ORGANISATION

CHAIRMEN

Prof. Stjepan Lakušić, University of Zagreb, Faculty of Civil Engineering
Prof. emer. Željko Korlaet, University of Zagreb, Faculty of Civil Engineering

ORGANIZING COMMITTEE

Prof. Stjepan Lakušić
Prof. emer. Željko Korlaet
Prof. Vesna Dragčević
Prof. Tatjana Rukavina
Assist. Prof. Ivica Stančerić
Assist. Prof. Maja Ahac
Assist. Prof. Saša Ahac
Assist. Prof. Ivo Haladin
Assist. Prof. Josipa Domitrović
Tamara Džambas
Viktoria Grgić
Šime Bezina
Katarina Vranešić
Željko Stepan

INTERNATIONAL ACADEMIC SCIENTIFIC COMMITTEE

Stjepan Lakušić, University of Zagreb, president
Borna Abramović, University of Zagreb
Maja Ahac, University of Zagreb
Saša Ahac, University of Zagreb
Darko Babić, University of Zagreb
Danijela Barić, University of Zagreb
Davor Brčić, University of Zagreb
Domagoj Damjanović, University of Zagreb
Sanja Dimter, J. J. Strossmayer University of Osijek
Aleksandra Deluka Tiblijaš, University of Rijeka
Josipa Domitrović, University of Zagreb
Vesna Dragčević, University of Zagreb
Rudolf Eger, RheinMain Univ. of App. Sciences, Wiesbaden
Adelino Ferreira, University of Coimbra
Makoto Fujii, Kanazawa University
Laszlo Gaspar, Széchenyi István University in Győr
Kenneth Gavin, Delft University of Technology
Nenad Gucunski, Rutgers University
Ivo Haladin, University of Zagreb
Staša Jovanović, University of Novi Sad
Lajos Kisgyörgy, Budapest Univ. of Tech. and Economics
Anastasia Konon, St. Petersburg State Transport Univ.
Željko Korlaet, University of Zagreb
Meho Saša Kovačević, University of Zagreb
Zoran Krakutovski, Ss. Cyril and Methodius Univ. in Skopje
Dirk Lauwers, Ghent University
Janusz Madejski, Silesian University of Technology
Goran Mladenović, University of Belgrade
Tomislav Josip Milnarić, University of Zagreb
Nencho Nenov, University of Transport in Sofia
Mladen Nikšić, University of Zagreb
Andrei Petraiev, St. Petersburg State Transport University
Otto Plašek, Brno University of Technology
Mauricio Pradena, University of Concepcion
Carmen Racanel, Tech. Univ. of Civil Eng. Bucharest
Tatjana Rukavina, University of Zagreb
Andreas Schoebel, Vienna University of Technology
Ivica Stančerić, University of Zagreb
Adam Szelał, Warsaw University of Technology
Marjan Tušar, National Institute of Chemistry, Ljubljana
Audrius Vaitkus, Vilnius Gediminas Technical University
Andrei Zaitsev, Russian University of transport, Moscow
HOT ASPHALT MIXTURE CONTAINING WASTE PRODUCTS

Roxana Ungureanu¹, Carmen Răcănel², Georgeta Grîsîc³
¹ Centre for Road Technical Studies and Informatics, Bucharest, Romania
² Technical University of Civil Engineering Bucharest, Romania

Abstract

The use of waste materials to obtain new products with significant potential to replace conventional materials in road construction has two big advantages: protecting the environment and conserving natural resources. Blast furnace slag is the most important by-product of the steel industry, through the available quantity, through existing and potential reuse fields. Also, over time researchers demonstrated that asphalt mixtures prepared with polymer modified bitumen make their performance improved and increase the lifetime of the road. A considerable source of polymer for the modification of road bitumen are the used tires and by recycling them, it is obtained the crumb rubber. The main purpose of this study is to evaluate the behaviour of two asphalt mixture recipes: one for binder course (AC/P%o.[fl/P%o.[fl./floOM.[fl) and one for base course (AC/P%o.[fl/fliv'.[fl) with blast furnace slag and crumb rubber in different percentages. The laboratory tests were performed according European norms, in the Roads Laboratory of Centre for Road Technical Studies and Informatics. For the sample preparation, the crumb rubber was added directly in the bitumen (wet procedure) and natural aggregates were successfully replaced by blast furnace slag. In this paper, results and analyses from laboratory tests are presented, by comparing the initial recipes, without waste materials, with the ecological recipes.

Keywords: asphalt mixture, blast furnace slag, crumb rubber

1 Introduction

The priority trend of road builders and road managers is to produce road pavement with improved performance regarding aging and fatigue resistance, better behavior both in summer and winter, as well as increased values for dynamic properties. In this regard, there is a permanent concern to find new materials and technologies for the preparation of asphalt mixtures, which give the layers the desired properties.

The current trend in the world is the development of road structures from composite asphalt mixtures where, in addition to classical materials, fillers or reinforcing materials are generally added in the form of powders, granules, fibers. These new materials can be of the most diverse classes of chemical compounds, inorganic (glass, asbestos, ceramics) and organic (natural and / or synthetic polymers).

