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ABSTRACT

In this paper, we extend the classical notion of Archimedean
circles, originally discovered by Archimedes in the arbelos,
to the broader framework of the arbelos with overhang.
By means of new constructions, we establish conditions
under which circles in this generalized setting retain the
characteristic radius property of Archimedean circles. Our
results unify and extend previous findings, revealing deeper
symmetries and structural invariants within these geometric
figures.
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Poopćenje Arhimedovih kružnica na arbelosu

SAŽETAK

U ovom radu proširujemo klasičan pojam Arhimedovih
kružnica, koji je izvorno otkrio Arhimed na arbelosu, na širi
okvir arbelosa s produžetkom. Pomoću novih konstrukcija
odre�ujemo uvjete pod kojima kružnice u ovom poopćenom
okruženju zadržavaju karakteristično svojstvo polumjera
Arhimedovih kružnica. Naši rezultati ujedinjuju i proširuju
prethodne rezultate, otkrivajući dublje simetrije i strukturne
invarijante unutar ovih geometrijskih figura.

Ključne riječi: Arhimedove kružnice, arbelos, arbelos s
produžetkom

1 Introduction

The arbelos, or “shoemaker’s knife”, is a classical figure
in plane geometry, first studied by Archimedes. It consists
of the region bounded by three mutually tangent semicir-
cles with collinear diameters. One of the most remarkable
aspects of the arbelos is the existence of an infinite family
of circles that share a surprising property: they all have the
same radius as a particular circle introduced by Archimedes.
These circles are now known as Archimedean circles [2].
Archimedes proved that a specific circle constructed inside
the arbelos—the so-called Archimedes’ circle—has a radius
equal to that of another circle tangent to the same bound-
aries (see Figure 1). Over the centuries, many additional
Archimedean circles have been discovered, all exhibiting
the same constancy in radius despite being derived from
different constructions.
The study of Archimedean circles continues to fascinate
geometers, both for the elegance of their construction and
for the deeper geometric principles they reveal.

A BC

D

γa

γb

ωa

ωb

Figure 1: The twin of the Archimedes’ circle on the arbelos.

A natural generalization of the classical arbelos, known as
the arbelos with overhang, was introduced by H. Okumura
in [7]. Furthermore, Okumura presented several results con-
cerning Archimedean circles within this extended frame-
work [3, 4, 5, 6]. An additional pair of Archimedean circles
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in the context of the arbelos was introduced by the present
authors in [1].

Theorem 1 (Archimedes’ circle on the arbelos with over-
hang) Let AB be a segment, and construct the semicircle
ωc with diameter AB. Let C be a point on AB, and let the
perpendicular from C to AB intersect ωc at D. On rays CA
and CB, choose points A′ and B′ respectively. Construct
semicircles ωa′ and ωb′ with diameters CA′ and CB′. This
configuration is called the arbelos with overhang. Construct
two circles: γa tangent to ωc, ωa′ , and CD; and γb tangent
to ωc, ωb′ , and CD. Then γa and γb have equal radii if and
only if AA′ = BB′.

The proof and some applications of Theorem 1 can be found
in [6].
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Figure 2: The twin of the Archimedes’ circle on the arbelos
with overhang.

In this paper, we generalize the concept of Archimedean
circles to the arbelos with overhang and investigate con-
structions that preserve the equal-radius property under this
extended configuration.

Theorem 2 Let AB be a segment, and construct the semi-
circle ωc with diameter AB. Let C be a point on the segment
AB, and let the perpendicular line d from C to AB inter-
sect ωc at D. Suppose K and L are arbitrary points on
the rays CA and CB, respectively. Construct the circles ωk
and ωl centered at K and L and passing through C. Let
A′ and B′ be the points dividing CK and CL in the same
ratio, respectively. Construct the semicircles ωa′ and ωb′

with diameters CA′ and CB′. Define M(r1) to be the circle
tangent internally to both ωk and ωc and tangent externally
to ωa′ . Define N(r2) to be the circle tangent internally to
both ωl and ωc and tangent externally to ωb′ . If the dis-
tances from the centers of M and N to the line d are d1 and
d2, respectively, then:

i)
r1

d1
=

r2

d2
;

ii) if K tends to infinity, then r1 =
a′b′

a+b′
;

iii) if L tends to infinity, then r2 =
a′b′

a′+b
;

iv) if both K and L tend to infinity, then r1 = r2 if and
only if AA′ = BB′.

