Butterflies in the Isotropic Plane

Butterflies in the Isotropic Plane

Abstract

A real affine plane A_{2} is called an isotropic plane I_{2}, if in A_{2} a metric is induced by an absolute $\{f, F\}$, consisting of the line at infinity f of A_{2} and a point $F \in f$. In this paper the well-known Butterfly theorem has been adapted for the isotropic plane. For the theorem that we will further-on call an Isotropic butterfly theorem, four proofs are given.

Key words: isotropic plane, butterfly theorem
MSC 2000: 51N025

1 Isotropic Plane

Let $P_{2}(\mathbf{R})$ be a real projective plane, f a real line in P_{2}, and $A_{2}=P_{2} \backslash f$ the associated affine plane. The isotropic plane $I_{2}(\mathbf{R})$ is a real affine plane A_{2} where the metric is introduced with a real line $f \subset P_{2}$ and a real point F incidental with it. The ordered pair $\{f, F\}, F \in f$ is called absolute figure of the isotropic plane $I_{2}(\mathbf{R})$ ([3], [5]). In the affine model, where

$$
\begin{equation*}
x=x_{1} / x_{0}, \quad y=x_{2} / x_{0}, \tag{1}
\end{equation*}
$$

the absolute figure is determined by the absolute line $f \equiv$ $x_{0}=0$, and the absolute point $F(0: 0: 1)$. All projective transformations that are keeping the absolute figure fixed form a 5-parametric group

$$
G_{5}\left\{\begin{array}{lc}
\bar{x}=c_{1}+c_{4} x \tag{2}\\
\bar{y}=c_{2}+c_{3} x+c_{5} y
\end{array}, \quad \begin{array}{c}
c_{1}, c_{2}, c_{3}, c_{4}, c_{5} \in \mathbf{R} \\
\& \quad c_{4} c_{5} \neq 0 .
\end{array}\right.
$$

We call it the group of similarities of isotropic plane.
Defining in I_{2} the usual metric quantities such as the distance between two points, the angle between two lines etc., we look for the subgroup of G_{5} for those quantities to be invariant. In such a way one obtains the fundamental group of transformations that are the mappings of the form:

$$
G_{3}\left\{\begin{array}{l}
\bar{x}=c_{1}+x \tag{3}\\
\bar{y}=c_{2}+c_{3} x+y
\end{array} .\right.
$$

Leptiri u izotropnoj ravnini

SAŽETAK

Realna afina ravnina A_{2} se naziva izotropnom ravninom I_{2} ako je metrika u A_{2} inducirana apsolutnom figurom $\{f, F\}$, koja se sastoji od neizmjerno dalekog pravca f ravnine A_{2} i točke $F \in f$. U ovom je radu poznati Leptirov teorem smješten u izotropnu ravninu. Za taj teorem, kojeg od sada nazivamo Izotropnim leptirovim teoremom, dana su četiri dokaza.

Ključne riječi: izotropna ravnina, leptirov teorem

It is called the motion group of isotropic plane. Hence, the group of isotropic motions consists of translations and rotations, that is

$$
\left\{\begin{array} { l }
{ \overline { x } = c _ { 1 } + x } \\
{ \overline { y } = c _ { 2 } + y }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\bar{x}=x \\
\bar{y}=c_{3} x+y
\end{array} .\right.\right.
$$

In the affine model, rotation is understood as stretching along the y -axis.

2 Terms of Elementary Geometry within I_{2}

We will first define some terms and point out some properties of triangles and circles in I_{2} that are going to be used further on. The geometry of I_{2} could be seen for example in Sachs [3], or Strubecker [5].

