FALCON handbook

Elizabeta Samec and Kregimir Fresl

1 Introduction

An open source toolkit FALCON has been developed as a Grasshopper (GH) plugin that allows
users to create, transform, and evaluate the geometry of spatial truss structures in real time. You
can use the tool to find a form of spatial truss structures in tension or compression. This is
done through a computational process that runs in the background and implements the algorithms
developed in author’s PhD research on enhancing the iterative application of force density method.
As seen in Fig. 2 the design tool is a collection of User Object clusters divided into Geometry,
Network, and Visualisation groups. These clusters are available for the user to combine and add
to GhPython components from the Solver group to create a form-finding workflow that matches
the specifics of each example. To help you get started, examples of commonly used components
and features are provided below. You can begin using the tool by following the example described
hereafter. Once you are familiar with the tool, you will find several examples towards the end of
the manual to try out by yourself. Examples as gh. files are provided inside FALCON.zip folder on
FALCON page. There you can also find video tutorials and additional documentation. If you are
new to GH, we recommend that you first browse this manual to understand the main principles.

Form-finding Algorithm for Linear Constrained Optimisation of Networks

e aYa aYa N

Geometry Solver Visualisation
g Ees % ¥ ¥ YW o 2> 2|
N E S x A S x | ¥ ¥ v % S ~ |@°
~ - ~—1t T

N AN AN AN /

Figure 1: FALCON tool — group of components developed for constrained interactive form-finding.

2 Example to get started

2.1 How to create geometry

In order to assign geometry to the form-finding function, a pin-jointed model must be created. The
model is represented by a series of lines in the ground plane (xy) and the supports are represented
by points (see Fig. 4). These points are also initially defined in the ground plane and are referred
to as the initial position of the anchors (initial anchors). To represent the topology, the geometry
can either be modelled with a static Rhino-Geometry or directly and more flexibly scripted with
the GH environment. The most common topologies are defined by components in the Geometry
group, as can be seen in Fig. 2.

http://master.grad.hr/nastava/gs/falcon/falcon-eng.html
https://aae280.files.wordpress.com/2014/10/mode-lab-grasshopper-primer-third-edition.pdf

m Net with edge cables - creates a rectangular net
with edge cables and anchor points in the
corners.

ng Net with fixed edges - creates a rectangular net
and places anchors along each side of the
rectangle.

% Diagonal net — creates a rectangular net with
standard and/or diagonal elements. The net

has edge cables and anchor points in the
T corners.

@ Net with boundary curve - creates a rectangular
net bounded by a given curve. Every nth point
on such a bounding curve can be selected

automatically.

Elements from boundary curve - divides the

m boundary cable into elements according to the
inner elements/cables of the net. Distinguishes

open/closed curves and circular/polygonal
\ Geometry / curves

Figure 2: Geometry group of components.

For starters, choose the component Net with fixed edges, which creates a topology for a square
or rectangular model with fixed edge anchors (no edge elements). As seen in Fig. 3, you can change
the overall size of the model using the slider that goes into the inputs X and Y, and the density
of the subdivision by changing the values Xn and Yn. As output, the component returns the lines
of the model and the list of anchors on each side of the net. As mentioned before, the initial
position of the anchors is needed for further work, so the lists anchors 1-4 can be combined with
the component Merge into one.

Create geometry for a
square/rectangular net.

inital position of
anchors

Figure 3: Defining initial geometry using Net with fived edges component from Geometry group.

It is important to emphasise that the drawn or generated geometry can be defined as a set of
lines without the need to draw each element between the intersection points separately (splitting
the lines). This will be done automatically when we convert our geometry into an interactive
network in the next step.

If one of the topologies is to be used, but the boundary must be defined by a curve or polygon,
component Elements from boundary curve from the Network group can be used to approximate
this boundary by a series of lines corresponding to the intersections with the network geometry
(latter shown in examples on Fig. 23 and 26). If such an example is based on a regular network, the
component Net with boundary curve can also be used, which additionally allows interactive selection
of points on the resulting boundary cable (Fig. 26). Examples of structures whose geometry was
created using the described components can be found in Fig. 4. But, for now, let us return to our
”simple” example.

2.2 How to turn geometry to interactive network

To perform the form-finding, at least one of the supports must be moved from the original xy plane.
The supports are usually moved from their initial position using a combination of components such

Figure 4: Examples of initial geometries that can be easily created with FALCON Geometry
components and corresponding final structures.

as Point Deconstruct - Point Construct (see Figure 5) or by a component Move manipulated by a
vector. Advanced users can define other types of anchor manipulations or project the anchor points
onto the geometry of the supporting substructure. The order of anchors in the initial anchors and
anchors lists must be the same, and new anchors can always be defined by adding the coordinates
in the two lists.

new position of
anchors

Play with anchor's coordinates!

changing Z coordinate

Create geometry for a
square/rectangular net.

Figure 5: Defining new position of anchors.

