Originäre wissenschaftliche Arbeit Angenommen am 08.11.2004.

#### **DANIEL LORDICK**

## Schattengrenzen krummer Flächen – Linearer Zugang zur Involution konjugierter Tangenten in Punkten von Schiebflächen

## Rastavnice oblih ploha - linearni pristup involuciji konjugiranih tangenata u točkama kliznih ploha

#### SAŽETAK

U časopisu KoG•6 dana je konstrukcija tangenata rastavnice oblih ploha metodom ploha *pratilica* i njena primjena na rotacijske i zavojne plohe. U ovom radu ta se metoda proširuje i na *klizne plohe*. U onim točkama plohe za koje su poznate zakrivljenosti samo dviju konjugiranih tangenata postignuta je ograničena linearna konstrukcija involucije konjugiranih tangenata plohe. Na kraju rada razmatra se kružno raslojena zavojna ploha kao klizna ploha, čime se postižu daljnje elegantne konstrukcije tangenata. Opisani su i posebni slučajevi ove metode pri centralnoj rasvjeti. Daljnje pojedinosti o ovoj temi opisane su u [4].

Ključne riječi: Dupinova indikatrisa, oble plohe, pravčaste plohe, sjene

# Shade Lines of Curved Surfaces - Linear Approach to Involution of Conjugate Tangents at Points of Translation Surfaces

#### ABSTRACT

In KoG•6 we introduced a global approach to the tangents of the shade lines of curved surfaces. The constructions are made by using an *accompanying ruled surface* along the shade line. In this paper the method is expanded to *translation surfaces*. In that way we get a *linear* access to the *involution of conjugate tangents* in those points of a surface where the curvature at two conjugate tangents is given. At the end of the paper a helical surface with circular cross section is handled as translation surface, which leads to additional elegant constructions for the tangents of its shade line. For more details on the general subject see [4].

Key words: curved surface, Dupin-indicatrix, ruled surface, shades and shadows

MSC 2000: 51M99, 51N05, 53A05

#### 1 Kreisschiebfläche

Zu jedem allgemeinen Flächenpunkt P einer Schiebfläche  $\Phi$  kann eine in P oskulierende *Kreisschiebfläche* festgelegt werden, deren Schiebkurven die Krümmungskreise der Schiebkurven von  $\Phi$  in P sind. Wir können uns deshalb auf die konstruktive Behandlung der Kreisschiebfläche beschränken.



Abb. 1

Bevor wir allerdings die Kreisschiebfläche unter allgemeiner Parallelbeleuchtung betrachten, schicken wir eine Umrisskonstruktion in spezieller Lage voraus. An der entsprechenden Kontur kann die Herangehensweise nämlich in vereinfachter Form entwickelt werden.

Wir untersuchen eine Kreisschiebfläche  $\Phi$  in zwei gepaarten Normalrissen, die in vertrauter Form Grund- und Aufriss heißen sollen (Abb. 1). Im Grundriss sei die Symmetrieebene  $\mu$  von  $\Phi$  Hauptebene und keine der Schiebkreisebenen sei zum Aufriss parallel oder normal. Um möglichst allgemeine Aussagen zu erhalten, nehmen wir an, Profil- und Leitkreis sind verschieden groß und liegen nicht in zueinander orthogonalen Ebenen.

Die Mittelpunkte der Schiebkreise einer Kreisschiebfläche  $\Phi$  erfüllen zwei zu den Schiebkreisen schiebungsgleiche *Mittenkreise* b<sub>0</sub> und c<sub>0</sub>. Der gemeinsame Mittelpunkt von b<sub>0</sub> und c<sub>0</sub> ist der Mittelpunkt Z von  $\Phi$  (Abb. 2; die Fläche ist nur zur Hälfte dargestellt). Jeder Flächenpunkt P von  $\Phi$  bildet mit Z und den Mittelpunkten der Schiebkreise durch P ein Parallelogramm.





Betrachten wir den Umriss u" von  $\Phi$ . Jeder Umrisspunkt U"  $\in$  u" ist dadurch gekennzeichnet, dass in U" die Tangentialebene projizierend ist, die Aufrissbilder  $t_b$ " und  $t_c$ " der Schiebtangenten also zusammenfallen. Das heißt außerdem, dass in den Mittelpunkten M<sub>b</sub> und M<sub>c</sub> der Schiebkreise b und c durch U die Aufrissbilder der Tangenten an die Mittenkreise c<sub>0</sub> und b<sub>0</sub> zueinander parallel sind.

