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ABSTRACT

It is well-known that two congruent regular tetrahedra T1
and T2 forming a Stella Octangula allow a continuous mo-
tion of T2 relative to T1 such that each edge of T2 slides
along an edge of T1. Recently the same property has been
confirmed for pairs (T1,T2) of indirect congruent tetrahedra
of general form. It turns out that this overconstrained kine-
matical systems admits besides some special one-parameter
motions also two-parameter motions. We provide a syn-
thetic analysis of the problem. Based on involved quadrics,
we study in depth the two-parameter motions and their
boundaries. Moreover, we present some generalizations of
Stellae Octangulae.

Key words: tetrahedron, Stella Octangula, Euclidean mo-
tion, two-parameter movements
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Zvjezdasti oktaedari (Stellae Octangulae) u
pokretu – ponovno razmatranje

SAŽETAK

Dobro je poznato da dva tetraedra T1 i T2 koji tvore zvje-
zdasti oktaedar (Stella Octangula) dopuštaju neprekidno
gibanje tetraedra T2 s obzirom na tetraedar T1 takvo da
svaki brid tetraedra T2 klizi duž brida tetraedra T1. Ne-
davno je isto svojstvo potvr�eno za parove (T1,T2) indi-
rektno sukladnih tetraedara općeg oblika. Pokazuje se da
taj prenapregnuti kinematički sustav, osim nekih posebnih
jednoparametraskih gibanja, dopušta i dvoparametarska
gibanja. Dajemo sintetičku analizu problema. Na temelju
uključenih kvadrika detaljno proučavamo dvoparametarska
gibanja i njihove granice. Osim toga, predstavljamo neka
poopćenja zvjezdastih oktaedara.

Ključne riječi: tetraedar, zvjezdasti oktaedar (Stella Octan-
gula), euklidsko gibanje, dvoparametarski pomaci

1 Introduction

As reported in [8], during the assembly of a physical model
of the classical Stella Octangula in 1982, L. Tompos Jr.
discovered the relative movability of two regular tetrahe-
dra T1,T2 with permanent edge-contacts. Note that at this
physical model one tetrahedron encloses the other, and the
exterior tetrahedron consists of edges only (Figure 1).

Though generically six edge-contacts fix the pose of one
tetrahedron relative to the other, in the case of regular tetra-
hedra T1,T2 one tetrahedron can slide along the other such
that each edge of T1 keeps contact with an edge of T2. Ac-
cording to [11] in 1988, this overconstrained kinematic
structure admits four one-parameter motions and three two-
parameter motions that all share the initial Stella-Octangula
pose.

Later the question arose, whether the regular Stella Octan-
gula is the only one with movable tetrahedral parts. An-
swers were given in [8, 12, 13]: Starting with a generalized

A1

B1

C1

D1A2

B2
C2

D2

T1

T2

1

Figure 1: Two congruent regular tetrahedra T1 and T2 with
crossing edges, i.e., with six edge-contacts. The magenta
lines represent the octahedron O = T1 ∩T2

Stella Octangula consisting of congruent tetrahedra T1 and
T2, one was looking for an at least one-parameter motion of
T2 relative to T1, where the six edge-contacts are preserved.
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In [8], the authors describe analytically six distinct types
of such constrained motions in the case where the convex
hull of the Stella Octangula is a box, i.e., a rectangular par-
allelepiped. Most of these motions are rotations about axes
in particular position relative to the given box.

Below we present a synthetic approach, where one-sheeted
hyperboloids of revolution and orthogonal hyperbolic
paraboloids play an essential role. After discussing some
basic properties of such pairs of tetrahedra, we analyse in
the Sections 3 and 4 two special cases, namely two congru-
ent right three-sided pyramids and, in alignment with [8],
equifacial tetrahedra. As main topic, we focus in Sections 5
to 6 on generic tetrahedra T1 and their indirect congruent
copies T2. For tetrahedra with acute-angled faces and oth-
ers, there exist even two-parameter motions of T2 against
T1 that preserve all edge-contacts. We study necessary and
sufficient conditions and the boundaries of these motions.
Moreover, we describe included one-parameter movements
where all points’ trajectories are located in parallel planes.
Similar to the generalizations presented in [8], we finally
provide in Section 7 further examples.

2 Basic properties of two tetrahedra with six
edge-contacts

For the sake of simplicity, we introduce the following no-
tion.

Definition 1 Two tetrahedra T1 and T2 are said to have
crossing edges, if they have six mutual edge-contacts and
each contact point is an interior point of both involved
edges.

With regard to a generalization of the cube circumscribed
to a regular Stella Octangula, we can state:

Lemma 1 Two tetrahedra T1 and T2 have crossing edges
if and only if their convex hull H is a convex cuboid, i.e., a
hexahedron with six quadrangular faces.

Proof. The vertices of two tetrahedra T1,T2 with crossing
edges are already the eight vertices of their convex hull H .
Each of the six faces of H has a pair of intersecting edges
as diagonals.
Conversely, the two tetrahedra T1,T2 arise by truncating the
cuboid H in the way that the edges of the tetrahedra are
diagonals of the faces of H . At a convex cuboid each quad-
rangular face is convex, too, so that the point of intersection
between the two diagonals is an interior point of the edges,
as required in Definition 1. □

The following lemma can be seen as a dual counterpart.

Lemma 2 If two tetrahedra T1 and T2 have crossing edges,
then the intersection of the solids O := (T1 ∩T2) is a convex
octahedron. Conversely, each convex octahedron O is the
intersection of two tetrahedra with crossing edges, but not
all tetrahedral vertices need to be finite.

Proof. The intersection O of the two convex solids T1

and T2 must be convex, too. Each of the eight faces of T1

or T2 intersects the other tetrahedron along a triangle with
vertices at the coplanar contact points. Thus, the six contact
points are the vertices of O (see Figure 1).
Conversely, the eight bounding planes of any convex octahe-
dron O can be separated into two quadruples such that any
two planes ε,ϕ of the same quadruple contain octahedral
faces that share exactly one vertex. The line ε∩ϕ must
be a (proper) support line of O, i.e., it meets O only at a
single point since otherwise, due to the convexity of O, the
octahedral faces in ε and ϕ would share a line segment.
Each bounding plane ε contains a triangular face of O. Let
us assume that the four planes of the quadruple through ε
have a point P in common. Then ε intersects the three re-
maining planes along lines that connect P with the coplanar
vertices of O. At least one of them cannot be a (proper)
support line of O as it meets the closed triangular face along
a line segment. This contradiction with our assumption re-
veals, that each quadruple defines a tetrahedron, provided
that also vertices at infinity are admitted. □

2.1 A kinematic analysis

Suppose that T1 and T2 are two tetrahedra with crossing
edges. Each single edge-contact reduces the degree of free-
dom (‘dof’, for short) of T2 relative to T1 by 1. Therefore,
the Chebychev-Grübler-Kutzbach formula yields dof = 0.
In other words, T1 is generically rigid relative to T2. The
following kinematical statement shows that in general T1 is
even infinitesimally rigid relative to T2.

Theorem 1 Given two tetrahedra T1, T2 with crossing
edges, let Pi for i = 1, . . . ,6 be the six points where an edge
ei1 of T1 meets an edge ei2 ⊂ T2. Then T2 is infinitesimally
movable relative to T1 if and only if the six perpendiculars
ni through Pi to the planes spanned by ei1 and ei2 belong to
a linear complex of lines.

Remark 1 By virtue of Lemma 1, the contact points Pi are
the crossing points of the diagonals in the quadrangular
faces of the convex hull H , and the normals ni at Pi are
orthogonal to the faces.
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Proof. The tetrahedron T2 is infinitesimally movable relative
to T1, if and only if one can assign to each point attached to
T2 a velocity vector such that for any two points X ,Y their
mutual distance remains infinitesimally constant, i.e., for
the respectively assigned velocity vectors vX ,vY the differ-
ence vector vX −vY is perpendicular to the line XY .1 This is
equivalent to the statement that for all points X in space the
lines through X orthogonal to vX belong to a linear complex
of lines (see, e.g., [1, p. 162] [3, p. 292] or [6, p. 219]). The
axis of this linear complex coincides with the instantaneous
screw axis of the motion of T2 against T1.
Suppose that there exists such an infinitesimal motion of T2
relative to T1. Then, in order to preserve the edge-contact
between ei1 and ei2, the velocity vector vr

i of the point of
contact Pi relative to T2 must be parallel to ei2, while rela-
tive to T1 the velocity vector va

i of Pi is parallel to ei1. The
edge-contacts preserving motion of T2/T1 assigns to Pi the
velocity vPi = va

i −vr
i (‘absolute’ minus ‘relative’) parallel

to the plane connecting ei1 with ei2. Consequently, the line
ni through Pi and orthogonal to ei1 and ei2 belongs to the
linear complex of path-normals. This argumentation works
also in the converse direction. □

It needs to be noted that the characterization presented in
Theorem 1 makes no difference whether the meeting point
between ei1 and ei2 lies on the edges or outside on the
extending lines.