Isotropic straight line, parallel points, isotropic distance, isotropic span

All straight lines through the point F are called isotropic straight lines (isotropic lines). All the other straight lines are simply called straight lines. Two points A, B $(A \neq B)$ are called parallel if they are incidental with the same isotropic line. For two no parallel points $A\left(a_{1}, a_{2}\right), B\left(b_{1}, b_{2}\right)$, the isotropic distance is defined by $d(A, B):=b_{1}-a_{1}$. Note that the isotropic distance is directed. For two parallel points $A\left(a_{1}, a_{2}\right), B\left(b_{1}, b_{2}\right)$, $a_{1}=b_{1}$, the quantity known as isotropic spann is defined by $s(A, B):=b_{2}-a_{2}$. A straight line p through two points A and B will be denoted by $p \equiv A \vee B$, or simply $p \equiv A B$.

Invariants of a pair of straight lines

Each no isotropic straight line $g \subset I_{2}$ can be written in the normal form $y=u x+v$, that is, in line coordinates, $g(u, v)$. For two straight lines $g_{1}\left(u_{1}, v_{1}\right), g_{2}\left(u_{2}, v_{2}\right)$ the isotropic angle is defined by $\varphi=\angle\left(g_{1}, g_{2}\right):=u_{2}-u_{1}$. Note that the isotropic angle is directed as well. The Euclidean meaning of the isotropic angle can be understood from the affine model that is given in figure 1 .

Fig. 1
For two parallel straight lines $g_{1}\left(u_{1}, v_{1}\right), g_{2}\left(u_{1}, v_{2}\right)$ there exists an isotropic invariant defined by $\varphi *\left(g_{1}, g_{2}\right):=v_{2}-$ v_{1} (see fig. 2).

Fig. 2

Isotropic normal

An isotropic normal to the straight line $g(u, v)$ in the point $P\left(p_{1}, p_{2}\right), P \notin g$ is an isotropic line through P. Inversely holds as well, i.e. each straight line $g \subset I_{2}$ is a normal for each isotropic straight line. Denoting by S the point of intersection of the isotropic normal in the point P with the straight line g, the isotropic distance of the point P from the line g is given by $d(P, g):=s(S, P)=p_{2}-s_{2}=$ $p_{2}-u p_{1}-v$ (see fig. 3).

Fig. 3

Fig. 4

Triangles and circles

Under a triangle in I_{2} an ordered set of three no collinear points $\{A, B, C\}$ is understood. A, B, C are called vertices, and $a:=B \vee C, b:=C \vee A, c:=A \vee B$ sides of a triangle. A triangle is called allowable if no one of its sides is isotropic. In a allowable triangle the lengths of the sides are defined by $|a|:=d(B, C),|b|:=d(C, A),|c|:=d(A, B)$, with $|a| \neq 0,|b| \neq 0,|c| \neq 0$. For the directed angles we have $\alpha:=\angle(b, c) \neq 0, \beta:=\angle(c, a) \neq 0, \gamma:=\angle(a, b) \neq 0$ (see figure 4).

Isotropic altitudes h_{a}, h_{b}, h_{c} associated with sides a, b, and c are isotropic straight lines passing through the vertices A, B, C, i.e. normals to the sides a, b, and c. Their lengths are defined by $\left|h_{a}\right|:=s(L(A), A)$, where $L(A)=a \cap h_{a}$, etc. The Euclidian meaning is given in figure 5.

Fig. 5

An isotropic circle (parabolic circle) is a regular $2^{\text {nd }}$ order curve in $P_{2}(\mathbf{R})$ which touches the absolute line f in the absolute point F. According to the group G_{3} of motions of the isotropic plane there exists in I_{2} a three parametric family of isotropic circles, given by $y=R x^{2}+\alpha x+$ $\beta, R \neq 0, \alpha, \beta \in \mathbf{R}$. Using transformations from G_{3}, each isotropic circle can be reduced in the normal form $y=R x^{2}, R \neq 0 . R$ is a G_{3} invariant and it is called the isotropic radius of the parabolic circle.

3 The Isotropic Butterfly Theorem

Theorem 1 (Euclidean version) Let M be the midpoint of a chord PQ of the circle, through which two other chords $A B$ and $C D$ are drawn; $A D$ cuts $P Q$ at X and $B C$ cuts $P Q$ at $Y . M$ is also the midpoint of $X Y$.

This theorem has been proved in a series of books and papers (e.g. [1], [2], [4]).