Indem solche Mittelpunkte  $M_b$  und  $M_c$  gepaart werden, bei denen die Tangenten an  $c_0$  und  $b_0$  im Aufriss parallel erscheinen, können über Parallelogramme  $M_c U M_b Z$  weitere Punkte U der Aufrisskontur u gefunden werden. Eine alternative Umrisskonstruktion auf Basis der Begleitregelflächenmethode wird in [4] angegeben.

### Begleitregelfläche der Kreisschiebfläche bei Projektion parallel zur Symmetrieebene

Wir benötigen nun eine konstruktiv verwertbare Begleitregelfläche der Kontur u. Die Normalenfläche erweist sich dabei als ungeeignet, weil sie abgesehen von einer Richtebene keine einfachen Leitelemente besitzt. Statt dessen fassen wir die Durchmessergeraden einer Schiebkreisschar ins Auge. Zwei einfache Leitelemente der entsprechenden Regelfläche können sofort angegeben werden: Der zur Schiebkreisschar gehörende *Mittenkreis* und die *Ferngerade* der Schiebkreisebenen. In der Symmetrieebene  $\mu$  von  $\Phi$  finden wir - nach eingehender Betrachtung der soeben durchgeführten Punktkonstruktion - das *dritte Leitelement* (Abb. 2):

Die Flächennormale n im Konturpunkt  $U \in u$  spannt mit den Durchmessergeraden  $n_b$  und  $n_c$  der Schiebkurven b und c durch U zwei Ebenen  $\alpha$  und  $\beta$  auf. Die Drehachsen von b und c sind zum Grundriss parallel und schneiden n in den Normalkrümmungsmitten  $K_b$  bzw.  $K_c$  zu  $t_b$  bzw.  $t_c.$  Die Drehachsen sind mit anderen Worten Hauptlinien von  $\alpha$  bzw.  $\beta$  bezüglich des Grundrisses und die Spurgeraden  $h_\alpha$  bzw.  $h_\beta$  in  $\mu$  orthogonal zu  $n_b$  bzw.  $n_c.$ 

Die Flächennormale n schneidet  $\mu$  in  $S_n := h_\alpha \cap h_\beta$ . Die Spurpunkte von  $n_b$  bzw.  $n_c$  in  $\mu$  sollen  $S_b$  bzw.  $S_c$  heißen. Weil im Grundriss sowohl die Bilder der Schiebkreise als auch die Bilder der Flächennormalen jeweils zueinander parallel bleiben, sind alle Vierecke  $U'S_b'S_n'S_c'$  für verschiedene U einander ähnlich. Außerdem liegen  $n_b$  und  $n_c$  mit Z in einer Ebene, nämlich in der Trägerebene des Parallelogramms  $M_cUM_bZ$ . Die Gerade  $S_bS_c$  enthält also stets den Punkt Z. Nun haben aber, durch Ähnlichkeit aller Vierecke  $U'S_b'S_n'S_c'$ , die Diagonalen  $[S_b',S_c']$  zugleich dieselbe Richtung und es folgt

**Satz 1** Bei Projektion einer Kreisschiebfläche  $\Phi$  parallel zu ihrer Symmetrieebene schneiden alle Durchmessergeraden der Schiebkreise aus den Konturpunkten die Symmetrieebene in einer Gerade  $q_0$ , die auch die Mitte von  $\Phi$  enthält. Schließen die Projektionsstrahlen mit den Ebenen einer Schiebkreisschar den Winkel  $\omega$  ein, so ist  $\omega$  auch der Winkel zwischen  $q_0$  und den anderen Schiebkreisebenen, allerdings mit entgegengesetztem Drehsinn.



