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ABSTRACT

It is well-known that two congruent regular tetrahedra Ty
and 7> forming a Stella Octangula allow a continuous mo-
tion of T, relative to 7; such that each edge of 75 slides
along an edge of T;. Recently the same property has been
confirmed for pairs (T, T») of indirect congruent tetrahedra
of general form. It turns out that this overconstrained kine-
matical systems admits besides some special one-parameter
motions also two-parameter motions. We provide a syn-
thetic analysis of the problem. Based on involved quadrics,
we study in depth the two-parameter motions and their
boundaries. Moreover, we present some generalizations of
Stellae Octangulae.

Key words: tetrahedron, Stella Octangula, Euclidean mo-
tion, two-parameter movements
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Zvjezdasti oktaedari (Stellae Octangulae) u
pokretu — ponovno razmatranje

SAZETAK

Dobro je poznato da dva tetraedra 77 i T, koji tvore zvje-
zdasti oktaedar (Stella Octangula) dopu3taju neprekidno
gibanje tetraedra T, s obzirom na tetraedar 7; takvo da
svaki brid tetraedra T, klizi duz brida tetraedra 7;. Ne-
davno je isto svojstvo potvrdeno za parove (T1,73) indi-
rektno sukladnih tetraedara opceg oblika. Pokazuje se da
taj prenapregnuti kinemati¢ki sustav, osim nekih posebnih
jednoparametraskih gibanja, dopu¥ta i dvoparametarska
gibanja. Dajemo sinteti¢ku analizu problema. Na temelju
ukljuéenih kvadrika detaljno prou¢avamo dvoparametarska
gibanja i njihove granice. Osim toga, predstavljamo neka
poopcenja zvjezdastih oktaedara.

Klju€ne rijeti: tetraedar, zvjezdasti oktaedar (Stella Octan-
gula), euklidsko gibanje, dvoparametarski pomaci

1 Introduction

As reported in [8]], during the assembly of a physical model
of the classical Stella Octangula in 1982, L. Tompos Jr.
discovered the relative movability of two regular tetrahe-
dra 71, T, with permanent edge-contacts. Note that at this
physical model one tetrahedron encloses the other, and the
exterior tetrahedron consists of edges only (Figure 1).

Though generically six edge-contacts fix the pose of one
tetrahedron relative to the other, in the case of regular tetra-
hedra 77,7, one tetrahedron can slide along the other such
that each edge of 71 keeps contact with an edge of 75. Ac-
cording to [11] in 1988, this overconstrained kinematic
structure admits four one-parameter motions and three two-
parameter motions that all share the initial Stella-Octangula
pose.

Later the question arose, whether the regular Stella Octan-
gula is the only one with movable tetrahedral parts. An-
swers were given in [8, 12} [13]]: Starting with a generalized

Figure 1: Two congruent regular tetrahedra Ty and T, with
crossing edges, i.e., with six edge-contacts. The magenta
lines represent the octahedron O =T1NT,

Stella Octangula consisting of congruent tetrahedra 77 and
T, one was looking for an at least one-parameter motion of
T, relative to T, where the six edge-contacts are preserved.
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In [8]], the authors describe analytically six distinct types
of such constrained motions in the case where the convex
hull of the Stella Octangula is a box, i.e., a rectangular par-
allelepiped. Most of these motions are rotations about axes
in particular position relative to the given box.

Below we present a synthetic approach, where one-sheeted
hyperboloids of revolution and orthogonal hyperbolic
paraboloids play an essential role. After discussing some
basic properties of such pairs of tetrahedra, we analyse in
the Sections [3]and [ two special cases, namely two congru-
ent right three-sided pyramids and, in alignment with [J]],
equifacial tetrahedra. As main topic, we focus in Sections 3]
to[6]on generic tetrahedra 7} and their indirect congruent
copies 7. For tetrahedra with acute-angled faces and oth-
ers, there exist even two-parameter motions of 7, against
T that preserve all edge-contacts. We study necessary and
sufficient conditions and the boundaries of these motions.
Moreover, we describe included one-parameter movements
where all points’ trajectories are located in parallel planes.
Similar to the generalizations presented in [8]], we finally
provide in Section [7] further examples.

2 Basic properties of two tetrahedra with six
edge-contacts

For the sake of simplicity, we introduce the following no-
tion.

Definition 1 Two tetrahedra T) and T> are said to have
crossing edges, if they have six mutual edge-contacts and
each contact point is an interior point of both involved
edges.

With regard to a generalization of the cube circumscribed
to a regular Stella Octangula, we can state:

Lemma 1 Two tetrahedra Ty and T, have crossing edges
if and only if their convex hull H is a convex cuboid, i.e., a
hexahedron with six quadrangular faces.

Proof. The vertices of two tetrahedra 77,7, with crossing
edges are already the eight vertices of their convex hull #.
Each of the six faces of #{ has a pair of intersecting edges
as diagonals.

Conversely, the two tetrahedra 77,75 arise by truncating the
cuboid # in the way that the edges of the tetrahedra are
diagonals of the faces of #. At a convex cuboid each quad-
rangular face is convex, too, so that the point of intersection
between the two diagonals is an interior point of the edges,
as required in Definition|[T} O

The following lemma can be seen as a dual counterpart.

4

Lemma 2 [f two tetrahedra Ty and T> have crossing edges,
then the intersection of the solids O := (Ty NTa) is a convex
octahedron. Conversely, each convex octahedron O is the
intersection of two tetrahedra with crossing edges, but not
all tetrahedral vertices need to be finite.

Proof. The intersection O of the two convex solids T}
and 7> must be convex, too. Each of the eight faces of Tj
or 7> intersects the other tetrahedron along a triangle with
vertices at the coplanar contact points. Thus, the six contact
points are the vertices of O (see Figure 1).

