 818¢* +3324° + 4444 +212q+75> PV
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—(g—1)*¢®(g+1)? (465q‘° +474¢° +1773¢% — 168q7 — 17264° — 612¢° — 17264* — 1684° + 17734>
+474g+465) p'® +8(q—1)%¢°(q+1)} (45410 — 147¢° +309¢® — 8764 + 15344° — 1858¢° + 15344*
—876¢° +3094> — 147 +45) p'* +8¢' (¢ —1)° <1 11¢'° —196¢° — 163¢° —255¢° — 7264 — 1104°
—110g° — 7264* +2434® — 2884 + 304° + 328¢° + 30¢* — 288> +243¢> — 196¢ + 11 1) p'
—8(qg—1)*¢" (214" —175¢'° = 255¢> — 163¢> — 175¢ +21) p"* —4¢'? (4* - 1)2 (273¢° — 4344’
+504¢° — 142¢° +302¢* — 142¢> + 5044> — 4349+ 273) P2 —8(q—1)%¢" (21¢° +2384° + 3834
+237¢° +625¢° + 625¢* +2374° + 3834° +238q+21> P +8¢" (4# - 1)2 (1 11¢° — 102¢° 4+ 1774
—4q* +177¢4% — 102 +111) p'® + 8(g — 1)*¢" (45q7 + 1475 +345¢° +2474"* +2474° + 345¢4* + 147¢
+45)p° — g0 (2 —1)” (4654* — 524° + 63047 — 529 +465) p* —4(g— 1)%g" (75q5 1884 125343
+253¢% +88¢+75) p” +44"® (¢* - 1)2 (35¢% +16q+35) p° +4(q— 1)2¢" (354* +19¢4* + 19¢ + 35) p°
—2¢*(q+1)? (7¢* — 16g+7) p* — 4¢*' (9¢° —8¢* — 8¢ +9) p* —4¢™(q+1)*p* +4¢% (q+1)p+4** =0.
Fiy (Rerd) =(g=1)"(q+ D*p* +4(g—=1)Tq(g+ 1) (¢°+ 76" +74 +1) p¥ =2(g = 1) (q+ 1)
<5q6 +10¢° +35¢* +28¢° +35¢% + 10q+5> P —4(g—1°g3 (g +1)'2 (15¢'2 — 60g'" +2944'° — 5884°
+1377¢% — 16564" +2260¢° — 1656¢° + 1377¢* — 5884° +2944> — 60g + 15) PP+ (g-1)"0* (g +1)" (254"
—274¢° +517¢° — 11764 + 1506¢° — 22204° + 15064* — 1176¢° +5174> — 274q+25) P2 +32(g—1°¢ (g+1)"?
<13q‘° —26¢° + 149¢% — 17847 +4384° — 312¢° +438¢* — 178¢° + 1494% — 264 + 13) P +16(g—-1)"0%(g+1)8
(9q14 +42¢"% +234¢'% +- 410¢"" + 8924 + 1214¢° + 19374 + 178847 + 1937¢° 4 1214¢° + 8924* + 410¢> + 2344>

+42¢+9) p*° —32(q— 1)°¢7 (g +1)® (55¢™ +2504" +820¢'2 +20744"" +4234¢'% + 6542¢° + 88434° +96604"
+8843¢5 + 65424 +42344* +2074¢> + 82047 + 2504 + 55) PP —4(g— 1) (q+1)® (355¢'2 +480¢"" +3066¢"°

+3376¢° +9725¢° +81764" +151804° + 81764° +9725¢* + 33764 + 30664 + 480 + 355) P
+16(g—1)°¢°(g+1)° (315(1]2 +1294¢" +4118¢'° +8258¢° + 15389¢® + 196964” +229484° + 196964° + 153894*

+8258¢ +4118¢* +1294¢ +315) p* +8(¢ — 1)*¢'%(g+1)° (749q16 —3476¢" + 1094244 — 257564 + 514004 ">

— 844044"" + 12528240 — 154652¢° + 168022¢° — 15465247 + 1252824° — 844044° 4 514004" — 257564 + 1094247
—34764+749) p*® — 16(g— 1)°¢" (¢ + 1)° (637¢"* — 5864"* +22574"* — 6544¢'" +8415¢'0 — 151424° + 183874 (A3)
—158724" + 183874° — 151424’ 4 84154" — 65444° + 22574 — 586 + 637) P? —4(g—1)*q"(g+1)° (40954™

—158304"% 4+50625¢'> — 103812¢'! +2010914'° — 2859304° + 3882854° — 403320¢” + 3882854¢° — 2859304’

4+201091¢* — 103812¢° +50625¢” — 15830 +4095) p** +32(q — 1)°¢" (g +1)° (455¢"> — 10204"" +22064'°