In der Symmetrieebene  $\mu$  von  $\Phi$  bilden also die Durchmesser der Mittenkreise b<sub>0</sub> und c<sub>0</sub> mit dem Projektionsstrahl durch Z und der Geraden q<sub>0</sub> zwei Strahlenpaare einer *symmetrischen Strahleninvolution*. Aus Abb. 3 kann die Begründung hierfür elementar-geometrisch abgelesen werden:

Der Projektionsstrahl  $s'_2$  teilt vom Außenwinkel des Dreiecks U'S'<sub>n</sub>S'<sub>c</sub> in U' den Winkel  $\omega$  ab. Wegen der rechten Winkel zwischen  $s'_2$  und n' sowie c' und h'<sub> $\beta$ </sub> ist auch der Innenwinkel des Dreiecks U'S'<sub>n</sub>S'<sub>c</sub> bei S'<sub>n</sub> gleich  $\omega$ . Die Punkte U', S'<sub>b</sub>, S'<sub>n</sub> und S'<sub>c</sub> liegen auf dem Thaleskreis mit dem Durchmesser [U', S'<sub>n</sub>], weshalb der Winkel zwischen q'<sub>0</sub> und b' in S'<sub>b</sub> ebenfalls gleich  $\omega$  sein muss (Peripheriewinkelsatz). Bemerkenswert ist noch, dass Veränderungen an der Größe der Schiebkreise ohne Einfluss auf die Lage von q<sub>0</sub> bleiben.

Wir fassen zusammen: Die Durchmessergeraden einer Schar von Schiebkreisen der Kreisschiebfläche  $\Phi$  längs der Kontur u von  $\Phi$  erzeugen eine Begleitregelfläche, die zur Konstruktion von Tangenten an u herangezogen werden kann. Wegen der Gleichwertigkeit der Schiebkreisscharen kann sowohl die eine als auch die andere Schiebkreisschar betrachtet werden. Es existieren folglich zwei geeignete Begleitregelflächen längs u. Entscheidet man sich für die Durchmessergeraden n<sub>b</sub> der Profilkreise b, so wird die Begleitregelfläche  $\Psi_b$  durch folgende drei Elemente festgelegt: Leitkreis ist der Mittenkreis c<sub>0</sub> der Profilkreise, Leitgeraden sind die Spurgerade q<sub>0</sub> in  $\mu$  sowie die Ferngerade der Profilkreisebenen. Folglich ist die Begleitregelfläche der Kreisschiebfläche  $\Phi$ bei Projektion parallel zu  $\mu$  - wie die Begleitregelfläche des Torus bei Parallelbeleuchtung - eine Netzfläche von viertem Grad und siebter STURMscher Art.

#### Tangenten der Kontur bei Projektion parallel zur Symmetrieebene

In einem allgemeinen Punkt U der Kontur u einer Kreisschiebfläche  $\Phi$  soll die Tangente t an u konstruiert werden (Abb. 4). Die Durchmessergerade  $n_c$  des Schiebkreises c durch U ist eine Erzeugende der Begleitregelfläche  $\Psi_c$  von  $\Phi$ . Die gesuchte Tangente t ist die Schnittgerade der Tangentialebenen  $\tau$  von  $\Phi$  und  $\sigma$  von  $\Psi_c$  in U. Wir vervollständigen deshalb die Berührkorrelation längs  $n_c$  direkt in  $\tau$ .



Zuerst benötigt man die Spuren der drei bekannten Tangentialebenen von n<sub>c</sub> in  $\tau$ . Die Spur s<sub>∞</sub> der asymptotischen Ebene fällt in die Schiebtangente t<sub>c</sub>. Die Tangentialebene  $\sigma_M$  von  $\Psi_c$  im Mittelpunkt M<sub>c</sub> von c wird durch n<sub>c</sub> und die Tangente an den Leitkreis b<sub>0</sub> aufgespannt. Die Spur von  $\sigma_M$  in  $\tau$  ist die Schiebtangente  $t_b$  des zweiten Schiebkreises b durch U. Um die Spur  $s_0$  der von Leitgerade  $q_0$  und  $n_c$ aufgespannten Tangentialebene  $\sigma_0$  zu konstruieren, kann die Hauptgerade  $h_{\tau}$  von  $\tau$  in der Symmetrieebene  $\mu$  benutzt werden. Der Schnittpunkt  $C := h_{\tau} \cap q_0$  ist ein Punkt von  $s_0$ .

Der Berührpunkt der asymptotischen Ebene ist der Fernpunkt von  $n_c$ . Damit läuft die Konstruktion auf eine Teilverhältnisübertragung hinaus. Eine Hilfsgerade  $g^*||_{S_{\infty}}$  ( $U \not\in g^*$ ) in  $\tau$ schneidet  $s_0$  in  $S^*_c$  und  $t_c$  in  $M^*_c$ . Der Schnittpunkt X der Strahlen  $S_c S^*_c$  und  $M_c M^*_c$  ist ein Punkt der gesuchten Tangente t.