Conversely, the eight bounding planes of any convex octahe-
dron O can be separated into two quadruples such that any
two planes €, ¢ of the same quadruple contain octahedral
faces that share exactly one vertex. The line € N ¢ must
be a (proper) support line of O, i.e., it meets O only at a
single point since otherwise, due to the convexity of O, the
octahedral faces in € and ¢ would share a line segment.
Each bounding plane € contains a triangular face of O. Let
us assume that the four planes of the quadruple through €
have a point P in common. Then € intersects the three re-
maining planes along lines that connect P with the coplanar
vertices of O. At least one of them cannot be a (proper)
support line of O as it meets the closed triangular face along
a line segment. This contradiction with our assumption re-
veals, that each quadruple defines a tetrahedron, provided
that also vertices at infinity are admitted. ]

2.1 A kinematic analysis

Suppose that 77 and 7> are two tetrahedra with crossing
edges. Each single edge-contact reduces the degree of free-
dom (‘dof’, for short) of 7, relative to 77 by 1. Therefore,
the Chebychev-Griibler-Kutzbach formula yields dof = 0.
In other words, 7 is generically rigid relative to 75. The
following kinematical statement shows that in general 77 is
even infinitesimally rigid relative to 75.

Theorem 1 Given two tetrahedra T, T, with crossing
edges, let P; fori=1,...,6 be the six points where an edge
ei1 of Ty meets an edge ey C Tr. Then T; is infinitesimally
movable relative to Ty if and only if the six perpendiculars
n; through P; to the planes spanned by e;; and ej belong to
a linear complex of lines.

Remark 1 By virtue of Lemmall| the contact points P; are
the crossing points of the diagonals in the quadrangular
faces of the convex hull H, and the normals n; at P; are
orthogonal to the faces.
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Proof. The tetrahedron 75 is infinitesimally movable relative
to 71, if and only if one can assign to each point attached to
T, a velocity vector such that for any two points X, Y their
mutual distance remains infinitesimally constant, i.e., for
the respectively assigned velocity vectors vy, vy the differ-
ence vector vy — vy is perpendicular to the line XY E| This is
equivalent to the statement that for all points X in space the
lines through X orthogonal to vy belong to a linear complex
of lines (see, e.g., [} p. 162] [3| p. 292] or [6l p. 219]). The
axis of this linear complex coincides with the instantaneous
screw axis of the motion of 7> against 77.

Suppose that there exists such an infinitesimal motion of 7,
relative to 77. Then, in order to preserve the edge-contact
between ¢;; and e, the velocity vector v/ of the point of
contact P; relative to T, must be parallel to e;», while rela-
tive to 7; the velocity vector v{ of P; is parallel to e;;. The
edge-contacts preserving motion of 75 /T assigns to P; the
velocity vp, = v — v (‘absolute’ minus ‘relative’) parallel
to the plane connecting e;; with e;». Consequently, the line
n; through P; and orthogonal to e;; and ej» belongs to the
linear complex of path-normals. This argumentation works
also in the converse direction. ]

It needs to be noted that the characterization presented in
Theorem [I| makes no difference whether the meeting point
between e;; and e lies on the edges or outside on the
extending lines.

Remark 2 Referring to Theorem|[l] let the set of linear line
complexes through the six perpendiculars n;, i=1,...,6, be
one- or two-dimensional. Then the local dof of infinitesimal
motions of T, relative to T equals two or three.

If 75 is continuously movable against 77 like in the regular
case, then it is infinitesimally movable in each pose. In
particular, in the regular Stella-Octangula pose, the six path
normals ny, ..., ng coincide with three mutually orthogonal
diameters of a regular octahedron O. This implies that even
each infinitesimal spherical motion of 75> about the common
center O preserves all edge-contacts with 77 since vp = 0.

In the following sections we only focus on pairs of con-
gruent tetrahedra (77, 7») with crossing edges. This means
that in each pose of T; relative to 77 there is a displacement
a: 71 — T. We recall from the classification of congru-
ences in the Euclidean 3-space (see, e.g., [10]): If a is
orientation preserving, then it is either a translation or a
rotation or screw motion. Otherwise, o is either a reflection
in a plane ¢ or the commutative product of this reflection
with a translation parallel to 6 or with a rotation about an
axis orthogonal to 6. The only involutive displacements are
reflections in a point, in a line or in a plane; only the second
one is orientation preserving.

3 Stellae Octangulae formed by right three-
sided pyramids

Let 71 and 75 be two congruent right three-sided pyramids
in a Stella-Octangula position, i.e., with edge-contacts at
all midpoints of edges (Figure 2, top). Then there exists a
one-parameter motion with permanent edge-contacts while
the axes of rotational symmetry are coinciding in the line a
which is supposed to be vertical. This mobility arises from
the case of regular tetrahedra treated in [11] by an affine
transformation, an appropriate scaling along the axis a. But
this time we move simultaneously both tetrahedra 77 and
T», while the common axis @ and two planes of symmetry
between 71 and 7, remain fixed, namely one plane @g or-
thogonal to a, hence horizontal, and the other ¢ passing
through a. Therewith, the two tetrahedra remain symmetric
with respect to (w.r.t., for short) a fixed axis, the intersection
s = @p N @ of the two planes of symmetry (see Figure3).

Figure 2: Stella Octangula consisting of two right tetrahe-
dra Ty and T; in the highly symmetric start position (top),
and in an intermediate position (bottom).

I'Throughout the paper, XY denotes the line connecting the two points X and ¥, while the symbol [X¥] stands for the segment bounded by X and Y.
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During this one-parameter motion, one vertex of each tetra-
hedron moves on the axis a, while the other vertices trace
algebraic curves on a coaxial cylinder (see Figure 4). The
octahedron O of contact points shows up in form of an
antiprism with regular triangles as base and top face (see
Figure 2, bottom). In the initial pose the six remaining faces
are congruent isosceles triangles.