The interactivity of such a network must be ensured so that changes in the positions of the
anchor points are automatically detected and the geometry is restored according to the topology.
Therefore, the next step of the workflow is to create the network consisting of nodes and elements
defined by intersections of lines. This is done with the help of the component Interactive net,
which generates the network according to the changes in real time, as shown in Fig. 6. In this
way a connection between the user and the tool is established. This component is located under
the Network group, as shown in Fig. 7. The inputs for this component are the outputs of the
geometry generation: lines to specify the topology, initial anchors as the list of initial coordinates
of all anchors, and anchors as the list of coordinates of their new position.

The cluster Interactive met contains two components from the Heteroptera plugin, Network
form lines and Rebuild network. Therefore, Heteroptera must be installed along with FALCON
(see installation details at FALCON page). The network is generated using the Network from
lines component, which returns network elements defined by points on the intersection of lines,
i.e. nodes, along with the connectivity and topology of the nodes. Then, the coordinates of the
initial anchors are replaced with new ones and the network is updated using the component Rebuild

https://www.food4rhino.com/en/app/heteroptera
http://master.grad.hr/nastava/gs/falcon/falcon-eng.html

new position of
anchors

Play with anchor's coordinates!

changing Z coordinate

lines are now
: divided in elements

Create geometry for a
square/rectangular net.

‘ A;n/a rged ‘ .y
inital position of Y.
anchors ﬁ

rebuild elements

lines (cables) " obild nodes
e 5

" : rebuild PT
- inital anchors 3% rebuild CT
- S)
] quasi nodes elements follow
X inital elements movements of anchors
anchors
inital nodes

Interactive net
component!

Figure 6: Creating interactive network from geometry.

network. Interactive net returns to the user the newly created elements, nodes, connectivity and
topology of the nodes, but also the originally generated network (elements and nodes) in the zy
plane. Another output is so-called quasi-points, which is relevant to the part of the workflow
where elements are selected for constraint assignment. These points are generated so that the
initial nodes are not confused with anchors when they are moved and their position may overlap.

4) &

Interactive net - creates a network of

%g elements from cables and keeps it
interactive as the position of the anchor
points changes

rebuild elements
lines (cables) rebuild nodes
rebuild PT
inital anchors 35 rebuild CT
quasi nodes
anchors inital elements
inital nodes

cable
rebuild nodes

quasi nodes / edges
initial nodes

Interactive elements on cable -

/ interactively creates a list of elements on
the selected source cable according to
the changes made to the position of the
anchor points

closed curve

rebuild nodes
quasi nodes £ edges
[cdtssiasiets Interactive element - interactively creates
a list of elements from selected source
elements with changes to the position of

\ Network / anchor points.

Figure 7: Network group of components.

Y

The functionality and use of the other two components from this group will be explained a
little later, but for now to the form-finding!

2.3 How to find a form

For basic form-finding, we use the component FALCON (one step of FDM), the first of the four
components of the subgroup Solver TENSION (see Fig. 8). The other three components are for
constrained form-finding, which we will explain later.

For the FALCON component to work and provide a solution in equilibrium, the following inputs
are minimally required:

o rebuild elements - the list of lines forming the network, output of the Interactive net compo-
nent,

~

Solver
COMPRESSION

Solver
TENSION

(v v v
L e
-

Figure 8: Solver group of components divides to subgroups TENSION and COMPRESSION.

e anchors - the list of support points at the desired positions.

So let us draw “spaghetti” from those outputs and enter the data for the FALCON component.
To activate the FALCON component, right-click on the name and select Enable. If all is well
connected, the component will become dark grey, but you will not see the nice result as in Fig. 9
before using the visualisation components from the next chapter. However, you can see the solution
when you preview the result by right-clicking FALCON again and choosing Preview.

e

P
AR\

y
yyy
/

/
;o
/
/
/

¥
/
/
N\ v, ;/ \
o n\.\.%Nx,\// AN /

A
/// \

NN\
/ N\ \ \
\

AALBA
AAA

Fuau0dwoo
NOJ1v4

"S98Po POXT] 1M 10U I0] MOP{IoM SUIPUY-ULIO] :6 oINS

SU013902.
PUD JA0MIBU JO MDINDAY

/

_ japo2 ay} abueyd pue ass 0} ,
NOOTV4 uo Ijp8jqnoqg 18U |AloeIBU|

NODIV

s

m:,_uc_

iwniiglmba 1 340mzaN

sagou |
4 sweumemu VO

$3pou jsenb.
1 emgn Y sioyue e
14 PIngas

(seR3e3) sauy

-wlio4

ise1eulp1002 soysue yum Aejd

‘J1au Jejnbuejoal/aienbs
e Joj Apwoab aear)

2.4 How to visualise results

After the calculation is performed by calling the form-finding function FDM, the net is drawn
and the values of the forces, lengths and force densities in the elements are given as output.
The Visualisation group of components enables to visualise those outputs. The Force visualisation
component giving the coloured 3D representation of the force values (and the possibility to highlight
the elements with the minimum and maximum force values by a different colour) helps to visually
get information about the behaviour of the structure. Reactions can also be previewed by vector
using Reaction vector or together with their values using Reaction value component. Usage of
all three components is shown in Fig. 11. The values of forces, lengths or force densities can be
displayed using Show values component as shown in Fig. 12. In addition, the colour of the nodes
can be graded by height, which can be very useful when you check the arrangement of the elements
in the plan view after finding the shape (Fig. 13).