The notion of “green composite asphalt” is a new concept, emerging from the need to produce sustainable and durable road pavement, but also the need to use the industry’s waste, which “suffocates” and pollutes the environment more and more aggressively.

Blast furnace slag is the most important by-product of the steel industry, through the available quantity, through existing and potential reuse fields. Iron blast furnace slag results from the fusion of fluxing stone with coke ash and the siliceous and aluminous residues remaining after the reduction and separation of iron from the ore. The blast furnace operation is a continuous process with the carefully controlled raw materials being fed in (burden) and the uniform products, molten iron and liquid slag, being drawn off at regular intervals. Selective
cooling of the liquid slag results in four distinct types of blast furnace slag: (1) air-cooled (solidification under ambient conditions), which finds extensive use in conventional aggregate applications; (2) expanded or foamed (solidified with controlled quantities of water, sometimes with air or steam), which is mainly used as a lightweight aggregate; (3) granulated (solidified by quick water-quenching to vitrified (glassy state), which is mainly used in blended cement manufacture; and (4) pelletized (solidified by water and air-quenching in conjunction with a spinning drum), which is used both as a lightweight aggregate and in blended cement manufacture. Air cooled blast furnace slag is used as aggregate in granular base, hot mix asphalt and Portland cement concrete, [1, 2].

The first experiences in the application of slag as an aggregate in asphalt mixtures date from 1969, when a trial road section was built in Toronto, on which steel slag was utilized as an aggregate in base courses and road asphalt surfaces. The studied asphalt mixtures have demonstrated very good properties in terms of bearing capacity, resistance to external impacts, and durability, [3].

Crumb rubber is a material obtained from grinding used tyres. Due to the high content of thermoplastic polymer, it can be used in road construction for the preparation of asphalt mixtures with modified bitumen that have improved characteristics in terms of traffic behavior, fatigue strength and permanent deformations. In addition, technologies that manage to use non-degradable waste in the manufacturing process, turning them into a useful product, align with the current trend for greening and environmental protection, [4].

Lundy et al. presented three case studies using crumb rubber with both the wet process and dry process at Mt. St. Helens Project, Oregon Dot and Portland Oregon. The results showed that even after a decade of service crumb rubber products have excellent resistance to thermal cracking. Although, asphalt-rubber mixtures can be built successfully, quality control ought to be maintained for good performance. Rubber Pavement Association found that using tyre rubber in open-graded mixture binder could decrease tyre noise by approximately 50%. Also, in spray applications, rubber particles of multiple sizes had better sound absorption. The benefits of using crumb rubber modified bitumen are lower susceptibility to varying temperature on a daily basis, more resistance to deformation at higher pavement temperature, proved age resistance properties, higher fatigue life for mixes, and better adhesion between aggregate and binder. Ever since then, the use of crumb rubber has gained interest in pavement modification as it is evident that crumb tyre rubber can improve the bitumen performance properties [5].

Studies [6] shows how asphalt mixes with polymer modified bitumen and those with granular furnace slag would be the most environmentally damaging. Other research conducted by the authors [7-9] leads to the main conclusion that partial or total substitution of calcareous aggregates significantly affects physical and mechanical characteristics of the asphalt mix. Better results were obtained by replace one limestone fraction 16/31.5 with slag and by replace 50% limestone with 50% slag for each aggregate fraction. Also, adding polymer and crumb rubber in asphalt mixture leads to an improvement of bitumen characteristics.

2 Objective

The main purpose of this study is to evaluate the behaviour of two asphalt mixture recipes (AC22.4 notted by “A” and AC25 notted by “X”) for binder course and for base course with blast furnace slag and crumb rubber in different percentages.

The laboratory tests were performed according European norms, in the Roads Laboratory of Centre for Road Technical Studies and Informatics.
3 Used materials and asphalt mixture recipe

The materials used to prepare the asphalt mixtures recipes for this study are presented in table 1. The grading curve for asphalt mixture meets the European norm requirements and the Romanian standard requirements, too. Starting from the initial recipes (A and X), without any recyclable wastes, natural aggregates were partially replaced with blast furnace slag, than crumb rubber was added directly in the bitumen using wet procedure, in two different percentages: 0.8 % and 0.5 % (table 2 and table 3).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>The used materials in asphalt mix recipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC22.5</td>
<td>Aggregate crushed rock from Niculitel Quarry</td>
</tr>
<tr>
<td>AC25</td>
<td>Aggregate crushed rock from Soimos Quarry</td>
</tr>
<tr>
<td></td>
<td>Blast furnace slag from Arcelor Mittal Galati</td>
</tr>
<tr>
<td></td>
<td>Limestone filler from Holcim</td>
</tr>
<tr>
<td></td>
<td>Bitumen OMV 50/70</td>
</tr>
<tr>
<td></td>
<td>Bitumen ORLEN 50/70 + 0.5 % ADETEN 03-800 additive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Recipes for binder course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt mixture</td>
<td>Recipe</td>
</tr>
<tr>
<td>AC 22.4</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>B2</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C1</td>
</tr>
<tr>
<td></td>
<td>C2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Recipes for base course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt mixture</td>
<td>Recipe</td>
</tr>
<tr>
<td>AC 25</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Y1</td>
</tr>
<tr>
<td></td>
<td>Y2</td>
</tr>
<tr>
<td></td>
<td>Z</td>
</tr>
<tr>
<td></td>
<td>Z1</td>
</tr>
<tr>
<td></td>
<td>Z2</td>
</tr>
</tbody>
</table>