#### Lineare Festlegung konjugierter Flächentangenten

Auf der grundrissprojizierenden Symmetrieachse z von  $\Phi$  liegen insgesamt vier Punkte von u, ihre Grundrisse sind Wendepunkte von u' und ihre Tangentialebenen grundrissparallel. Wir greifen den elliptischen Punkt  $W \in z$  heraus und verallgemeinern den linearen Zugang zur Involution der Flächentangenten in W.

In W stimmt (wie bei den drei anderen Punkten) die Flächennormale mit z und den Durchmessergeraden n<sub>b</sub> bzw. n<sub>c</sub> der Schiebkreise b bzw. c durch W überein (Abb. 5). Die Schiebkreise geben also direkt die Normalkrümmungen zu den Schiebtangenten t<sub>b</sub> bzw. t<sub>c</sub> in W an. Zugleich ist z die gemeinsame Doppelerzeugende der Begleitregelflächen  $\Psi_b$  und  $\Psi_c$ .





Für die Konstruktion der Tangente t an u in W soll erneut die Begleitregelfläche  $\Psi_c$  benutzt werden. Alle Tangentialebenen von  $\Psi_c$  längs der Doppelerzeugenden z sind grundrissprojizierend. Die Tangentialebene  $\sigma_M$  im Mittelpunkt  $M_c$  von c ist die Leitkreisebene und schneidet  $\tau$  in  $t_b$ . Die Spur der asymptotischen Ebene ist  $t_c$  und das Bild  $s'_0$  der Spur von  $\sigma_0$  durch die Leitgerade  $q_0$  fällt im Grundriss in  $q'_0$ . Die Strecke  $\overline{WM_c}$  entspricht dem Radius  $r_c$  des Schiebkreises c und die Strecke  $\overline{M_cZ}$  (mit  $Z := z \cap q_0$ ) dem Radius  $r_b$  von  $b_0$ .

Auf einer zu  $t_c$  parallelen Hilfsgeraden  $g^* \in \tau$  können zur Übertragung des Teilverhältnisses  $\overline{WM_c}:\overline{M_cZ}$  beide

Strecken eingepasst werden, wozu man bequem den Radius von  $b_0$  auf  $t_c'$  drehen kann und dort die um  $M_c$  grundrissparallel gedrehte Doppelerzeugende (z) mit den Punkten (W),  $(M_c) = W'$  und (Z) benennt. Verschiebt man (W),  $(M_c)$  und (Z) längs  $b_0'$ , bis (Z) in  $Z^*$  auf  $q_0'$  liegt, so gehört der aus (W) verschobene Punkt  $W^* \in g^*$  der gesuchten Tangente t von u an.

Im hyperbolischen Punkt von c auf z verfährt man analog. Beim Paralleldrehen von z muss allerdings berücksichtigt werden, dass der Flächenpunkt auf der Strecke  $[M_c, Z]$  liegt.



Weil zu jedem elliptischen oder hyperbolischen Punkt P einer krummen Fläche, deren lokale Krümmung in P durch zwei konjugierte Flächentangenten  $t_1$  und  $t_2$  sowie die zugehörigen Normalkrümmungsradien  $r_1$  und  $r_2$  gegeben ist, immer eine in P oskulierende Kreisschiebfläche gefunden werden kann, deren Symmetrieachse z der Flächennormale in P entspricht, kann gefolgert werden (Abb. 6, Normalriss eines Punktes mit projizierender Flächennormale):

**Satz 2** Ist in einem elliptischen Punkt P einer krummen Fläche mit der Tangentialebene  $\tau$  ein Paar konjugierter Flächentangenten  $t_1$  und  $t_2$  mit den zugehörigen Normalkrümmungen  $1/r_1$  und  $1/r_2$  gegeben und bilden außerdem  $t_1$  und  $t_2$  sowie eine weitere Flächentangente  $t_3$  gepaart mit einer Hilfsgeraden a eine symmetrische Strahleninvolution, dann schneiden a, t<sub>2</sub> und die zu t<sub>3</sub> konjugierte Flächentangente t<sub>4</sub> (in dieser Folge) aus einer zu t<sub>1</sub> parallelen Geraden  $g^* \subset \tau$  (P  $\notin g^*$ ) zwei Strecken im Verhältnis  $r_2 : r_1$ . Ist P hyperbolisch, schneiden a, t<sub>4</sub> und t<sub>2</sub> aus  $g^*$ zwei Strecken im Verhältnis  $|\mathbf{r}_2 - \mathbf{r}_1| : \mathbf{r}_1$ .