Theorem 2 (Isotropic version) Let M be the midpoint of a chord $\overrightarrow{P Q}$ of the parabolic circle, through which two other chords $\overrightarrow{A B}$ and $\overrightarrow{C D}$ are drawn; $\overrightarrow{A D}$ cuts $\overrightarrow{P Q}$ at X and $\overrightarrow{B C}$ cuts $\overrightarrow{P Q}$ at $Y . M$ is also the midpoint of $\overrightarrow{X Y}$.

Proof 1

The point coordinates are: $P\left(p_{1}, p_{2}\right), Q\left(q_{1}, q_{2}\right)$, $M\left(m_{1}, m_{2}\right), X\left(x_{1}, x_{2}\right), Y\left(y_{1}, y_{2}\right)$, with $p_{1} \neq q_{1}$, since $\overrightarrow{P Q}$ is a chord and as a such a no isotropic line, wherefrom we derive that $x_{1} \neq y_{1} \neq m_{1}$ must be fulfilled as well. Let us drop perpendiculars h_{1}, h_{2} from X, and g_{1}, g_{2} from Y on $A B$ and $C D$. Let's also denote

$$
\begin{array}{ll}
d(P, M)=d(M, Q)=|s| \\
d(X, M)=|x|, & d(M, Y)=|y|, \\
H_{1}=h_{1} \cap A M, & H_{2}=h_{2} \cap D M, \\
G_{1}=g_{1} \cap M B, & G_{2}=g_{2} \cap M C . \tag{5}
\end{array}
$$

Fig. 6: The Isotropic butterfly theorem in the affine model

As first we need the following:
Lemma 1 Let $P, Q, P \neq Q$, be two points on a parabolic circle k, and $A \neq P, A \neq Q$, any other point on the same circle k. The isotropic angle $\varphi=\angle(\overrightarrow{P A}, \overrightarrow{Q A})$ does not depend on the position of point A.

The proof is given in [3, p. 32].

Lemma 2 The relations
$\frac{|a|}{\alpha}=\frac{|b|}{\beta}=\frac{|c|}{\chi}, \quad\left|h_{a}\right|=|c| \beta, \quad\left|h_{b}\right|=|a| \chi, \quad\left|h_{c}\right|=|b| \alpha$
hold for every allowable triangle.
The proof is given in [3, p. 28].
Lemma 3 Let k be a parabolic circle in I_{2}, a point $P \in$ $I_{2}, P \notin k$, and S_{1}, S_{2} two points of intersection of a no isotropic straight line g through P with k. The product $f(P):=d\left(P, S_{1}\right) \cdot d\left(P, S_{2}\right)$ doesn't depend of the line g, but only of k and P.

The proof is given in [3, p. 38].
Let's now continue the proof of the isotropic Butterfly theorem.
According to lemma 1 ,

$$
\alpha=\angle(\overrightarrow{A B}, \overrightarrow{A D})=\alpha^{\prime}=\angle(\overrightarrow{C B}, \overrightarrow{C D})
$$

and

$$
\begin{equation*}
\beta=\angle(\overrightarrow{D A}, \overrightarrow{D C})=\beta^{\prime}=\angle(\overrightarrow{B A}, \overrightarrow{B C}) \tag{6}
\end{equation*}
$$

We will also need

$$
\mu=\angle(\overrightarrow{X M}, \overrightarrow{M A})=\mu^{\prime}=\angle(\overrightarrow{Y M}, \overrightarrow{M B})
$$

and

$$
\begin{equation*}
\mathrm{v}=\angle(\overrightarrow{D M}, \overrightarrow{M X})=\mathrm{v}^{\prime}=\angle(\overrightarrow{C M}, \overrightarrow{M Y}) . \tag{7}
\end{equation*}
$$

Let's apply furthermore lemma 2 on the following pairs of allowable triangles:
1st) $\triangle A X M \& \triangle M B Y, \quad$ 2nd) $\triangle X D M \& \triangle M Y C$, 3rd) $\triangle A X M \& \triangle M Y C$, 4th) $\triangle X D M \& \triangle M B Y$, marking sides, angles and altitudes as given in figure 7.