For a detailed analysis of the movements of the two pyra-
mids we denote the vertices of the basis of 7; with A;, B;,C;
and the apex with D;, i = 1,2. We introduce cylinder coor-
dinates with the vertical altitude a as z-axis, with the origin
O in the fixed plane @y and the zero-direction along s in
the fixed plane @; and pointing to the right in Figure 3.
The circumcircles of the base triangles of the two coaxial
tetrahedra T and 7> are assumed as unit circles.

Let (1,0,,—hg) be the cylinder coordinates of A; and
(1, -0, hg) that of Ay. Then, the point of intersection P; be-
tween the edges [A;D;] and [A;B;] (see Figure 3) has coor-
dinates (p, o, &y ). The point of intersection Q = @yNA ;D
gets — because of QA| = %(1 —p) =: p — the cylinder coor-
dinates (1 —p, a, 0), where

B 1 ,_cosZOH-\/§sin20c—1
2cos(n/3 —2a)’ P 2(cos2a+ /3 sin2a) ’
for 0<oa<m/3.

p
ey

The choice o = 1/6 yields the Stella-Octangula position.
For a0 = 0 the two tetrahedra are placed face to face sharing
the base triangles.

If h denotes the altitude of the two pyramids, then follows
from the proportion i : (h—2hy) =1:p

ha="h-P, @)

and furtheron with ¢ := tan o the algebraic expression

t(2v3-1)

PN T 0<t<3. 3)

ho(t) =h

The trajectory c4, of Ay has the cylinder coordinates

(1, &, —ha(1)) by ().
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Figure 3: Front- and top-view of the right pyramids T and
T, from Figure 2. Here both, T\ and T», translate symmetric
to the plane @y along a through hy, while rotating about
a in opposite directions through o. The top-view (bottom)
shows the images of the paths of the contact points Py (red)
and Q (green) without restriction to the parameter interval
0<oa<m/3.

Theorem 2 Two congruent right three-sided pyramids T,
and T, admit a one-parameter relative motion with six per-
manent crossings while the axes of symmetry of the two
pyramids coincide.

Remark 3 Since in each pose the pyramid Ty is symmetric
to T w.r.t. the axis s = Qo N @1, the relative motion T> /T
is a symmetric roll-sliding as studied by J. Krames in [[7]].
The locus of s relative to Ty, called base surface, is the right
conoid defined by the equation z = hq(Q) according to egs.

) and ().
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Figure 4: Top- and front-view of intermediate positions of
the right pyramids T and T, together with the trajectories
of the vertices of T1 and T», shown as formally closed curves
on the unit cylinder with axis a (red: paths of vertices of T,
purple: paths of vertices of Tj).

In each pose, the reflection in s exchanges 77 and 7. There-
fore, s is also an axis of symmetry of the octahedron
O = T1 N1, with vertices at the contact points (see Fig-
ure 2). This symmetry exchanges in particular the regular
triangles, along which each tetrahedron intersects the base
of the other and which is inscribed in this base.

If the tetrahedra 77 and 7, are regular, then we have four
possibilities to choose an axis a and a fixed plane ¢ for per-
forming the one-parameter motion described above. So the
question arises, whether these in fact independent motions
can be embedded in a two-parameter motion. However,
according to this is not the case.

4 Stellae Octangulae formed by equifaced
tetrahedra

Now the initial Stella Octangula is formed by the two tetra-
hedra 77 and 75 that can be inscribed in a rectangular box
H (Figure 5, top). This case was also extensively studied

in [8].

Figure 5: The Stella Octangula based on equifaced tetra-
hedra Ty and T, has a rectangular box as convex hull (top).
The contact points form an equifaced octahedron. Edges of
T\ that are skew to the vertical diameter a are generators
of two hyperboloids of revolution with axis a.

The two tetrahedra are equifaced (or isosceles), i.e., all
faces are congruent (see, e.g., [3]). The reflection in the
center O of H as well as the reflections in a diameter plane
o parallel to one face of A exchanges 77 and T» (Figure
5, bottom). Every edge of 7; has a parallel counterpart at
T,. Reflections in the three mutually orthogonal axes of
symmetry of the box # send each tetrahedron onto itself.

The convex octahedron O = T; N7; is equifaced with di-
agonals parallel to the edges of the box #. We keep one
diagonal a of O fixed and assume that a is vertical as shown
in Figure 5, bottom. Now we focus on the quadrangle of
edges of T; that are skew to a.
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Two extended opposite edges of this quadrangle are genera-
tors of the same regulus of a hyperboloid of revolution &,
with the axis a. The other pair of edges defines a second
coaxial hyperboloid of revolution ®,. If we reflect 7 in
any plane ¢ through a, then ®; and &, remain fixed while
the two reguli are exchanged. The tetrahedron 7 is sent
to a pose T,, where each extended edge of 7> intersects an
extended edge of 77. Two of these edge-contacts are fixed
on a; the other four are intersections between generators of
different reguli of one of the hyperboloids.

For a suitably chosen ¢ all intersection points are indeed
inner points of the edges. Thereby “suitably” means that
the plane ¢ through a must be chosen within a restricted
angle-interval to ensure that it intersects the edges at inner
points. For example, in Figure 5, bottom, this angle interval
equals < PAQ, provided that PQ is a shorter side in the top
rectangle of A If T remains fixed while o rotates around
a within that angle interval, then 7> performs a continuous
rotation about a.

Since there are three possibilities to choose the axis a, we
can recall from [8]]:

Theorem 3 The Stella Octangula based on equifaced tetra-
hedra T1,T, allows three one-parameter motions of Tr
against T\ that preserve the six crossings. The relative
motions T, /T are terminated rotations about the common
perpendiculars of opposite edges of Tj.

