Although all care was taken to ensure the integrity and quality of the publication and the information herein, no responsibility is assumed by the publisher, the editor and authors for any damages to property or persons as a result of operation or use of this publication or use the information's, instructions or ideas contained in the material herein.

The papers published in the Proceedings express the opinion of the authors, who also are responsible for their content. Reproduction or transmission of full papers is allowed only with written permission of the Publisher. Short parts may be reproduced only with proper quotation of the source.
CETRA 2016
4th International Conference on Road and Rail Infrastructure
23–25 May 2016, Šibenik, Croatia

ORGANISATION

CHAIRMEN

Prof. Stjepan Lakušić, University of Zagreb, Faculty of Civil Engineering
Prof. emer. Željko Korlaet, University of Zagreb, Faculty of Civil Engineering

ORGANIZING COMMITTEE

Prof. Stjepan Lakušić
Prof. emer. Željko Korlaet
Prof. Vesna Dragčević
Prof. Tatjana Rukavina
Assist. Prof. Ivica Stančerić
Assist. Prof. Saša Ahac

Assist. Prof. Maja Ahac
Ivo Haladin, PhD
Josipa Domitrović, PhD
Tamara Džambas
Viktorija Grgić
Šime Bezina

All members of CETRA 2016
Conference Organizing Committee
are professors and assistants
of the Department of Transportation,
Faculty of Civil Engineering
at University of Zagreb.

INTERNATIONAL ACADEMIC SCIENTIFIC COMMITTEE

Davor Brčić, University of Zagreb
Dražen Cvitanić, University of Split
Sanja Dimter, Josip Juraj Strossmayer University of Osijek
Aleksandra Deluka Tibliš, University of Rijeka
Vesna Dragčević, University of Zagreb
Rudolf Eger, RheinMain University
Makoto Fujiu, Kanazawa University
Laszlo Gaspar, Institute for Transport Sciences (KTI)
Kenneth Gavin, University College Dublin
Nenad Gucunski, Rutgers University
Líbor Izvólt, University of Zilina
Lajos Kissgyörgy, Budapest University of Technology and Economics
Stasa Jovanović, University of Novi Sad
Željko Korlaet, University of Zagreb
Meho Saša Kovačević, University of Zagreb
Zoran Krakutovski, Ss. Cyril and Methodius University in Skopje
Stjepan Lakušić, University of Zagreb
Dirk Lauwers, Ghent University
Dragana Macura, University of Belgrade
Janusz Madejski, Silesian University of Technology
Goran Mladenović, University of Belgrade
Tomislav Josip Milanarić, University of Zagreb
Nencho Nenov, University of Transport in Sofia
Mladen Nikšić, University of Zagreb
Dunja Perić, Kansas State University
Otto Plašek, Brno University of Technology
Carmen Racanel, Technological University of Civil Engineering Bucharest
Tatjana Rukavina, University of Zagreb
Andreas Schoebel, Vienna University of Technology
Adam Szelag, Warsaw University of Technology
Francesca La Torre, University of Florence
Audrius Vaitkus, Vilnius Gediminas Technical University
EFFECT OF TYPE OF MODIFIED BITUMEN ON SELECTED PROPERTIES OF STONE MASTIC ASPHALT MIXTURES

Marta Wasilewska¹, Krzysztof Blazejowski², Przemyslaw Pecak³
¹ Bialystok University of Technology, Poland
² Orlen Asfalt Sp. z o. o, Poland
³ TPA Sp. z.o.o., Poland

Abstract

Wearing course is the layer directly in contact with traffic loads and weather conditions. It should be resistant to water and frost, plastic deformations and meet the required threshold of skid resistance. SMA (Stone Mastic Asphalt) is one of the most popular mixture intended for wearing courses of road pavement for very heavy traffic loads. Therefore it contains materials of superior quality. This paper presents the experimental results of selected properties of SMA11 with two typical modified binders (ORBITON PMB 45/80-55, ORBITON PMB 45/80-65) and newly developed highly modified binder (ORBITON PMB 45/80-80 HiMA). These modified bitumens have similar penetration range but they differ in the type of polymer and its contents. Therefore that significantly affects on the differences in standard and functional parameters such as elastic recovery, force ductility etc. The primary purpose of highly-modified binders (HiMA type) is to counteract pavement cracking, plastic deformations and consequently to increase the life span of asphalt courses. It should be noted that tested SMA mixtures had the same aggregate particle-size distribution of mineral mixtures. The study of SMA aimed at determination of the water sensitivity expressed in ITSR (Indirect Tensile Strength Ratio) according to the standard 12697-12 (method A) and rutting resistance according to standard EN 12697-22 in the small apparatus (method B). Comparison of the results of those tests showed some differences between binders and mixtures. Specific situation was observed with rutting resistance where strong SMA skeleton decreased influence of binder type. In addition, evaluation of the skid resistance mixtures of the tested SMA were carried out using the Wehner/Schulze machine. Results may be valuable information for proper maintenance of existing pavements and on the stage of designing.