Fig. 7

$$
\text { 1st) } \begin{aligned}
\triangle A X M \Rightarrow & \frac{|x|}{\angle(\overrightarrow{A X}, \overrightarrow{X M})}=\frac{|a|}{\alpha}=\frac{|m|}{\mu}, \\
& \left|h_{x}\right|=|a| \cdot \mu ; \\
\triangle M B Y \Rightarrow & \frac{|y|}{\angle(\overrightarrow{B Y}, \overrightarrow{Y M})}=\frac{\left|m^{\prime}\right|}{\mu}=\frac{|b|}{\beta}, \\
& \left|h_{y}\right|=|b| \cdot \mu ;
\end{aligned}
$$

$\Rightarrow \frac{\left|h_{x}\right|}{\left|h_{y}\right|}=\frac{|a|}{|b|}$, and using marks from fig. 6 we get

$$
\begin{equation*}
\frac{|x|}{|y|}=\frac{\left|h_{1}\right|}{\left|g_{1}\right|} . \tag{8}
\end{equation*}
$$

2nd) $\triangle X D M \Rightarrow \frac{|x|}{\angle(\overrightarrow{M X}, \overrightarrow{X D})}=\frac{|d|}{\beta}=\frac{|m|}{v}$, $\left|h_{y}\right|=|m| \cdot \beta=|d| \cdot v ;$

$$
\begin{aligned}
\triangle M Y C \Rightarrow & \frac{|y|}{\angle(\overrightarrow{M Y}, \overrightarrow{Y C})}=\frac{|c|}{\alpha}=\frac{\left|m^{\prime}\right|}{\mathrm{v}} \\
& \left|h_{y}\right|=\left|m^{\prime}\right| \cdot \alpha=|c| \cdot \mathrm{v}
\end{aligned}
$$

$\Rightarrow \frac{\left|h_{x}\right|}{\left|h_{y}\right|}=\frac{|d|}{|c|}$, and using marks from fig. 6 we have

$$
\begin{equation*}
\frac{|x|}{|y|}=\frac{\left|h_{2}\right|}{\left|g_{2}\right|} . \tag{9}
\end{equation*}
$$

Analogously, for the third pair of triangles we get

$$
\begin{equation*}
\frac{\left|h_{1}\right|}{\left|g_{2}\right|}=\frac{d(A, X)}{d(Y, C)} . \tag{10}
\end{equation*}
$$

Finally, for the fourth pair of triangles we have

$$
\begin{equation*}
\frac{\left|h_{2}\right|}{\left|g_{1}\right|}=\frac{d(X, D)}{d(B, Y)} . \tag{11}
\end{equation*}
$$

From (4), (8), (9), (10), (11), and lemma 3 one computes

$$
\begin{align*}
\frac{|x|^{2}}{|y|^{2}} & =\frac{\left|h_{1}\right|}{\left|g_{1}\right|} \cdot \frac{\left|h_{2}\right|}{\left|g_{2}\right|}=\frac{\left|h_{1}\right|}{\left|g_{2}\right|} \cdot \frac{\left|h_{2}\right|}{\left|g_{1}\right|}= \\
& =\frac{d(A, X)}{d(Y, C)} \cdot \frac{d(X, D)}{d(B, Y)}=\frac{-d(X, A) \cdot d(X, D)}{-d(Y, C) \cdot d(Y, B)}= \\
& =\frac{d(X, P) \cdot d(X, Q)}{d(Y, P) \cdot d(Y, Q)}=\frac{\left(p_{1}-x_{1}\right)\left(q_{1}-x_{1}\right)}{\left(p_{1}-y_{1}\right)\left(q_{1}-y_{1}\right)}= \\
& =\frac{\left(p_{1}-m_{1}+m_{1}-x_{1}\right)\left(q_{1}-m_{1}+m_{1}-x_{1}\right)}{\left(p_{1}-m_{1}+m_{1}-y_{1}\right)\left(q_{1}-m_{1}+m_{1}-y_{1}\right)}= \\
& =\frac{-(|s|-|x|)(|s|+|x|)}{-(|s|+|y|)(|s|-|y|)}=\frac{|s|^{2}-|x|^{2}}{|s|^{2}-|y|^{2}} . \tag{12}
\end{align*}
$$