In the initial position, the octahedron O of contact points
is centrally symmetric with mutually orthogonal diagonals
(see Figure 5, top). In the other poses O has a pair of skew,
but mutually orthogonal horizontal diagonals. They are
orthogonally intersected by the axis a being the third diag-
onal (see Figure 6). Note that parallels of these diagonals
through the center O are the axes of line reflections that
exchange 77 with 75.

Can we generalize the statement of Theorem [3? Can also
other lines a through the center of the box H serve as axes
of rotations that preserve the six edge-contacts between T}
and 75 in the Stella-Octangula pose?

Two parallel lines are generators of a one-sheeted hyper-
boloid of revolution with axis a if and only if there is a
common perpendicular that intersects a orthogonally in the
middle between the two lines. Parallel edges of the two
tetrahedra are located in opposite faces of the box %, and
the common perpendiculars of the edges are parallel to an
axis of symmetry of the box. This implies that the axis a of
any rotation in question must coincide with one axis of sym-
metry of #, and one of the three hyperboloids degenerates
in two pencils of lines. In other words, there are no other
axes of rotations passing through the center of the box.

Figure 6: Front view (top) and top view (bottom) of two
equifaced tetrahedra Ty (black) and T, (green) with cross-
ing edges. The octahedron of contact points has a pair of
skew orthogonal diagonals with the common perpendicular
a as third diagonal. Only in the initial pose the octahedron
is centrally symmetric, and all diagonals pass through the
center.

The coming Section 5] will reveal that, contrary to Section 3]
the three rotations mentioned in Theorem 3] are included in
two-parameter motions which preserve all edge-contacts.
Moreover, according to Theorem [5|and in agreement with
[8], these two-parameter motions contain infinitely many
rotations about axes that no longer pass through the center
O of the box #{.

5 Stellae Octangulae formed by tetrahedra
with acute-angled faces

Now we consider the general case of a Stella Octangula,
where a tetrahedron 77 is mapped to 7> by reflection in the
barycenter O of 7;. Consequently, the two tetrahedra T;
and 75 share the midpoints of their edges. We aim at other
positions of 7> having crossing edges with 77 and obtained
by a reflection in a plane ¢. Since a plane cannot meet more
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than four edges of 77 at inner points, edge-contacts at two
additional points away from © are necessary.

In the following we explain this for a given sextuple of lines
Ly = (a1,by,...,f1). We choose a pair of points P € e¢; and
Q € f1 and their bisecting plane as reflection plane ¢ (see
Figure 7). Then, the reflection of all six lines of £; in &
yields a new sextuple £, = (az,by,..., f2), which is indi-
rectly congruent to £;. Obviously, each line of £; meets its
image in the plane 6. However, in addition the image e, of
e1 passes through Q € fi and, vice versa, f, meets e at P.

YDerboljo

Bruence

of 4 h
Caon

Figure 7: After reflecting a sextuple of lines L1 in the sym-
metry plane G of two arbitrary points P € e1 and Q € f1 we
obtain an indirect congruent sextuple L, and two additional
intersections at P and Q.

If e; and f7 are skew, we get a two-parameter set of possible
lines g = PQ forming a hyperbolic congruence of lines, and
thus a two-parameter set of reflection planes 6. With regard
to our goal, we need to make sure that

(1) the reflection plane ¢ intersects four edges of 7; at inner
points and

(i1) the corresponding points P, Q are inner points of the
remaining two edges.

Reflection planes ¢ satisfying (i) and (ii) are called admis-
sible.

If the six lines of £; are the extended edges of the tetrahe-
dron T and if the bisecting plane G of two points P and
Q is admissible, then there exists in a neighbourhood a
two-dimensional domain of congruence lines g = PQ and
of admissible reflection planes 6. We will consider the
envelope of these planes in Section[5.1]

At a general Stella Octangula, the points of contact between
T| and T are midpoints of the edges. They form three par-
allelograms with sides parallel to pairs of opposite edges
of 71 and T». There is a central symmetry between 77 and
T, but in general no planar symmetry like at the equifaced
case of Section[d] In general, the octahedron O of contact
points has no mutually orthogonal diagonals (see Figure 8).

Figure 8: At a Stella Octangula with general tetrahedra T,
T; the octahedron O of contact points is centrally symmetric,
and its diagonals are not mutually orthogonal.

Each plane of a diagonal parallelogram is parallel to a pair
of opposite edges of 77. This means that also the common
normal n of a pair of extended opposite edges (e1, f1) has
foot points (P,Q) symmetric to the corresponding plane
(see Figure 9). Therefore, there exists a certain open two-
parameter neighborhood of these foot points and thus a
two-dimensional manifold of planes 6, where the contact
restrictions (i) are fulfilled. One must only make sure that
(ii) both foot points (P,Q) are inner points of the corre-
sponding edges. The contrary situation, where one foot
point lies outside, is shown in Figure 10. The following
theorem presents a sufficient condition.

Figure 9: Front view (left) and side-view (right) of a general
tetrahedron T\, whereby four coplanar midpoints of edges
span the projection plane G for the front view. The reflec-
tion in © transforms Ty (black) in a tetrahedron T, (green)
that in general is different from the centrally symmetric T,
forming the Stella Octangula.
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Figure 10: Top-view of a general tetrahedron T\ with a
pair of opposite edges [AC] and [BD) parallel to the projec-
tion plane & which contains the parallelogram of midpoints
(shaded) of the other four edges. Since the common normal
n 1 o of ey = AC and fi = BD intersects [BD] at an exte-
rior point, T\ has obtuse angled faces. Reflecting Ty in &
gives a tetrahedron T,, where the image f> of f1 intersects
e1 in an exterior point.

Theorem 4 Each tetrahedron T with only acute-angled
faces allows three two-parameter motions T» / T\ preserving
six edge-contacts. In each of the three motions the poses
of T arise from T\ by reflections in a two-parameter set of
planes ©. In general, the three motions have no pose of T,
in common.