Keywords: Highly Modified Asphalt, Stone Mastic Asphalt, Polymer Modified Bitumen, wearing course, Wehner/Schulze machine

1 Introduction

SMA (Stone Mastic Asphalt) is widely used mixture intended for wearing courses of road pavement for very heavy traffic loads in Poland. The primary advantage of wearing course made of SMA is to ensure very good resistant to water and frost, better rutting resistance than conventional dense-graded asphalt mixtures [1]. This is possible because the SMA is gap-graded asphalt mixture which is characterized by a strong skeleton due to the high content of superior quality coarse aggregate in the mineral mixture (from 70 to 80%). Additionally, the amount of coarse aggregate allows to achieve high macrotexture. Due to that fact wearing course made of SMA mixture has better skid resistance at high speeds than asphalt concrete mixture [2]. However skid resistance depends on both macrotexture and microtexture. Due to the low
amount of fine aggregates used, microtexture of SMA mixtures is almost completely related to resistance to polishing of coarse aggregates [3]. Therefore aggregates with PSV (Polished Stone Values) above 50 should be used for SMA mixtures in order to meet the required level of skid resistance.

However durability of wearing course made from SMA mixtures is especially related to the type of binder. In weather conditions characterized by very frequent cycles of freezing and thawing only modified bitumen should be applied for SMA mixtures. It allows to achieve higher durability than with paving grade bitumens (unmodified).

Studies have shown that the increasing content of the polymer in asphalt significantly improves durability of road pavement [4-7]. However such a significant quantity of SBS for binder modification must consider its specific technical consequences for the production and application of modified binder. Research conducted in the United States have led to the development of highly modified binder. The primary purpose was to counteract pavement cracking, plastic deformations and consequently to increase the fatigue resistance of asphalt courses. To achieve that, high polymer content in excess of 7% (by weight) is used, which leads to volumetric phase reversal in the mixture of binder with the polymer. Then continuous polymer network works in asphalt mixtures like an elastic reinforcement which limits crack propagation, low-temperature cracking and improving rutting resistance [8, 9].

This paper presents the comparison of selected properties of SMA 11 mixtures with two typical modified bitumens and highly modified binder.

2 Research program

2.1 Polymer modified bitumen

In this study two conventionally SBS modified binders (ORBITON PMB 45/80-55, ORBITON PMB 45/80-65) and newly developed highly modified binder (ORBITON PMB 45/80-80 HiMA) were used. All PMBs are produced according to EN 14023 and Polish National Annexe to this standard. These modified bitumens have similar penetration range (45-80 [0.1 mm]) but they differ in the type of polymer and its content. Therefore it significantly affects the differences in Softening Point R&B and other parameters such as elastic recovery and force ductility. Table 1 shows properties of the tested modified bitumen.

<table>
<thead>
<tr>
<th>Property</th>
<th>Test method</th>
<th>ORBITON PMB 45/80-55</th>
<th>ORBITON PMB 45/80-65</th>
<th>ORBITON PMB 45/80-80 HiMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penetration at 25 °C [0.1 mm]</td>
<td>EN 1426</td>
<td>65</td>
<td>57</td>
<td>63</td>
</tr>
<tr>
<td>Softening point R&B [°C]</td>
<td>EN 1427</td>
<td>55.8</td>
<td>80</td>
<td>94.5</td>
</tr>
<tr>
<td>Breaking point (Fraass) [°C]</td>
<td>EN 12593</td>
<td>not tested</td>
<td>not tested</td>
<td>-23</td>
</tr>
<tr>
<td>Elastic recovery at 25°C [%]</td>
<td>EN 13398</td>
<td>74</td>
<td>87</td>
<td>94</td>
</tr>
<tr>
<td>Force ductility at 10°C [J/cm²]</td>
<td>EN 13589</td>
<td>not tested</td>
<td>not tested</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>EN 13703</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2 SMA11 mixtures