—5862¢° +7453¢% — 9822¢" + 11388¢° — 98224 + 74534" — 58624° + 22064 — 1020 + 455) P>

+16(g—1)*q"* (g+1)° (2015q‘2 —5812¢" +19561¢'° — 32800¢° + 623654 — 719804” +899104° — 719804°
+62365¢" —328004° + 195614 — 5812¢+2015) p*> —32(q — 1)°¢" (g +1)* (429¢™* + 1104" — 12984'?
—33984"! —7160¢'° — 6470¢° — 3235¢° — 25004 — 3235¢° — 6470¢° — 7160¢* — 33984> — 1298¢> + 110¢
+429) p?' —2(q—1)*q"S (¢ +1)? (23881¢'* +477184"* +126203¢'* +283116¢"! +412761¢"° + 6330184
+7867874% +7633684” + 7867874° + 6330184 + 4127614* +2831164° + 126203¢% + 47718¢ + 23881) p?
+8(q—1)°¢"7 (g +1)? (715q12 —1870¢"" — 111104"° — 15406¢° — 227474% — 203564" — 171724¢° — 203564°
—227474% — 154064 — 11110¢* — 1870¢+715) p' +4(g— 1)*¢"8 (¢ + 1) (13585¢'2 +352004"" + 80542¢'°
+163952¢° +2356634° +2933924 4 3408684° +293392¢° +235663¢" 4 1639524 + 805424 +35200¢
+13585) p'® +-8(¢—1)°¢" (¢ +1)? (715q‘° +2134¢° + 1048348 +10464¢" +146584° + 125644 + 146584"
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@
Fl7)

32

+104644° +10483¢ +2134g+715) p'7 —2(q — 1)*¢** (g +1)* (23881¢'% + 665944° + 141933¢° + 2416404
+3355624° + 3376444 + 3355624* +2416404° + 1419334 + 665944 + 23881) p'o

— 324! (429q‘5 —891¢'* +1089¢"3 — 1521¢'2 — 574" +2541¢'° — 1567¢° — 2354 +235¢" +1567¢°

—2541¢% + 574" + 152147 — 108942 +891q—429> P +164%2 (g2 — 1) (2015¢"° + 1130¢° + 23604°

—228247 +889¢° — 82884° + 8894" — 22824> + 23604 + 1130q + 2015) P +16(g—1)*q" (g+1)°

(2015q‘2 —5812¢" +195614'° — 32800¢° + 623654° — 719804” +89910¢° — 719804° + 623654 — 328004°
+19561¢> — 5812¢+2015) p™ —32(q — 1)°¢"* (g +1)* (429¢™* + 110¢"* — 129842 — 3398¢"' — 71604'°

—6470¢° —3235¢% — 2500¢" — 3235¢° — 64704° — 7160g* — 33984 — 12984> + 110g + 429) P!

—2(q—1)*¢"%(g+1)? (23881¢" +47718¢"3 + 126203¢'% 4 283116¢'" +412761¢'° +633018¢° + 7867874
+763368¢" +786787¢° +633018¢° + 4127614* + 283116¢° 4 126203¢> +47718q+23881) PP +8(g—1°¢"7(g+1)?

(715(112 —1870¢' — 111104'% — 154064° — 227474 —203564" — 171724° — 20356¢° — 227474* — 154064° — 111104>
—1870g+715) p" +4(q — 1)*¢"3 (g +1)* (13585¢'% +35200¢" ' +80542¢'° + 163952¢° + 235663¢® +29339247
+3408684° +293392¢° +235663¢* + 163952¢° + 805424 + 352004 + 1 3585) p'®

+8(g—1)°¢"(g+1)? (715q‘° +2134¢° 4 1048343 + 1046497 + 14658¢° 4 125644° + 146584* + 104644 + 104834>
+2134g+715) p'7" —2(qg— 1)* ¢ (g + 1)? (23881q10 +665944° + 1419334 4 2416404" + 3355624° + 3376444
+335562¢" +241640¢° + 141933¢% + 66594¢ +23881) p'¢ — 32¢*! (429q‘5 —891¢" +1089¢'3 — 152142

—57¢" +25414"° — 1567¢° — 235¢% +235¢" + 15674¢° — 2541¢° +574* + 1521¢° — 10894° +891q7429) Pt

+16¢% (4 - 1)2 (2015q10 +11304° +2360¢° — 228247 + 8894° — 82884° -+ 8894 — 22824> + 23604> + 1130g + 2015) p'

+32¢%(g+1)? (455q“ —1865¢'° +4032¢° — 63404 + 8305¢" — 92434° 4+ 92434 — 8305¢"* + 63404° — 40324>

+1865¢ —455) p"* — 4> (4* - 1)2 (4095q8 —204¢" +4704¢° — 10900¢° +4034¢* — 10900¢> +4704¢> — 204q + 4095) p'?

—16¢% (g+1)? (637q9 —2263¢% +4598¢7 — 64864° + 7648¢° — 76484" + 64864° — 45984> +2263g — 637) p'!

+8¢% (¢ —1)° (749q6 —698¢° +925¢* — 220043 + 92547 — 6984 + 749) P10 +16¢%7 (g+1)? (315q7 —865¢° + 16054
—~1999¢* +1999¢° — 160547 +865g — 315) p° —4(q — 1)*¢*® (355q6 +30g° — 559¢* — 452¢° — 559¢% + 30g + 355) P
—304% (55q7 13404745 + 574 — 574 —14* — 3¢ — 55) P +16(g— 1)%4% (9¢* — 8¢° — 4147 — 8¢+ 9) p°

+324°! (1345 +7¢* =3¢ + 342 — g — 13) P +5(g— 1262 (5% — 29+ 5) p* — 204" (3¢ + @ —q—3) p°

—10(g— 1)’ ¢*p* +4(g— 1)g¥p+4° =0

(R.rd) =(q—1)*(q+1)"p* —4(g—1)*q(g+1)"7 (q6+7q4+7t12 + 1) PP =2g—1)"*F(q+1)'