Remark 1 If both K and L tend to infinity, then the semi-
circles ωa′ and ωb′ degenerate into the line CD. In this
limiting case, we obtain r1 = r2 if and only if AA′ = BB′,
which means that the semicircles ωc,ωa′ ,ωb′ form an arbe-
los with overhang (see [6]). Hence, Theorem 2 naturally
generalizes the arbelos with overhang.
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Figure 3: A generalization of Archimedean circles on the arbelos with overhang.
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2 Proof of Theorem 2

Proof. (See Figure 3.) Assume a < b and denote

CA′ = 2a, CB′ = 2b, AC = 2a′, AB = 2b′,

KA = k, LB = l.

Let O1, O2, and O be the midpoints of CA′, CB′, and AB,
respectively. In Cartesian coordinates, place

O(b′−a′,0), O1(−a,0), O2(b,0), K(−k−2a,0),

L(l +2b,0), M(−d1,y), N(d2,z).

Since A′ and B′ divide CK and BL in the same ratio, the
relation

k
a
=

l
b

(1)

holds.

We now consider the following distance relations:

KM2 = (KC− r1)
2

that is, (−d1 + k+2a)2 + y2 = (k+2a− r1)
2, (2)

MO2
1 = (a+ r1)

2

that is, (−d1 +a)2 + y2 = (a+ r1)
2, (3)

MO2 = (a′+b′− r1)
2

that is, (b′−a′+d1)
2 + y2 = (a′+b′− r1)

2. (4)

Subtracting (3) from (2) gives

(a+ k)d1 = r1(3a+ k). (5)

Subtracting (3) from (4) gives

(a−a′+b′)d1 + r1(a+a′+b′) = 2a′b′. (6)

Solving equations (5) and (6) for r1 yields

r1 =
a′b′(3a+ k)

2a(a−a′+2b′)+(a+b′)k
. (7)

From (5), the quotient r1/d1 is

r1

d1
=

a+ k
3a+ k

=
1+ k

a

3+ k
a

. (8)

A completely analogous computation with point L gives

r2

d2
=

1+ l
b

3+ l
b

. (9)

Using relations (1), (8), and (9), we obtain the equality

r1

d1
=

r2

d2
,

which completes the proof of part (i) of Theorem 2.

We now examine the limit as k tends to infinity. Using (7),
the expression for r1 becomes

r1 = lim
k→∞

3aa′b′+a′b′k
2a(a−a′+2b′)+(a+b′)k

= lim
k→∞

3aa′b′
k +a′b′

2a(a−a′+2b′)
k +a+b′

=
a′b′

a+b′
.

Thus part (ii) of Theorem 2 is established.

A similar limiting argument with l tending to infinity gives

r2 =
a′b′

a′+b
.

Finally, if both K and L tend to infinity, then the expressions
obtained above satisfy

r1 =
a′b′

a+b′
, r2 =

a′b′

a′+b
.

The radii r1 and r2 are equal exactly in the case where

a′b′

a+b′
=

a′b′

a′+b
.

Since a′b′ is nonzero, the equality of the two fractions oc-
curs exactly when

a+b′ = a′+b,

or equivalently when

AA′ = BB′.

This completes the proof of part (iv) of Theorem 2. □
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3 Conclusion

In this paper, we have extended the classical theory of
Archimedean circles to the generalized setting of the arbe-
los with overhang. By introducing suitable constructions,
we demonstrated that circles in this configuration retain
the defining equal-radius property, analogous to that of the
original Archimedean circles.

Our generalizations preserve the elegance and structural
harmony of the classical case while also uncovering new
symmetries and invariants inherent in the modified figure.
These results enrich the study of the arbelos and its ex-
tensions, illustrating how classical geometric phenomena
persist under broader transformations.

We hope this work encourages further exploration of
Archimedean-type configurations in other generalized ge-
ometries, thereby contributing to the continuing dialogue
between classical and modern geometry.
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