Remark 2 Referring to Theorem 1, let the set of linear line
complexes through the six perpendiculars ni, i= 1, . . . ,6, be
one- or two-dimensional. Then the local dof of infinitesimal
motions of T2 relative to T1 equals two or three.

If T2 is continuously movable against T1 like in the regular
case, then it is infinitesimally movable in each pose. In
particular, in the regular Stella-Octangula pose, the six path
normals n1, . . . ,n6 coincide with three mutually orthogonal
diameters of a regular octahedron O. This implies that even
each infinitesimal spherical motion of T2 about the common
center O preserves all edge-contacts with T1 since vO = 0.

In the following sections we only focus on pairs of con-
gruent tetrahedra (T1,T2) with crossing edges. This means
that in each pose of T2 relative to T1 there is a displacement
α : T1 → T2. We recall from the classification of congru-
ences in the Euclidean 3-space (see, e.g., [10]): If α is
orientation preserving, then it is either a translation or a
rotation or screw motion. Otherwise, α is either a reflection
in a plane σ or the commutative product of this reflection
with a translation parallel to σ or with a rotation about an
axis orthogonal to σ. The only involutive displacements are
reflections in a point, in a line or in a plane; only the second
one is orientation preserving.

3 Stellae Octangulae formed by right three-
sided pyramids

Let T1 and T2 be two congruent right three-sided pyramids
in a Stella-Octangula position, i.e., with edge-contacts at
all midpoints of edges (Figure 2, top). Then there exists a
one-parameter motion with permanent edge-contacts while
the axes of rotational symmetry are coinciding in the line a
which is supposed to be vertical. This mobility arises from
the case of regular tetrahedra treated in [11] by an affine
transformation, an appropriate scaling along the axis a. But
this time we move simultaneously both tetrahedra T1 and
T2, while the common axis a and two planes of symmetry
between T1 and T2 remain fixed, namely one plane ϕ0 or-
thogonal to a, hence horizontal, and the other ϕ1 passing
through a. Therewith, the two tetrahedra remain symmetric
with respect to (w.r.t., for short) a fixed axis, the intersection
s = ϕ0 ∩ϕ1 of the two planes of symmetry (see Figure3). 

  

 
 

 

  

 
 

Figure 2: Stella Octangula consisting of two right tetrahe-
dra T1 and T2 in the highly symmetric start position (top),
and in an intermediate position (bottom).

1Throughout the paper, XY denotes the line connecting the two points X and Y , while the symbol [XY ] stands for the segment bounded by X and Y .
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During this one-parameter motion, one vertex of each tetra-
hedron moves on the axis a, while the other vertices trace
algebraic curves on a coaxial cylinder (see Figure 4). The
octahedron O of contact points shows up in form of an
antiprism with regular triangles as base and top face (see
Figure 2, bottom). In the initial pose the six remaining faces
are congruent isosceles triangles.

For a detailed analysis of the movements of the two pyra-
mids we denote the vertices of the basis of Ti with Ai,Bi,Ci

and the apex with Di, i = 1,2. We introduce cylinder coor-
dinates with the vertical altitude a as z-axis, with the origin
O in the fixed plane ϕ0 and the zero-direction along s in
the fixed plane ϕ1 and pointing to the right in Figure 3.
The circumcircles of the base triangles of the two coaxial
tetrahedra T1 and T2 are assumed as unit circles.

Let (1,α,−hα) be the cylinder coordinates of A1 and
(1,−α,hα) that of A2. Then, the point of intersection P1 be-
tween the edges [A1D1] and [A2B2] (see Figure 3) has coor-
dinates (ρ, α, hα). The point of intersection Q = ϕ0∩A1D1

gets – because of QA1 =
1
2 (1−ρ) =: ρ – the cylinder coor-

dinates (1−ρ, α, 0), where

ρ =
1

2cos(π/3−2α)
, ρ =

cos2α+
√

3 sin2α−1
2(cos2α+

√
3 sin2α)

,

for 0 ≤ α ≤ π/3.
(1)

The choice α = π/6 yields the Stella-Octangula position.
For α = 0 the two tetrahedra are placed face to face sharing
the base triangles.

If h denotes the altitude of the two pyramids, then follows
from the proportion h : (h−2hα) = 1 : ρ

hα = h ·ρ, (2)

and furtheron with t := tanα the algebraic expression

hα(t) = h
t
(
2
√

3− t
)

2(1+2
√

3 t − t2)
, 0 ≤ t ≤

√
3. (3)

The trajectory cA1 of A1 has the cylinder coordinates
(1, α,−hα(t)) by (3).

  

 

 

  

 

 

Figure 3: Front- and top-view of the right pyramids T1 and
T2 from Figure 2. Here both, T1 and T2, translate symmetric
to the plane ϕ0 along a through hα, while rotating about
a in opposite directions through α. The top-view (bottom)
shows the images of the paths of the contact points P1 (red)
and Q (green) without restriction to the parameter interval
0 ≤ α ≤ π/3.

Theorem 2 Two congruent right three-sided pyramids T1
and T2 admit a one-parameter relative motion with six per-
manent crossings while the axes of symmetry of the two
pyramids coincide.

Remark 3 Since in each pose the pyramid T1 is symmetric
to T2 w.r.t. the axis s = ϕ0 ∩ϕ1, the relative motion T2/T1
is a symmetric roll-sliding as studied by J. Krames in [7].
The locus of s relative to T1, called base surface, is the right
conoid defined by the equation z = hα(α) according to eqs.
(2) and (1).
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Figure 4: Top- and front-view of intermediate positions of
the right pyramids T1 and T2, together with the trajectories
of the vertices of T1 and T2, shown as formally closed curves
on the unit cylinder with axis a (red: paths of vertices of T1,
purple: paths of vertices of T2).

In each pose, the reflection in s exchanges T1 and T2. There-
fore, s is also an axis of symmetry of the octahedron
O = T1 ∩ T2 with vertices at the contact points (see Fig-
ure 2). This symmetry exchanges in particular the regular
triangles, along which each tetrahedron intersects the base
of the other and which is inscribed in this base.

If the tetrahedra T1 and T2 are regular, then we have four
possibilities to choose an axis a and a fixed plane ϕ0 for per-
forming the one-parameter motion described above. So the
question arises, whether these in fact independent motions
can be embedded in a two-parameter motion. However,
according to [11] this is not the case.

4 Stellae Octangulae formed by equifaced
tetrahedra

Now the initial Stella Octangula is formed by the two tetra-
hedra T1 and T2 that can be inscribed in a rectangular box
H (Figure 5, top). This case was also extensively studied
in [8].

So the question arises, whether these in fact independent motions can be embedded 
into a more-parametric set of forced motions. In the next chapter we treat another 
special set of tetrahedra, where one derives another type of a one-parameter forced 
motion. 