<5q6 —104° +35¢* —28¢3 +35¢* — 10q+5) P +4(g—1)2¢3 (g+1)° (1562 +60g'" +2949'° + 5884°
+1377¢% +1656¢" +22604¢° + 1656¢° + 13774" + 5884 + 2944 + 60g + 15) PP+ (g—1)"%g g+ 1)"°
(25q‘° +274¢° 4+ 517¢% +1176¢" +1506¢° 422204 + 1506¢* + 11764> + 517¢% + 2749 + 25) P2

—32(q— 1) (q+1)° (13q‘° +26¢° 4 149¢% + 178¢7 4 438¢° 4 312¢° 4 4384* + 178¢° + 1494% + 264
+13) p*1 +16(g—1)%¢5 (g +1)'0 (9¢'* — 424" +-234¢"% — 410¢"" +892¢"0 — 1214¢° +-19374° — 17884
+19374° — 12144° + 892¢* — 4104 + 2344 742q+9) 0 +32(q—1)%¢" (g +1)° (55¢"* —2504"
+820¢'2 —20744¢"" +42344¢'° — 65424° + 88434° — 966047 + 8843¢4° — 6542¢° + 42344" — 20744 + 8204>
—250q+55) p*° —4(g— 1)°4* (g +1)"° (355q12 —480¢"" 43066¢'° —3376¢° +9725¢° — 81764 + 15180¢°

—8176¢° +9725¢" — 33764° + 30664° —480q+355) P —16(g—1)°¢° (g +1)° (315¢'% — 1294¢" +41184'°

(A4)
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—8258¢° + 153894 — 1969647 +229484° — 196964° + 15389¢* — 82584 + 41184 — 12944 + 315) P
+8(g—1)°¢"(q+1)* (749q16 +3476¢" 4+ 10942¢"* +25756¢'3 + 514004'2 + 844044"" 4 12528240

+154652¢° + 1680224% + 1546524 + 125282¢° + 84404¢° + 514004* +257564° + 109424> + 34764 + 749) p*
+16(g— 15" (g+1)° (637" +586¢" +2257¢'2 + 6544¢"" +8415¢'° + 15142¢° + 18387¢° + 158724"
+18387¢5 + 15142¢° + 84154" + 65444> +22574* + 5864 + 637) P —4(g—1)%¢"* (¢ +1)* (4095¢"
+158304"% 4+ 50625¢'% + 1038124"'! +2010914'° +2859304° + 3882854° 4 4033204” + 3882854°

+2859304° +2010914* +1038124> + 506254 + 158304 + 4095) p*

—32(q—1)%¢"(g+1)° (455(112 +1020g"" +2206¢"0 + 58624° + 74534° + 982247 4 113884° + 98224
+7453¢" + 586247 +22064% + 1020g +455) p* +16(g — 1)°¢" (g +1)* (2015¢'> +5812¢"" 4-19561¢'°
+328004° + 62365¢° 4+ 7198047 + 899104 + 71980¢° + 623654* + 328004° + 195614> +5812¢ + 2015) p*
+32(q—1)2¢"(q+1)° (429¢"* — 110¢"* — 129842 +3398¢"" — 71604'® + 6470¢° — 3235¢® + 25004’
—3235¢° +6470¢° — 7160g* +33984° — 12984> — 110q+429) P —2(qg—1)%¢"0 (g +1)* (238814"
—47718¢"3 +126203¢'> — 2831164"! +4127614'0 — 6330184° +7867874° — 7633684” + 7867874°
—633018¢° +412761¢* —2831164° + 1262034> —47718q+23881) P —8(g—1)%¢"" (¢ +1)° (715¢"

+1870¢'" — 111104'° + 15406¢° — 227474% + 203564 — 17172¢° +20356¢° — 227474" + 154064°
—11110¢> + 1870g+715) p'® +4(g — 1)2¢"8 (g + 1)* (1358542 — 352004"" + 80542¢'° — 1639524°
+235663¢° — 29339247 +3408684° — 293392¢° 4 235663¢" — 163952¢> + 805424% — 35200g + 13585) p'®
—8(g—1)2¢" (g +1) (715(,10 —2134¢° + 10483¢° — 1046447 + 146584° — 125644 + 146584" — 104644°
+104834% —2134¢+715) p'7 —2(q — 1)2¢*°(g+1)* (23881¢"% — 665944° + 141933¢° — 2416404
+3355624¢° — 3376444 + 335562¢" — 241640¢° + 141933¢% — 66594¢ + 23881) p'®

+32(q—1)%¢* (429q13 +1749¢'% +41584"" +80884'% + 11961¢° + 13293¢% + 130584 + 130584°
+132934° 4 119614* 4 80884° +41584° + 1749¢ +429) PP +1667 (47— 1)2 (2015¢'° — 11304
+23604% + 228247 4 8894° + 82884° + 889" +22824> +23604> — 1130g + 201 5) p'
—32(q—1)%¢% (455q' !+ 1865¢'0 +4032¢° + 63404% + 83054 +92434° + 9243¢° + 83054*
+6340 + 403247 + 1865 +455) p'3 —4g™ (¢ — 1)’ (4095q8 1204¢7 +4704¢° + 109004
+40344* + 10900g> + 470447 + 204¢ +4095) p'2 + 16(q — 1)*¢> (637q9 +2263¢° +4598¢" + 64864°
176484° +76484" + 6486¢° + 459847 + 2263 + 637) P87 (A1) (749q6 +698¢° +925¢*
+2200¢° +925¢” + 698 +749) p'® — 16(q — 1)*¢*’ (3 15" +8654¢° + 1605¢° +1999¢* + 19994°
+1605¢> +865¢ +315) p° —4¢* (g +1)* (3555,6 —30¢° — 5594 4+ 4524° — 5594 — 30q + 355) P
+32¢% (55q7 3¢ 740 — 574" — 574 + 74 —3q + 55) P +16¢°°(g+1)% (9¢* + 84>

—41(12 + 8q+9) p6 - 32q31 (13(15 — 7q4 — 3q3 - 3q2 —T7q+ 13) p5 +5q32(q+ 1)2 (Sq2 +2q+5) p4

+204% (3¢ —¢* —q+3) p* =10 (g +1)°p* = 44" (g + Dp+ 4% = 0.