Proof. We assume that the edges [A1C] and [B; D] of T
are horizontal. This means for the top view that these edges
are parallel to the projection plane. The interior of 77 should
lie under the face A1 BC;. Then the convexity of 77 implies
that in the top view the signed angle between CjA’ and
B! D] lies between 0° and 180°. Let n denote the common
perpendicular of the lines A1C; and By D1, and suppose that
its top view n’ lies outside the segment [A| C}], but closer to
A than to C| (Figure 11, left).

/!

n

Figure 11: Illustrating the proof of Theoremd)

If the line n4 through A} normal to A|C] separates C from
D/, then the angle < CjA D] is greater than 90°. Conse-
quently, also in space the angle < CjA;D; is obtuse.

10

In the remaining case ny separates B}, D} and C| from r'.
Then the line np through D) orthogonal to B} D separates
A from B/ (Figure 11, right). This implies that the an-
gle A|D| B is obtuse. In other words: If one pedal point
of a common normal between opposite edges lies on the
extension of an edge, then the tetrahedron must have an
obtuse-angled face. ]

Remark 4 The condition of acute-angled faces in Theorem
4| is sufficient, but not necessary since there exist tetrahe-
dra with an obtuse-angled face which nevertheless has the
pedal points of the normals between opposite edges inside
the edges. This holds, e.g., for the tetrahedron with vertices

A=( 00,00, 1.0),C= (2.0, 0.00, 1.0),
B=(-03, 1.0, 0.0), D = (0.3,-0.48, 0.0).

We obtain as pedal points of the common normal between
opposite edges

AC and BD : (0.105,0.000, 1.000), (0.105, 0.000, 0.000),
AB and CD : (—0.041,0.136, 0.864), (0.539,—0.412, 0.141),
DA and BC : (0.112,—0.180,0.626), (0.569, 0.622, 0.378).

Apparently, the first two points are inner points of the
edges |AC] and [BD], and the latter four points have z-
coordinates between 0 and 1. However, there is an obtuse
angle <CAB = 101.98°. Moreover it needs to be men-
tioned that for the existence of admissible planes G for a
given pair opposite edges it is not even necessary that the
bisecting plane of the foot points of the common perpen-
dicular intersects the remaining edges at inner points (note
Remark|[6). A necessary and sufficient condition for the
existence of the two-parameter motion can be found below
in Theorem[6]

Note that for obtaining a standard Stella-Octangula, the
reflection of any tetrahedron 77 in its barycenter produces
its mate 7. The two-parameter motions discussed in Theo-
remE]need another initial pose 7;: the acute-angled 7; is
reflected in a plane u through four coplanar midpoints of
edges, and there exist three possibilities.

Lemma 3 Referring to the previous notation, all three ini-
tial poses T, of the two-parameter movements coincide with
the Stella-Octangula pose T, if and only if T is equifaced.

Proof. For equifaced tetrahedra holds 7; = 75 as shown in
Figure 5, bottom.

Suppose that conversely both the point reflection in the
barycenter of 77 as well as the reflection in the plane ¢
passing through the midpoints of all line segments [PQ]
with P € [A1C] and Q € [B1D)], take Tj to T,. Since the
barycenter as midpoint between the midpoints of A;C)
and B D belongs to ¢, the product of the two reflections
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is the reflection in the line a through the barycenter and
orthogonal to . This product must transform 77 onto itself.
Hence, the halfturn about a exchanges A; with C; and B
with D1, so that we obtain equal lengths A; By = C1D; and
A\Dy =CiBi.

If the same assumption holds for another pair
([A1B1], [C1D1]) of opposite edges, then also the last two
opposite edges have equal lengths A;C; = B1D;. In other
words, the tetrahedron 77 is equifaced. O

Lemma [3| means, that only in the particular case of equifa-
cial tetrahedra there exists a single bifurcation between all
three two-parameter movements, namely at the common
Stella-Octangula pose.

5.1 The role of the bisecting paraboloids

In [8], the authors already proved that equifacial tetrahe-
dra with crossing edges admit infinitely many continuous
rotations that preserve the edge-contacts. The following
generalization for the generic case describes also the geo-
metric loci of the axes of these rotations.

Theorem 5 Referring to Theorem for each of the
three two-parameter motions Ty /T| the admissible reflec-
tion planes G are tangent to an orthogonal hyperbolic
paraboloid VY1, the bisector of the extensions e1, f1 of op-
posite edges of Ty (Figure 12). Each of these continuous
motions includes two one-parameter families of bounded
rotations. The axes of these continuous rotations of Tr
against T are generators of ¥ and at the same time axes
of rotations that send e to f.

Proof. The symmetry planes ¢ of all pairs of points P € ¢
and Q € f; envelop an orthogonal hyperbolic paraboloid
¥, the bisector of the pair of lines (ej, f1) (see, e.g., [9,
p. 64]). Each plane ¢ contains two generators p and p of ;.
Keeping one of these generators fixed, say p, the tangent
planes of ¥ along p form a pencil. Since the product of
the reflections in two planes through p is a rotation about p,
the admissible planes ¢ through p correspond to poses of
the tetrahedron 7> which are related by rotations about p.

According to [9, p. 64], the lines p on the bisector W are
the axes of rotations that send e; to f;. This agrees with
previous arguments, since p is the axis of a hyperboloid of
revolution through e and f, and the reflection in a merid-
ian plane exchanges the reguli. The generators p and p
in the bisecting plane ¢ of P € e; and Q € f; are axes of
rotations that take in addition P to Q. (|

Figure 12: The orthogonal hyperbolic paraboloid ¥ is the
bisector of the skew lines e and f, i.e., the set of points X
satisfying Xe = X f. The plane & of symmetry of the points
P ceandQ € f contacts ¥ at the point S.

