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Abstract

Deep neural networks have been successfully used in many different areas of traffic engi-
neering, such as crash prediction, intelligent signal optimization and real-time road surface 
condition monitoring. The benefits of deep neural networks are often uniquely suited to solve 
certain problems and can offer improvements in performance when compared to traditional 
methods. In collision prediction, uncertainty estimation is a critical area that can benefit 
from their application, and accurate information on the reliability of a model’s predictions 
can increase public confidence in those models. Applications of deep neural networks to this 
problem that consider these effects have not been studied previously. This paper develops a 
Bayesian deep neural network for crash prediction and examines the reliability of the model 
based on three key methods: layer-wise greedy unsupervised learning, Bayesian regulariza-
tion and adapted marginalization. An uncertainty equation for the model is also proposed 
for this domain for the first time. To test the performance, eight years of car collision data 
collected from Highway 401, Canada, is used, and three experiments are designed.

Keywords: road safety, road surface condition, crash prediction, neural networks

1 Introduction

The technology of deep neural networks (DNNs) is becoming ubiquitous in both research and 
industry fields. By stacking layers of linear convolutions with appropriate non-linearities, 
abstract concepts can be learnt from high-dimensional input alleviating the challenging and 
time-consuming task of hand-crafting algorithms [1-2]. With this advance, almost in each 
passing month, new applications on a variety of problems like unsupervised-learning based 
classification, object detection, forecasting, and reinforcement learning based game play-
ing, continue to be found by using DNNs [3-6]. Moreover, in recent years, a number of deep 
learning-based methods have also been applied in traffic engineering, such as road surface 
condition monitoring, traffic sign recognition, autopilot, intelligent traffic optimization, etc 
[7-10]. In the domain of road safety analysis, deep learning-based models have been shown 
as effective when compared to the traditional negative binomial and to other techniques 
such as kernel regression [12]. In this paper, we focus on solving the problem of predicting 
collisions for highways and achieving high accuracy and fast training speed. We have also 
explored the relation between the model size, data size and trained model accuracy. While 
previous researches have done similar works using traditional artificial neural networks 
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(ANNs), surprisingly, DNN-based solutions for road safety applications have so far been sug-
gested without any uncertainty management [10-12]. This study aims to fill this gap in the 
literature by quantifying and estimating the uncertainty of DNN predictions.
Information about the reliability of automated predictions is a key requirement for them to 
be integrated into alarm systems for the public. No matter whether data is short or abundant, 
difficult and unseen scenarios are unavoidable. Therefore, DNNs should report, in addition 
to the decision, an associated estimate of uncertainty. Estimating the uncertainty from a 
DNN-based prediction on a single testing sample requires a distribution over possible out-
comes, for which a Bayesian perspective is best suited. Indeed, Bayesian approaches to 
uncertainty estimation have been proposed to assess the reliability of model predictions in 
many domains [13-15]. The integration of the Bayesian methods and DNNs is an active topic 
of research, but the practical value of the developed methods has yet to be demonstrated 
in traffic engineering. There are two major types of uncertainty, aleatoric uncertainty and 
epistemic uncertainty. The first one captures noise inherent in the observations, while the 
later one accounts for uncertainty in the model which can be explained away given enough 
data. Aleatoric uncertainty is unavoidable, while epistemic uncertainty is more practical and 
has been mostly focused on [16-18]. Our previous attempts have focussed on deep learning 
models and their applications. Specifically, in the domain of road safety analysis, a global 
DNN model was introduced as an alternative to the traditional regression models for crash 
modelling [12]. An extensive empirical study was conducted using three real world crash data 
sets covering six classes of highways as defined by location (urban vs. rural), number of 
lanes, access control, and region. As an improvement in previous work in this area, this pa-
per proposes a Bayesian deep neural network (BDNN) version that analyses the stability and 
epistemic uncertainty automatically and gives more reasonable suggestions.
Our focus in this paper is to propose a Bayesian regularization based deep neural network 
for road safety analysis. The core techniques of this model are, 1) layer-wise greedy unsuper-
vised learning used for data feature learning; 2) Bayesian regularization for knowledge dis-
tribution management and uncertainty estimation; and 3) the use of a specifically designed 
output layer called marginalization which uses the Softmax function predict the probabili-
ties and uncertainties for different scenarios. This paper’s structure is organized as follows: 
Section 2 introduces our methodology, including the improvements on the model and the 
equation to quantify model’s uncertainty; Section 3 demonstrates a case study based on 
our previous research, more details on implementing the model will be explained; Section 4 
summarises the study as well as directions in the future.