™

Force visualisation - visualises force values via

[Q pipe radius and colour in combination with
the Custom Preview component. Determines
minimum and maximum force values and the
corresponding element.

pipe
RGB

f.min
force 4}

f min element

lines

f_max
scale
f_max element

lines
value s
distance

colour

Show values - displays force density, force or

2o
.. length values for each element.
d scale

reactions Reaction vector - displays reaction forces and

reaction line Y27 11-'1’1

colour loads.

points w1 Reaction value - displays values of reaction
colour name @@ forces and loads.

dot size

:. Node display - displays the colour of the
node according to the height. Colour

\ Visualisation / options: blue, red, green, white, black.

Figure 10: Visualisation group of components.

"SUOT}ORSI PUR S$9DI0J JO UOTYBSI[eNSIA 1T oINS

9NJYVA U0I2OV2A4 SMOVYS

10399A V0139024 SMOYS

LT

o>

e
@ vonsess auy uoseas [11) soues)
suonseas -

j9R02 ay) abueyd pue aas 0}

19U 8AloeIBU| ‘Jau Je|nbuejoai/aienbs
e 10j Apwosb aeal)

NOJTV4 uodiv8|gnoqg

|
Buipuiy-wio4

99404 JoWIMIM

\\

.‘v\ =
\ﬁ.“/ \v’“ : jS@leulp100d m.‘_o:w:w yum Aejd

A / 20404 |oWMIXPW
N\ N

</

"STUOWS[® UT 92.10] JO onfea Surde[dsi(] :g1 @IS

haisvap 29404
40 y36ua) 22404 M1-bnjd an)vA sv

j9fj0d ay) abueyd pue aas 0}
NOD1V4 uo ¥d1Psignog 18U 8Aloel8|u| 1au Jejnbuejoal/alenbs
b e 10} Anawoab ayeal)

/]

Buipuy-w.io4

jseleuIpiood soyoue yum Aejd

4no)o?
99)q 40 231yM P24
‘U226 “2n)q 2500y

Uq . jopod ay) abueyd pue aas 0} .
_ NOOTV4 uo }dijd8|qnoq

S 03 SUIPI0dOR INOoJ0d opou Jurdedsi(] :¢T 0In3rq

.1
>
B
n
o
z

Buipuly-w.io4

19U aAndeIBY|

oS

j{S@)1eu1p1009 sJoysue yum Aejd

‘Jau Jejnbuejoal/aienbs
e 10j Anowoab ayeal)

10

2.5 How to change force density

FALCON is developed due to the lack of interactive form-finding tools based on the force den-
sity method, especially ones enabling the assignment of additional constraints. The force density
method is based on the ratio of force and length in the element - force density. Due to its easy-
to-understand fundamental principles, it is an extremely versatile method that, even though it is
developed almost half a century ago, remains unique due to its remarkable ability to start from
poorly defined geometry and still provide satisfactory result since only the topology matters in
equilibrium shape. That is why we believe that this method is still worth revising in the new era
of form-finding.

Since FALCON is not the ”"black box” component, you can open the component by clicking
on its name. You will find the code whose parts are explained in Figs. 14 and 15. As you can
see in Fig. 14 in line 38, all elements are automatically assigned a unit force density. This can be
changed. If we want to assign higher force density values to a particular cable from our example,
we can use the Interactive elements on cable component - one of the two from the Network group
we neglected earlier.

Interactive elements on cable and Interactive element components are intended for the selection
of elements to be constrained. Depending on the used component list of elements is interactively
created based on the selected source cable or from selected source elements according to the changes
made to the position of the anchor points. Therefore, their inputs, except from the cable/elements
we want to select, are outputs of the Interactive net component and that is why they are all-
together put under Network group. The difference between the two components is the possibility
to select all elements on a given cable drawn or generated at the beginning of the workflow, or
to select the individual elements created by the component Interactive net (initial elements) or
selected from Rhino.

To select a cable to put in the Interactive elements on cable component, just take a List item
component, insert lines output from the Net with fized edges component and select a line with
a slider. If the remaining inputs are connected from the Interactive net component (leave closed
curve untouched for now), you can get the elements on cable that can interactively change if the
anchors move. These elements need to be hand over to the boundary input in FALCON (the name
is explained a bit latter, feel free to change it, just do not forget to do the same in the code (line
50)). A slider should be connected to g_bnd so that in line 50 (Fig. 14) these elements get assigned
the new values of the force densities. If one of the concave cables is selected, as in picture, by
increasing the value of ¢g_bnd the structure will be elevated from increased tension in that cable -
higher force density higher force.