FY (Rord) =(g =1 g+ 1P p* — (= 1)"%alg+ 1 (5¢° +604° +1264* +604" +5) p*™ ~2(g 1) "¢ (g + 1)
<5q6 —10¢° +35¢"* — 284> +354% — 10q+5) PP +2(g-1)"0¢ (g + 1) (45¢' + 210" +1143¢"* +27244"!
+7437¢"0 +11022¢° + 1799948 + 17144¢" 4 17999¢° + 110224° 4 7437¢* +27244° + 11436 +210g + 45) p*? (AS)
—(g—=DVg*g+1)"? (5(112 —3244"1 — 83840 — 24844° — 33494 — 6408¢" — 59724° — 64084 — 33494*

—24844° — 83847 — 3249 +5) p*! — (¢ —1)'0¢° (g +1)'2 (751¢"2 + 19884 + 1214240 + 18548¢° + 515534
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+50120¢" 4 8205245 +501204° + 51553¢* 4 185484° + 1214247 + 1988q+751) P +4(g-1)°¢%(g+1)"? (165¢'
—750¢"7 +3945¢'¢ — 9320¢"5 +25672¢'* — 4530443 + 89152¢'%2 — 114072¢"! + 159594¢'° — 1526284° + 1595944°
—114072g" +891524° — 453044° +25672¢" —93204° 4 3945¢> — 750 + 165) PP +4(g-1)'"%"(g+1)"? (955q“”
—4120¢"7 + 15380g'* — 447924"3 4 100556¢" — 1790804 +2822204'° — 3577364° + 3896184 — 3577364’
+2822204° — 1790804° + 1005564" — 447924 + 153804> — 4120q + 955) P —(g—1)°¢ g+ 1)"? (5605q‘6 —127204"
+79144¢" — 134992¢'3 +435372¢"%2 — 5529444 + 1155224¢'° — 10688164° + 15645104 — 10688164 + 11552244°
—5529444° 4 4353724" — 1349924° +791444% — 12720q + 5605) P —(q-1)"° (g +1)"* (13015¢" — 575944"

+197245¢'2 — 4696364' ! +977279¢'° — 14697344° +20237254¢° — 21500729 4 2023725¢° — 14697344 +9772794"*
—469636¢° + 1972457 — 575%4q + 13015) p*® +2(q — 1)°¢"* (g +1)® (13623¢%° + 586924 +2245784'® + 6443884
+1537387¢'% +3161936¢" + 57266164 + 87364004"> + 120797104'2 + 143994164'" + 15362124¢'° + 143994164°

+120797104% + 8736400¢” +57266164° + 31619364° + 15373874 + 644388¢> + 2245784 + 586924 + 13623) p¥
+2(g— 1) (g+1)° (15105q18 +332509"7 + 68825¢'° +227120¢" + 458932¢'* + 9362484"3 + 161248442

+20798244" +23666384'° +2622156¢° + 23666384" +20798244" + 16124844¢° + 9362484 +4589324* +2271204°
+68825¢ +33250g + 15105) p** — (¢ — 1)°¢"* (g +1)°

(9205548 + 38363047 + 145289546 + 379406445 + 88410364™

+16031112¢"3 +27191804¢' + 367308644 ! + 4630829040 + 48125652¢° + 463082904 + 367308644 +271918044°

+16031112¢° 4 88410364* -+ 37940644 + 14528954 + 383630 + 92055) PP —(g—1)"0%"B(g+1)° (43605(116

+ 16722093 + 3422084 4 112870043 + 217622042 + 37995084 ! + 532492840 + 6750204¢° + 65410864°

+6750204¢" +53249284° 4 37995084° + 21762204 + 11287004° + 3422084 + 167220 + 43605) P2

+16(g—1)°¢"(g+1)° (14535q"’ +53048¢"5 +2045004'* + 460152¢"® + 10513564 + 16361684' +2599852¢'°
+3002376¢° +34723144¢° 4+ 3002376¢" +25998524° + 16361684° + 10513564" +460152¢> + 2045004 + 530484 + 14535) P!