3. Stellae octangulae formed by equifaced tetrahedra 

As next cases we consider pairs of indirect congruent equifaced tetrahedra ଵܶ and ଶܶ. 
In the standard position, when their edges intersect in midpoints, their common inner 
part ଵܶ ∩ ଶܶ is an equifaced octahedron ࣩ. The convex hull of  ଵܶ, ଶܶ is a rectangular 
box ℬ with edges parallel to the diagonals of  ࣩ, Figure 4 (left). We keep one diagonal 
ܽ of ࣩ fixed and interpret those edges of ଵܶ, which intersect ܽ, as diagonals of a skew 
quadrilateral consisting of the remaining edges of ଵܶ. Two opposite edges of this 
quadrilateral are generators of a hyperboloid of revolution Φଵ with axis ܽ, the other pair 
of edges defines a second hyperboloid of revolution Φଶ coaxial with ܽ, Figure 4 (right). 
Now we reflect ଵܶ at planes ߪ through ܽ. Obviously, Φଵ and  Φଶ remain fixed, and we 
receive symmetric versions ଶܶ of ଵܶ in positions, where all edges of ଶܶ must intersect 
those of ଵܶ. Having chosen ߪ suitably all intersection points are indeed inner points of 
the edge segments. Thereby “suitably” means that the reflection planes ߪ through ܽ 
must be chosen within a restricted angle-interval to ensure that the edge segments 
intersect in inner points. (For example, in Figure 4 this angle interval has the size of 
 rotates ߪ Keeping ଵܶ fixed, then ଶܶ performs a one-parameter motion, when .(ܳܣܲ∢
around a within that angle interval.  

                          
 

Figure 4: The Stella Octangula based on equifaced tetrahedra ଵܶ and ଶܶ has an equifaced octahedron in 
common, its convex hull is a right prism (left). The edges of ଵܶ, considered as a skew quadrilateral together with 
its diagonals, are generators of two hyperboloids of revolution with common axis ܽ. Reflecting ଵܶ at a plane ߪ 

through ܽ delivers ଶܶ with edges intersecting the edges of ଵܶ (right). The figure at right shows the reflection at a 
special plane ߪ delivering the standard position of ଶܶ. 

As we have three possibilities to choose axis ܽ, there are three one-parameter families 
of motions of  ଶܶ “along” ଵܶ. We collect this in 

Theorem 1: Besides the classical Stella Octangula based on regular tetrahedra ଵܶ, ଶܶ, 
which allows the four distinct one-parameter motions described in Chapter 2, those 
Stellae, which are based on equifaced tetrahedra ଵܶ, ଶܶ allow three one-parameter sets 

  

 

 

 

Figure 5: The Stella Octangula based on equifaced tetra-
hedra T1 and T2 has a rectangular box as convex hull (top).
The contact points form an equifaced octahedron. Edges of
T1 that are skew to the vertical diameter a are generators
of two hyperboloids of revolution with axis a.

The two tetrahedra are equifaced (or isosceles), i.e., all
faces are congruent (see, e.g., [5]). The reflection in the
center O of H as well as the reflections in a diameter plane
σ parallel to one face of H exchanges T1 and T2 (Figure
5, bottom). Every edge of T1 has a parallel counterpart at
T2. Reflections in the three mutually orthogonal axes of
symmetry of the box H send each tetrahedron onto itself.

The convex octahedron O = T1 ∩T2 is equifaced with di-
agonals parallel to the edges of the box H . We keep one
diagonal a of O fixed and assume that a is vertical as shown
in Figure 5, bottom. Now we focus on the quadrangle of
edges of T1 that are skew to a.
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Two extended opposite edges of this quadrangle are genera-
tors of the same regulus of a hyperboloid of revolution Φ1
with the axis a. The other pair of edges defines a second
coaxial hyperboloid of revolution Φ2. If we reflect T1 in
any plane σ through a, then Φ1 and Φ2 remain fixed while
the two reguli are exchanged. The tetrahedron T1 is sent
to a pose T2, where each extended edge of T2 intersects an
extended edge of T1. Two of these edge-contacts are fixed
on a; the other four are intersections between generators of
different reguli of one of the hyperboloids.

For a suitably chosen σ all intersection points are indeed
inner points of the edges. Thereby “suitably” means that
the plane σ through a must be chosen within a restricted
angle-interval to ensure that it intersects the edges at inner
points. For example, in Figure 5, bottom, this angle interval
equals <) PAQ, provided that PQ is a shorter side in the top
rectangle of H . If T1 remains fixed while σ rotates around
a within that angle interval, then T2 performs a continuous
rotation about a.

Since there are three possibilities to choose the axis a, we
can recall from [8]:

Theorem 3 The Stella Octangula based on equifaced tetra-
hedra T1,T2 allows three one-parameter motions of T2
against T1 that preserve the six crossings. The relative
motions T2/T1 are terminated rotations about the common
perpendiculars of opposite edges of T1.

In the initial position, the octahedron O of contact points
is centrally symmetric with mutually orthogonal diagonals
(see Figure 5, top). In the other poses O has a pair of skew,
but mutually orthogonal horizontal diagonals. They are
orthogonally intersected by the axis a being the third diag-
onal (see Figure 6). Note that parallels of these diagonals
through the center O are the axes of line reflections that
exchange T1 with T2.

Can we generalize the statement of Theorem 3? Can also
other lines a through the center of the box H serve as axes
of rotations that preserve the six edge-contacts between T1
and T2 in the Stella-Octangula pose?

Two parallel lines are generators of a one-sheeted hyper-
boloid of revolution with axis a if and only if there is a
common perpendicular that intersects a orthogonally in the
middle between the two lines. Parallel edges of the two
tetrahedra are located in opposite faces of the box H , and
the common perpendiculars of the edges are parallel to an
axis of symmetry of the box. This implies that the axis a of
any rotation in question must coincide with one axis of sym-
metry of H , and one of the three hyperboloids degenerates
in two pencils of lines. In other words, there are no other
axes of rotations passing through the center of the box.

  

 

 

 

Figure 6: Front view (top) and top view (bottom) of two
equifaced tetrahedra T1 (black) and T2 (green) with cross-
ing edges. The octahedron of contact points has a pair of
skew orthogonal diagonals with the common perpendicular
a as third diagonal. Only in the initial pose the octahedron
is centrally symmetric, and all diagonals pass through the
center.

The coming Section 5 will reveal that, contrary to Section 3,
the three rotations mentioned in Theorem 3 are included in
two-parameter motions which preserve all edge-contacts.
Moreover, according to Theorem 5 and in agreement with
[8], these two-parameter motions contain infinitely many
rotations about axes that no longer pass through the center
O of the box H .

5 Stellae Octangulae formed by tetrahedra
with acute-angled faces

Now we consider the general case of a Stella Octangula,
where a tetrahedron T1 is mapped to T2 by reflection in the
barycenter O of T1. Consequently, the two tetrahedra T1
and T2 share the midpoints of their edges. We aim at other
positions of T2 having crossing edges with T1 and obtained
by a reflection in a plane σ. Since a plane cannot meet more

8



KoG•29–2025 H. Stachel, G. Weiss: Stellae Octangulae in Motion Revisited

than four edges of T1 at inner points, edge-contacts at two
additional points away from σ are necessary.

In the following we explain this for a given sextuple of lines
L1 = (a1,b1, . . . , f1). We choose a pair of points P ∈ e1 and
Q ∈ f1 and their bisecting plane as reflection plane σ (see
Figure 7). Then, the reflection of all six lines of L1 in σ
yields a new sextuple L2 = (a2,b2, . . . , f2), which is indi-
rectly congruent to L1. Obviously, each line of L1 meets its
image in the plane σ. However, in addition the image e2 of
e1 passes through Q ∈ f1 and, vice versa, f2 meets e1 at P.

  

 

 

 
Figure 7: After reflecting a sextuple of lines L1 in the sym-
metry plane σ of two arbitrary points P ∈ e1 and Q ∈ f1 we
obtain an indirect congruent sextuple L2 and two additional
intersections at P and Q.

If e1 and f1 are skew, we get a two-parameter set of possible
lines g = PQ forming a hyperbolic congruence of lines, and
thus a two-parameter set of reflection planes σ. With regard
to our goal, we need to make sure that
(i) the reflection plane σ intersects four edges of T1 at inner
points and
(ii) the corresponding points P,Q are inner points of the
remaining two edges.
Reflection planes σ satisfying (i) and (ii) are called admis-
sible.

If the six lines of L1 are the extended edges of the tetrahe-
dron T1 and if the bisecting plane σ of two points P and
Q is admissible, then there exists in a neighbourhood a
two-dimensional domain of congruence lines g = PQ and
of admissible reflection planes σ. We will consider the
envelope of these planes in Section 5.1.

At a general Stella Octangula, the points of contact between
T1 and T2 are midpoints of the edges. They form three par-
allelograms with sides parallel to pairs of opposite edges
of T1 and T2. There is a central symmetry between T1 and
T2, but in general no planar symmetry like at the equifaced
case of Section 4. In general, the octahedron O of contact
points has no mutually orthogonal diagonals (see Figure 8).