#path to form functio
/ fdm_net=Proxy('FALCO
/ #op
/ °
#de
ro

creation of network database using list of
elements generated by Interactive net component

)

ut of lines defined in GH or drawn in Rhino
es(rebuild_elements)
values for external
loads at nodes set as
o.0

nd edges

load, etc.
: False,'is_loaded': False, 'px': ©.8, 'py': 0.0, 'pz': 0.0})

inital update of
attributes to
nodes and edges

ts (defi dge attributes like force, lengtl
force density is set as 1.0 for all elements

update_network_vertex_attributes(net, anchors, 'is_anchor', [True])

updating points that
are anchors

Form-finding

ate_network_vertex_attributes(net, load_point,

ed', [True]) updating
attributes to

nodes and edges
according to

#update network edge attribute defined above wi e valu
update_network_edge_attributes(net, boundary, 'q’, q_bnd)

edges = list(net.edges())

= Farguments Tor Torm TAnGing runction assigned values
Doubleclick on FALCON ki = net.key_index() for form-
to see and change the code! vertices = net.nodes_attributes('xyz') finding

fixed = list(net.nodes_where(
q = net.edges_attribute('q

\ loads = net.nodes_attributes(('px', 'py’, 'pz'))
<

Figure 14: Code inside FALCON component - part 1.

If the network has edge cables instead of fixed support points, boundary elements are often
defined with a higher value of force density. That is why a specific input named boundary was
created for those elements, and the corresponding input on force density value g_bnd. Take a look
at the additional example in Fig. 24. The workflow is very similar to one in our example, except
that the component Net with edge cables is used to create the geometry. This component has as

11

#arguments for form finding function

ki = net.key_index()

defmmg lists of vertices = net.nodes_attributes('xyz')
argumer\ts f?r edges = list(net.edges())
. pe /S g fixed = list(net.nodes_where({'is_anchor': True}))
form-finding function q = net.edges_attribute('q’)
loads = net.nodes_attributes(('px', 'py', 'pz'))

calling form-
xyz, £, 1, r= fdm_net.FON(vertices, edges, fixed, a, loads) finding function

#update node attributes after form finding
for key, attr in net.nodes(True):

attr['x'] = xyzl[keyl[0] } updating nodal coordinates

attr['y'] = xyz[keyl[1] ..
Sttrle] = xyzikevl(2] after form-finding

attr(’
atte(’

Form-finding el
visualise balanced net and reactions

points, lines = draw_network (net) drawing lines between new
reactions = draw_reactions(net) position OF nodes and dmwing

force = f .
length = 1 reactions

density = a) peturning lists of forces,
lengths and force
density values

= rikeyl(e]
= rikeylil] updating reactions
2'] = rikey](2)

rebuild_elements

anchors
load_point
Pz
boundary
q.bad

Doubleclick on FALCON
to see and change the code!

Figure 15: Code inside FALCON component - part 2.

output all four boundary cables. When we want to tens them, we can select the elements on these
cables by plugging each of the lines (boundary 1-4) into the cable input of the Interactive elements
on cable component. If we want to do it all at once, we can set them all as input (use Shift to plug
in more ”spaghetti”). One more example with tightening of boundary cables is given in Fig. 25.

In addition to the mandatory inputs, the component also has inputs for the points to be loaded
named load_point and the value of the load in the vertical direction pz. Other load directions can
be added as inputs by zooming in on the input part of the component and adding input using
plus sign that appears (on right click set type as list). There is already prepared part of the
code to take in to account those inputs in lines 44 and 45 in Fig. 14, it just needs to be enabled.
As seen in Fig. 17, from the list rebuild nodes (output of Interactive net component) using List
item component one can select any node to put load one. To make assigning easier, index can be
previewed using combination of components List length and Series. Plugging length of the rebuild
nodes list in to C input of Series component will create indexes that can be seen as text if they
are placed on the location of the nodes coordinates using Text Tag component. The dot can be
created to visually follow the node selection (all shown on Fig. 17).

12

"9[qed PIYORTes UL anfes £}ISUSP 9010§ SUISLaIOU] 9T 2INSJI]

42pl)s buisn 2)quo abuvyo

i2)qVo M1 Ayisvap -3|qEd UIBIBD UO SJUBWOS 105

99404 J0 an)oA yum hv)d

‘suonoeas pue yJomau Bunjnsal asijensip Duipuly-wio4

13

*suonoeal pue iomyau Buninsal asijensip

"9IMNJONIIS 1) JO SOPOU S} Ul PAUSISSe o ULD PO [RUINXF LT 9InSI]

jopoo ay) sbueyd pue 9ss 0} |
NODTV4 uo pIv8|gnog

7 Buipuiy-wio4
g
4
7 jenjea peoj yum £e)
B [S—
5
.
*xapul uiod
Buipeo] maineld ipeoj o} juem noA sjurodpuiod pui4
sapou

40 saxapul ay3 malrad

puv 20p 243 YUM
aulod pa3o9)es daow

"JUBWIP|INGS. YJOMIBU BAIJORISIU|

T o,

{S8leuIpi00d s Joydue yum Aejd

*sa|qed abpa yum jau
Jejnbuejoal e 1oy Anawoab sjeald

o5 .