$\frac{|x|^{2}}{|y|^{2}}=\frac{|s|^{2}-|x|^{2}}{|s|^{2}-|y|^{2}} \quad \Rightarrow \quad|x|^{2}=|y|^{2} \quad \Rightarrow \quad|x|= \pm|y|$

The solution $|x|=-|y| \Rightarrow d(X, M)=-d(M, Y)=$ $d(Y, M)$, wherefrom it follows that points X and Y are parallel points, which has been excluded earlier.
So, $|x|=|y| \quad \Rightarrow \quad d(X, M)=d(M, Y)$.

Proof 2

Let's use the notation given in (4), that is, $d(P, M)=$ $d(M, Q)=|s|, d(X, M)=|x|, d(M, Y)=|y|$, as well as (6) and (7) for the observed angles.

Fig. 8
From lemma 3, as shown in (12), we have

$$
\begin{align*}
& d(X, A) \cdot d(X, D)=d(X, P) \cdot d(X, Q) \\
& d(X, P) \cdot d(X, Q)=-(|s|-|x|) \quad(|s|+|x|)=|x|^{2}-|s|^{2} \tag{13}
\end{align*}
$$

Lemma 2 applied on the allowable triangles $\triangle D M X$ and $\triangle A X M$ yields

$$
\begin{align*}
& \triangle D M X \Rightarrow \frac{d(X, D)}{v}=\frac{d(D, M)}{\angle(-\overrightarrow{M X},-\overrightarrow{X D})}=\frac{d(M, X)}{\beta} \\
& \Rightarrow \frac{d(X, D)}{v}=\frac{d(M, X)}{\beta} \tag{14}\\
& \begin{aligned}
\triangle A X M & \Rightarrow \frac{d(A, X)}{\mu}=\frac{d(X, M)}{\alpha}=\frac{d(M, A)}{\angle(\overrightarrow{A X},-\overrightarrow{X M})} \\
& \Rightarrow \frac{d(A, X)}{\mu}=\frac{d(X, M)}{\alpha}
\end{aligned}
\end{align*}
$$

Lemma 4 The sum of the directed sides of an allowable triangle in I_{2} equals zero; the sum of the directed angles of an allowable triangle in I_{2} equals zero as well.

The proof is given in [3, p. 22].

For the allowable triangle $\triangle A D M$, from lemma 4,

$$
\begin{equation*}
v+\mu+\alpha+\beta=0 \Rightarrow \beta=-(v+\mu+\alpha) \tag{16}
\end{equation*}
$$

Using (13)-(16) together, we obtain

$$
\begin{align*}
& d(X, A) \cdot d(X, D)=-d(X, M) \cdot \frac{\mu}{\alpha} \cdot d(M, X) \cdot \frac{v}{\beta}= \\
& =|x|^{2} \frac{v \mu}{-\alpha(v+\mu+\alpha)}=|x|^{2}-|s|^{2} \\
& \Rightarrow|x|^{2}\left(1+\frac{v \mu}{\alpha(v+\mu+\alpha)}\right)=|s|^{2} \\
& \Rightarrow|x|^{2}=\frac{|s|^{2}[\alpha(v+\mu+\alpha)]}{v \mu+\alpha(v+\mu+\alpha)} . \tag{17}
\end{align*}
$$

Following the same procedure ((13)-(16)) for the segment $|y|=d(M, Y)$, due to the symmetry in v and μ in the latter expression, we'll get exactly same result. So, $|x|^{2}=|y|^{2}$, that is $|x|= \pm|y|$, and following the conclusion from proof $1,|x|=|y| \Rightarrow d(X, M)=d(M, Y)$.