#### Begleitregelfläche der Kreisschiebfläche bei allgemeiner Parallelbeleuchtung

Für die Untersuchung der allgemeinen Parallelbeleuchtung einer Kreisschiebfläche  $\Phi$  wählen wir eine Lichtrichtung, gegeben durch den Lichtpfeil I, die weder zur Symmetrieebene  $\mu$  von  $\Phi$  noch zu einer der Schiebkreisebenen parallel ist. In der aus dem letzten Abschnitt vertrauten Aufstellung in Grund- und Aufriss wird I parallel zum Aufriss angenommen (Abb. 7). Diese Annahme stellt keine Einschränkung der Allgemeinheit dar, da sie durch einen Seitenriss stets zu erreichen ist.



Obwohl die Eigenschattengrenze e im Aufriss einigermaßen verschlungen erscheint, sind auch hier, wie schon bei der speziellen Kontur, die Grundrissbilder der beiden Zweige von e in doppelter Hinsicht spiegelaffin längs der Schiebkreisebenen von  $\Phi$ . Auf die Darstellung von Schlagschatten wird verzichtet.

Als Begleitregelfläche von e betrachten wir erneut eine, die von Durchmessergeraden einer Schiebkreisschar erzeugt wird. Wählen wir die Durchmesser der Leitkreisschar c<sub>i</sub>, so bestehen zwei Leitelemente der Begleitregelfläche  $\Psi_c$ aus dem Mittenkreis b<sub>0</sub> und der Ferngerade der Leitkreisebenen (Abb. 7). Außerdem wird im Folgenden gezeigt, dass  $\Psi_c$  die Symmetrieebene  $\mu$  von  $\Phi$  nach einer Ellipse schneidet. Auf diese Weise wird  $\Psi_c$  durch eine dritte Leitkurve konstruktiv nutzbar.





Längs der Schiebkreise wird  $\Phi$  von Kreiszylindern berührt. Die Zylinderachsen sind Tangenten an den jeweiligen Mittenkreis im Mittelpunkt des betreffenden Schiebkreises (Abb. 8). Legt man den Radius einer Schiebkreisschar bi und somit den Mittenkreis b0 fest und variiert die Radien der anderen Schiebkreise ci, so ändern sich die Lagen der Durchmessergeraden nci durch die Eigenschattengrenze e nicht. Das ist einzusehen, wenn der Radius der ci gegen Null geht und  $\Phi$  nach b<sub>0</sub> ausartet. Die Lichtstrahlen umhüllen dann lediglich einen Kreiszylinder durch b<sub>0</sub>. In jedem Punkt  $M_c \in b_0$  existiert eine Flächennormale  $n_0$  dieses Lichtzylinders. Nimmt man nun für c einen Radius ungleich Null an, so müssen die Flächennormalen n<sub>1</sub>, n<sub>2</sub> von  $\Phi$  in den Punkten  $P_1, P_2 := c \cap e$  zu  $n_0$  parallel sein. Die Normalen  $n_0$ ,  $n_1$  und  $n_2$  schneiden die Drehachse  $a_c$  von c. Somit kann n<sub>c</sub> als Normalriss von n<sub>0</sub> auf die Kreisebene  $v_c$ von c gefunden werden.

Alle  $n_0$  von  $b_0$  sind zur Normalebene v der Lichtstrahlen parallel und schneiden die Drehachse  $a_{b0}$  von  $b_0$ . Sie erfüllen also - wie die Begleitregelfläche des Torus - eine Netzfläche vierten Grades und siebter STURMscher Art.