14

2.6 How to add constraints

The procedure for assigning constraints is similar to that for force density. For the selection of
elements to be constrained, we use the same two components from the group Network - Interactive
elements on cable and Interactive element. While the selection of the elements on the cable, which
we will now use again, has already been explained in the previous section, you can see the use of
the other component in Fig. 23.

After selecting the elements, one of the three remaining components from the TENSION group
in Fig. 8 can be used for form-finding, depending on the required speed and accuracy. The compo-
nent FALCON _inexact contains the optimised algorithm developed as part of a doctoral thesis by
the author. The other two components, FALCON _multistep and FALCON _tolernace, also apply
FDM iteratively until either a specified number of steps or force/length tolerances are satisfied.
These components are slower than _inexact, but for smaller networks or networks with fewer con-
straints, they are fast enough to perform interactive form-finding and fewer parameters need to be
defined.

The parts of the code that allow constraint assignment are highlighted in Figs. 18 and 19,
the rest of the code is the same as in the component FALCON except for the called form-finding
function.

£dm_net=Proxy('FALCON')
net = from_lines(rebuild_elements)

#define network out of imported list of nodes and edges
#net=Network. from_nodes_and_edges(nodes, edges)

-
Constrained sderine vertex stributes like anchor, external load, etc.
: 8.0))

net.update_default_node_attributes({'is_anchor': False,'is_loaded': False, 'px': .8, 'py': ©.0, 'pz':

. .
form-flndlng #set inital value of force density for all elements (define edge attributes like force, length, etc.)

net.update_default_edge_attributes({'q': 1.0, '': 0.0, '1': 0.0, '10': 0.0 })

=] rebuild_elements
gL L out #update support points .
=9 update_network_vertex_attributes(net, anchors, ‘is_anchor’, (True]) all values of constraints
load_poirt
ol supdate external load value are set as 0.0 for all
q boundary #update_network_vertex_attributes(net, load_point, 'px’, px) e[ements
i #update_network_vertex_attributes(net, load_point, 'py’, py)
i n update_network_vertex_attributes(net, load_point, 'pz’, pz)
edges_{ (g Points update_network_vertex_attributes(net, load_point, 'is_loaded’, [True])
f =
b] . . . eu wien ot ..
—— edges. [#update network edge attribute - force density with single value or list of values
) Pl orce update_network_edge_attributes(net, boundary, 'q', q_bnd)
— S #index_q_bnd =[i for i, j in enumerate(net.edges_attribute('q')) if j == q_bnd[@]]
q edges_o (]
q 10 £ length #arguments for form-finding function
e
o k_i = net.key_index()
Eenctions vertices = net.nodes_attributes('xyz')
q o edges = list(net.edges())
teq fixed = list(net.nodes_where({'is_anchor': True}))
o density q = net.edges_at_triuute(-q')
p . loads = net.nodes_attributes(('px', 'py', 'pz'))
<

Figure 18: Code inside FALCON_inexact component - part 1.

#update other network edge attributes with single value or list of values

update_network_edge_attributes(net, edges_f, 'f', f)
fc=[(i,3) for i, j in enumerate(net.edges_attribute('f')) if j !=@]

#index_f =[i for i, j in enumerate(net.edges_attribute('f')) if j == £[0]]
update_network_edge_attributes(net, edges_1, '1', 1) updatmg edges
lc=[(i,3) for i, j in enumerate(net.edges_attribute('1')) if j !=@] attributes with
#index_1 =[i for i, j in enumerate(net.edges_attribute('1')) if j == 1[0]]

values of constraints
update_network_edge_attributes(net, edges_1@, '1@', 1@)

Constrained 10c=[(1,(3,a¢)) for i, j in enumerate(net.edges_attribute('10')) if j 1=0]

#index_10 =[i for i, j in enumerate(net.edges_attribute('1@')) if j == 10[@]]

. .
fo rm -flndlng nc, £, @, 1, r = fdm_net.multistepFDM_inexact(vertices, edges, fixed, g, loads, fcs=fc, lcs=lc, l@cs=10c,

‘tol_f = tf, tol 1 = t1, i_tol_min = teq, damping = ni, steps = steps)

== rebuild_elements
t xyz = nc . .
< anchors [l ° calling optimised
load_point #update node attributes after form finding form—ﬁ'nding

for key, attr in net.nodes(True): functi
boundary attr['x'] = xyz[key][@] unction
-attr['y'] = xyz[key][1]
-attr['z'] = xyz[key][2]
Cdues. { attr['rx'] = rlkeyl(@]
-attr['ry'] = rlkey](1]
attr['rz'] = rlkey][2]

] edges |
visualise balanced net and reactions
Edges’n points, lines = draw_network (net)
reactions = draw_reactions(net)
force = §
length = 1
reactions density = q

Figure 19: Code inside FALCON_inexact component - part 2.