Proof 3

The proof is based on the following:
Lemma 5 If in two allowable triangles in I_{2} a directed angle of one is equal to a directed angle of the other, then the areas of the triangles are in the same ratio as the products of the sides composing the equal angles.

Proof According [3, p. 26] the isotropic area of an allowable triangle $A B C, A\left(a_{1}, a_{2}\right), B\left(b_{1}, b_{2}\right)$, and $C\left(c_{1}, c_{2}\right)$ is given by

$$
F_{A B C}=\frac{1}{2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right| .
$$

Let's mark the directed angles as given before in (6) and (7) (see figure 6), and let's observe the allowable triangles $A X M$ and MYC (figure 9).

Lemma 1 yields that $\alpha=\angle(\overrightarrow{M A}, \overrightarrow{A X})=\alpha^{\prime}=$ $\angle(\overrightarrow{Y C}, \overrightarrow{C M})$, hence, we have to proof the equality:

$$
\begin{equation*}
\frac{F_{A X M}}{F_{M Y C}}=\frac{d(M, A) \cdot d(A, X)}{d(Y, C) \cdot d(C, M)} \tag{18}
\end{equation*}
$$

Fig. 9
For the points $A\left(a_{1}, a_{2}\right), C\left(c_{1}, c_{2}\right), M\left(m_{1}, m_{2}\right), X\left(x_{1}, x_{2}\right)$ and $Y\left(y_{1}, y_{2}\right)$, the isotropic areas of the triangles are given by

$$
F_{A X M}=\frac{1}{2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
a_{1} & x_{1} & m_{1} \\
a_{2} & x_{2} & m_{2}
\end{array}\right|
$$

and

$$
F_{M Y C}=\frac{1}{2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
m_{1} & y_{1} & c_{1} \\
m_{2} & y_{2} & c_{2}
\end{array}\right| .
$$

The sides composing the equal angles are $d(M, A)=$ $\left(a_{1}-m_{1}\right), d(A, X)=\left(x_{1}-a_{1}\right), d(Y, C)=\left(c_{1}-y_{1}\right)$, and $d(C, M)=\left(m_{1}-c_{1}\right)$. For the directed angles α and α^{\prime} we have

$$
\begin{gathered}
\alpha=\angle(\overrightarrow{M A}, \overrightarrow{A X})=\frac{x_{2}-a_{2}}{x_{1}-a_{1}}-\frac{a_{2}-m_{2}}{a_{1}-m_{1}} \\
\alpha^{\prime}=\angle(\overrightarrow{Y C}, \overrightarrow{C M})=\frac{m_{2}-c_{2}}{m_{1}-c_{1}}-\frac{c_{2}-y_{2}}{c_{1}-y_{1}} \\
\alpha=\alpha^{\prime} \Rightarrow \frac{x_{2}-a_{2}}{x_{1}-a_{1}}-\frac{a_{2}-m_{2}}{a_{1}-m_{1}}=\frac{m_{2}-c_{2}}{m_{1}-c_{1}}-\frac{c_{2}-y_{2}}{c_{1}-y_{1}} \\
\Rightarrow \frac{x_{1} m_{2}-x_{2} m_{1}-a_{1} m_{2}+a_{2} m_{1}+a_{1} x_{2}-a_{2} x_{1}}{y_{1} c_{2}-y_{2} c_{1}-m_{1} c_{2}+m_{2} c_{1}+m_{1} y_{2}-m_{2} y_{1}}= \\
=\frac{a_{1} x_{1}-x_{1} m_{1}+m_{1} a_{1}-a_{1}^{2}}{m_{1} c_{1}-m_{1} y_{1}+c_{1} y_{1}-c_{1}^{2}} .
\end{gathered}
$$

The latter equation can be reach writing extensively equation (18).

