Although all care was taken to ensure the integrity and quality of the publication and the information herein, no responsibility is assumed by the publisher, the editor and authors for any damages to property or persons as a result of operation or use of this publication or use the information’s, instructions or ideas contained in the material herein.

The papers published in the Proceedings express the opinion of the authors, who also are responsible for their content. Reproduction or transmission of full papers is allowed only with written permission of the Publisher. Short parts may be reproduced only with proper quotation of the source.
Proceedings of the
5th International Conference on Road and Rail Infrastructures – CETRA 2018
17–19 May 2018, Zadar, Croatia

Road and Rail Infrastructure V

EDITOR
Stjepan Lakušić
Department of Transportation
Faculty of Civil Engineering
University of Zagreb
Zagreb, Croatia
5th International Conference on Road and Rail Infrastructure
17–19 May 2018, Zadar, Croatia

ORGANISATION

CHAIRMEN

Prof. Stjepan Lakušić, University of Zagreb, Faculty of Civil Engineering
Prof. emer. Željko Korlaet, University of Zagreb, Faculty of Civil Engineering

ORGANIZING COMMITTEE

Prof. Stjepan Lakušić
Prof. emer. Željko Korlaet
Prof. Vesna Dragčević
Prof. Tatjana Rukavina
Assist. Prof. Ivica Stančerić
Assist. Prof. Maja Ahac
Assist. Prof. Saša Ahac
Assist. Prof. Ivo Haladin
Assist. Prof. Josipa Domitrović
Tamara Džambas
Viktorija Grgić
Šime Bezina
Katarina Vranešić
Željko Stepan

INTERNATIONAL ACADEMIC SCIENTIFIC COMMITTEE

Stjepan Lakušić, University of Zagreb, president
Borna Abramović, University of Zagreb
Maja Ahac, University of Zagreb
Saša Ahac, University of Zagreb
Darko Babić, University of Zagreb
Danijela Barić, University of Zagreb
Davor Brčić, University of Zagreb
Domagoj Damjanović, University of Zagreb
Sanja Dimter, J. J. Strossmayer University of Osijek
Alesksandra Deluka Tibijaš, University of Rijeka
Josipa Domitrović, University of Zagreb
Vesna Dragačević, University of Zagreb
Rudolf Eger, RheinMain Univ. of App. Sciences, Wiesbaden
Adelino Ferreira, University of Coimbra
Makoto Fujii, Kanazawa University
Laszlo Gaspar, Széchenyi István University in Győr
Kenneth Gavin, Delft University of Technology
Nenad Gucunski, Rutgers University
Ivo Haladin, University of Zagreb
Staša Jovanović, University of Novi Sad
Lajos Kisgyörgy, Budapest Univ. of Tech. and Economics

Anastasia Konon, St. Petersburg State Transport Univ.
Željko Korlaet, University of Zagreb
Meho Saša Kovačević, University of Zagreb
Zoran Krakutovski, Ss. Cyril and Methodius Univ. in Skopje
Dirk Lauwers, Ghent University
Janusz Madejski, Silesian University of Technology
Goran Mladenović, University of Belgrade
Tomislav Josip Mlinarić, University of Zagreb
Nencho Nenov, University of Transport in Sofia
Mladen Nikšić, University of Zagreb
Andrei Petraev, St. Petersburg State Transport University
Otto Plašek, Brno University of Technology
Mauricio Pradena, University of Concepcion
Carmen Racanel, Tech. Univ. of Civil Eng. Bucharest
Tatjana Rukavina, University of Zagreb
Andreas Schoebel, Vienna University of Technology
Ivica Stančerić, University of Zagreb
Adam Szeląg, Warsaw University of Technology
Marjan Tušar, National Institute of Chemistry, Ljubljana
Audrius Vaitkus, Vilnius Gediminas Technical University
Andrei Zaitsev, Russian University of transport, Moscow
APPLICATION OF KRONECKER ALGEBRA
FOR RAILWAY LINE ZAGREB — RIJEKA