15

The inputs for the components that enable the search for the constrained form are the same
as in the unconstrained case with additional inputs for lists and values of forces, lengths, and
unstrained lengths that we want to assign - edges_f and f, edges_l and [, and edges_l0 and [0. The
input is also a product of cross-sectional area and modulus of elasticity- ae, which is predefined
as 100 but can be changed. The component _multistep as input has the number of steps (set to
100). In addition to all the above inputs, the _tolerance component has values for tolerances for
all three types of assigned values (tf, t! and tl0 set to 0.001). The _inezact component requires
the tolerance for the system solving t_eq and the ”damping” constant ni, since it also performs the
optimization of the form-finding process. All preset values can be changed on a right click, or by
using a slider.

As explained earlier, the components Interactive elements on cable and Interactive element are
used to select elements for which constraint values should be set. Constraint values can be defined
as a single number or as a list of numbers. For a single number, a numeric slider can be used if you
want to interactively see how changing the constraint affects the geometry. Defining constraints
as numbers is typical for force constraints, where a uniform force through the cable must often
be achieved. On the other hand, element lengths are more often defined using lists as they vary
throughout the network.

Let us take our simple example and constrain the force along one of the convex cables. To
select the cable and the elements on the cable, use the procedure already described in the previous
chapter with the components List item and Interactive elements on cable. As output we get a list
of elements on the cable, which we can now pass to the edges_f input in the FALCON _inexact
component. The value of f can be assigned with a slider so that we can interactively perceive the
influence of the constraint. The other inputs can be left as default values.

In addition to the forces, the lengths and unstrained lengths of the elements can also be set as
constraints, as you can see in Figs. 23 and 27 .

16

*9[qBD UI 9210 JUIUTRIISUO) :()g OINTI]

2)qV2 Ml 2240) PAUIVAISU0D
YHM buipulj-wisog

jelqes ay) ul anjeA 8210} yum Aejd

‘}l UO SJUBWS BY} puB 8|qed 8y} 19D

‘ Asu aAndelaly| “Jau JejnBueydal/eienbs
e 10} Anawoab ajear)

~
/

Buipuy-wio4

jS81euIp100d s Joyoue yum Aeid

17

3 Tension - compression analogy

All of the above also applies to structures in compression, where the equilibrium form of a gridshell
is obtained by inverting the result of the hanging chain method. For this purpose the weight of
the elements must be included in the calculation. To control the assignment of elements and unit
weight values, two new inputs are made, edges_weight as the list of elements to be assigned a specific
unit weight value, and uw for it’s value, or list of values. By default, all elements are assigned a
unit weight of 1.0, as you can see in Fig. 21. If we take the same example as we had in tension,
and lower the lifted anchors back to the ground level, we can obtain a solution in compression by
using the component FALCON _grid, which returns the mirrored shape in equilibrium (Fig. 22).
As can be seen in the first image, due to the small number of divisions, the number of cables is
small and therefore the shape is not appealing. Let us increase the number of divisions. By doing
S0, as seen in the middle picture, the weight also increases, making the shape elongated. To control
the height of the shape, the value of the force density for all elements can be increased with the
new input g_init. The input ¢_init can be found in all components from COMPRESSION group
to easily change the value of the force density in all elements and increase it beyond the default
value of 1.0.

#optionl
#define network out of lines defined in GH or drawn in Rhino
net = from_lines(rebuild_elements)
. updated value of
#option2 .
#define network out of imported list of nodes and edges force densn‘:y in all
/ #net=Network.from_nodes_and_edges(nodes, edges) elemem‘:s

#define vertex atributes like anchor, external lgze? etc.
net.update_default_node_attributes({'is_anchor# False,'is_loaded': False, 'px': 0.0, 'py': 0.0, 'pz': 0.8})

#set inital value of force density for all £lements— . .

net.update_default_edge_attributes({'q": q_init,@‘: 1.0} unit we:gl«t set as 1.0
Il el t:

supdate support points to all elements

update_network_vertex_attributes(net, anchors, 'is_anchor', [True])

#update external load
#update_network_vertex

utes(net, load_point, 'px', px)
#update_network_vertex_attributes(net, load_point, 'py', py)
update_network_vertex_attributes(net, load_point, 'pz’, pz)

Form_finding update_network_vertex_attributes(net, load_point, 'is_loaded', [True])
for gndshe”s #update network edge attribute defined above h single value or list of values
update_network_edge_attributes(net, boundary, 'q’, q_bnd)
—_— #index_q =[i for i, j in enumerate(net.edges_attribute('q')) if j !=q_init]
======(rebuild_elements out b
—(anchors #update network edge attribute defined above with single value or list of values
lines D update_network_edge_attributes(net, edges_weight, 'uw', uw)
—(q_init (-] #index uw =[i for i, j in enumerate(net.edges_attribute(‘uw')) if j !=1] unit weight updated
| points D
¢ load_point [l F .
) 2 [| #arguments for form finding function to a certain value or
pz [force -
[boundary [101 ot ki = net.key_index() list of values
g length D vertices = net.nodes_attributes('xyz')
q q_bnd [T 1 edges = list(net.edges())
=———=(edges_weight HiTithd fixed = list(net.nodes_where({'is_anchor': True}))
P | q = net.edges_attribute('q’)
— ol ’ loads = net.nodes_attributes(('px', 'py', 'pz'))

uw = net.edges_attribute('un')

Figure 21: Code inside FALCON _grid component.