+16(g—1)*¢"(g+1)° (969q20 +9664¢"° —54654¢'® +1528164"7 —329771¢'° + 4919844 "> — 6522644 + 9286244
—1334686¢'2 + 1710096¢"" — 19110924'% + 1710096¢° — 13346864° + 928624¢" — 652264¢° +4919844° —3297714"*
+152816¢° — 5465447 + 9664 +969) p*° —2(q — 1)°¢'% (g +1)° (227715418 —235650q9"7 + 13662354'® — 26861604
+5032460¢'* — 10636024¢'> + 13987228¢'> — 195401444 +23852538¢'0 —22605324¢° +238525384° — 195401444’
+139872284¢° — 106360244° + 50324604" — 26861604> + 1366235¢> — 235650 + 227715) PP +2(g—1)*¢"(g+1)°
(5329547'8 —333170¢"7 + 1258535¢'° — 26480804 " + 5210748¢'* — 802322443 + 120007164'2 — 159614564 +206344664'°
—215000764° +206344664° — 159614564 4 120007164° — 80232244° +52107484" — 26480804° + 12585354% — 333170g
+53295) p* +4(g—1)7¢"8 (¢ +1)¢ (176035q“" —304880q"° + 11437284 "% — 259294443 + 43817964"'% — 78367524"!
+103472804'% — 12071952¢° + 138102904% — 120719524 + 103472804° — 7836752¢° + 43817964" — 25929444> + 11437284
—304880g + 176035) p*’ —4(q—1)*¢" (¢ +1)° (85595q16 —3050124"% + 10990804+ — 200889243 + 398392442

—5691028¢" +8686584¢'0 — 98577244° + 115702744° — 98577244 + 86865844° — 56910284° + 39839244* — 20088924°
+1099080¢> — 305012¢ + 85595) p*® +4(q — 1)7¢'¥(g+1)° (176035q“" —304880q"° + 11437284 "% — 259294443 + 438179642
—7836752¢"" + 1034728040 — 120719524° + 13810290¢° — 1207195247 + 103472804° — 78367524° + 43817964* — 25929444°
+11437284 — 304880 + 176035) p*’ —4(q—1)*¢"*(g+1)° (8559547'6 —305012¢'3 +10990804'* — 200889243

+3983924¢'2 — 56910284 +86865844'° —98577244° + 115702744° — 98577244 + 86865844° — 5691028¢° + 39839244
—20088924° + 109908047 — 305012¢ + 85595) p*® —2(q — 1)°¢** (¢ + 1)° (432497¢"* — 10044584"* 4- 29468274
—6570372¢"" +10501177¢'° — 15673590¢° + 199626994° — 200017204 + 199626994° — 156735904° + 10501177¢* — 65703724

+29468274% — 1004458 +432497) p* +2(q — 1)*¢*' (g +1)° (3 1492548 4 507650¢'7 +1705925¢'° + 36300004

+5794180¢'* +96762164" +12644116¢'% + 17459152¢' ! +210579104'" 4 203570044° 4+ 210579104° + 174591524
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Fl(()Z)(R7r7d) :(q

+126441164° + 96762164 + 57941804 + 36300004> + 17059254 4 5076504 + 314925) P 48(g—1°¢2(g+1)? (104975q16

+1352004'% +206700¢'* + 150960¢"> — 264852¢'? 4 532964"" 4 4906444'° + 10675204 + 17308264° + 10675204

+490644¢° + 53296¢° — 2648524¢" + 1509604 4 206700¢> + 135200 + 104975) PP —8(g—1)*¢%(g+1)* (104975q16
+2405004"> +641004¢'* + 131238043 +20862204'2 + 33093964 +43104204'° + 50439004° + 56827624 + 50439004’
+43104204° +3309396¢° 4 2086220¢* + 1312380¢> + 6410044” + 240500¢ + 104975) P2 =2(g—1)°¢*(g+1)* (314925¢™

+372814¢"3 +338975¢'? + 679468¢"" +320917¢'0 + 1684114¢° + 33136954 +32516884" +3313695¢° + 16841144° + 3209174

+6794684° + 33897547 + 3728 14q +314925) p?! +2(q — 1)*¢% (¢ +1)? (4324979 + 11326384"® + 278042742
+54056444"" +8464185¢'° + 11947394¢° 4 150226674° + 151420564 + 150226674° + 11947394¢° + 84641854*

+5405644¢° +2780427¢% + 1132638q +432497) p™ +4(q — 1)°¢* (g + 1) (85595¢'% + 127940¢"! + 820704'® + 330420¢°

+439669¢° +712072¢" +9828364° + 712072¢° + 439669¢"* 4 3304204> + 820704 + 127940g + 85595) p?°
—4(g—1)*q" (g+1)* (176035¢"* +4653604"" + 1110750¢'° + 19556644° +2999117¢° + 35844804’
+4196964¢° + 35844804° 4 29991174* + 19556644° + 11107504 +465360q + 176035) p'®

—2¢4%%(q+1)? (53295q‘5 —114525¢"* —130109¢'3 4 8979194'% — 17325894"" + 16092554'" — 6828094°
+161411¢% — 1614114" +6828094° — 1609255¢° + 17325894" — 897919¢> + 130109¢” + 114525¢ — 53295) PV

+247 (£ -1)° (227715(1‘2 +928164"" +441422¢'0 — 130352¢° +3279814° — 10852804 +2534444° — 10852804’

+327981¢* — 130352¢° + 44142247 + 92816g +227715) p'® — 16¢% (g + 1)? (969¢"* — 11381¢'* + 422104"
—82450¢'0 + 1118594° — 107151¢% + 7585297 —758524° + 107151¢° — 111859¢* + 82450¢° — 42210¢4% + 113814

—969) p'5 —16¢*' (4> - 1)2 (14535q‘° —450¢° +27455¢° — 326404 +26298¢° — 69692¢° + 262984 — 326404’
+27455¢% — 450g + 14535) p'* + ¥ (¢ +1)* (43605q“ —194675¢'0 +474095¢° — 7011774® 4 79846647 — 841550¢°
+841550¢° —7984664" +701177¢> — 474095¢> + 194675¢ — 43605> PR+ (P - 1)2 (920554® — 543404
+168844¢° —2915804° + 1823304 — 2915804 + 1688444” — 543404 + 92055) P2 =24 (g +1)* (151054°
—48033¢% +98500¢" — 1324524° + 143158¢° — 1431584 + 1324524° — 985004 + 48033¢ — 15105) pl!