Remark S5 The two-parameter motions according to The-
orem 4| are symmetric rollings since an orthogonal hyper-
bolic paraboloid ¥, attached to T, is rollingﬂ on an indi-
rectly congruent paraboloid ¥ such that the two surfaces
are permanently symmetric w.r.t. the common tangent plane
G at the point of contact. Note the difference: At the sym-
metric roll-slidings mentioned in Remark 3] the two base
surfaces are directly congruent.

In the particular case of equifacial tetrahedra, the vertex
generators of the three bisecting hyperbolic paraboloids are
parallel to the edges of the convex hull A in the Stella-
Octangula pose, i.e., of a rectangular box (see Figure$, top).
The rotations about these particular generators are exactly
the same as studied in Section [4

6 The boundaries for admissible reflection
planes

A generic plane ¢ that meets the interior of the tetrahedron
T, without passing through any vertex, separates either one
vertex from the other three or two from two. In the first case
we speak of type-1 planes, otherwise from type-2 planes
(see Figure 13). Only type-2 planes are candidates for ad-
missible planes as they meet four edges. We are going to
determine the boundaries for the set of admissible planes.

2In fact, a rolling of physical models of the paraboloids is not possible since the two surfaces penetrate each other along the common generators in the

plane of contact (see Figure 12).

11
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Figure 13: When intersecting a tetrahedron with parallel
planes, one finds two open regions where the intersection
is empty, two regions of type-1 planes, and one of type-2
planes.

At a given tetrahedron T (we suppress the subscripts for a
while) with vertices A,B,C,D let P € [AC] and Q € [BD]
be interior points of their edges. Then their midpoint M on
g = PQ is an inner point of T'. All possible points M form
the interior of an parallelogram in a plane u with the mid-
points of the edges [AB], [BC], [CD], and [DA] as vertices
(see Figure 14).

Figure 14: Segments PQ with their endpoints on opposite
edges [AC] and [BD] of the tetrahedron T have their mid-
point M in the plane u parallel to the lines e = AC and
f = BD. A presumptive reflection plane G is normal to
g = PQ and contains M.

Now we intersect the plane ¢ through M orthogonal to g
with the extended edges e = AC and f = BD. If these inter-
sections are external points, then G is a type-2 plane as it
intersects all sides of the skew quadrangle ABCD at inner
points thus satisfying condition (i). In order to satisfy (ii),
the midpoint M of [PQ] must be an interior point of the
parallelogram 7 Nu. We summarize:

12

Theorem 6 Let the lines e and f be the extensions of oppo-
site edges [AC] and [BD)] of the tetrahedron T, and let ¥ be
the bisecting orthogonal hyperbolic paraboloid of e and f.
Then the set of contact points S of ¥ with admissible planes
G related to the edges [AC| and |BD) equals the interior of
the intersection of two open domains of ¥,

a) the domain enclosed by four conics, the contact curves
of the tangent cones of ¥ with apices A,B,C,D, and

b) the domain that results from planes G corresponding to
midpoints M in the parallelogram uN\T; (Figure 15).

For visualizing the two domains, we assume the lines e and
f along with the plane u to be horizontal and inspect the top
view. Note that u is tangent to the hyperbolic paraboloid
W at its vertex V, and the generators through V are axes of
symmetry of e and f. Moreover, according to [9} p. 64]
the lines e and f are polar w.r.t. W. Therefore, the tangent
cones from A, C € e contact ¥ in the respective polar planes
passing through f and, vice versa, the contact curves for
B,D € f lie in planes through e. These four planes enclose
the tetrahedron 7 that is W-polar to 7. The first domain
mentioned in Theorem[6]and corresponding to the condition
(1) is the intersection of W with the interior of 7 (see Figure
15). In general, it is bounded by four hyperbolic arcs.

Figure 15: Top views of the tetrahedron T (black) with the
parallelogram of midpoints M (red), the polar tetrahedron
T* with vertices A*,... ,D* (blue) and the four hyperbolic
arcs (red) that enclose the first domain of the hyperbolic
paraboloid ¥ as mentioned in Theorem|[B] For admissible
planes & the midpoint M has to be chosen in the yellow
area. The green parallelogram is the top view of the four
parabolas terminating the second domain for the contact
points S with V.

For determining the second domain, we choose the gen-
erators through the vertex V of ¥ as x- and y-axis of a
coordinate frame and define e and f by

z==%d and xsina=+£ycosq,
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where 200 = Y ef, and 2d equals the orthogonal distance
between e and f. This implies

W¥: 2dz+xysin200 = 0.
The polar plane of any point P = (§,1,{) w.r.t. ¥ satisfies
(Mx+E&y)sinacosa+dz = —dC. 4)

The vertices A*,C* € e and B*, D* € f of the polar tetrahe-
dron T* are respectively conjugate to A,C,B,D € T w.r.t.
W. Thus, we obtain by (@) for A = (a, atana., d) the ver-
tex A* = (a*, a*tana, d) and for B = (b, —btana, —d) the
vertex B* = (b*, —b*tana, —d), where

—d?

aa* =bb* = —5—.
sin“a

For describing the second domain, we check the relation
between any midpoint M € u and the contact point S of the
corresponding plane ¢ with ¥:

Given M = (§,1,0), we first determine the line g through
M meeting e and f. The meeting point Q € f is the point
of intersection between f and the plane connecting M with
e, which satisfies

(Esino—mcosa)(z—d) +d(xsino—ycosa) = 0.
This yields

Q0 = (§-mcota, n—Etana, —d)
P = (§+nmcota, n+Etana, d).
The bisecting plane of P and Q is

o: nxcota+Eytano+dz = En(tan o+ cotar).