Warum die Spurpunkte  $S_c$  der Erzeugenden  $n_c$  von  $\Psi_c$  in  $\mu$  eine Ellipse  $q_0$  erfüllen, kann anhand der Konstruktion erklärt werden: Errichtet man im Mittelpunkt  $M_c$  von c die Normalebene v der Lichtstrahlen, so schneidet diese  $\mu$  nach einer Geraden  $h_v$  und die Trägerebene  $v_c$  von c nach einer Geraden  $s_v$ . Weil für alle  $c_i$  die Schnittgeraden  $s_v$  zueinander parallel sind, erfüllen die Punkte  $B_i := s_v \cap \mu$  eine zu  $b_0$  perspektiv affine Ellipse  $b_\mu$  (Abb. 9).

Außerdem sind alle Dreiecke  $B,S_c,S_0$  mit  $S_0 := n_0 \cap \mu$  einander ähnlich. Daraus folgt, dass alle  $S_c$  eine Ellipse  $q_0$ erfüllen, die zu  $b_{\mu}$  perspektiv affin ist. Affinitätsachse ist  $a_{b0}$ .





Über die zwei beschriebenen Affinitätsbeziehungen kann jeder Punkt  $M_c \in b_0$  mit Tangente nach  $S_c \in q_0$  übertragen werden. Ein solcherart verknüpftes Punktepaare ist immer genau einer Erzeugenden von  $\Psi_c$ zugeordnet. In Abb. 9 wurde diese Überlegung genutzt, um die Symmetrieachse z von  $\Phi$  und den Durchmesser von  $b_0$  in  $\mu$  auf ein Paar konjugierter Durchmesser von  $q_0$  abzubilden. Einer dieser Durchmesser ist  $d_0$  und zugleich jene Leitgerade, in die  $q_0$ ausartet, wenn man den Neigungswinkel der Lichtstrahlen zur Ebene  $\mu$  gegen null gehen lässt. Unabhängig von der Richtung der Lichtstrahlen bilden  $d'_0$  und  $l'_0$  (der Grundriss eines Lichtstrahls  $l_0$  durch Z) sowie  $b'_0$  und  $c'_0$  eine symmetrische Strahleninvolution. Wir fassen zusammen:

**Satz 3** Längs der Eigenschattengrenze e einer Kreisschiebfläche  $\Phi$  unter Parallelbeleuchtung existieren zwei gleichwertige Begleitregelflächen  $\Psi_b$  und  $\Psi_c$ , deren Erzeugenden Durchmessergeraden jeweils einer Schiebkreisschar sind. Sie sind von viertem Grad und fünfter STURMscher Art. Bei Beleuchtung parallel zur Symmetrieebene von  $\Phi$  entarten die Begleitregelflächen zu Flächen vierten Grades und siebter STURMscher Art. Abb. 10 zeigt zwei Normalrisse der Begleitregelfläche  $\Psi_c$ .



Abb. 10

#### Allgemeine Tangente der Eigenschattengrenze

Zu einem allgemeinen Punkt P der Eigenschattengrenze e einer Kreisschiebfläche  $\Phi$  soll die Tangente t von e konstruiert werden (Abb. 11). Wir wählen die Begleitregelfläche  $\Psi_c$ , die von Durchmessergeraden der Schiebkreise  $c_i$  erzeugt wird, und vervollständigen die Berührkorrelation längs der Erzeugenden  $n_c$  von  $\Psi_c$  in der Tangentialebene  $\tau$  von P bezüglich P.

Der Schlagschatten  $P_s$  in der Symmetrieebene  $\mu$  ist ein Punkt der Hauptgeraden  $h_{\tau}$  von  $\tau$  in  $\mu$ . Außerdem ist  $h'_{\tau}$ normal zu  $n_0'$ . Zu  $n_0$  gelangt man über die Normalebene v der Lichtrichtung, die den Mittelpunkt  $M_c$  des Schiebkreises c von P enthält. Der Schnittpunkt  $S_0$  der Hauptgeraden  $h_v := v \cap \mu$  mit der Drehachse  $a_{b0}$  des Mittenkreises  $b_0$  ist ein Punkt der Normalen  $n_0 := S_0 M_c$ .

Die Tangentialebene  $\sigma_M$  von  $\Psi_c$  in  $M_c$  wird durch  $n_c$  und die Tangente  $t_{b0}$  an  $b_0$  aufgespannt. Die Spur von  $\sigma_M$  in  $\tau$  ist also die Schiebtangente  $t_b$  des Schiebkreises b durch P. Die zweite Schiebtangente  $t_c$  in P entspricht der Spur  $s_{\infty}$  der asymptotischen Ebene  $\sigma_{\infty}$  von  $n_c$ .

