1. INTRODUCTION

- Transport on rails is the frequent main transportation means of the public transport.
- Construction of underground structures in the narrow city centres, such as pedestrian underpasses, underground garages, etc., often require stopping of the public transport, both of the road and rail traffic.
- Finding out some solutions to prevent stopping of the public traffic during construction works is always welcome.
- In such cases, provisional bridges are frequently used, which enables undisturbed progress, both of the traffic and of the construction works.
- During the construction of the pedestrian underpass at Kvaternik Square (Zagreb) provisional tram bridge was used for the first time.

2. PROVISIONAL TRAM BRIDGE

Description of structure

- The span of provisional bridge is 9.35 m, and the total length 11.0 m.
- The structure was made of steel girders and the supports are founded on pilots (length: 8.0 m, diameter: 30 cm).
- The main girders are HEB 400 profiles at the distance of 2.7 m, while cross girders are HEB 220 profiles at the distance of 85 cm.
- The main girder is supported on four steel bearings, two movable on both sides, one immovable, and one movable on one side only.

Measurements and results

- Deflections were measured by LVDT sensors at main and cross girders of the structure at 6 measuring points (MP 11 – MP 16).
- Strain was measured at 10 MP using LVDT sensors (gauge length of 200 mm).
- Numerical analysis of the structure was conducted by SOFISTIC programme.
- The bridge was excited by tram type TMK 101 (load per axis 112 kN). Static and dynamic testings (V = 20 km/h) were performed.

3. CONCLUSIONS

- Maximal experimental values of deflections and strains of the structure are within the expected limits and show very good correspondence with the theoretical values.
- There are no significant remaining deflections and strains after unloading of the structure.
- The experimental dynamic response of the structure is expected and realistic, and basic dynamic parameters are in accordance with the theoretical values.

Contact address: Stjepan Lakušić, Ph.D., Kalidova 26, 10000 Zagreb, HR-Croatia; e-mail: laki@grad.hr