  

 

 

 

Figure 8: At a Stella Octangula with general tetrahedra T1,
T2 the octahedron O of contact points is centrally symmetric,
and its diagonals are not mutually orthogonal.

Each plane of a diagonal parallelogram is parallel to a pair
of opposite edges of T1. This means that also the common
normal n of a pair of extended opposite edges (e1, f1) has
foot points (P,Q) symmetric to the corresponding plane
(see Figure 9). Therefore, there exists a certain open two-
parameter neighborhood of these foot points and thus a
two-dimensional manifold of planes σ, where the contact
restrictions (i) are fulfilled. One must only make sure that
(ii) both foot points (P,Q) are inner points of the corre-
sponding edges. The contrary situation, where one foot
point lies outside, is shown in Figure 10. The following
theorem presents a sufficient condition.

  

 

 

 

 

Figure 9: Front view (left) and side-view (right) of a general
tetrahedron T1, whereby four coplanar midpoints of edges
span the projection plane σ for the front view. The reflec-
tion in σ transforms T1 (black) in a tetrahedron T ′

2 (green)
that in general is different from the centrally symmetric T2

forming the Stella Octangula.

9



KoG•29–2025 H. Stachel, G. Weiss: Stellae Octangulae in Motion Revisited
 

 

 

Figure 10: Top-view of a general tetrahedron T1 with a
pair of opposite edges [AC] and [BD] parallel to the projec-
tion plane σ which contains the parallelogram of midpoints
(shaded) of the other four edges. Since the common normal
n ⊥ σ of e1 = AC and f1 = BD intersects [BD] at an exte-
rior point, T1 has obtuse angled faces. Reflecting T1 in σ
gives a tetrahedron T2, where the image f2 of f1 intersects
e1 in an exterior point.

Theorem 4 Each tetrahedron T1 with only acute-angled
faces allows three two-parameter motions T2/T1 preserving
six edge-contacts. In each of the three motions the poses
of T2 arise from T1 by reflections in a two-parameter set of
planes σ. In general, the three motions have no pose of T2
in common.

Proof. We assume that the edges [A1C1] and [B1D1] of T1
are horizontal. This means for the top view that these edges
are parallel to the projection plane. The interior of T1 should
lie under the face A1B1C1. Then the convexity of T1 implies
that in the top view the signed angle between C′

1A′
1 and

B′
1D′

1 lies between 0◦ and 180◦. Let n denote the common
perpendicular of the lines A1C1 and B1D1, and suppose that
its top view n′ lies outside the segment [A′

1C′
1], but closer to

A′
1 than to C′

1 (Figure 11, left).

A′
1

B′
1

C′
1

D′
1

n′

nA

A′
1

B′
1

C′
1

D′
1

n′

nA

nD

1

Figure 11: Illustrating the proof of Theorem 4.

If the line nA through A′
1 normal to A′

1C′
1 separates C′

1 from
D′

1, then the angle <)C′
1A′

1D′
1 is greater than 90◦. Conse-

quently, also in space the angle <)C1A1D1 is obtuse.

In the remaining case nA separates B′
1, D′

1 and C′
1 from n′.

Then the line nD through D′
1 orthogonal to B′

1D′
1 separates

A′
1 from B′

1 (Figure 11, right). This implies that the an-
gle A1D1B1 is obtuse. In other words: If one pedal point
of a common normal between opposite edges lies on the
extension of an edge, then the tetrahedron must have an
obtuse-angled face. □

Remark 4 The condition of acute-angled faces in Theorem
4 is sufficient, but not necessary since there exist tetrahe-
dra with an obtuse-angled face which nevertheless has the
pedal points of the normals between opposite edges inside
the edges. This holds, e.g., for the tetrahedron with vertices

A = ( 0.0, 0.0, 1.0), C = (2.0, 0.00, 1.0),
B = (−0.3, 1.0, 0.0), D = (0.3,−0.48, 0.0).

We obtain as pedal points of the common normal between
opposite edges

AC and BD : (0.105, 0.000, 1.000), (0.105, 0.000, 0.000),
AB and CD : (−0.041, 0.136, 0.864), (0.539,−0.412, 0.141),
DA and BC : (0.112,−0.180, 0.626), (0.569, 0.622, 0.378).

Apparently, the first two points are inner points of the
edges [AC] and [BD], and the latter four points have z-
coordinates between 0 and 1. However, there is an obtuse
angle <)CAB = 101.98◦. Moreover it needs to be men-
tioned that for the existence of admissible planes σ for a
given pair opposite edges it is not even necessary that the
bisecting plane of the foot points of the common perpen-
dicular intersects the remaining edges at inner points (note
Remark 6). A necessary and sufficient condition for the
existence of the two-parameter motion can be found below
in Theorem 6.

Note that for obtaining a standard Stella-Octangula, the
reflection of any tetrahedron T1 in its barycenter produces
its mate T2. The two-parameter motions discussed in Theo-
rem 4 need another initial pose T ′

2 : the acute-angled T1 is
reflected in a plane µ through four coplanar midpoints of
edges, and there exist three possibilities.

Lemma 3 Referring to the previous notation, all three ini-
tial poses T ′

2 of the two-parameter movements coincide with
the Stella-Octangula pose T2 if and only if T1 is equifaced.

Proof. For equifaced tetrahedra holds T ′
2 = T2 as shown in

Figure 5, bottom.
Suppose that conversely both the point reflection in the
barycenter of T1 as well as the reflection in the plane σ
passing through the midpoints of all line segments [PQ]
with P ∈ [A1C1] and Q ∈ [B1D1], take T1 to T ′

2 . Since the
barycenter as midpoint between the midpoints of A1C1
and B1D1 belongs to σ, the product of the two reflections

10
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is the reflection in the line a through the barycenter and
orthogonal to σ. This product must transform T1 onto itself.
Hence, the halfturn about a exchanges A1 with C1 and B1
with D1, so that we obtain equal lengths A1B1 =C1D1 and
A1D1 =C1B1.
If the same assumption holds for another pair
([A1B1], [C1D1]) of opposite edges, then also the last two
opposite edges have equal lengths A1C1 = B1D1. In other
words, the tetrahedron T1 is equifaced. □

Lemma 3 means, that only in the particular case of equifa-
cial tetrahedra there exists a single bifurcation between all
three two-parameter movements, namely at the common
Stella-Octangula pose.

5.1 The role of the bisecting paraboloids

In [8], the authors already proved that equifacial tetrahe-
dra with crossing edges admit infinitely many continuous
rotations that preserve the edge-contacts. The following
generalization for the generic case describes also the geo-
metric loci of the axes of these rotations.

Theorem 5 Referring to Theorem 4, for each of the
three two-parameter motions T2/T1 the admissible reflec-
tion planes σ are tangent to an orthogonal hyperbolic
paraboloid Ψ1, the bisector of the extensions e1, f1 of op-
posite edges of T1 (Figure 12). Each of these continuous
motions includes two one-parameter families of bounded
rotations. The axes of these continuous rotations of T2
against T1 are generators of Ψ1 and at the same time axes
of rotations that send e1 to f1.

Proof. The symmetry planes σ of all pairs of points P ∈ e1
and Q ∈ f1 envelop an orthogonal hyperbolic paraboloid
Ψ1, the bisector of the pair of lines (e1, f1) (see, e.g., [9,
p. 64]). Each plane σ contains two generators p and p of Ψ1.
Keeping one of these generators fixed, say p, the tangent
planes of Ψ1 along p form a pencil. Since the product of
the reflections in two planes through p is a rotation about p,
the admissible planes σ through p correspond to poses of
the tetrahedron T2 which are related by rotations about p.
According to [9, p. 64], the lines p on the bisector Ψ1 are
the axes of rotations that send e1 to f1. This agrees with
previous arguments, since p is the axis of a hyperboloid of
revolution through e1 and f1, and the reflection in a merid-
ian plane exchanges the reguli. The generators p and p
in the bisecting plane σ of P ∈ e1 and Q ∈ f1 are axes of
rotations that take in addition P to Q. □

x

y

z

V

e

f

X

PPPPPPPPPPPPPPPPP

Q

MMMMMMMMMMMMMMMMM

S

Ψ

σ

1

Figure 12: The orthogonal hyperbolic paraboloid Ψ is the
bisector of the skew lines e and f , i.e., the set of points X
satisfying Xe = X f . The plane σ of symmetry of the points
P ∈ e and Q ∈ f contacts Ψ at the point S.

