Vlastite funkcije i vlastite vrijednosti

Valna jednadžba #math1324#

#tex2html_wrap_indisplay32398#

opisuje oscilacije žice, longitudinalne oscilacije štapa i torzijske oscilacije štapa. Pretpostavimo da ne djeluje vanjska sila, #math1325##tex2html_wrap_inline32400# da su #tex2html_wrap_inline32402# i #tex2html_wrap_inline32404# konstante, i neka su zadani homogeni rubni uvjeti.

#math1326#
#displaymath32406# (2.17)

gdje je #math1327##tex2html_wrap_inline32408# Budući da su oscilacije u pravilu periodična gibanja u odnosu na vrijeme, potražimo rješenja ovog rubnog problema u obliku #math1328#

#tex2html_wrap_indisplay32410#;SPMnbsp; ;SPMnbsp;<#1#>ili<#1#>#tex2html_wrap_indisplay32411#

Imamo #math1329#

#tex2html_wrap_indisplay32413#

dok je #math1330#

#tex2html_wrap_indisplay32415#

Uvrstimo u jednadžbu #math1331#

#tex2html_wrap_indisplay32417#

i ako uzmemo u obzir rubne uvjete #math1332#

#tex2html_wrap_indisplay32419#

dobivamo sljedeći rubni problem za običnu diferencijalnu jednadžbu #math1333#

#tex2html_wrap_indisplay32421#

#math1334#
#displaymath32423# (2.18)

gdje je #math1335##tex2html_wrap_inline32425# Ovo je obična linearna homogena diferencijalna jednadžba 2. reda. Njezina karakteristična jednadžba je #math1336#

#tex2html_wrap_indisplay32427#

pa je opće rješenje #math1337#

#tex2html_wrap_indisplay32429#

odakle, pomoću Eulerove formule #math1338#

#tex2html_wrap_indisplay32431#

dobivamo opće rješenje #math1339#

#tex2html_wrap_indisplay32433#

Iz #tex2html_wrap_inline32435# slijedi #tex2html_wrap_inline32437# pa je #math1340#

#tex2html_wrap_indisplay32439#

Iz #tex2html_wrap_inline32441# slijedi #math1341#

#tex2html_wrap_indisplay32443#

Dakle imamo zapravo diskretan skup vrijednosti za #tex2html_wrap_inline32445# #math1342#

#tex2html_wrap_indisplay32447#

Za #tex2html_wrap_inline32449# dobivamo trivijalno rješenje (nulfunkciju), a negativni #tex2html_wrap_inline32451#-ovi ne daju ništa novo, jer je sinus neparna funkcija. Tako imamo #math1343#

#tex2html_wrap_indisplay32453#

Brojevi #math1344##tex2html_wrap_inline32455# se zovu vlastite vrijednosti, a pripadne funkcije #math1345#

#tex2html_wrap_indisplay32457#

se zovu vlastite funkcije rubnog problema (#eq:rbprob#4779>). Tako rješenja problema (#eq:val:rub#4780>) imaju oblik #math1346#

#tex2html_wrap_indisplay32459#;SPMnbsp; ;SPMnbsp;<#1#>ili<#1#>#tex2html_wrap_indisplay32460#

Primjer 2.10   Naći vlastite vrijednosti i vlastite funkcije rubnog problema #math1347#

#displaymath32463#

Rješenje. Kao u (#eq:rbprob#4785>) opće rješenje jednadžbe je #math1348#

#tex2html_wrap_indisplay32465#

Iz #tex2html_wrap_inline32467# slijedi #tex2html_wrap_inline32469# pa je #math1349#

#tex2html_wrap_indisplay32471#

Iz #math1350##tex2html_wrap_inline32473# slijedi #math1351#

#tex2html_wrap_indisplay32475#

Odatle #math1352#

#tex2html_wrap_indisplay32477#

pa je #math1353#

#tex2html_wrap_indisplay32479#

Tako su vlastite vrijednosti #math1354#

#tex2html_wrap_indisplay32481#

Vlastite funkcije su #math1355#

#tex2html_wrap_indisplay32483#

Primjer 2.11   Naći vlastite vrijednosti i vlastite funkcije rubnog problema #math1356#

#displaymath32486#

Rješenje. Opće rješenje jednadžbe je #math1357#

#tex2html_wrap_indisplay32488#

Iz #math1358##tex2html_wrap_inline32490# slijedi #math1359#

#tex2html_wrap_indisplay32492#

Iz #math1360##tex2html_wrap_inline32494# slijedi #math1361#

#tex2html_wrap_indisplay32496#

odnosno

#math1362#
#tex2html_wrap_indisplay32498# (2.19)

To je transcendentna (nije algebarska) jednadžba. Takve se jednadžbe u pravilu ne mogu elementarno rješavati, i gotovo uvijek se moramo zadovoljiti s približnim rješenjem. O približnom rješavanju jednadžbi bit će riječi u trećem poglavlju #sec:jednad#4807>. Ovdje napomenimo samo toliko da za #tex2html_wrap_inline32500# imamo približno

<#32502#>Figure<#32502#>: <#32503#>Rješenja jednadžbe #math1364##tex2html_wrap_inline32505#<#32503#>
#math1363##tex2html_wrap24304#

#math1366#

#tex2html_wrap_indisplay32510#

Tako su približne vlastite funkcije #math1367#

#tex2html_wrap_indisplay32512#

#math1368#

#tex2html_wrap_indisplay32514#

#math1369#

#tex2html_wrap_indisplay32516#

<#32518#>Figure<#32518#> 2.7: <#32519#>Vlastite funkcije<#32519#>
#math1370##tex2html_wrap24308#