4 Experimental study and results

In order to determine the influence of waste materials on asphalt mixture behaviour, in the Roads Laboratory of CESTRIN were performed the following tests:
• Bulk density according to EN 12697-6;
• Marshall test on cylindrical specimens, according to EN 12697-34, at 60ºC test temperature;
• Air void content, according to EN 12697-8;
• Stiffness test, according to EN 12697-26 Annex C, at 20ºC test temperature;
• Water sensitivity according to EN 12697-12 and EN 1697-23.
The results regarding the performance of asphalt mixtures containing waste products are presented as graphs in Figure 1 – Bulk density, Figure 2 – Marshall Stability, Figure 3 – Air void content, Figure 4 – Stiffness and Figure 5 – Water sensitivity ITSR.

Figure 1 Bulk density: a) for binder course; b) for base course

Figure 1 shows that bulk density for the control recipes is lower than those obtained for mixture with blast furnace slag and crumb rubber. Also, the value of bulk density of mixtures containing 0.5 \% crumb rubber is higher than bulk density for asphalt mixture with a higher percentage of crumb rubber (0.8 \%).

Figure 2 Marshall Stability: a) for binder course; b) for base course

It appears from Figure 2 that generally, Marshall Stability has close values for the initial recipes and the asphalt mixtures containing blast furnace slag. The crumb rubber seems to have an important role for the Marshall test. The values obtained for the Marshall Stability of recipes with 0.8 \% content of crumb rubber are lower than the control recipes, and for 0.5 \% crumb rubber, Marshall Stability increased.

Figure 3 Air void content: a) for binder course; b) for base course

Air void for asphalt mixtures with slag is higher than air void for asphalt mixture with natural aggregate. Also, the use of crumb rubber influences the air void content. For the binder course, values obtained for mixture containing 0.8 \% crumb rubber are higher than the control
recipe by approximately 180 %-230 %. The same trend can be observed for the base course, where the air void is higher by approximately 85 %-90 %.

![Stiffness, KPa](image)

Figure 4 Stiffness: a) for binder course; b) for base course

As shown in Figure 4, the value of stiffness modulus for AC 22.4 without waste products is close to those obtained for mixture with blast furnace slag and crumb rubber (0.8 %), and higher values are obtained when recipes have a lower content of crumb rubber (0.5 %). For AC 25, stiffness modulus for asphalt mixture with blast furnace slag in higher than stiffness modulus for asphalt mixture with natural aggregate by approximately 7 %. By adding crumb rubber, stiffness modulus decrease between 12 %-30 %.

![Water sensitivity, %](image)

Figure 5 Water sensitivity: a) for binder course; b) for base course

According to national norm, water sensitivity for binder course and for base course should be min. 80 %. Figure 5 a) shows that the original mixture (A) and the recipes with blast furnace slag meet this condition. Water sensitivity decrease between 20 %-26 % when crumb rubber is added. In case of the recipes studied for the base course, utilisation of waste products improves water sensitivity value only for the recipes with fraction 4-8 replaced with blast furnace slag. When we replace fraction 4-8 and fraction 8-16, water sensitivity is lower than the control recipe (X). Generally, when only blast furnace slag was added in the mixture, water sensitivity is increasing. This behavior may be due to the chemical composition of the blast furnace slag which has latent hydraulic properties, hardens in the presence of water and improves its mechanical properties.

5 Conclusions

Today, a serious problem that leads to environment pollution is the abundance and increase of waste materials. For the research study presented in this paper, there are two asphalt mixture with natural aggregates as reference mixtures, one for binder course, and one for base course. For the others recipes presented during the study, conventional aggregates were replaced by blast furnace slag. Also, crumb rubber was added in the bitumen.
Laboratory tests performed lead to the conclusion that mixture has comparative results with the control recipes, excepting the values for water sensitivity. When 0.5% crumb rubber is added in the mixture, better values for Marshall Stability and stiffness modulus are obtained. Utilising blast furnace slag and crumb rubber is not only beneficial in terms of cost reduction but also has less ecological impact in keeping the environment clean and to achieve better balance of natural resources. Further will be necessary in order to study in laboratory the fatigue and permanent deformation behaviour of asphalt mixture with blast furnace slag and crumb rubber.

Acknowledgments

The authors would like to thank UEFISCDI, Education and Research Ministry from Romania for contract no. PCCA 101/2013, PN II Program for the support of this work. Thanks are also expressed to the company Arcelor Mittal for providing the blast furnace slag.

References