Remark 5 The two-parameter motions according to The-
orem 4 are symmetric rollings since an orthogonal hyper-
bolic paraboloid Ψ2 attached to T2 is rolling2 on an indi-
rectly congruent paraboloid Ψ1 such that the two surfaces
are permanently symmetric w.r.t. the common tangent plane
σ at the point of contact. Note the difference: At the sym-
metric roll-slidings mentioned in Remark 3 the two base
surfaces are directly congruent.

In the particular case of equifacial tetrahedra, the vertex
generators of the three bisecting hyperbolic paraboloids are
parallel to the edges of the convex hull H in the Stella-
Octangula pose, i.e., of a rectangular box (see Figure5, top).
The rotations about these particular generators are exactly
the same as studied in Section 4.

6 The boundaries for admissible reflection
planes

A generic plane σ that meets the interior of the tetrahedron
T1 without passing through any vertex, separates either one
vertex from the other three or two from two. In the first case
we speak of type-1 planes, otherwise from type-2 planes
(see Figure 13). Only type-2 planes are candidates for ad-
missible planes as they meet four edges. We are going to
determine the boundaries for the set of admissible planes.

2In fact, a rolling of physical models of the paraboloids is not possible since the two surfaces penetrate each other along the common generators in the
plane of contact (see Figure 12).

11
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5.  Planes giving rise to a admissible position of ࢀ૛ versus ࢀ૚.   

A plane ߪ through an inner point P of an edge intersects either 3 concurrent edges or 
a skew quadrangle of edges in inner points. We speak of “type-1 planes” in the first 
case and of “type-2  planes” in the second case. When we intersect a tetrahedron with 
parallel planes, we find regions of these types limited by planes through a vertex of the 
tetrahedron, see Figure 11.  

 
Figure 11: When intersecting a tetrahedron with parallel planes one finds 2 regions, where  
the intersection is empty, 2 regions of type 1 – planes, and one region of type 2 – planes.  

While we possibly can use a type-2 plane as reflection plane ߪ, the discussion for type-
1 planes is based on other elementary geometric ideas. 

 

5.1 Admissible type-2 planes 

Of a tetrahedron ଵܶ with ܣ, ,ܤ ,ܥ =we consider the opposite edge lines e ܦ ݂ and ܥܣ =
ܲ as axes of a hyperbolic net of lines. We choose points ܦܤ ∈ ݁, ܳ ∈ ݂ arbitrarily as 
inner points of the edge segments [ܣ, ,[ܦ ,ܤ] ݃ and get a congruence line [ܥ = ܲܳ with 
a “midpoint” ܯ as an inner point of ଵܶ. All possible points ܯ fulfil a parallelogram in a 
plane ߤ spanned by the midpoints of the edges ܤܣ, ,ܥܤ ,ܦܥ  as these edges are ,ܣܦ
limit cases of congruence lines in consideration, see Figure 12.  

 

Figure 12: Opposite edge lines ݁, ݂ of a tetrahedron are considered as axes of a hyperbolic  
line congruence. Its congruence lines ݃ have midpoints ܯ in the plane  ߤ ∥ ݁, ݂.  

A presumptive reflection plane ߪ is normal to ݃ and contains ܯ. 

Figure 13: When intersecting a tetrahedron with parallel
planes, one finds two open regions where the intersection
is empty, two regions of type-1 planes, and one of type-2
planes.

At a given tetrahedron T (we suppress the subscripts for a
while) with vertices A,B,C,D let P ∈ [AC] and Q ∈ [BD]
be interior points of their edges. Then their midpoint M on
g = PQ is an inner point of T . All possible points M form
the interior of an parallelogram in a plane µ with the mid-
points of the edges [AB], [BC], [CD], and [DA] as vertices
(see Figure 14).

Figure 14: Segments PQ with their endpoints on opposite
edges [AC] and [BD] of the tetrahedron T have their mid-
point M in the plane µ parallel to the lines e = AC and
f = BD. A presumptive reflection plane σ is normal to
g = PQ and contains M.

Now we intersect the plane σ through M orthogonal to g
with the extended edges e = AC and f = BD. If these inter-
sections are external points, then σ is a type-2 plane as it
intersects all sides of the skew quadrangle ABCD at inner
points thus satisfying condition (i). In order to satisfy (ii),
the midpoint M of [PQ] must be an interior point of the
parallelogram T ∩µ. We summarize:

Theorem 6 Let the lines e and f be the extensions of oppo-
site edges [AC] and [BD] of the tetrahedron T , and let Ψ be
the bisecting orthogonal hyperbolic paraboloid of e and f .
Then the set of contact points S of Ψ with admissible planes
σ related to the edges [AC] and [BD] equals the interior of
the intersection of two open domains of Ψ,
a) the domain enclosed by four conics, the contact curves
of the tangent cones of Ψ with apices A,B,C,D, and
b) the domain that results from planes σ corresponding to
midpoints M in the parallelogram µ∩T1 (Figure 15).

For visualizing the two domains, we assume the lines e and
f along with the plane µ to be horizontal and inspect the top
view. Note that µ is tangent to the hyperbolic paraboloid
Ψ at its vertex V , and the generators through V are axes of
symmetry of e and f . Moreover, according to [9, p. 64]
the lines e and f are polar w.r.t. Ψ. Therefore, the tangent
cones from A,C ∈ e contact Ψ in the respective polar planes
passing through f and, vice versa, the contact curves for
B,D ∈ f lie in planes through e. These four planes enclose
the tetrahedron T ∗ that is Ψ-polar to T . The first domain
mentioned in Theorem 6 and corresponding to the condition
(i) is the intersection of Ψ with the interior of T ∗ (see Figure
15). In general, it is bounded by four hyperbolic arcs.

A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′

B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′

C′C′C′C′C′C′C′C′C′C′C′C′C′C′C′C′C′C′C′C′C′C′C′C′C′C′C′C′C′C′C′C′C′

D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′
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D∗′

x

y
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V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′V ′
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Figure 15: Top views of the tetrahedron T (black) with the
parallelogram of midpoints M (red), the polar tetrahedron
T ∗ with vertices A∗, . . . ,D∗ (blue) and the four hyperbolic
arcs (red) that enclose the first domain of the hyperbolic
paraboloid Ψ as mentioned in Theorem 6. For admissible
planes σ the midpoint M has to be chosen in the yellow
area. The green parallelogram is the top view of the four
parabolas terminating the second domain for the contact
points S with Ψ.

For determining the second domain, we choose the gen-
erators through the vertex V of Ψ as x- and y-axis of a
coordinate frame and define e and f by

z =±d and xsinα =±ycosα,

12
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where 2α =<) e f , and 2d equals the orthogonal distance
between e and f . This implies

Ψ : 2dz+ xysin2α = 0.

The polar plane of any point P = (ξ,η,ζ) w.r.t. Ψ satisfies

(ηx+ξy)sinαcosα+dz =−dζ. (4)

The vertices A∗,C∗ ∈ e and B∗,D∗ ∈ f of the polar tetrahe-
dron T ∗ are respectively conjugate to A,C,B,D ∈ T w.r.t.
Ψ. Thus, we obtain by (4) for A = (a, a tanα, d) the ver-
tex A∗ = (a∗, a∗ tanα, d) and for B = (b,−b tanα,−d) the
vertex B∗ = (b∗,−b∗ tanα,−d), where

aa∗ = bb∗ =
−d2

sin2 α
.

For describing the second domain, we check the relation
between any midpoint M ∈ µ and the contact point S of the
corresponding plane σ with Ψ:

Given M = (ξ,η,0), we first determine the line g through
M meeting e and f . The meeting point Q ∈ f is the point
of intersection between f and the plane connecting M with
e, which satisfies

(ξsinα−ηcosα)(z−d)+d(xsinα− ycosα) = 0.

This yields

Q = (ξ−ηcotα, η−ξ tanα,−d)
P = (ξ+ηcotα, η+ξ tanα, d) .

The bisecting plane of P and Q is

σ : ηxcotα+ξy tanα+dz = ξη(tanα+ cotα).

