Pascal-Brianchon Sets in Pappian Projective Planes

Pascal-Brianchon Sets in Pappian Projective Planes

ABSTRACT

It is well-known that Pascal and Brianchon theorems characterize conics in a Pappian projective plane. But, using these theorems and their modifications we shall show that the notion of a conic (or better a Pascal-Brianchon set) can be defined without any use of theory of projectivities or of polarities as usually.

Key words: conic, Pascal set, Pascal-Brianchon set
MSC 2000: 51A30, 51E15

1 Introduction

We shall operate in a Pappian projective plane of order at least 5 and characteristic other then 2.

A simple 6-point $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ is a set of six points $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}$ taken in this cyclic order in which any two consecutive points and any other point are non-collinear. We say that this 6-point is a Pascalian 6-point and we write $P\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}\right)$ if $A_{1} A_{2} \cap$ $A_{4} A_{5}, A_{2} A_{3} \cap A_{5} A_{6}$ and $A_{3} A_{4} \cap A_{6} A_{1}$ are collinear points.
The Pappus theorem can be stated in the following form:
If A_{1}, A_{3}, A_{5} resp. A_{2}, A_{4}, A_{6} are collinear points then $P\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}\right)$.

Now, we can prove (see [2]):

Theorem 1.1

$P\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}\right) \Longrightarrow P\left(A_{i_{1}}, A_{i_{2}}, A_{i_{3}}, A_{i_{4}}, A_{i_{5}}, A_{i_{6}}\right)$, where $\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}\right)$ is any permutation of $\{1,2,3,4,5,6\}$.

It is well-known that Pappus theorem implies the Desargues theorem. More precisely Pappus theorem resp.

Pascal-Brianschonovi skupovi u Pappusovim projektivnim ravninama

SAŽETAK

Poznato je da Pascalov i Brianchonov teorem karakteriziraju kivulje 2. reda u Pappusovoj projektivnoj ravnini. Međutim, koristeći te teoreme i njihove modifikacije pokazat ćemo da se pojam krivulje 2. reda (ili bolje: pojam Pascal-Brianchonovog skupa) može definirati bez pomoći projektiviteta ili teorije polariteta, kao što se to obično radi.

Ključne riječi: konika, Pascalov skup, Pascal-Brianchonov skup

Desargues theorem is equivalent to the statement of Theorem 1.1 for $\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}\right)=(1,2,3,4,6,5)$ resp. $\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}\right)=(1,2,3,6,5,4)$ (see [1], [2]).

By the following definitions we shall generalize the notion of a simple 6-point. Let I be the relation of incidence.

A one-fold specialized simple 6-point $A_{1} a_{1} A_{1} A_{2} A_{3} A_{4} A_{5}$ is a set of five points $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ taken in this cyclic order in which any three points are non-collinear, and of a line a_{1} such that $A_{i} \mathrm{I} a_{1}$ iff $i=1$. We say that this 6-point is a Pascalian one-fold specialized 6-point and we write $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ if $a_{1} \cap A_{3} A_{4}, A_{1} A_{2} \cap A_{4} A_{5}$, $A_{2} A_{3} \cap A_{5} A_{1}$ are collinear points.

A two-fold specialized simple 6-point $A_{1} a_{1} A_{1} A_{2} a_{2} A_{2} A_{3} A_{4}$ of type 1 is a set of four points $A_{1}, A_{2}, A_{3}, A_{4}$ taken in this cyclic order in which any three points are non-collinear, and of two lines a_{1}, a_{2} such that $A_{i} \mathrm{I} a_{j}$ iff $i=j$. We say that this 6-point is a Pascalian two-fold specialized 6-point of type 1 and we write $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}, A_{4}\right)$ if $a_{1} \cap A_{2} A_{3}, A_{1} A_{2} \cap A_{3} A_{4}, a_{2} \cap A_{4} A_{1}$ are collinear points.