-2 (¢*~ 1)2 (13623q6 — 15782¢° 4 235694" — 394604 4+ 23569¢> — 15782 + 13623) p'%+¢% (13015¢°
—4095¢® + 58204” + 10900¢° — 117744¢° + 117744 — 109004 — 58204° +4095¢ — 13015) P4 (g—1)>%G" (5605:16
+2370¢° — 3685¢" — 836¢° — 36854 +2370g + 5605) pd—ag® (955q7 +255¢° +79¢° +651¢* — 651¢° — 794°
—255¢—955) p” —4(q—1)*¢* (165¢* + 764" — 2064* + 769 +165) p° +¢* (75 1g° +3494* — 664> + 664* — 349q
=751) p° +5(g— 1)%¢* (¢* + 14+ 1) p* = 10¢** (9> + ¢* — ¢ —9) p* +10(g - 1)*¢¥ p* +5(g - 1)¢**p—¢* =0

—1)2(q+ )P p* + (- 1)Pg(q+1)'® (54]8 1 60¢° +1264* + 60¢° +5) P

—2(g- 1P (q+ 1)V (546 +10¢° +35q* +284° + 3542 + 10q+5) P = 2(g— 1263 (q+1)'® (45¢" — 210¢"

+1143¢"2 —2724¢"" +7437¢"° — 11022¢° + 17999¢° — 171444" +17999¢° — 11022g° + 74374"* — 27244° + 114347

—210g+45) p* — (g—1)"*q* (g + 1) <5q12 +3244"" — 8384'0 1 24844° — 33494% + 64084" — 59724° + 64084°

—3349¢* +2484¢° — 83847 + 324 +5) p* + (g — 1)2¢° (g + 1)1 (751¢"% — 19884'! + 121424'° — 18548¢°

+51553¢% — 5012047 4 82052¢° — 50120¢° +51553¢* — 185484° + 121424 — 19884 + 75 1) pY

+4(g—1)"2¢%(q+1)° (165q‘8 +7509"7 4+39454¢"'° +93204"% +25672¢"* +453044'3 + 89152¢'% + 114072¢"!

+1595944'0 + 1526284° + 1595944¢° + 114072¢" +89152¢° + 453044 +25672¢" +93204° + 3945¢* + 750 + 165) p¥

—4(g—1)"2¢7 (g+1)!° (955q16 +4120g" 4 153809"* + 44792¢"3 + 100556¢'2 + 1790804"" +282220¢'° + 3577364°

+3896184% + 3577364 +2822204° + 1790804° + 1005564* + 447924 + 153804 + 41204 + 955) P8

—(g—1)"?¢g+1)° (5605q‘6 +12720¢"3 +791444¢" + 1349924"3 + 4353724'2 + 5529444'" + 11552244'° + 10688164°

(A.6)
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+15645104° + 10688164 + 11552244° + 5529444° + 4353724" + 1349924° +791444> + 12720g + 5605) P
+(g—1)"2¢°(q+1)"° (13015¢™ +57594¢"3 + 197245¢'2 + 4696364'" +977279¢'® + 1469734¢° +20237254° + 21500724
+2023725¢° + 1469734¢° +977279¢* + 469636¢° + 197245¢% + 57594 + 13015) PO +2(g—1)8¢" (g +1)° (1362347

—58692¢" 4 2245784"'% — 64438847 + 153738746 — 31619364 + 5726616¢'* — 87364004'3 + 1207971042
— 143994164 +153621244¢'° — 143994164° + 12079710¢% — 87364004 + 57266164° — 31619364 + 15373874"

—644388¢” +224578¢% — 58692q + 13623) p™ —2(g—1)%¢'' (¢ +1)'° (15105q18 —332504"7 + 688254'° — 2271204
+458932¢'* — 9362484 + 1612484¢'? — 20798244"" +23666384'% —26221564° + 2366638¢° — 20798244 + 16124844°
—936248¢° + 4589324 —2271204° + 68825¢> — 33250 + 15105) P = (q—1)°¢"(g+1)? (92055¢" — 3836304"

+14528954"® — 37940644 + 88410364 — 16031112¢"> +27191804¢"% — 367308644" " +463082904'°
—481256524° +463082904¢° — 36730864¢” +27191804¢° — 160311124° + 88410364* — 37940644° + 14528954

—383630g +92055) p> + (g —1)°¢"3 (g+ 1)'° (4360511‘6 — 167220¢"3 + 3422084 "* — 112870043
+2176220¢'2 — 37995084 + 532492840 — 6750204¢° + 65410864° — 67502044 + 53249284° — 37995084° + 21762204*
—1128700¢° + 3422084 — 1672209 +43605) p*> +16(¢ — 1)°¢"* (g +1)° (14535q16 — 5304843 + 2045004