Tested SMA11 mixtures with three types of modified bitumen (ORBITON PMB 45/80-55, ORBITON PMB 45/80-65, ORBITON PMB 45/80-80 HiMA) were designed according to EN 13108-5
and Polish National Specification WT-2: 2014. Fine and coarse aggregates produced from melaphyre rock were used. PSV (Polished Stone Value) of coarse aggregate was 52. Each of SMA11 mixtures was designed with the same binder content – 6.6 % (by weight) and aggregate particle-size distribution in mineral mixtures (Table 2). Volumetric parameters of SMA11 mixtures are presented in Table 3.

Table 2 Aggregate particle-size distribution

<table>
<thead>
<tr>
<th>Particle size distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve [mm] 0.063 0.125 2 4 5.6 8 11.2 16</td>
</tr>
<tr>
<td>Passing fraction [%] 10.6 13 25 33 40 61 96 100</td>
</tr>
</tbody>
</table>

Table 3 Volumetric parameters of SMA 11 mixtures

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Test method</th>
<th>SMA 11 PMB 45/80-55</th>
<th>SMA 11 PMB 45/80-65</th>
<th>SMA 11 PMB 45/80-80 HIMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density ρ_{mv} [Mg/m3]</td>
<td>EN 12697-5</td>
<td>2.417</td>
<td>2.419</td>
<td>2.410</td>
</tr>
<tr>
<td>Bulk density ρ_{bsd} [Mg/m3]</td>
<td>EN 12697-6</td>
<td>2.361</td>
<td>2.347</td>
<td>2.340</td>
</tr>
<tr>
<td>Air voids V_m [%]</td>
<td>EN 12697-8</td>
<td>2.3</td>
<td>3.0</td>
<td>2.9</td>
</tr>
<tr>
<td>Voids filled with Binder VFB [%]</td>
<td>EN 12697-8</td>
<td>86.5</td>
<td>83.2</td>
<td>83.6</td>
</tr>
<tr>
<td>Voids in mineral aggregate VMA [%]</td>
<td>EN 12697-8</td>
<td>17.2</td>
<td>17.8</td>
<td>17.7</td>
</tr>
</tbody>
</table>

2.3 Experimental procedure

2.3.1 Water sensitivity test
Water sensitivity test of SMA11 mixtures was carried out according to EN 12697-12 (method A) and Polish National Specification WT-2:2014. Ten specimens for each mixture were divided into two parts: “dry set” and “wet set”. Specimens from “dry set” were conditioned at temperature 20±5°C. Specimens from “wet set” were saturated with distilled water under vacuum (6.7±0.3 kPa, 30 minutes) and left in water for 30 minutes under atmospheric pressure. Then specimens were conditioned in water at temperature 40°C for 72 hours. In next step plastic-foiled specimens were freeze in -18°C for 16 hours, than they were put in water at temperature 25°C for 24 hours. Finally the ITS (Indirect Tensile Strength) test in accordance with EN 12697-23 on both sets of specimens has been conducted. The ITSR values was calculated according to Eq (1).

$$\text{ITSR} = \frac{\text{ITSw}}{\text{ITSD}} \cdot 100\%$$ \hspace{1cm} (1)

where:

\begin{itemize}
 \item ITSD – mean values of ITS for specimens from “dry set” [kPa];
 \item ITSw – mean values of ITS for specimens from “wet set” [kPa].
\end{itemize}

2.3.2 Rutting test
Rutting resistance of SMA mixtures was conducted according to EN 12697-22 in small apparatus (method B), in air. Two specimens from each mixture were prepared. Before testing specimens were conditioned at 60°C for 4 hours. The apparatus consists of the loaded wheel that repeatedly passes over the test specimen. The load of wheel was 700 N, frequency of 26.5±1.0 load cycles per minute. Test was performed at 60°C during the test. Evaluation of resistance to rutting is made on the basis of:
• RD (rut depth) after 10 000 cycles [mm];
• PRD (proportional rut depth) after 10 000 cycles as a percentage of the specimen thickness [%];
• WTS (wheel-tracking slope) [mm/10^3 load cycle].