A two-fold specialized simple 6-point $A_{1} a_{1} A_{1} A_{2} A_{3} a_{3} A_{3} A_{4}$ of type 2 is a set of four points $A_{1}, A_{2}, A_{3}, A_{4}$ taken in this
cyclic order in which any three points are non-collinear, and of two lines a_{1}, a_{3} such that $A_{i} \mathrm{I} a_{j}$ iff $i=j$. We say that this 6-point is a Pascalian two-fold specialized 6-point of type 2 and we write $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3} a_{3} A_{3}, A_{4}\right)$ if $a_{1} \cap a_{3}$, $A_{1} A_{2} \cap A_{3} A_{4}, A_{2} A_{3} \cap A_{4} A_{1}$ are collinear points.

A three-fold specialized simple 6-point $A_{1} a_{1} A_{1} A_{2} a_{2} A_{2} A_{3} a_{3} A_{3}$ is a set of three non-collinear points A_{1}, A_{2}, A_{3} and of three non-concurrent lines a_{1}, a_{2}, a_{3} such that $A_{i} I a_{j}$ iff $i=j$.We say that this 6-point is a Pascalian three-fold specialized 6-point and we write $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3} a_{3} A_{3}\right)$ if $a_{1} \cap A_{2} A_{3}, A_{1} A_{2} \cap a_{3}, a_{2} \cap A_{3} A_{1}$ are collinear points.

Now, we can prove some theorems about Pascalian 6-points.

Theorem 1.2

$P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right) \Longrightarrow P\left(A_{1} a_{1} A_{1}, A_{4}, A_{3}, A_{2}, A_{5}\right)$

Proof. Let $a_{1} \cap A_{3} A_{4}=U, A_{1} A_{2} \cap A_{4} A_{5}=V, A_{2} A_{3} \cap$ $A_{5} A_{1}=W$ be collinear points (Fig. 1). We must prove that the points $a_{1} \cap A_{3} A_{2}=U^{\prime}, A_{1} A_{4} \cap A_{2} A_{5}=V^{\prime}, A_{4} A_{3} \cap$ $A_{5} A_{1}=W^{\prime}$ are collinear. Consider two triangles with the vertices U, A_{1}, A_{4} resp. W, A_{2}, A_{5}. As the lines $U W$, $A_{1} A_{2}, A_{4} A_{5}$ pass through the point V, so by Desargues theorem the points $A_{1} A_{4} \cap A_{2} A_{5}=V^{\prime}, A_{4} U \cap A_{5} W=W^{\prime}$, $U A_{1} \cap W A_{2}=U^{\prime}$ are collinear.

Figure 1

Theorem 1.3

$P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right) \Longrightarrow P\left(A_{1} a_{1} A_{1}, A_{2}, A_{4}, A_{3}, A_{5}\right)$

Proof. We must prove that the collinearity of points $a_{1} \cap A_{3} A_{4}=U, A_{1} A_{2} \cap A_{4} A_{5}=V, A_{2} A_{3} \cap A_{5} A_{1}=W$ implies the collinearity of points $a_{1} \cap A_{4} A_{3}=U, A_{1} A_{2} \cap$ $A_{3} A_{5}=V^{\prime}, A_{2} A_{4} \cap A_{5} A_{1}=W^{\prime}$ (Fig. 2). By Pappus theorem
we have $P\left(A_{2}, A_{4}, A_{3}, A_{5}, W, V\right)$, i.e. $A_{2} A_{4} \cap A_{5} W=W^{\prime}$, $A_{4} A_{3} \cap W V=U, A_{3} A_{5} \cap V A_{2}=V^{\prime}$ are collinear points.

Figure 2

Theorem 1.4

$P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right) \Longrightarrow P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{5}, A_{4}\right)$

Proof. $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ implies by Theorem 1.2 $P\left(A_{1} a_{1} A_{1}, A_{4}, A_{3}, A_{2}, A_{5}\right)$, i.e. $\quad P\left(A_{1} a_{1} A_{1}, A_{5}, A_{2}, A_{3}, A_{4}\right)$. But, Theorem 1.3 implies then $P\left(A_{1} a_{1} A_{1}, A_{5}, A_{3}, A_{2}, A_{4}\right)$ and finally Theorem 1.2 implies $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{5}, A_{4}\right)$.