Die Tangentialebene  $\sigma_0$  im Schnittpunkt  $S_c$  von  $n_c$  mit der Leitellipse  $q_0 \subset \mu$  wird von  $n_c$  und der Tangente  $t_{q0}$  an  $q_0$ aufgespannt. Weil  $q_0$  über zwei Affinitäten mit den Affinitätsachsen  $h_0$  (Durchmesser von  $b_0$  in  $\mu$ ) bzw.  $a_{b0}$  (Drehachse von  $b_0$ ) aus  $b_0$  hervorgeht, kann  $t_{q0}$  folgendermaßen bestimmt werden:









Die Tangente  $t_{b0}$  an  $b_0$  schneidet  $h_0$  in einem Punkt der Tangente  $t_{b\mu}$  an die zu  $b_0$  affine Ellipse  $b_{\mu}$  in  $B \in h_v, b_{\mu}$ ; gezeichnet wird das im Grundriss nach Paralleldrehen von  $b_0$  nach  $(b_0)$ ;  $t_{b\mu}$  wiederum schneidet  $a_{b0}$  in einem Punkt von  $t_{q0}$ . Die Spur  $s_0$  von  $\sigma_0$  in  $\tau$  enthält den Schnittpunkt C von  $t_{q0}$  und  $h_{\tau}$ .

Eine Hilfsgerade  $g^*||_{s_{\infty}}$  und  $g^* \in \tau$  zur Übertragung des Teilverhältnisses  $TV(S_c, M_c, P)$  kann durch C gezeichnet werden. Dann ist  $C' = S_c^*$  und  $M_c^* := t_b \cap g^*$ . Der Schnittpunkt X' der Strahlen  $S'_c S_c^{*'} := t'_{q0}$  und  $M'_c M_c^{*'}$  ist ein Punkt von t'.

#### 2 Schichtenkreisschraubfläche

Schichtenkreisschraubflächen können als Schiebflächen erzeugt werden, weil ihre Schichtenkreise eine Schar schiebungsgleicher Kurven bilden. Die zweite Schar von Schiebkurven besteht aus zur Mittenlinie schiebungsgleichen Schraublinien (vgl. auch [3], S. 144). Somit gehört die Schichtenkreisschraubfläche zwei Flächenklassen an, weshalb besonders knappe Tangentenkonstruktionen mit der Begleitregelflächenmethode möglich sind. Außerdem kann die Schichtenkreisschraubfläche als oskulierende Hilfsfläche für alle Schraubflächen dienen, bei denen der *Querschnitt* verfügbar ist.

Wir untersuchen die Eigenschattengrenze e einer Schichtenkreisschraubfläche  $\Phi$  in Grund- und Aufriss. Die Richtung paralleler Lichtstrahlen ist durch den Lichtpfeil l gegeben (Abb. 12). Die Flächennormalen längs e schneiden nach einem bekannten Satz ([8], S. 173 f) die Schraubachsenparallele l<sub>0</sub> durch den Drehfluchtpunkt L+ der Lichtstrahlen. Im Grundriss fallen zu jedem Punkt P von e die Bilder der Flächennormalen n und der Durchmessergeraden n<sub>k</sub> des Schichtenkreises k von P zusammen. Also schneiden die Durchmessergeraden der Schichtkreise längs e ebenfalls l<sub>0</sub>.

Wir benutzen die Durchmessergeraden als Erzeugende der Begleitregelfläche  $\Psi$  längs e. Die drei Leitelemente von  $\Psi$  sind dann die Ferngerade der Schichtenkreisebenen, die Mittenschraublinie m<sub>0</sub> sowie die Schraubachsenparallele  $l_0$ .

**Satz 4** Bei Parallelbeleuchtung ist die Begleitregelfläche der Schichtenkreisschraubfläche  $\Phi$  ein gerades Konoid, dessen Leitgerade parallel zur Schraubachse durch den Drehfluchtpunkt der Lichtstrahlen verläuft und dessen Leitkurve die Mittenschraublinie von  $\Phi$  ist. In zwei Fällen ist  $\Psi$  eine Wendelfläche: einmal wenn die Leitgerade  $l_0$  in die Schraubachse a fällt und zum anderen wenn  $l_0$  die Leitkurve  $m_0$  unendlich oft trifft.