+460152¢" +1051356¢'> — 16361684 +2599852¢'% — 30023764° + 34723144° — 30023764 + 2599852¢° — 16361684’
+10513564" —460152¢° +2045004% — 53048¢ + 14535) p>' —16(g—1)8¢" (g +1)* (9697 — 96644"° — 546544"® — 152816¢""
—329771¢'% — 49198445 — 6522644'* — 9286244'3 — 13346864'> — 17100964"" — 19110924'° — 17100964° — 13346864°

—928624q" — 6522644¢% — 4919844 — 3297714" — 152816¢° — 54654¢% — 96644 + 969) p°

—2(g—1)%¢"%(qg+1)} (227715q‘8 423565047 + 136623546 426861604 + 50324609 + 106360244'> + 1398722842

+ 195401444 + 2385253840 4+ 226053244° 4 238525384" + 195401444" + 139872284° + 106360244° + 50324604" + 26861604
+1366235¢ +235650¢ +227715) p*° —2(q — 1)°¢"7 (g +1)* (5329sq‘8 433317047 + 125853546 + 26480804 4 52107484
+8023224¢'3 4+ 120007164 4 159614564"" +206344664'° +215000764° + 206344664° + 159614564 + 120007164°
+8023224¢° + 52107484 4 26480804> + 12585354 4333170 + 53295) PR +4(g—1)°%¢"8(g+1)° (176035(1'6

1+304880g"3 + 11437284 4-25929444"3 + 43817964'2 + 78367524 + 103472804'% 4 120719524° + 1381029043

+120719524" + 103472804° + 78367524 4 43817964" + 25929444 + 11437284 + 3048804 + 176035) P

+4(g—1)°" (g+1)* (855956]16 +305012¢"3 + 10990804'* + 200889243 + 39839244'? + 56910284 + 8686584¢'° + 98577244°
+115702744% + 98577244 4 8686584¢° + 56910284° +39839244* 4-2008892¢> + 10990804> + 3050124 + 85595) p*
—2(q—1)%¢(g+1)° (432497¢™ + 100445843 +2946827¢'2 +6570372¢" 4-10501177¢"® + 15673590¢° + 199626994°
+20001720q" 4 199626994° + 156735904° + 10501177 + 6570372¢> + 29468274* + 10044584 + 432497) p?

—2(g— 1> (g+1)* (3 1492568 — 50765047 +17059254'° — 36300004 " 4 5794180¢'* — 967621643 + 12644116¢'2

— 174591524 +210579104'° — 20357004¢° +210579104% — 174591524" + 126441164° — 96762164° + 57941804" — 36300004>
+1705925¢> — 5076509 + 314925) p** +8(q — 1)*¢** (g +1)° (10497511‘6 — 135200¢"5 +2067004'* — 150960¢' — 26485242
—53296¢'" +4906444'° — 10675204° + 17308264% — 106752047 4 4906444° — 532964 — 2648524* — 1509604> -+ 2067004°
—135200g + 104975) p** +8(g — 1)2¢* (¢ + 1)* (104975617'6 —240500¢"3 +641004¢"* — 131238043 + 208622042

—33093964'! + 431042040 — 50439004 + 56827624¢° — 50439004 +43104204° — 33093964° + 20862204" — 13123804°
+6410044> — 240500g + 104975) p —2(q — 1)2¢** (g +1)° (314925¢™* — 3728144 +338975¢'2 — 6794684'" +320917¢'°
—1684114¢° +3313695¢° —32516884" +3313695¢° — 16841144° +3209174" — 6794684> + 3389754 — 372814q+3 14925) p?!
—2(q—1)2¢® (g +1)* (432497¢™ — 113263843 +2780427¢' — 5405644¢"" + 8464185¢'% — 119473944° + 150226674
—15142056¢" +15022667¢° — 119473944 + 8464185¢* — 5405644¢> +27804274% — 11326384 + 432497) p¥

+4(g—1)2¢*%(g+1)° (85595q12 —1279404"" + 820704'° — 330420¢° + 4396694 — 7120724 + 9828364° — 7120724
+4396694" — 3304204° + 82070¢% — 127940¢ + 85595) p'° +4(q—1)¢”" (¢ + 1)* (176035¢' — 4653604"" + 1110750¢"°
—19556644¢° + 29991174 — 35844804 +41969644¢° — 35844804° +29991174* — 19556644° + 1110750¢> — 465360q + 176035) p'®
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—2(qg—1)*¢*® (53295q15 + 114525¢'* — 1301094"% — 897919¢'? — 1732589¢"' — 16092554'° — 682809¢° — 1614114° — 1614114’
—682809¢° — 1609255¢° — 17325894" — 897919¢° — 130109¢> + 114525¢ + 53295) P —2¢% (¢* - 1)2 (227715¢'* —928164"!
+4414224"°+130352¢° +327981¢° + 10852804 +2534444° +10852804° +3279814" + 1303524 + 4414224% — 928164 + 227715) p'e
—16(qg—1)¢*° (969q13 +11381¢'% +42210¢"" +824504'° + 111859¢° + 1071514 + 758524 + 75852¢° + 1071514 + 1118594*

+824504° +42210¢% + 11381¢ +969) p'° +16¢°! (4> — 1)2 (14535q‘° +450° +27455¢° + 326404 + 262984° + 696924
1262984 +326404° +27455¢7 + 450 + 14535) p' + (¢ — 1)2¢> (43605¢"" +194675¢'° 4 474095¢° + 7011774 + 7984664
+841550¢° + 841550q° +7984664" +701177¢> +474095¢° + 194675¢ + 43605) PP —aP (-1 )2 (920554¢° + 543404