Since the weight added to the nodes as an additional load depends on the length of the elements,
in constrained form-finding - the iterative application of FDM - the values of the weights are
updated at each step according to the changes in the element length. Again, the three components
are created for constrained form-finding, and the constraint assignment remains the same as for
structures in tension, only the form-finding function changes.

Let us adjust our example a bit. To do this, we add a circular opening in the center of the net.
To place the opening in the center, we should find the center of the grid by finding the intersection
of the middle cables (applies only if the number of divisions is even), as shown in Fig. 23. For this
purpose, the list of lines is split to cables in each direction by setting the splitting index in the
component Split list as number of divisions minus one (since the list starts with 0). Then the middle
cables are selected by setting the index in the List item component to a value by one less than half
the split number. The Curve | Curve component provides the intersection point, which is then
used as the central point for creating the circle, along with the slider for the radius, both of which
are plugged into the Circle component. Once the circle is created, we will use it to create elements
based on its intersections with inner cables. To do this, we can use the Interactive elements on
boundary curve component from the Geometry group. By inserting the circle as boundary curve,
lines as inner cables and setting Boolean Toggle component as True for the closed curve?, we get
the list of elements at the location of the circle. To remove part of the cables that are inside the
circle, you can use the Trim with Region component, where the circle is the region, lines are curve,
and xy is set as the plane. The output Outside (Co), together with the created elements from the
circle, will form the lines that will be plugged into the Interactive net component. We can use

18

the _inexact component for form-finding, keeping all the basic inputs the same as in the previous
example. To get the elements of the opening from the newly created interactive net we use the
Interactive element component, where boundary elements are selected elements and the rest of the
inputs come from the Interactive net component. It is to these elements that the lengths will be
constrained, so we pass them to the input edges_l and select the value with the slider for the input
[(see Fig. 23).

If you want the values of forces or lengths to be displayed only for constrained elements, you
can enable lines of code 87, 91 or 95 to get the indices of these elements and set them as the
output of the component. Then these indexes can be used to filter out the lines and values that
correspond to the elements using List item component and preview them using the Show wvalues
component.

19

"A3oreure MOISSoIdWO-UOISUR) U0 Pase([[PYSPLIS JO SUIPUY-ULIO]

aybray sadvys ayz
1043109 03 an)vA AgIsuap
29404 243 25V249u]

jSluawa|a ul1 san|eA
(@0104 pue yibusj 10)
Aisuap 9210} ay) mainald

d $81¢L0°5 o)
iotorotatota)

Maanlg

WA xewy
wwy

:g¢ I3

advys yzo0ws
240W v 336 03 SUOISIAIP
40 42qWINV 2y3 B5V2AOU)

!.E:.._E..
o & =t
08
adi

Moyavg

iofatotototal

*suopjoeal pue ylomjau Buninsal asijensip

0 8y} abueyo pue aas §)
NOOTV4 uo %21198|gno

==

Buipuy-wio4

‘Jau Jenbuejoal/aienbs .
0} Ayowoab ajeasn

18U 8AnoRIaU|

ouv|d punosb
03 SA0Y9uY UANF2A -
iseleulpio09 soyoue yum Aejd

20

*9[ed SULI UI SHULWA[R JO SYISUS] SUIUTRIISUO)) €7 2INSL

Buvado avyg
Y2IM HA0MIBU D JO SPUIWMD)2
306 03 01694 M WAL puv
2)qva vo Aavpunog buisn

san)vA yb6ua) Buimairaad 2poa10
270249 PUV 39v 9y3 JO

u10d |vapua2 2y 306 07
52)qv9 2)ppIm bui30a)as

\)

‘18U teyf Buejoai/aienbs
=) e 10} Anawoab sjeaid

Survado a2 J0 spuEWaJ iS91eulp100d s Joydue yum Aeid

Y3) s\y3bua) BurIvaasuod

21

4 Some examples to try by yourself

In this chapter you will find some examples that you can reproduce yourself. The first two examples
were created with the component Net with edge cables. For structures with edge cables, it is
essential to increase the value of the force densities in the edge elements, as explained earlier.
Apart from selecting these elements and increasing q_bnd, the second example shows how you can
add additional anchor points on cables in a few steps and easily modify the original predefined
mesh defined by the FALCON component.