2 Methodology

2.1 The training of Bayesian Deep Neural Networks

The structure of proposed model is shown in Figure 1. In the model, three parts are included. 
The first layer is input layer, it receives sampling values from the original road observed fea-
tures. Two hidden layers are placed after the input layer and are used for feature extraction. 
Finally, the output from the hidden layers is marginalised and fed to the output layer. The 
marginalization layer helps to resort the prediction from exact collision amounts to risk-level 
based distributions, and uses Softmax to output the result as a percentage for each level.
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Figure 1 The structure of Bayesian Deep Neural Networks

The training of a BDNN has two steps, the first step is a layer by layer greedy unsupervised 
learning in which each two neighbouring layers form a restricted Boltzmann machine (RBM). 
Each RBM has a two-way structure with full connectivity and no specific connections be-
tween each same layer. When training each RBM, the hidden layer (the later layer of an RBM) 
extracts features and information from input to form an order and more abstract representa-
tion. Features are transferred in this way until they pass through the last layer and reach the 
output. The following equations are form the basis of how input is transformed in RBMs and 
how training takes place:

  (1)

  (2)

  (3)

xi and yi is the continuous value of unit i in input layer and j in output layer; wij is the weight 
between them, N(0,1) is a Gaussian random variable with mean 0 and variance 1; σ is a con-
stant; ϕ(X) denotes a sigmoid-like function with asymptote of θH and θL; and a is a variable 
that controls noise, which means it controls the gradient of the transfer function. When train-
ing an RBM, the states are recorded as X0 (input values, the vector of xi), Y

0 (hidden layer state 
using equation 1, the vector of yj), X

1 (input layer state using equation 2), and Y1(hidden layer 
state using equation 1 again). The weights’ updating function is 

  (4)

In the second step, the BDNN is fine-tuned in terms of model structure and learning rate. In 
doing this, the network will be unfolded, while keeping the trained weights unchanged, to a 
multilayer back propagation network that uses a gradient descent algorithm to fine-tune the 
weights. Bayesian regularization is implemented using the following equations:

  (5)
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  (6)

  (7)

EW is the traditional objective function used in a back-propagation network, which calculates 
the error between target output Ytarget and observed output Yobserved T the testing set; RW is the 
Bayesian regularization item that controls the weight between two layers to prevent it from 
becoming too big in iterations; and α and β are called performance parameters that can be 
calculated during the iteration. If α>β , then the first part of FW dominates, which means that 
the objective of the training is to decrease the training error, if α<β , the training will focus 
on decreasing the weights. Finally, I and J are the amount of units in each layer. The weights 
updating algorithm is, 

  (8)

  (9)

  (10)

  (11)

n is the number of layers, so Yn is the output of the whole network, Yn = Yobserved; Xk is the 
vector of layer k. Therefore, by introducing this regularization term, we can expect that in 
an iteration, if one weight is affected by its neighbour, which should not be happening, the 
change of amount of the affection will be reduced using equations (8-11). Furthermore, using 
this method will ensure weights that do not contribute to the response will be minimized, 
keeping the network in a sparse connection state. 