Let's apply now lemma 5 on the following pairs of allowable triangles:
$\triangle M A X$ and $\triangle Y C M \Rightarrow$

$$
\begin{equation*}
\frac{F_{M A X}}{F_{Y C M}}=\frac{d(M, A) \cdot d(A, X)}{d(Y, C) \cdot d(C, M)}, \tag{19}
\end{equation*}
$$

$\triangle C M Y$ and $\triangle D M X \Rightarrow$

$$
\begin{equation*}
\frac{F_{C M Y}}{F_{D M X}}=\frac{d(C, M) \cdot d(M, Y)}{d(D, M) \cdot d(M, X)}, \tag{20}
\end{equation*}
$$

$\triangle X D M$ and $\triangle M B Y \Rightarrow$

$$
\begin{equation*}
\frac{F_{X D M}}{F_{M B Y}}=\frac{d(X, D) \cdot d(D, M)}{d(M, B) \cdot d(B, Y)}, \tag{21}
\end{equation*}
$$

$\triangle Y M B$ and $\triangle X M A \Rightarrow$

$$
\begin{equation*}
\frac{F_{Y M B}}{F_{X M A}}=\frac{d(Y, M) \cdot d(M, B)}{d(X, M) \cdot d(M, A)} . \tag{22}
\end{equation*}
$$

(19) $\cdot(20) \cdot(21) \cdot(22)=\frac{F_{M A X}}{F_{Y C M}} \cdot \frac{F_{C M Y}}{F_{D M X}} \cdot \frac{F_{X D M}}{F_{M B Y}} \cdot \frac{F_{Y M B}}{F_{X M A}}=1$

$$
\begin{align*}
& \Rightarrow \frac{d(A, X) \cdot d(M, Y)}{d(Y, C) \cdot d(M, X)} \cdot \frac{d(X, D) \cdot d(Y, M)}{d(B, Y) \cdot d(X, M)}=1 \\
& \Rightarrow \frac{d(A, X) \cdot d(X, D)}{d(B, Y) \cdot d(Y, C)}=\frac{d(M, X) \cdot d(X, M)}{d(M, Y) \cdot d(Y, M)} \tag{23}
\end{align*}
$$

According lemma 3 , and using the notation given in (4), we have

$$
\begin{equation*}
d(A, X) \cdot d(X, D)=d(P, X) \cdot d(X, Q)=|s|^{2}-|x|^{2} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
d(B, Y) \cdot d(Y, C)=d(P, Y) \cdot d(Y, Q)=|s|^{2}-|y|^{2} \tag{25}
\end{equation*}
$$

Inserting (24) and (25) in (23) we obtain

$$
\frac{|s|^{2}-|x|^{2}}{|s|^{2}-|y|^{2}}=\frac{-|x|^{2}}{-|y|^{2}} \Rightarrow|x|^{2}=|y|^{2} \Rightarrow|x|= \pm|y|
$$

and finally, as it has been shown before,

$$
|x|=|y| \Rightarrow d(X, M)=d(M, Y) .
$$

Proof 4

Let k be a parabolic circle in I_{2}, and let M be the midpoint of the chord $\overrightarrow{P Q}$ of k. Let's choose the coordinate system as shown (in the affine model) in figure 10 , i.e, the tangent on the circle k parallel to the chord $\overrightarrow{P Q}$ as the x-axis, and the isotropic straight line through M as the y-axis.

Fig. 10
Let $A\left(a_{1}, R a_{1}^{2}\right), \quad B\left(b_{1}, R b_{1}^{2}\right), A \neq B \Rightarrow a_{1} \neq b_{1}$, and $C\left(c_{1}, R c_{1}^{2}\right), D\left(d_{1}, R d_{1}^{2}\right), C \neq D \Rightarrow c_{1} \neq d_{1}$, be four points on the parabolic circle k. Choosing $M(0, m)$, for the chord $\overrightarrow{P Q}$ we have $\overrightarrow{P Q} \equiv y=m$. Besides, for $\overrightarrow{A B}$ being a chord through M, the following relations are obtained:
M, A, B collinear points \Leftrightarrow

$$
\left|\begin{array}{ccc}
0 & m & 1 \tag{26}\\
a_{1} & R a_{1}^{2} & 1 \\
b_{1} & R b_{1}^{2} & 1
\end{array}\right|=0 \Leftrightarrow a_{1} b_{1}=-\frac{m}{R} .
$$