We obtain the contact point S of ¢ with W as its pole by
comparing the equation of ¢ with @) (see Figure 12). This
results in

s:( & n &n ) 5)

cos2a’ sin?o’ dsinocoso

The relation between the top views of M and S in the plane
z = 0 is affine. Hence, the second domain as locus of ad-
dmissible points S € ¥ as mentioned in Theorem [6] and
corresponding to condition (ii) appears in the top view as
interior of a parallelogram. It is easy to verify that the side
lines of this parallelogram are respectively orthogonal to
¢’ and f’ and pass through the top views A’,... D’ of the
vertices of T (see Figure 15). After transforming the top
views of the four hyperbolas by the inverted affine relation
M — S we find the locus of midpoints M that correspond
to admissible bisecting planes G.

Figure 16: At this example, the common normal of e and f
(with top view V') has its foot point on f outside the segment
[BD)]. Nevertheless, there exist admissible reflection planes
©. The top views of the domains for the corresponding mid-
points M and for the contact points S with the hyperbolic
paraboloid ¥ are shaded yellow.

Remark 6 The example displayed in Figure 16 demon-
strates that due to Theorem[6|a two-parameter motion can
also exist when the common perpendicular of the opposite
edge lines e, f has a foot point outside the edge. Thus, inte-
rior foot points are a sufficient, but not necessary condition
for the existence of a two-parameter motion of the type pre-
sented in Theorem In other words, along with Remark
this means that the tetrahedra with acute-angled faces are a
proper subset of the set of tetrahedra where the foot points
of all common perpendiculars are interior points of edges.
And this is a proper subset of the set of tetrahedra which
admit three two-parameter symmetric rollings.

Referring to Figure 16, when the common perpendicular
of e and f has both footpoints outside the respective edges
[AC] and [BD], then the intersection of the two domains
mentioned in Theorem [6lmust be empty as they are always
separated by one coordinate axis.

6.1 Contained planar one-parameter motions

A motion in 3-space is called planar if all point trajectories
are located in parallel planes. For example, according to
Theorem [3]all rotations about generators of the bisecting
hyperbololic paraboloids are planar motions. There are
still more planar one-parameter movements contained in
the two-parameter motions of congruent tetrahedra with
crossing edges.

We recall that for each pair of opposite edges [AC] and [BD]
of T we find admissible reflection planes ¢ as planes of
symmetry for points P € [AC] and Q € [BD]. If point Q
is kept fixed while P varies (see Figure 17, top), then the
corresponding planes G envelop a part of a parabolic cylin-
der. This follows from the standard definition of a parabola

13
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(note, e.g., [2, Fig. 2.13]), since this cylinder intersects the
plane y connecting Q with [AC] in an arc of the parabola ¢
with focus Q and directrix e = AC (Figure 17, bottom).

Figure 17: For given opposite edges [AC] and [BD) the lo-
cus of midpoints M of points P € [AC] and Q € [BD] is a
parallelogram in a plane u parallel to AC and BD. For fixed
Q the planes of symmetry & envelop a parabolic cylinder.

We are also able to figure out the boundaries of this
parabolic arc ¢ (see Figure 17, top): The plane ¢ L. PQ =g
passes through the midpoint M € (uNT) of [PQ] and inter-
sects 'y in a tangent & of ¢. The required arc of ¢ is bounded
by the points S4 and S¢ because of P € [AC]. Moreover,
hNe has to be an exterior point of the segment [AC]. Hence,
in the case shown in Figure 18, the corresponding parabolic
arc is limited by S¢ and by the contact point T of a tangent
of ¢ through C.

In the limiting case Q = B, the envelope of the planes ¢
belongs to a parabolic cylinder with generators orthogo-
nal to the plane spanned by ACB. These generators have
top views orthogonal to the top view ¢’ of e = AC. The
parabolic cylinder contacts the hyperbolic paraboloid ¥
along a parabola that bounds the second domain and ap-
pears in the top view as a side of the mentioned parallelo-
gram (green in Figure 15). At each point S of this parabola

the tangent must be conjugate w.r.t. ¥ to the generator of
the contacting cylinder. Conjugate lines are in a harmonic
position w.r.t. the W-generators through S, which have top
views parallel to the coordinate axes. As a result, the top
view of the contacting parabola must be orthogonal to f”,
as already documented above (see Figure 15).

When reflecting 77 on admissible planes ¢ with fixed point
Q0 € f we obtain poses of T, where the point attached to
T, trace curves in planes parallel to the plane y connecting
QO with e. At the same time a parabolic cylinder attached
to 7> rolls on a parabolic cylinder attached to 77 such that
the cylinders are permanently symmetric w.r.t. the plane
c of contact. This is again a planar motion contained in
the two-parameter motion related to the pair (e, f )E] The
corresponding midpoints M € u trace a segment parallel
to e (Figure 17), hence parallel to one side of the paral-
lelogram in u. The symmetric parabolic-cylinder-rollings
corresponding to a fixed point P € e has similar proper-
ties. In comparison, at the contained rotations according
to Theorem [5] the point S of contact between ¢ and the
paraboloid ¥, (see Figure 12) traces a generator. In the top
view, the point §’ runs along a line parallel to one coordinate
axis, and the same holds for the midpoint M’ due the affine
correspondence between these points (Figure 15).

Figure 18: The parabola’s tangent at Sy does no longer
belong to an admissible bisection plane G as it meets the
segment [AC] at an interior point.

7 Further movable pairs of congruent struc-
tures with edge-contacts

a) We follow an idea of [8] generalizing an equifaced tetra-
hedron with isosceles faces to an antiprisma over a regular

3In planar kinematics, the symmetric rolling of two parabolas has the property that the focus of the first parabola traces the directrix of the second
parabola while the directrix of the first parabola slides through the focal point of the second.