116884445 +2915804° + 1823304* +2915804° + 1688444> + 543404 + 92055) p'? —2(g—1)*¢* (15105¢° + 480334% + 985004
+132452¢° + 1431584° + 1431584 + 132452¢> +98500¢> + 48033 + 15105) P28 (P - 1)2 (13623q6 +15782¢°

+23569¢" +394604° +23569¢” + 15782 + 13623) p'® +¢*¢ (13015q" +4095¢% 4582047 — 109004° — 11774¢° — 11774¢" — 10900¢°
158204 +4095¢ +13015) p° — ¢*" (g +1)* (seosq"’ —2370¢° — 3685¢" + 8364° — 3685¢> —2370g + 5605) pd—ag® (955q7 —255¢°
+79¢° — 651¢* — 651¢° + 794> — 255q + 955) P’ +4¢%° (g +1)? (165¢* — 764 — 2064 — 76 + 165) p°

+4% (751q5 —3494* — 6647 — 664 —349q+751) P° =56 (q+ 1)2 (% — 14g+1) p* — 1062 (9¢° — ¢* — g +9) p°

—10g" (g +1)*p* +54™ (¢ +1)p+4* =0.

A.2. Numerical results and verification

All numerical computations were carried out in Wolfram Mathematica with 20-digit precision. In this paper, the values are
rounded to six significant digits. Unless otherwise stated, parameters were fixed to

R=1, d=0.1,

and the values of r, ; were obtained as numerical roots of the corresponding Fuss’ relations.

n  k Fuss’ relation Tnk Figure
13 2 Al 0.856554  Fig. |

13 4 A1 0.561780  Fig.2
13 6 A 0.119618  Fig.2
15 2 A2 0.876400  Fig. 3

15 4 A2l 0.660078  Fig. 3

17 1 A 0.899948  Fig. 4
17 2 A4 0.887300  Fig. 5

17 3 A3 0.827988  Fig. 4
17 4 A4 0.726898  Fig.5

17 5 A3 0.595549  Fig. 4
17 6 A4 0441564  Fig. 5

17 7 A3 0.271442  Fig. 4
17 8 A4 0.091569  Fig. 5
19 1 A5 0.899986  Fig. 6
19 2 NG 0.893235  Fig.7
19 3 A5 0.851932  Fig. 6
19 4 A6 0.773686  Fig.7
19 5 A5 0.667936  Fig. 6
19 6 A6 0.541099  Fig.7
19 7 A5 0.398100  Fig. 6
19 8 NG 0.243524  Fig.7
19 9 A 0.081955  Fig. 6

Table 1: Summary of numerically verified values of 1, x for R=1 and d = 0.1.
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A.3. Graphical results

Figures below illustrate the geometric configurations corresponding to the computed values of r, . All polygons are
symmetric with respect to the x-axis and are simultaneously tangent to the incircle C and inscribed in the circumcircle K.
Each figure visually confirms the bicentric property of the polygon and the validity of the derived Fuss’ relation for the
corresponding rotation number k.

Figure 2: Symmetrical bicentric 13-gon for R =1 and d = 0.1: (left) r134 = 0.561780 (k = 4); (right) ri36 = 0.119618

(k = 6). Each configuration satisfies the corresponding even-class Fuss’ relation Fl(f ) (R,r,d) =0.

Ar A Agq Ar

Ay

At

As

A

Aqg

A A

Figure 3: Symmetrical bicentric 15-gon for R =1 and d = 0.1: (left) r152 = 0.876400 (k = 2); (right) r154 = 0.660078

(k =4). Each configuration satisfies the corresponding even-class Fuss’ relation F, (®) R,r,d)=0.
15

Figure 4: Symmetrical bicentric 17-gon for R =1 and d = 0.1: (first) ri7,1 = 0.899948 (k = 1); (second) r173 = 0.827988
(k=13); (third) r17 5 = 0.595549 (k = 5); (fourth) r177 = 0.271442 (k ="7). Each configuration satisfies the corresponding

odd-class Fuss’ relation Fl(;c ) (R,r,d) =0.
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Figure 5: Symmetrical bicentric 17-gon for R =1 and d = 0.1: (first) ri72 = 0.887300 (k = 2); (second) r17.4 = 0.726898
(k=4); (third) r17 6 = 0.441564 (k = 6); (fourth) ri7 8 = 0.0915694 (k = 8). Each configuration satisfies the corresponding

even-class Fuss’ relation Fl(;c ) (R,r,d) =0.

Ag

Figure 6: Symmetrical bicentric 19-gon for R =1 and d = 0.1: (first) ri9,1 = 0.899986 (k = 1); (second) ri93 = 0.851932
(k = 3); (third) ri95 = 0.667936 (k = 5); (fourth) rig7 = 0.398100 (k = 7); (fifth) ri99 = 0.0819548 (k =9). Each

configuration satisfies the corresponding odd-class Fuss’ relation Fl(g ) (R,r,d) =0.

ANY
N7

Figure 7: Symmetrical bicentric 19-gon for R =1 and d = 0.1: (first) ri9o = 0.893235 (k = 2); (second) ri9 4 = 0.773686
(k=4); (third) ri9.6 = 0.541099 (k = 6); (fourth) r19.8 = 0.243524 (k = 8). Each configuration satisfies the corresponding

even-class Fuss’ relation Fl(g) (R,r,d) =0.
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