2.2 Marginalization and Uncertainty Estimation Equations

Marginalization layer is another technique adopted in BDNN to ensure realistic output. To 
perform this, in training and testing, if the prediction in a category is 0 % while the neigh-
bouring ones are not, the predictions on each category will be re-distributed using equation 
(12). After training, the marginalization index in equation (13) is applied to estimate how well 
the distributions are. Finally, when testing the model, testing accuracy can be estimated 
using equation (14), and the uncertainty with equation (15).

  (12)

  (13)

  (14)
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  (15)

P(yi) is the probability of car collision on risk level i; 1 and 2 are the percentage probabilities 
taken from the specific categories; f(P(yi) >δ) means the total case amount that P(yi) is over δ; 
T is the total number of observations and R is the total output neurons; MI is the marginaliza-
tion index; M is the running times of the model; yi the ground truth;  is the integrated con-
fidence; Mu is the marginalized model uncertainty and Acc is the marginalized model accu-
racy. 
Traditionally, Acc (in some papers MAE or RMSE are used) is the only standard to evaluate a 
model and the higher Acc the better. However, this can obscure the true accuracy of a model 
in some circumstances. For example, in BDNN, the output is the probabilities for each risk 
level (explained in next section) and thus if Acc is the only evaluation used then the model 
will try to even the prediction on each category, which means that during the training the 
model will try to make a tie between all the categories, if so the truth ground will definitely fall 
into a category and it will be 100 % correct. This prediction, however, is totally meaningless 
because it cannot provide any alarms or suggestions to the public and department for man-
agement. Mu is a compliment to Acc because it shows how much confidence the model has 
over a certain observation and how stable the model’s prediction is. The lower Mu the better 
because a lower Mu means the distribution on the prediction is more confident. Thus, in this 
research, we propose to utilise both Acc and Mu for model evaluation.

3 Experiment

3.1 Experimental Design

This case study is based on historical collisions and related data from Highway 401 in Ontario, 
Canada. This highway, which plays a crucial role for the region’s socio-economic development, 
is one of the busiest highways in North America. The total length of the highway is 817.9 km 
of which approximately 800 km is used in this study. According to 2008’s traffic volume data, 
the annual average daily traffic (AADT) ranges from 14,500 to 442,900 indicating comparatively 
a very busy road corridor. Traffic count data consists of AADT and average annual commercial 
vehicle counts for the period 2000 - 2008. As each observation records the LHRS and offset in-
formation, traffic counts can be spatially located using a linear referencing GIS tool. The whole 
highway is divided into 418 homogeneous sections (HS) with length ranging from 0.2 km to 
12.7 km. Each HS is then assigned the nearest traffic observation. Finally, the processed crash 
and traffic data are integrated into a single dataset with HS and year as the mapping fields, 
resulting in a total of 3762 records. The selected input features used in the study are exposure, 
AADT, left of shield, median width, right of shield, and curve deflection.
In this case study, the model’s performance is estimated based on accuracy (Acc), model 
uncertainty (Mu) and marginalization index (MI), as defined in previous equations. Three 
experiments are designed below, to testify the performance of the model. We use a network 
structure of 6-10-10-4 (6 units for the input layer - 10 units for the hidden layer 1 - 10 units for 
the hidden layer and 2 - 4 units for the output layer) for the model. This structure is selected 
on the basis of our previous work, which finds that when the training dataset is around 3,000 
two hidden layers with no more than 10 are the most effective. Also, different learning rates 
varying from 0.5 to 3 are tried, with the learning rate of 1.0 being the most effective. In terms 
of training, we use a total of 50 unsupervised iterations and 1000 fine-tuning iterations to 
ensure model convergence. Six input neurons are used based on six key features: exposure, 
AADT, left of shield, median width, right of shield, and curve deflection. Four output neurons 
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are provided corresponding to four risk levels designed based on the annual collision rate. 
Risk level 1 covers sections with less than 3 collisions per year, risk level 2 is covers sections 
with 4 to 10 collisions per year, risk level 3 covers sections with 11 to 20 collisions per year 
and risk level 4 covers sections with over 21 collisions each year. The data distribution is 
shown in figure 2. In calculating MI, we set 1 = 2 = 2.