We obtain the contact point S of σ with Ψ as its pole by
comparing the equation of σ with (4) (see Figure 12). This
results in

S =

(
ξ

cos2 α
,

η
sin2 α

,− ξη
d sinαcosα

)
. (5)

The relation between the top views of M and S in the plane
z = 0 is affine. Hence, the second domain as locus of ad-
dmissible points S ∈ Ψ as mentioned in Theorem 6 and
corresponding to condition (ii) appears in the top view as
interior of a parallelogram. It is easy to verify that the side
lines of this parallelogram are respectively orthogonal to
e′ and f ′ and pass through the top views A′, . . . ,D′ of the
vertices of T (see Figure 15). After transforming the top
views of the four hyperbolas by the inverted affine relation
M 7→ S we find the locus of midpoints M that correspond
to admissible bisecting planes σ.

A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′A′
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Figure 16: At this example, the common normal of e and f
(with top view V ′) has its foot point on f outside the segment
[BD]. Nevertheless, there exist admissible reflection planes
σ. The top views of the domains for the corresponding mid-
points M and for the contact points S with the hyperbolic
paraboloid Ψ are shaded yellow.

Remark 6 The example displayed in Figure 16 demon-
strates that due to Theorem 6 a two-parameter motion can
also exist when the common perpendicular of the opposite
edge lines e, f has a foot point outside the edge. Thus, inte-
rior foot points are a sufficient, but not necessary condition
for the existence of a two-parameter motion of the type pre-
sented in Theorem 4. In other words, along with Remark 4
this means that the tetrahedra with acute-angled faces are a
proper subset of the set of tetrahedra where the foot points
of all common perpendiculars are interior points of edges.
And this is a proper subset of the set of tetrahedra which
admit three two-parameter symmetric rollings.
Referring to Figure 16, when the common perpendicular
of e and f has both footpoints outside the respective edges
[AC] and [BD], then the intersection of the two domains
mentioned in Theorem 6 must be empty as they are always
separated by one coordinate axis.

6.1 Contained planar one-parameter motions

A motion in 3-space is called planar if all point trajectories
are located in parallel planes. For example, according to
Theorem 5 all rotations about generators of the bisecting
hyperbololic paraboloids are planar motions. There are
still more planar one-parameter movements contained in
the two-parameter motions of congruent tetrahedra with
crossing edges.

We recall that for each pair of opposite edges [AC] and [BD]
of T we find admissible reflection planes σ as planes of
symmetry for points P ∈ [AC] and Q ∈ [BD]. If point Q
is kept fixed while P varies (see Figure 17, top), then the
corresponding planes σ envelop a part of a parabolic cylin-
der. This follows from the standard definition of a parabola

13
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(note, e.g., [2, Fig. 2.13]), since this cylinder intersects the
plane γ connecting Q with [AC] in an arc of the parabola c
with focus Q and directrix e = AC (Figure 17, bottom).

Now we construct the plane ߪ with ߪ ∋ ,ܯ ⊥ ߪ ݃ and intersect it with the edge lines ݁ 
and ݂. If these intersections are external points of the edge segments [ܣ, ,[ܥ ,ܤ]  ,[ܦ
then ߪ intersects the edge quadrilateral {ܤܣ, ,ܥܤ ,ܦܥ  is an ߪ in inner points, and {ܣܦ
admissible reflection plane. We collect this as a  

Corollary 1: The reflection of ଵܶ at the plane ߪ constructed as mentioned above gives 
a tetrahedron ଶܶ in admissible contact position, if ߪ ∩ [ܥܣ] = ∅ ∧ ߪ  ∩ [ܦܤ] = ∅ . 

As being the symmetry planes of the pair (ܲ, ܳ), the planes ߪ envelop an orthogonal 
paraboloid Ψ, the “equidistance set” of the pair (݁, ݂). Each plane ߪ contains two 
generators ݌ and ̅݌ of Ψ. Keeping one of these generators, say ݌,  fixed, the planes ߪ 
touching Ψ in points of ݃ form a pencil of planes. This means that ݌ acts as a rotation 
axis for the planes ߪ. The domain of admissible planes ߪ shows at Ψ as the intersection 
of two domains defined by ଵܶ, see Figure 13 Using the labelling of Figure 12 we 
formulate this obvious fact as 

Corollary 2:  Admissible planes ߪ touch Ψ at inner points of the intersection of two 
domains: a) the domain limited by the four conics, at which cones with vertices ܣ,  ܥ
and ܤ, ܯ with ߪ touch Ψ, and b) the domain resulting from planes ܦ ∈ ߤ ∩ ଵܶ. If the 
intersection of these domains has a not empty interior, there exists a two-parametric 
set of admissible reflection planes ߪ and two two-parametric sets of rotation axes ݌,  .̅݌

 
Figure 13: ….Opposite edge lines ݁, ݂ of a tetrahedron are considered as  

right: …axes of a hyperbolic line congruence.  

Remark 4: Let ܳ ∈ ݂ be fixed and ܲ ∈ ݁ variable, then the corresponding set {ߪ} 
envelops a part of a parabolic cylinder. We consider the cross-section of this cylinder 
with the plane ߛ = ܳ ∨ ݁  and receive an arc of a parabola ܿ based on the well-known 
elementary construction of a parabola with focus ܳ and directrix line ݁, Figure 13, right. 
With ܯ ∈ ߤ ∩ ଵܶ and ߪ ⊥ ܲܳ(= ݃) ∧ ܯ ∈ the line ℎ ߪ = ߛ ∩  is a tangent of the ߪ
parabolic arc ܿ. And this arc ܿ is limited by the points ஺ܵ, ܵ஼ according to the Corollary 
2. Plane ߪ is admissible, if ℎ ∩ ݁ is an exterior point of segment [ܣ,  In the case .[ܥ
shown Figure 14, the corresponding parabolic arc is limited by the point ܵ஼ and by that 
touching point ܶ of a tangent of ܿ through ܥ, which is between ஺ܵ and ܵ஼ . 
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Remark 4: Let ܳ ∈ ݂ be fixed and ܲ ∈ ݁ variable, then the corresponding set {ߪ} 
envelops a part of a parabolic cylinder. We consider the cross-section of this cylinder 
with the plane ߛ = ܳ ∨ ݁  and receive an arc of a parabola ܿ based on the well-known 
elementary construction of a parabola with focus ܳ and directrix line ݁, Figure 13, right. 
With ܯ ∈ ߤ ∩ ଵܶ and ߪ ⊥ ܲܳ(= ݃) ∧ ܯ ∈ the line ℎ ߪ = ߛ ∩  is a tangent of the ߪ
parabolic arc ܿ. And this arc ܿ is limited by the points ஺ܵ, ܵ஼ according to the Corollary 
2. Plane ߪ is admissible, if ℎ ∩ ݁ is an exterior point of segment [ܣ,  In the case .[ܥ
shown Figure 14, the corresponding parabolic arc is limited by the point ܵ஼ and by that 
touching point ܶ of a tangent of ܿ through ܥ, which is between ஺ܵ and ܵ஼ . 

 

Figure 17: For given opposite edges [AC] and [BD] the lo-
cus of midpoints M of points P ∈ [AC] and Q ∈ [BD] is a
parallelogram in a plane µ parallel to AC and BD. For fixed
Q the planes of symmetry σ envelop a parabolic cylinder.

We are also able to figure out the boundaries of this
parabolic arc c (see Figure 17, top): The plane σ ⊥ PQ = g
passes through the midpoint M ∈ (µ∩T ) of [PQ] and inter-
sects γ in a tangent h of c. The required arc of c is bounded
by the points SA and SC because of P ∈ [AC]. Moreover,
h∩e has to be an exterior point of the segment [AC]. Hence,
in the case shown in Figure 18, the corresponding parabolic
arc is limited by SC and by the contact point T of a tangent
of c through C.

In the limiting case Q = B, the envelope of the planes σ
belongs to a parabolic cylinder with generators orthogo-
nal to the plane spanned by ACB. These generators have
top views orthogonal to the top view e′ of e = AC. The
parabolic cylinder contacts the hyperbolic paraboloid Ψ
along a parabola that bounds the second domain and ap-
pears in the top view as a side of the mentioned parallelo-
gram (green in Figure 15). At each point S of this parabola

the tangent must be conjugate w.r.t. Ψ to the generator of
the contacting cylinder. Conjugate lines are in a harmonic
position w.r.t. the Ψ-generators through S, which have top
views parallel to the coordinate axes. As a result, the top
view of the contacting parabola must be orthogonal to f ′,
as already documented above (see Figure 15).