The interactivity of the tool is highlighted in the third example, the parametric model. Here we
show how the model created with the Net with boundary curve component can completely change
its shape by changing a single parameter. Like the components before, this component has inputs
for the dimensions and the number of divisions in the x and y directions, but also has an input
for the curve that defines the boundary cable. Another input is the number n, which defines the
output selected points. By defining n, we select every nth point where the boundary cable and
the net intersect. In this way, we can change the number of anchors very easily. For example, if
we use the Cull Nth component, we can remove every second point from the selected points to
raise half of the anchors. If we use the Find similar component in combination with Replace, we
can replace the anchors at the ground with raised ones and get two lists that we need for form-
finding - initial anchors and anchors. In this example, we have used the Pick single component
from the drop-down menu of the Network group. Since we have not mentioned this component
before, let us explained it a bit. As input it takes all the elements of the network as well as the
elements we do not want to select, and returns the elements that are not on both lists. This way,
for example, you can easily select all inner elements since in most cases we the edge elements are
already selected with one of the components mentioned before. In this example, force constraints
are applied to the inner elements to achieve an even distribution of forces in the network. The
elements are selected by plugging in rebuild elements from Interactive net component and edges
from Interactive elements component (see Fig. 26).

With the last example, a gridshell based on a Voronoi diagram, we wanted to show that you
can be creative and do not have to stick to the geometry generation provided by FALCON. Here,
a curve drawn in Rhino was used as the boundary for the Voronoi pattern. The curve can be
modified in Rhino and the net will change interactively. The pattern can also be manipulated with
sliders, as shown in Fig. 27. Here the unconstrained lengths are set for all elements. The tolerance
for the unconstrained lengths can be changed with the slider depending on the desired accuracy.
Feel free to draw different curves and explore the structure you get by changing the parameters
for Voronoi!

22

NODIV4

'So[qed ATepunoq ur onjea A}ISuop 90I0j SUISROIOUT

*san|eA Ajisuap 9210y Juaiayip wayy ubisse 0}
sjuawa|e Aiepunoq pui4

g 9IS

jan|eA Ayisuap 8210} yum Aejd

23

‘so[qeo Arepunoq dn SurmeiysLy, :Gg oIn3rq

2)qvo 2bpa
dn burvagybia

sa)qvo 2bpa jo
spuiod a)ppiv buig)y)

u017USI)UNSIA

burpuij-wiaoy

70uv v buv12v249

SA0YIUD
40 voiisod Jvziv

24

‘[opouI oLIjeWRIRg 197 9INSI

‘PavIvigo
99 MY saunzonazs
F2494J1p “sapou A0yIup
404 musmswué)
23 buibupyo Puv apou
v2v Aaans bv1399)05 g

2 40
-53uaW)
winu puv vbray 9%
_g0s 9MFWMYAVd
—————
O
-SIUIW2|2 AOUM! . w —
VO STUIVAFSU0? 9940

429

204 dn

e
suogdeal

ouy uogseas (1)

wawa W}

WwawapR U}
2.
sy B2 o

9%

% MOJPJAOM PIUIVAISUO0I DAIFIVAIIU)

25

‘[POW TOUOIOA JO SHUSWS[O I0J SYIBUS[POUTRIISUN SUIUTRIISUO)) :)7 9INST

sy3bua) pavivazsun
ﬂ 10} 29UVA2)03 26UPYD

CITTRE—)

spuiod A0youv

pub acuesa|o3 NODTVA

O3] WO0A 9AMND
[29vXouI™ Jo poazsul v Ag pawilg 10U0A0A
Juavodwod dagsiznw
A0 29UVAB)0F~ SN WD NOA

wW.bv1p
10M0A0A MO 20uUIN) U

03 s4230WvAvd 26uvyd J

vy WA} 2AIMND

26

5 Hidden gems

In all of the GHPhyton components shown, the functions called to determine the equilibrium form
are executed in Python. Since the tool is primarily intended for educational use, the components
presented are fast enough to allow interactive, feedback-based form-finding, and they are robust
enough to handle any change in input parameters or even incorrectly assigned inputs. For research
or practical use of FALCON, the components calling form-finding functions written in C++ are
available in the Solver’s drop-down window. These components can be used to find the shape
of structures in tension as well as in compression. The components can speed up form-finding,
but can also be unstable due to the conversion of data between Python and C++, especially for
constrained form-finding due to a high number of arguments. Since these components are still under
development, advanced users are recommended to find the shape with the default components to
better understand the behaviour of the structure and the influence of the assigned parameters, and
then use the faster components to explore different possible solutions by changing the supporting
conditions or the assigned constraints.

C++ solver takes a bit
more than half time for
calculation

Figure 28: For examples with lot of elements, like Poljud stadium (26760 elements), one can use
components with C++4 solver for faster calculation.

FALCON inexact cpp

Figure 29: Using C++ components for constrained form-finding of "heavy” examples like model
of Great Court gridshell at the British Museum.

27

6 Good luck!

We hope you find this handbook useful, and that the FALCON tool will support you well in
creatively and actively designing equilibrium networks. Do take a look at our FALCON page for
video tutorials! Please also let us know if you have any feedback or if you find a bug (e-mail:
esamec@grad.hr).

28

http://master.grad.hr/nastava/gs/falcon/falcon-eng.html

	Introduction
	Example to get started
	How to create geometry
	How to turn geometry to interactive network
	How to find a form
	How to visualise results
	How to change force density
	How to add constraints

	Tension - compression analogy
	Some examples to try by yourself
	Hidden gems
	Good luck!