Andreas Schöbel¹, Hans Blieberger², Christian Schöbel¹
¹ OpenTrack Railway Technology GmbH, Austria
² Vienna Univ. of Technology, Institute of Comp. Engineering, Automation Systems Group, Austria

Abstract

Within the Shift2Rail-Project “GoSafeRail” so called Kronecker Algebra is applied on the railway line from Zagreb to Rijeka for traffic flow optimisation. Kronecker Algebra consists out of Kronecker Product and Kronecker Sum to describe concurrency of tasks as well as their interleavings. The railway line from Zagreb to Rijeka has been successfully modelled by software tool called OpenTrack. In this project data from OpenTrack model is converted into input for Kronecker Algebra to manage rail capacity in an efficient manner. To model the infrastructure so called IVT format is used to export an itinerary covering the main track. The entire line from Zagreb to Rijeka is modelled by 250 edges. The timetable is exported in OpenTrack text format and used to create train run files for the 225 daily running trains. Train dynamics are also considered by tractive effort diagram and braking force diagram.

Keywords: Railway Operation, Kronecker Algebra, Rail Traffic Flow

1 Introduction

Rail infrastructure managers are responsible for safety measures and planning within the infrastructure network. Although the railway transport mode is considered one of the safest modes of transport there is a number of infrastructure failures that have happened in recent years. Unfortunately, the number is expected to rise in the future, mainly due to ageing railway network and stronger climate changes. Consequently, the objective of the Shift2Rail project Global SAFEty Management Framework for RAIL Operations (Go SAFE Rail project) is development of an evolutionary Decision Support Tool with the main goal of offering safer, reliable and efficient rail infrastructure [1]. Application of microscopic simulation of railway operations based upon a physical and mathematical model of the railway system is the state of the art in railway traffic operations. Normally, such tools output indicators for the operational performance, like for example, delays or energy consumption. Up to now, optimization was typically predefined by the user of the tool, introduced into the simulation and ‘tested’ for its applicability during the simulation. This led to missed opportunities for finding an optimal solution, which led to the simulation programs not being able to solve dispatching questions or handle headway conflicts. Simulation tools have, however, one shortcoming; namely, the inability to optimize train runs automatically. To close this gap within railway operations with increased traffic, algorithms which consider all train runs at the same time have been developed and applied. Using Kronecker algebra, microscopic simulation tool will both improve traffic flow and assess the impact of maintenance and renewal proposals, as part of support for decision making of the infrastructure manager. The algorithm for calculating the optimal driving strategy and optimizing the overall railway system is based on the PhD-thesis “Energy-efficient Optimization of Railway Operation. An Algorithm Based on Kronecker Algebra” by
Volcic [2]. Moreover, with OpenTrack micro-simulation modelling tool, traffic model will be developed that will use multi-criteria optimization algorithms to address complex requirements, for both passenger and freight transport. Using Kronecker algebra [3] which showed good results in dealing with optimization scenarios in railway traffic flow, especially avoidance of bottlenecks and conflicts, simulation of actual network performance on the line between Zagreb and Rijeka in Croatia will be performed. The input data used for the traffic flow optimization tool is defined by two components: first, the current characteristics of the rail system will be supplied, the set of infrastructure, rolling stock and timetable characteristics, which represent the base for future calculations. Secondly, infrastructure manager’s identification and assessment of restricted availability of infrastructure assets. Those two components will be merged using simulation tool OpenTrack [4] for the visualization of all existing data, and further processed into the concrete syntax for the input files needed by the optimization tool.