Figure 2 a) crash amount on each segmentation observed each year, b) the re-sorted risk levels based on (a)

3.2 Uncertainty Test with Pre-set Marginalization

A total eight years of collision data with 3762 sets are collected. The first 6 years with 2926 
sets are used for model training and the rest 836 sets are for model testing. The marginali-
zation parameters ( 1, 2) are set to be 2. Other model parameters have been given in last 
section. The results are shown in Table 1, Table 2 and Figure 4.
Table 1 shows the predictions on ten selected samples. When comparing the predicting risk 
with the exact risk level (or collision number) using traditional models, BDNN outputs the 
probabilities on each level and evens the distributions more realistically, thanks to margin-
alization and Softmax. For some cases (2 and 3), BDNN outputs are given with a very high 
confidence level, while for most other samples, it is more conservative and provides more 
possibilities for the risk level. This characteristic allows the model to provide a complete 
picture that is clearer, such as the situation on cases 5 and 6, providing better results than 
traditional models that often fail to capture these situations. In table 2, the advances of using 
BDNN is clearer. In our previous work, the R-DBN-based proposed deep learning model had 
the best performance when compared to other popular methods. However, when predicting 
risk levels, the model only achieves an accuracy level of 61 % because the uncertainty is 
too high. It is outperformed significantly by BDNN, which has a higher accuracy of 83.35 
% and an uncertainty value (Mu) only 0.2344, which is a clear sign of better stability. Full 
comparison results are shown in Table 2, along with results for BDNN models with different 
confidence ranges, and without marginalisation. The finding proves that the proposed model 
receives lower prediction accuracy, but higher stability if it is restricted, which is quite rea-
sonable. Figure 3 shows the results of table 1 and 2. The blue lines in both sub-figures are 
the ground truth. Red line in (a) represents the exact predictions using R-DBN, and the green 
band in (b) shows the confidence area. 
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Figure 3 Comparisons on randomly selected testing samples.

Table 1  Predictions on Randomly Selected Testing Samples

Table 2  Results comparison using different models

3.3 Uncertainty Test with Growing Training Data

Further experiments were also conducted to test the uncertainty of the model as the training 
data size changes. The following bootstrapping process is followed: 1) Split the given dataset 
into two subsets: a training set and a testing set. The training set includes seven of data 
(2000 - 2006) while the testing set includes the remaining two years of data (2007- 2008). 
2) A subset of data at a specific amount of years is drawn from the training data set. 3) The 
subset of data of a specific size is then used to calibrate or train the candidate models, which 
is subsequently used to predict the collisions at the testing data set. The Acc and Mu are then 
calculated. 4) Repeat Step 2) to 3) for 10 times. After done, calculate the average, minimum 
and maximum. Results are shown in Table 3 and Figure 4.

Figure 4 Effect of data size on the model

Testing Cases 1 2 3 4 5 6 7 8 9 10

Ground truth on risk 
levels 2 3 3 1 1 2 2 1 2 2

Predicted 
risk levels 

(%)

1 13.5 0.0 0.0 99.6 9.4 90.6 0.0 67.4 45.0 0.0

2 86.5 0.0 0.0 0.4 90.6 9.4 99.8 32.6 55.0 99.3

3 0.0 100.0 100.0 0.0 0.0 0.0 0.2 0.0 0.0 0.7

4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Methods R-DBN BDNN without 
marginalization

BDNN 
(99% confidence)

BDNN 
(95% confidence)

Testing Acc 61.00% 79.07% 83.35% 73.74%

Model Uncertainty 0.6746 / 0.2344 0.1619

MI 2255 / 1459 1158
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The training and testing results for the BDNN model are shown in Figure 5. When the size of 
the training data increases, the testing MI and Mu of the BDNN model both decrease, which 
is a sign of model improvement. It should be noted that the testing MI and Mu both showed 
an initial quick drop but then begin to level off, suggesting that the model is reaching its 
limit. This also suggests that BDNN learns more information using fewer data as with our pre-
vious model, the testing MAE and RMSE kept dropping dramatically as more data was added. 
Furthermore, figure 5(a) shows that the testing accuracy remains between 80-90 % all the 
time, which further suggests that the model has achieved a high level of stability.