Obviously, Theorems 1.2, 1.3 and 1.4 imply:

Theorem 1.5

$P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right) \Longrightarrow P\left(A_{1} a_{1} A_{1}, A_{i_{2}}, A_{i_{3}}, A_{i_{4}}, A_{i_{5}}\right)$, where $\left(i_{2}, i_{3}, i_{4}, i_{5}\right)$ is any permutation of $\{2,3,4,5\}$

Further, we have:

Theorem 1.6

$P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3} a_{3} A_{3}, A_{4}\right) \Longleftrightarrow P\left(A_{1} a_{1} A_{1}, A_{3} a_{3} A_{3}, A_{2}, A_{4}\right)$.

Proof. We must prove that $a_{1} \cap a_{3}=U, A_{1} A_{2} \cap A_{3} A_{4}=V$, $A_{2} A_{3} \cap A_{4} A_{1}=W$ are collinear points iff $a_{1} \cap A_{3} A_{2}=U^{\prime}$, $A_{1} A_{3} \cap A_{2} A_{4}=V^{\prime}, a_{3} \cap A_{4} A_{1}=W^{\prime}$ are collinear points (Fig. 3). If the points U, V, W are collinear, then the
lines $A_{3} A_{4}, U W, A_{1} A_{2}$ pass through the point V and according to Desargues theorem the points $U A_{1} \cap W A_{2}=U^{\prime}$, $A_{1} A_{3} \cap A_{2} A_{4}=V^{\prime}, A_{3} U \cap A_{4} W=W^{\prime}$ are collinear. Conversely, if $U^{\prime}, V^{\prime}, W^{\prime}$ are collinear points, then the lines $A_{2} A_{4}, U^{\prime} W^{\prime}, A_{1} A_{3}$ pass through the point V^{\prime} and Desargues theorem implies the collinearity of points $U^{\prime} A_{1} \cap W^{\prime} A_{3}=$ $U, A_{1} A_{2} \cap A_{3} A_{4}=V, A_{2} U^{\prime} \cap A_{4} W^{\prime}=W$.

Figure 3

Theorem 1.7

$P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}, A_{4}\right) \Longrightarrow P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{4}, A_{3}\right)$.
Proof. According to Theorem 1.6 we have $P\left(A_{1} a_{1} A_{1}, A_{3}, A_{2} a_{2} A_{2}, A_{4}\right)$, i.e. $P\left(A_{1} a_{1} A_{1}, A_{4}, A_{2} a_{2} A_{2}, A_{3}\right)$ and then Theorem 1.6 implies $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{4}, A_{3}\right)$.

2 Ordinary Pascal sets

Let $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ be five points such that any three of them are non-collinear. An ordinary Pascal set determined by $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ is the set of points $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)=\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\} \cup\{X \mid$ $\left.P\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, X\right)\right\}$.

In virtue of Theorem 1.1 we have $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)=$ $p\left(A_{i_{1}}, A_{i_{2}}, A_{i_{3}}, A_{i_{4}}, A_{i_{5}}\right)$, where $\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\right)$ is any permutation of $\{1,2,3,4,5\}$.
Now, we have a theorem proved in [2].

Theorem 2.1

$p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)=p\left(A_{1^{\prime}}, A_{2^{\prime}}, A_{3^{\prime}}, A_{4^{\prime}}, A_{5^{\prime}}\right)$ for any different points $A_{1^{\prime}}, A_{2^{\prime}}, A_{3^{\prime}}, A_{4^{\prime}}, A_{5^{\prime}} \in p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$, i.e. an ordinary Pascal set is uniquely determined by any five different of its points.

Theorem 2.1 and the definition of ordinary Pascal set imply that any three different points of an ordinary Pascal set are non-collinear.

A line a_{1} such that $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ holds is said to be a tangent of the ordinary Pascal set $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ at its point A_{1}. According to Theorem $1.5 a_{1}$ is a tangent of $p\left(A_{1}, A_{i_{2}}, A_{i_{3}}, A_{i_{4}}, A_{i_{5}}\right)$ at the point A_{1}, where $\left(i_{2}, i_{3}, i_{4}, i_{5}\right)$ is any permutation of $\{2,3,4,5\}$.

Let us prove:

Theorem 2.2

There is one and only one tangent of $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ at the point A_{1}.