Im Punkt P der Eigenschattengrenze e von  $\Phi$  soll die Tangente t an e konstruiert werden. Wir vervollständigen die Berührkorrelation längs  $n_k$  in der Tangentialebene  $\tau$  von P. Die Tangentialebene  $\sigma_M$  im Mittelpunkt M von k wird durch  $n_k$  und die Schraubtangente  $t_0$  aufgespannt. Die Spur  $t_m$  von  $\sigma_M$  in  $\tau$  ist eine Mantellinien des Berührzylinders von k und zu  $t_0$  parallel. Der Spurpunkt  $H_m$  von  $t_m$  in der Frontebene  $\mu$  durch  $l_0$  ist ein Punkt der zu I parallelen Spur  $h_{\tau}$  von  $\tau$  in  $\mu$ . Die Spur  $s_{\infty}$  der asymptotischen Ebene von  $n_k$  ist waagerecht und fällt in die Schichtenkreistangente  $t_k$ .

Die Leitgerade  $l_0$  ist die Striktionslinie von  $\Psi$  und spannt mit  $n_k$  die Zentralebene von  $n_k$  auf (vgl. [5], S. 71f.). Ihre Spur in  $\tau$  ist die Falltangente f durch  $T:=l_0\cap h_{\tau}$ . Zentralebene und asymptotische Ebene sind zueinander orthogonal.

Zur Übertragung des Teilverhältnisses wird eine Hilfsgerade g<sup>\*</sup>  $\subset$  t parallel zu s<sub>∞</sub> angenommen. Sie schneidet t<sub>m</sub> in M<sup>\*</sup> und f in N<sup>\*</sup>. Der Schnittpunkt X'' der Geraden N''N<sup>\*''</sup> und M''M<sup>\*''</sup> ist ein Punkt der gesuchten Tangente t an e. Eine Konstruktionslinie lässt sich einsparen, wenn g<sup>\*</sup> durch T gewählt wird.

Aus Abb. 12 kann noch jene einfache Konstruktion herausgelesen werden, die auf die Wendetangenten von e'' führt.

#### Schlussbemerkungen

Die Untersuchung der Schiebflächen zeigt, dass eine konstruktiv verwertbare Begleitregelfläche nicht immer aus der Normalenkongruenz der untersuchten Fläche  $\Phi$  herausgeschält werden kann. Für die Festlegung einer brauchbaren Begleitregelfläche ist vielmehr die kinematische Erzeugung von  $\Phi$  ausschlaggebend. Bei den Schiebflächen, wie auch im noch ausstehende Teil zur Zentralbeleuchtung, führt der Lösungsweg für die Tangentenkonstruktion über eine genaue Analyse der Punktkonstruktion.

#### Literatur

- [1] BRAUNER, HEINRICH: Lehrbuch der Konstruktiven Geometrie; Springer-Verlag, Wien, New York 1986
- [2] HOHENBERG, FRITZ: Konstruktive Geometrie in der Technik; 3. verb. Aufl. Springer-Verlag, Wien 1966
- [3] KRUPPA, ERWIN: Analytische und konstruktive Differentialgeometrie; Springer-Verlag, Wien 1957
- [4] LORDICK, DANIEL: Konstruktion der Schattengrenzen krummer Flächen mithilfe von Begleitflächen; Shaker, Aachen 2001 (zugl. Karlsruhe, Univ., Diss. 2001)
- [5] MÜLLER, EMIL; KRAMES, JOSEF LEOPOLD: Konstruktive Behandlung der Regelflächen; in: Vorlesungen über Geometrie, Band III; Franz Deuticke, Leipzig, Wien 1931
- [6] SCHEFFERS, GEORG: Lehrbuch der Darstellenden Geometrie in zwei Bänden. Erster Band; Verlag von Julius Springer, Berlin 1922
- [7] STACHEL, HELLMUTH: Zum Umriss der Drehflächen; in: Anzeiger der math.-naturw. Klasse der Österreichischen Akademie der Wissenschaften, Nr. 10; Wien 1972
- [8] WUNDERLICH, WALTER: Darstellende Geometrie II; Bibliographisches Institut, Mannheim 1967

#### **Daniel Lordick**

Institut für Geometrie Technische Universität Dresden Zellescher Weg 12-14, D 01096 Dresden e-mail: lordick@math.tu-dresden.de