When reflecting T1 on admissible planes σ with fixed point
Q ∈ f we obtain poses of T2 where the point attached to
T2 trace curves in planes parallel to the plane γ connecting
Q with e. At the same time a parabolic cylinder attached
to T2 rolls on a parabolic cylinder attached to T1 such that
the cylinders are permanently symmetric w.r.t. the plane
σ of contact. This is again a planar motion contained in
the two-parameter motion related to the pair (e, f ).3 The
corresponding midpoints M ∈ µ trace a segment parallel
to e (Figure 17), hence parallel to one side of the paral-
lelogram in µ. The symmetric parabolic-cylinder-rollings
corresponding to a fixed point P ∈ e has similar proper-
ties. In comparison, at the contained rotations according
to Theorem 5 the point S of contact between σ and the
paraboloid Ψ1 (see Figure 12) traces a generator. In the top
view, the point S′ runs along a line parallel to one coordinate
axis, and the same holds for the midpoint M′ due the affine
correspondence between these points (Figure 15).

 

Figure 14: …The rotations of ଶܶ “along” ଵܶ ( ௜ܶ equifaced) belong to the two-parametric set of general motions. 

 

5.2 Admissible type-1 planes 

Even though the geometric analysis of this problem seems rather complicated, and a 
proper analysis cannot omit calculation, it seems worthy to describe a geometric 
approach. We discuss at first the situation of two congruent but general tetrahedra ܶ ଵ =
,ܦܥܤܣ ଶܶ =  ଶ in standard position forming a Stella Octangula. It is embeddedܦଶܥଶܤଶܣ
into a parallel-epiped. We keep in mind that the congruence transformation ଵܶ → ଶܶ 
must be the product of a reflection at a plane ߩ, together with a rotation around an axis 
ݎ ⊥  In the special case .ߩ ଶ of ଶܶ are equidistant toܦ of ଵܶ and ܦ The fourth vertices .ߩ
of a Stelle Octangula position, we can use one of the space diagonals of the  parallel-
epiped as that axis ݎ ≔ ,ܦ} the symmetry plane of ߩ ଶ andܦܦ  .ଶ}, see Figure 15ܦ

 

Figure 15: The reflection of a tetrahedron Tଵ (black) at a plane ρ results in a tetrahedron തܶଶ, which is rotated  
by a half turn at the rotation axis ݎ ≔   .projecting ߩ  ଶ. (Front and side view projection with r andܦܦ

Now let a general tetrahedron ଵܶ and a type-1 plane ߝଶ be given. This plane shall act 
as presumptive base plane of ଶܶ. It intersects ଵܶ in a triangle ∆ܻܼܺ. Thereby, the base 
triangle ∆ܣଶܤଶܥଶ of ଶܶ must be subscribed to ∆ܻܼܺ and it must be congruent to the 
base triangle ∆ܥܤܣ of ଵܶ in a specific way, see Figure 16.  Again, the congruence 
transformation ܶ ଵ → ଶܶ is the product of a reflection at a plane ߪଵ together with a rotation 
around an axis ݎ ⊥  ,ଵߪ ଶ of ଶܶ must get the same distance fromܦ ଵ. The fourth vertexߪ
as ܦ of ଵܶ. 

Figure 18: The parabola’s tangent at SA does no longer
belong to an admissible bisection plane σ as it meets the
segment [AC] at an interior point.

7 Further movable pairs of congruent struc-
tures with edge-contacts

a) We follow an idea of [8] generalizing an equifaced tetra-
hedron with isosceles faces to an antiprisma over a regular

3In planar kinematics, the symmetric rolling of two parabolas has the property that the focus of the first parabola traces the directrix of the second
parabola while the directrix of the first parabola slides through the focal point of the second.
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n-gon (see Figure 19). This allows further generalizations,
as we only must demand that the pairs of opposite skew
edges of a generalized antiprisma are generators of the same
coaxial hyperboloid of revolution. Consequently, the regu-
lar top- and bottom-polygons can be similar and, to a certain
extent, even affine transforms of regular polygons. When
we move a planar polygon within its plane to another posi-
tion, then corresponding edge lines will trivially intersect,
and, of course, we can restrict the movement such that all
corresponding edges intersect at inner points.

of type-1! If this is not the case we must start with another plane, which is not parallel 
to ߝଶ and repeat the constructions mentioned up to now.  

Finally, we construct the tetrahedron ଵܶ with base triangle ∆ܣଶܤଶܥଶ. In general it will 
turn out that its edges through the fourth vertex ܦଶ are not in contact with the sides of 
,ଶܺଶܣ and that the lines ,ܥܤܣ∆ ଶܤ  ଶܻ,  ଶ. Therefore, weܦ ଶܼଶ will not intersect in vertexܥ 
should repeat the constructions above with other planes ߝଶ

ᇱ ∥  ଶ. Using a dynamicߝ
graphics software it is possible to find the path ݀ଶ of the fourth vertex ܦଶ, and finally 
those points ܦଶ, where ܣଶܺଶ, ଶܤ  ଶܻ,  ଶܼଶ meet. This can only happen for maximally oneܥ 
plane ߝଶ

ᇱ  out of the given pencil of parallel planes and deliver maximally two points of 
type ܦଶ. Whether the results are admissible or not, depends on whether ߝଶ

ᇱ  is of type-
1 or not. We can conclude that there are, in general, up to two real solutions ଶܶ, തܶଶ to 
such a plane ߝଶ

ᇱ  spanned by  properly chosen points ܺ, ܻ, ܼ, and that, in a suitable 
vicinity of ߝଶ

ᇱ  , there surely are planes out of other pencils of parallel planes, leading to 
two one-parameter sets of solution tetrahedra ଶܶ, തܶଶ. 

6.  Some more generalizations of movable indirect congruent structures  

a) Here we follow an idea of T. Tarnai [M&T] generalizing an equifaced tetrahedron 
with isosceles triangles as faces to an antiprisma over a regular n-gon, see Figure 19. 
This allows further generalizations, as  we only must demand that the pairs of opposite 
skew edges of a generalized antiprisma must be generators of the same coaxial 
hyperboloid of revolution. This means that the regular top- and bottom-polygons can 
be similar and, to a certain extent, even be affine-regular similar polygons. When we 
move a planar polygon ଵܲ in its plane to a position ଶܲ, their edge lines trivially will 
intersect, and of course we can restrict the movement such that all edge segments 
intersect in inner points. 

      

Figure 19:  Pairs of antiprisms as movable structures include also equifaced tetrahedra. Also pairs of symmetric 
tetrahedra with top- and bottom edge of different lengths allow a one-parameter set of motions, as well as pairs 

of generalized antiprisms with affine-regular top- and bottom polygon.  

b) Using the last statement for a classical pyramid ଵܲ with a convex planar polygon, 
then we can, with certain restrictions, reflect it at a plane through its altitude line ܽ 
getting a pyramid ଶܲ, which formally is in edge contact with ଵܲ. We can add therefore 
to an antiprism two pyramids at the top- and bottom-polygon, such that their vertices 
are points of the axis ܽ of the antiprism, and reflect this polyhedron ଵܲ at a plane 
through ܽ receiving polyhedron ଶܲ, we still can speak of ai pair of indirect congruent 
polyhedral with edge contact for all edges. For example, a regular icosahedron is such 
a polyhedron with the mentioned property, when we allow trivial edge contacts, too. A 
right affine transformation in direction of an axis connecting opposite vertices will not 
change that property. 
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b) Using the last statement for a classical pyramid ଵܲ with a convex planar polygon, 
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getting a pyramid ଶܲ, which formally is in edge contact with ଵܲ. We can add therefore 
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are points of the axis ܽ of the antiprism, and reflect this polyhedron ଵܲ at a plane 
through ܽ receiving polyhedron ଶܲ, we still can speak of ai pair of indirect congruent 
polyhedral with edge contact for all edges. For example, a regular icosahedron is such 
a polyhedron with the mentioned property, when we allow trivial edge contacts, too. A 
right affine transformation in direction of an axis connecting opposite vertices will not 
change that property. 