Proof. Let $V=A_{1} A_{2} \cap A_{4} A_{5}, W=A_{2} A_{3} \cap A_{5} A_{1}$. A line a_{1} is a tangent of $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ at the point A_{1} iff $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ holds, i.e. iff $A_{1} \mathrm{I} a_{1}$ and iff the points $U=a_{1} \cap A_{3} A_{4}, V, W$ are collinear, i.e. iff $a_{1}=A_{1} U$, where $U=A_{3} A_{4} \cap V W$ (Fig. 1).

Theorem 2.3

Let $A_{5^{\prime}} \in p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right) \backslash\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$. A line a_{1} is the tangent of $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ at the point A_{1} iff a_{1} is the tangent of $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5^{\prime}}\right)$ at the point A_{1}.

Proof. The statment is trivial if $A_{5^{\prime}}=A_{5}$.
Let further $A_{5^{\prime}} \neq A_{5}$. In virtue of Theorem 1.1 $A_{5^{\prime}} \in p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right) \backslash\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ implies $A_{5} \in$ $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5^{\prime}}\right) \backslash\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ and we have $P\left(A_{1}, A_{2}, A_{5^{\prime}}, A_{4}, A_{5}, A_{3}\right)$, i.e. the points $A_{1} A_{2} \cap A_{4} A_{5}=U$, $A_{2} A_{5^{\prime}} \cap A_{5} A_{3}=V, A_{5^{\prime}} A_{4} \cap A_{3} A_{1}=W$ are collinear (Fig. 4).

Figure 4

Let a_{1} be the tangent of $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ at the point A_{1}, i.e. let $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ holds. Then by Theorem 1.4 we have $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{5}, A_{4}\right)$, i.e. $a_{1} \cap A_{3} A_{5}=U^{\prime}, \quad A_{1} A_{2} \cap A_{5} A_{4}=U, A_{2} A_{3} \cap A_{4} A_{1}=$ W^{\prime} are collinear points. By Pappus theorem we have $P\left(U^{\prime}, A_{1}, A_{3}, A_{2}, V, U\right)$, i.e. $\quad U^{\prime} A_{1} \cap A_{2} V=U^{\prime \prime}, A_{1} A_{3} \cap$ $V U=W, A_{3} A_{2} \cap U U^{\prime}=W^{\prime}$ are collinear points. But, this means that $a_{1} \cap A_{2} A_{5^{\prime}}=U^{\prime \prime}, A_{1} A_{3} \cap A_{5^{\prime}} A_{4}=W$, $A_{3} A_{2} \cap A_{4} A_{1}=W^{\prime}$ are collinear points, i.e. we have $P\left(A_{1} a_{1} A_{1}, A_{3}, A_{2}, A_{5^{\prime}}, A_{4}\right)$, wherefrom by Theorem 1.5 $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}, A_{5^{\prime}}\right)$ follows, i.e. a_{1} is the tangent of $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5^{\prime}}\right)$ at the point A_{1}. The proof of the converse follows by the substitution $A_{5} \leftrightarrow A_{5^{\prime}}$.

On the basis of Theorem 2.3 we can prove:

Theorem 2.4

Let $\quad A_{2^{\prime}}, A_{3^{\prime}}, A_{4^{\prime}}, A_{5^{\prime}} \in p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right) \backslash\left\{A_{1}\right\}$ be four different points. A line a_{1} is the tangent of $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ at the point A_{1} iff a_{1} is the tangent of $p\left(A_{1}, A_{2^{\prime}}, A_{3^{\prime}}, A_{4^{\prime}}, A_{5^{\prime}}\right)$ at the point A_{1}, i.e. the tangent of an ordinary Pascal set at anyone of its points is uniquely determined.