Table 3  Testing results with increased data size

3.4 Uncertainty Test with Unknown Observation

This experiment is designed to testify the generalization and uncertainty of the BDNN. We 
hope once the model is well trained, it can not only perform well on the existing dataset, 
but also learn and act well on new or limited databases with unpredictable scenarios, and 
that it make continued predictions as the new information is updated, even if it has not 
been observed previously in its past training data sets. The following experimental process 
is followed. 1) Some specific datasets are carefully picked out for model training. All the data-
sets are in the range of specific risk levels, yet the exact collision amounts are not observed 
before. 2) Train a BDNN using the new designed database as in experiment 1, then test the 
trained model on unseen observations. 3) Repeat the process for 10 times. 
In the database designed, all 305 cases that have 2 collisions (risk level 1), 102 cases with 10 
collisions (risk level 2) and 27 observations that are more than 300 collisions are removed 
and reserved for model testing (risk level 4). Thus, during the training process, only samples 
with less than 300 collisions will be learned by the model. The result is shown in table 4 and 
5.

Table 4  Model comparison with unseen observations

Table 5  Model predictions

Methods Acc MI Mu

DBN 14.29% 1645 0.6976

BDNN 70.83% 591 0.1632

Ground truth 1 1 2 2 4 4 4 4 4

DBN 
predictions 2 2 3 4 3 2 3 2 2

BDNN
Predictions

(%)

1 13.52 99.36 0.00 0.00 0.17 0.00 0.01 0.00 0.00

2 86.48 0.64 0.00 0.00 50.00 1.00 50.00 1.00 25.00

3 0.00 0.00 1.00 1.00 49.83 0.00 49.99 0.00 50.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 25.00

Training data (years) 1 2 3 4 5 6 7

Testing Accuracy 0.8557 0.83 0.8125 0.8249 0.8227 0.8285 0.8335

Model uncertainty 0.4012 0.3157 0.2811 0.2762 0.2569 0.2453 0.2344

Marginalization 
Index 1977 1811 1674 1625 1648 1517 1459
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Table 4 compares the results of different models and training methods. When compared to 
our previous work, substantial improvements in the accuracy, marginalization index and 
model uncertainty are achieved in for unseen scenarios. When using BDNN, the testing ac-
curacy stays as high as 70.83 % in the total new dataset. Model uncertainty is only 0.1632 
for the BDNN model compared to 0.6976 using DBN and 0.2344 in experiment 1. In table 5, 
9 randomly selected samples are shown, with 2 samples chosen from risk level 1, 2 from risk 
level 2 and 5 from level 4. All the predictions by DBN are incorrect, while the predictions by 
BDNN are much more reasonable, especially on the five examples with risk level 4 where 
all the samples have over 300 collisions and not in the range of training data. Despite this, 
the BDNN model shows strong performance and adaptability and can still make reasonable 
predictions.

4 Conclusion

In this paper, we proposed an improved deep neural network approach for modelling road 
collisions with low uncertainty and high stability. The research has made two main contribu-
tions. First, a BDNN model is introduced as an alternative to traditional machine learning for 
predicting expected collision risk levels of highways. This model is able to receive and pro-
cess continuous real-world data and output probabilities on each level using the techniques 
of Bayesian regularization, marginalization and Softmax. Second, an uncertainty analysis 
method is proposed, and three experiments are designed to test the model’s accuracy, mar-
ginalization index and model uncertainty. Finally, results showed that the proposed method 
is much more stable than our previous model and gives more reasonable suggestions to the 
public in real-world applications.
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