Analogously, for $\overrightarrow{C D}$ being a chord through M, we have: M, C, D collinear points \Leftrightarrow

$$
\left|\begin{array}{ccc}
0 & m & 1 \tag{27}\\
c_{1} & R c_{1}^{2} & 1 \\
d_{1} & R d_{1}^{2} & 1
\end{array}\right|=0 \Leftrightarrow c_{1} d_{1}=-\frac{m}{R}
$$

Let's denote further on $X\left(x_{1}, m\right)$ and $Y\left(y_{1}, m\right)$.
One obtains the following:
A, D, X collinear points \Leftrightarrow

$$
\left|\begin{array}{ccc}
x_{1} & m & 1 \tag{28}\\
a_{1} & R a_{1}^{2} & 1 \\
d_{1} & R d_{1}^{2} & 1
\end{array}\right|=0 \Leftrightarrow R x_{1}\left(a_{1}+d_{1}\right)=m+R a_{1} d_{1}
$$

C, B, Y collinear points \Leftrightarrow

$$
\left|\begin{array}{ccc}
y_{1} & m & 1 \tag{29}\\
b_{1} & R b_{1}^{2} & 1 \\
c_{1} & R c_{1}^{2} & 1
\end{array}\right|=0 \Leftrightarrow R y_{1}\left(b_{1}+c_{1}\right)=m+R b_{1} c_{1} .
$$

Finally, using (26), (27), (28), and (29) it follows:
$x_{1}+y_{1}=\frac{m+R a_{1} d_{1}}{R\left(a_{1}+d_{1}\right)}+\frac{m+R b_{1} c_{1}}{R\left(b_{1}+c_{1}\right)}=$
$=\frac{\left(m+R a_{1} d_{1}\right)\left(b_{1}+c_{1}\right)+\left(m+R b_{1} c_{1}\right)\left(a_{1}+d_{1}\right)}{R\left(a_{1}+d_{1}\right)\left(b_{1}+c_{1}\right)}=$
$=\frac{R\left(a_{1} b_{1} d_{1}+a_{1} c_{1} d_{1}+a_{1} b_{1} c_{1}+b_{1} c_{1} d_{1}\right)+m\left(a_{1}+b_{1}+c_{1}+d_{1}\right)}{R\left(a_{1}+d_{1}\right)\left(b_{1}+c_{1}\right)}=$
$=\frac{R\left(-\frac{m}{R} d_{1}-\frac{m}{R} a_{1}-\frac{m}{R} c_{1}-\frac{m}{R} b_{1}\right)+m\left(a_{1}+b_{1}+c_{1}+d_{1}\right)}{R\left(a_{1}+d_{1}\right)\left(b_{1}+c_{1}\right)}=0$
$\Rightarrow M$ is the midpoint of $\overrightarrow{X Y}$.

Jelena Beban-Brkić

Department of Geomatics, Faculty of Geodesy, University of Zagreb
Kačićeva 26, 10000 Zagreb, Croatia
e-mail: jbeban@geof.hr

References

[1] Coxeter, H. S. M., Greitzer, S. L., Geometry Revisited, MAA 1967
[2] Greitzer, S. L., Arbelos, v 5, ch 2, pp 38-39, MAA 1991
[3] Sachs, H., Ebene isotrope Geometrie, ViewegVerlag, Braunschweig; Wiesbaden, 1987
[4] Shklyarsky, D. O., Chentsov, N. N., Yaglom, I. M., Selected Problems and Theorems of Elementary Mathematics, v 2, Moscow, 1952
[5] Strubecker, K., Geometrie in einer isotropen Ebene, Math.-naturwiss. Unterricht, no. 15, pp. 297306, 343-351, 1962

Vladimir Volenec

Department of Mathematics, University of Zagreb Bijenička c. 30, 10000 Zagreb, Croatia e-mail: volenec@math.hr