14
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n-gon (see Figure 19). This allows further generalizations,
as we only must demand that the pairs of opposite skew
edges of a generalized antiprisma are generators of the same
coaxial hyperboloid of revolution. Consequently, the regu-
lar top- and bottom-polygons can be similar and, to a certain
extent, even affine transforms of regular polygons. When
we move a planar polygon within its plane to another posi-
tion, then corresponding edge lines will trivially intersect,
and, of course, we can restrict the movement such that all
corresponding edges intersect at inner points.

a

a

f

Figure 19: Fairs of n-sided antiprisms as movable struc-
tures include for n = 2 equifaced tetrahedra (left) and for
n = 3 octahedra (right). Also pairs of symmetric tetrahe-
dra with top- and bottom edge of different lengths allow a
one-parameter set of motions with fixed axis a, as well as
pairs of generalized antiprisms with affine-regular top- and
bottom polygons.

b) When using the last statement for a classical pyramid P,
with a convex planar basis, then we can, with certain restric-
tions, reflect it in a plane ¢ through its altitude a getting a
pyramid P,, which is in edge-contact with P;. Hence, we
can extend an antiprism by two pyramids at the top- and
bottom-polygon such that their apices are points of the axis
a of the antiprism. Then the reflection of this polyhedron P,
in any plane ¢ through a yields a congruent copy P>, which
still can move relative to P; while keeping all edge-contacts.
For example, a regular icosahedron satisfies these condi-
tions (see Figure 20). A scaling in direction of the axis a
will not restrict the mobility.

¢) Even congruent pairs of (regular) double pyramids with
a non-planar belt-polygon can be considered as movable
polyhedral edge structures, as far as the belt polygon also
suits to a generalized antiprism. A cube serves as a simple
example, when rotated around one of its spatial diagonals.
Another example is the regular pentagon dodecahedron,
seen as a truncated double pyramid (Figure 21). Obviously
the movability remains when such a structure is subjected
to a scaling in direction of the fixed axis.

d) The standard case of a pair of coaxial right pyramids
over a regular n-gon (see [11] and [12]) allows further gen-
eralizations. If & denotes the altitude of the pyramids and
they share in the initial position the base n-gons, then the
extremal distance ¢ of their base planes is related as

t:h:(lfcosg):l. 6)

These pyramids P;, P, can be embedded in two congruent
cones W, ¥; of revolution. When we “bend” all non-base
edges of P; and P, to congruent curves on | and ¥, then
also these objects will allow a one-parameter set of motions
as products of appropriate rotations about and translations
along the axis, while the formula in @ will still remain
valid.

As a next step we generalize, with restrictions, the cones
¥, ¥, to smooth surfaces of revolution ®;,P,. At first
we take their meridians m as replacements of the edges
of the pyramids Py, P>. Then again, we can replace these
meridians by a set of congruent curves on ®;,d,, and we
will end up with a movable edge-curve structure.

e) We return to a) and consider equifaced tetrahedra and
regular antiprisms again. There the key property is the ex-
istence of coaxial hyperboloids of revolution. Obviously,
we can now bend the straight edges to congruent curves on
these hyperboloids and receive a movable edge-curve struc-
ture. Also here, the hyperboloids can be replaced by more
general surfaces of revolution, and, in case of antiprisms,
the edges of the top- and base polygon can be replaced by
curves, too.

It is easy to imagine such a structure on a sphere: Consider
the vertices of a regular n-gon on, say, the two polar cir-
cles of the sphere, and connect them with arcs of, e.g., a
loxodrome, a curve of constant slope, or simply with arcs
of a great circle. In this very special case of a curved edge
system the chosen arcs need not even be congruent.

According to these statements, we can replace the edges
of the cube, the regular icosahedron and the pentagon do-
decahedron (see b) by congruent curves and preserve the
movability of the curved edge structure.

Nevertheless, an explicit calculation of the motion will de-
pend on the chosen curved edges and might get lengthy. In
each pose, the instantaneous behaviour is that of an object
with the tangents as edges, and therefore it is locally an
edge structure of the types treated in the foregoing chapters.

15
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L 1

1
! Pyramid Le

Antiprism i Pyramid '

Figure 22: A regular icosahedron together with its image under a rotation about an axis connecting opposite vertices yields
two congruent polyhedral structures which allow a relative movement while all edge-contacts are preserved.

Antiprism |
truncated |-
Pyramid

truncated
Pyramid |-

Figure 21: Another example of a movable polyhedral edge structure consists of two congruent regular pentagon dodecahedra

sharing an axis that connects midpoints of opposite faces.
8 Conclusion

We aimed at a geometric analysis of the sliding motions,
which occur at congruent tetrahedra, forming a Stella Oct-
angula in the initial pose. We preferred geometric reasoning
against lengthy calculations. The surprising fact that the
pair of tetrahedra of a classical Stella Octangula is movable
in spite of dof = 0 caused the questions “why”” and “are reg-
ular tetrahedra the only ones with that property”. We could
show that general pairs of indirect congruent tetrahedra
(T1,T>) keep their six crossings under three two-parametric
motions of 7> relative to 77. Each pose of 7> can be ob-
tained by a reflection of 77 in a tangent plane of orthogonal
hyperbolic paraboloids, and their generators act as axes of
possible rotations.

There is kind of hierarchical structure among the tetrahe-
dra 71, T, from the most general ones to those having in
the initial Stella-Octangula pose a box as convex hull, and
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finally those being regular three-sided pyramids. The latter
allow motions generated by reflections in axes orthogonal
to the common axis of symmetry of 77 and 7>. The most
special case with two regular tetrahedra allows both, the
special axial reflections as well as the reflections in planes.
In all the discussed cases, the poses of T relative to Tj
are generated by single reflections, i.e., by involutive dis-
placements. Here the question arises: “Is the assumption of
tetrahedra 77, 7> being congruent a necessary condition for
their movability?”

Moreover, one might ask for pairs of other polyhedral struc-
tures, which allow such relative motions. Besides general-
izations presented in [8], it is possible to find many other
polyhedral structures allowing at least one-parameter mo-
tions, if trivial edge-contacts are not excluded. In addition,
even structures where the edges are bent to congruent curves
can admit such sliding motions.
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