2 Transformation of an OpenTrack Project into Kronecker Algebra

Starting from an OpenTrack model of a railway line two files are generated and exported by existing filters. Based upon an itinerary covering the main track from first to last station of an OpenTrack model a text file in IVT format is generated. The structure of an ivt file is always the same and contains the information listed in table 1. The four speed limits have their origin in the Swiss regulation for track speed limits for passenger, cargo (two braking settings) and tilting trains. This file in IVT format is used to create the so called tracks.csv file for Kronecker Algebra. The content of tracks.csv is described in table 2. Here, the macroscopic structure of a railway line is defined. In addition, there is a micro tracks file to describe the microscopic structure including gradients and speed limits. This input is required for the calculation of running times later on. The timetable is exported as a text file in OpenTrack format (table 3). Based upon this information about the timetable of all trains running in a project for each train a text file trainID.csv is generated as input for Kronecker (table 4). Additionally, train movements are calculated in accordance with their tractive-effort and braking characteristics.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Structure of IVT format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Content</td>
</tr>
<tr>
<td>1</td>
<td>Position</td>
</tr>
<tr>
<td>2</td>
<td>Vertex Name Up</td>
</tr>
<tr>
<td>3</td>
<td>Vertex Name Down</td>
</tr>
<tr>
<td>4</td>
<td>Vertex km Up</td>
</tr>
<tr>
<td>5</td>
<td>Vertex km Down</td>
</tr>
<tr>
<td>6</td>
<td>Speed Up 1</td>
</tr>
<tr>
<td>7</td>
<td>Speed Up 2</td>
</tr>
<tr>
<td>8</td>
<td>Speed Up 3</td>
</tr>
<tr>
<td>9</td>
<td>Speed Up 4</td>
</tr>
<tr>
<td>10</td>
<td>Speed Down 1</td>
</tr>
<tr>
<td>11</td>
<td>Speed Down 2</td>
</tr>
<tr>
<td>12</td>
<td>Speed Down 3</td>
</tr>
<tr>
<td>13</td>
<td>Speed Down 4</td>
</tr>
<tr>
<td>14</td>
<td>Gradient</td>
</tr>
<tr>
<td>15</td>
<td>Radius</td>
</tr>
<tr>
<td>16</td>
<td>Tunnel Type</td>
</tr>
<tr>
<td>17</td>
<td>Signal Up</td>
</tr>
<tr>
<td>18</td>
<td>Signal Down</td>
</tr>
<tr>
<td>19</td>
<td>Station Name</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Structure of tracks.csv for Kronecker Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Content</td>
</tr>
<tr>
<td>1</td>
<td>Edge ID</td>
</tr>
<tr>
<td>2</td>
<td>Initial Condition for Semaphore</td>
</tr>
<tr>
<td>3</td>
<td>Maximum Semaphore</td>
</tr>
<tr>
<td>4</td>
<td>Start</td>
</tr>
<tr>
<td>5</td>
<td>End</td>
</tr>
<tr>
<td>6</td>
<td>Sight Position for Start</td>
</tr>
<tr>
<td>7</td>
<td>Release Position for End</td>
</tr>
<tr>
<td>8</td>
<td>Sight Position for End</td>
</tr>
<tr>
<td>9</td>
<td>Release Position for Start</td>
</tr>
</tbody>
</table>
3 Use Case of Zagreb – Rijeka Line

The original infrastructure topology of Zagreb – Rijeka Line has been divided on 10 documents in OpenTrack. As an example for this type of documents the infrastructure topology between Fuzine and Meja is shown in figure 1. After compression of the entire railway line from Zagreb to Rijeka only 250 edges have to be considered for the Kronecker Algebra in the tracks.csv file. This compression can be visualized by reimporting this compressed tracks.csv file in OpenTrack (figure 2). Additionally, figure 3 shows all passenger trains running on Zagreb – Rijeka line which are used for testing the performance of Kronecker Algebra in an early stage.

![Infrastructure Topology between Fuzine and Meja](image-url)
In conclusion, development of rail traffic flow optimization tool enables infrastructure managers to plan their decisions in a more efficient manner. Optimal solutions will ensure high level of efficient use of, very often scarce, resources and optimal process flow. Kronecker Algebra enables one to set clear priorities based on reliable date and ensure punctuality, and even more important, energy consumption for traction.

Acknowledgment

GoSafeRail project has received funding from European Union’s Shift2Rail research and innovation programme under grant agreement No 730817.

References