Figure 19: Pairs of n-sided antiprisms as movable struc-
tures include for n = 2 equifaced tetrahedra (left) and for
n = 3 octahedra (right). Also pairs of symmetric tetrahe-
dra with top- and bottom edge of different lengths allow a
one-parameter set of motions with fixed axis a, as well as
pairs of generalized antiprisms with affine-regular top- and
bottom polygons.

b) When using the last statement for a classical pyramid P1
with a convex planar basis, then we can, with certain restric-
tions, reflect it in a plane σ through its altitude a getting a
pyramid P2, which is in edge-contact with P1. Hence, we
can extend an antiprism by two pyramids at the top- and
bottom-polygon such that their apices are points of the axis
a of the antiprism. Then the reflection of this polyhedron P1
in any plane σ through a yields a congruent copy P2, which
still can move relative to P1 while keeping all edge-contacts.
For example, a regular icosahedron satisfies these condi-
tions (see Figure 20). A scaling in direction of the axis a
will not restrict the mobility.

c) Even congruent pairs of (regular) double pyramids with
a non-planar belt-polygon can be considered as movable
polyhedral edge structures, as far as the belt polygon also
suits to a generalized antiprism. A cube serves as a simple
example, when rotated around one of its spatial diagonals.
Another example is the regular pentagon dodecahedron,
seen as a truncated double pyramid (Figure 21). Obviously
the movability remains when such a structure is subjected
to a scaling in direction of the fixed axis.

d) The standard case of a pair of coaxial right pyramids
over a regular n-gon (see [11] and [12]) allows further gen-
eralizations. If h denotes the altitude of the pyramids and
they share in the initial position the base n-gons, then the
extremal distance t of their base planes is related as

t : h =
(

1− cos
π
n

)
: 1 . (6)

These pyramids P1,P2 can be embedded in two congruent
cones Ψ1,Ψ2 of revolution. When we “bend” all non-base
edges of P1 and P2 to congruent curves on Ψ1 and Ψ2, then
also these objects will allow a one-parameter set of motions
as products of appropriate rotations about and translations
along the axis, while the formula in (6) will still remain
valid.

As a next step we generalize, with restrictions, the cones
Ψ1,Ψ2 to smooth surfaces of revolution Φ1,Φ2. At first
we take their meridians m as replacements of the edges
of the pyramids P1,P2. Then again, we can replace these
meridians by a set of congruent curves on Φ1,Φ2, and we
will end up with a movable edge-curve structure.

e) We return to a) and consider equifaced tetrahedra and
regular antiprisms again. There the key property is the ex-
istence of coaxial hyperboloids of revolution. Obviously,
we can now bend the straight edges to congruent curves on
these hyperboloids and receive a movable edge-curve struc-
ture. Also here, the hyperboloids can be replaced by more
general surfaces of revolution, and, in case of antiprisms,
the edges of the top- and base polygon can be replaced by
curves, too.

It is easy to imagine such a structure on a sphere: Consider
the vertices of a regular n-gon on, say, the two polar cir-
cles of the sphere, and connect them with arcs of, e.g., a
loxodrome, a curve of constant slope, or simply with arcs
of a great circle. In this very special case of a curved edge
system the chosen arcs need not even be congruent.

According to these statements, we can replace the edges
of the cube, the regular icosahedron and the pentagon do-
decahedron (see b) by congruent curves and preserve the
movability of the curved edge structure.

Nevertheless, an explicit calculation of the motion will de-
pend on the chosen curved edges and might get lengthy. In
each pose, the instantaneous behaviour is that of an object
with the tangents as edges, and therefore it is locally an
edge structure of the types treated in the foregoing chapters.
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Figure 20:  A regular icosahedron, together with rotated versions of it at an axis connecting opposite vertices, is 
an example of a movable polyhedral edge structure, if we allow trivial edge contacts, too.  

c) Even (regular) double pyramids with a not-planar belt-polygon can be considered 
as movable polyhedral edge structures, as far as the belt polygon also suits to a 
generalized antiprism. A cube is a simple example of this type. When rotated around 
one of its space-diagonals, two such samples are in edge contact.  Another example 
is the regular pentagon-dodecahedron, seen as a truncated double pyramid. It also 
suits as one part of a pair of movable polyhedral structures, Figure 21. Obviously the 
movability remains true, if such a structure is subjected to an orthogonal affine 
transformation in direction of the common fixed axis. 

 

Figure 20:  A regular pentagon dodecahedron, together with rotated versions of it at an axis 
 connecting midpoints of opposite faces, is an example of a movable polyhedral edge structure. 

d) The standard case of a pair of coaxial right pyramids over a regular ݊-gon (see [Sta] 
and [T&M]) allows further generalizations. If the altitude of the pyramids is ℎ and they, 
in the start position have common ݊-gons, the extremal distance ݐ  of their base planes 
is related as  

:ݐ ℎ = (1 − cos ഏ
೙):ଵ.                                                 (5) 

These pyramids ଵܲ, ଶܲ can be embedded into two congruent cones Ψଵ, Ψଶ of revolution.  
When we “bend” the edges of ଵܲ, ଶܲ to congruent curves on Ψଵ, Ψଶ, keeping the base 
edges as linear segments, then also these objects will allow a one-parameter set of 
instantaneous helical motions, and formula (5) will still remain valid.  As a next step we 
generalize, with restrictions, the cones Ψଵ, Ψଶ to smooth surfaces of revolution Φଵ, Φଶ. 
At first we take their meridians ݉ as replacements of the edges of the pyramids ଵܲ, ଶܲ. 
But then again we can replace these meridians to a set of congruent curves on Φଵ, Φଶ, 
and we will end up with a movable edge-curve structure. 

e) We return to a) and consider equifaced tetrahedra and regular antiprisms again. 
There the key property is the existence of coaxial hyperboloids of revolution. Obviously 

Figure 22: A regular icosahedron together with its image under a rotation about an axis connecting opposite vertices yields
two congruent polyhedral structures which allow a relative movement while all edge-contacts are preserved.
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Figure 20:  A regular pentagon dodecahedron, together with rotated versions of it at an axis 
 connecting midpoints of opposite faces, is an example of a movable polyhedral edge structure. 
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At first we take their meridians ݉ as replacements of the edges of the pyramids ଵܲ, ଶܲ. 
But then again we can replace these meridians to a set of congruent curves on Φଵ, Φଶ, 
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e) We return to a) and consider equifaced tetrahedra and regular antiprisms again. 
There the key property is the existence of coaxial hyperboloids of revolution. Obviously 

Figure 21: Another example of a movable polyhedral edge structure consists of two congruent regular pentagon dodecahedra
sharing an axis that connects midpoints of opposite faces.

8 Conclusion

We aimed at a geometric analysis of the sliding motions,
which occur at congruent tetrahedra, forming a Stella Oct-
angula in the initial pose. We preferred geometric reasoning
against lengthy calculations. The surprising fact that the
pair of tetrahedra of a classical Stella Octangula is movable
in spite of dof = 0 caused the questions “why” and “are reg-
ular tetrahedra the only ones with that property”. We could
show that general pairs of indirect congruent tetrahedra
(T1,T2) keep their six crossings under three two-parametric
motions of T2 relative to T1. Each pose of T2 can be ob-
tained by a reflection of T1 in a tangent plane of orthogonal
hyperbolic paraboloids, and their generators act as axes of
possible rotations.

There is kind of hierarchical structure among the tetrahe-
dra T1,T2 from the most general ones to those having in
the initial Stella-Octangula pose a box as convex hull, and

finally those being regular three-sided pyramids. The latter
allow motions generated by reflections in axes orthogonal
to the common axis of symmetry of T1 and T2. The most
special case with two regular tetrahedra allows both, the
special axial reflections as well as the reflections in planes.
In all the discussed cases, the poses of T2 relative to T1

are generated by single reflections, i.e., by involutive dis-
placements. Here the question arises: “Is the assumption of
tetrahedra T1,T2 being congruent a necessary condition for
their movability?”

Moreover, one might ask for pairs of other polyhedral struc-
tures, which allow such relative motions. Besides general-
izations presented in [8], it is possible to find many other
polyhedral structures allowing at least one-parameter mo-
tions, if trivial edge-contacts are not excluded. In addition,
even structures where the edges are bent to congruent curves
can admit such sliding motions.
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