2.3.3 Skid resistance test
The Wehner/Schulze machine (Fig. 1a) was used for evaluation of the skid resistance in laboratory conditions. The machine consists of two heads: one for polishing and for measurement of friction coefficient PWS. Three specimens from each mixture were made. The polishing action is performed by means of three rubber cones mounted on rotary disc and rolling on the specimen surface (Fig. 1b). The rotation frequency is 500 tours per minute. A mix of water with quartz powder was projected on the specimen surface during the rotations. Measurement of friction coefficient PWS is conducted after polishing and then washing of a specimen. The second measuring head is composed of three small rubber sliders disposed at 120° on a rotary disc (Fig. 1c). The disk rotates at tangential velocities up to 100 kph. Water flows over the surface being tested. The rotating disk is then dropped onto the wet surface and the coefficient of friction is measured. In this study coefficient of friction PWS at slip speed 60kph was taken. Measuring of PWS was conducted before polishing and after 2000, 4000, 6000, 8000, 10 000, 12 000, 14 000, 16 000, 18 000, 20 000, 40 000, 60 000, 80 000, 100 000, 160 000, 180 000 passes of polishing head.
It should be noted that Wehner/Schulze machine enables to compare the skid resistance of different types of mixtures under specified conditions simulating polishing processes. In the case of new asphalt specimens it is recommend to clean bitumen from aggregates by using the grid blasting cabinet. Due to the fact that objective of the study is influence of different types of bitumen on the properties of the mixtures, this operation was not performed.

![Figure 1](image_url)

Figure 1 a) Wehner/Schulze machine; b) polishing rotary head; c) friction measuring rotary head

3 Results and analysis
ITSR results were similar for all mixtures: SMA11 PMB 45/80-55 – 98%, SMA11 PMB 45/80-65 – 95% and SMA11 45/80-80 HiMA – 99%. However the results of the ITS values show some significant differences between particular mixtures which depend on the type of binder. Graphical interpretation of ITS test results is shown in Fig. 2.
The highest value of ITS was obtained for SMA11 PMB 45/80-80 HiMA. Differences between mean values of ITSd and ITSw are insignificant for highly modified binder, about 10% higher than for mixtures with lower SBS content. SMA11 mixtures have comparable resistance to rutting. The results obtained are the following: RD – 1.5 mm; PRD – 3.8%; WTS – 0.03 [mm/10³ load cycle]. This was caused by very strong SMA skeleton based on stone-to-stone contact which decreased influence of the binder type. The changes of the friction coefficient PWS are presented in Fig. 3.

The lowest values of PWS have been registered before polishing process, because aggregate surface was covered with binder layer. During polishing process binder was worn away from the aggregate exposing their virgin microtexture. This takes place in the initial stage of the process. The highest values of PWS were obtained after 8000 passes of polishing head. Then it was followed by the decrease in the value PWS for each mixture. However SMA 11 PMB 45/80-55 and PMB 45/80-65 had higher coefficient of friction PWS than SMA11 with highly modified binder. Images of the surface were taken with the optical microscope at the end of polishing process for better understanding of phenomena occurring on the surface of mixtures. Based on observations it was noticed that the binder covering aggregate was not completely removed from each mixture. However a much larger surface of coarse aggregate was discovered on SMA11 mixtures with typical modified binders than highly modified binder (Fig. 4). This caused lower PWS for SMA11 45/80-80 HiMA in comparison with other test mixtures. Binder layer on the coarse aggregates contributes to the slipperiness during the initial period of pavement life. That is why should be applied gritting from aggregate of nominal size 4 mm.
during compacting of SMA mixture. This treatment accelerates wear of the coarse aggregates from the asphalt and ensures increase of initial skid resistance [1]. Obtained results show that the use of highly modified bitumen could lead to extend the time needed to expose aggregate surface.

Figure 4 Comparison surfaces of SMA11 a) PMB 45/80-80 HiMa b) PMB 45/80-65 c) PMB 45/80-55

4 Conclusions

The type of modified binder plays important role in durability of road pavements. Highly modified binder which has been used in Poland since 2015 may improve fatigue life, rutting resistance and low-thermal cracking resistance. Therefore this type of modified bitumen should be use to SMA mixture which is intended for wearing course for very heavy traffic load. However control of skid resistance properties should monitored in the initial period of pavement life.

References