Proof. By Theorem $2.1 p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)=$ $P\left(A_{1}, A_{2^{\prime}}, A_{3^{\prime}}, A_{4^{\prime}}, A_{5^{\prime}}\right)$. At least one of the points $A_{2^{\prime}}$, $A_{3^{\prime}}, A_{4^{\prime}}, A_{5^{\prime}}$ is different from the points A_{2}, A_{3}, A_{4}. Let be e.g. $A_{5^{\prime}} \neq A_{2}, A_{3}, A_{4}$. From $A_{5^{\prime}} \in p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right) \backslash$ $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ by Theorem $2.1 p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)=$ $p\left(A_{1}, A_{5^{\prime}}, A_{2}, A_{3}, A_{4}\right)$ follows and by Theorem $2.3 a_{1}$ is the tangent of $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ at the point A_{1} iff a_{1} is the tangent of $p\left(A_{1}, A_{5^{\prime}}, A_{2}, A_{3}, A_{4}\right)$ at the point A_{1}. At least one of the points $A_{2^{\prime}}, A_{3^{\prime}}, A_{4^{\prime}}$ is different from the points A_{2}, A_{3}. Let be e.g. $A_{4^{\prime}} \neq A_{2}, A_{3}$. From $A_{4^{\prime}} \in$ $p\left(A_{1}, A_{5^{\prime}}, A_{2}, A_{3}, A_{4}\right) \backslash\left\{A_{1}, A_{5^{\prime}}, A_{2}, A_{3}\right\}$ by Theorem 2.1 $p\left(A_{1}, A_{5^{\prime}}, A_{2}, A_{3}, A_{4}\right)=p\left(A_{1}, A_{4^{\prime}}, A_{5^{\prime}}, A_{2}, A_{3}\right)$ follows and by Theorem $2.3 a_{1}$ is the tangent of $p\left(A_{1}, A_{5^{\prime}}, A_{2}, A_{3}, A_{4}\right)$ at the point A_{1} iff a_{1} is the tangent of $p\left(A_{1}, A_{4^{\prime}}, A_{5^{\prime}}, A_{2}, A_{3}\right)$ at the point A_{1}. At least one of the points $A_{2^{\prime}}, A_{3^{\prime}}$ is different from the point A_{2}. Let be e.g. $A_{3^{\prime}} \neq A_{2}$. From $A_{3^{\prime}} \in$ $p\left(A_{1}, A_{4^{\prime}}, A_{5^{\prime}}, A_{2}, A_{3}\right) \backslash\left\{A_{1}, A_{4^{\prime}}, A_{5^{\prime}}, A_{2}\right\}$ by Theorem 2.1 $p\left(A_{1}, A_{4^{\prime}}, A_{5^{\prime}}, A_{2}, A_{3}\right)=p\left(A_{1}, A_{3^{\prime}}, A_{4^{\prime}}, A_{5^{\prime}}, A_{2}\right)$ follows and by Theorem $2.3 a_{1}$ is the tangent of $p\left(A_{1}, A_{4^{\prime}}, A_{5^{\prime}}, A_{2}, A_{3}\right)$ at the point A_{1} iff a_{1} is the tangent of $p\left(A_{1}, A_{3^{\prime}}, A_{4^{\prime}}, A_{5^{\prime}}, A_{2}\right)$ at the point A_{1}. Finally, from $A_{2^{\prime}} \in p\left(A_{1}, A_{3^{\prime}}, A_{4^{\prime}}, A_{5^{\prime}}, A_{2}\right) \backslash$ $\left\{A_{1}, A_{3^{\prime}}, A_{4^{\prime}}, A_{5^{\prime}}\right\}$ by Theorem 2.3 follows that a_{1} is the tangent of $p\left(A_{1}, A_{3^{\prime}}, A_{4^{\prime}}, A_{5^{\prime}}, A_{2}\right)$ at the point A_{1} iff a_{1} is the tangent of $p\left(A_{1}, A_{2^{\prime}}, A_{3^{\prime}}, A_{4^{\prime}}, A_{5^{\prime}}\right)$ at the point A_{1}.

If a is the tangent of an ordinary Pascal set p at its point A, then we say that AaA is a flag of p.

Theorem 2.5

If $A_{1} a_{1} A_{1}$ is a flag of an ordinary Pascal set p, then A_{1} is the unique point such that $A_{1} \in p$ and $A_{1} I a_{1}$.

Proof. Suppose that there is a point A_{2} such that $A_{2} \neq A_{1}$; $A_{2} \mathrm{I} a_{1}$ and $A_{2} \in p$. But p contains at least five different points and there are three different points $A_{3}, A_{4}, A_{5} \in p \backslash$ $\left\{A_{1}, A_{2}\right\}$. Then we have $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ which contradicts with $A_{2} \mathrm{I} a_{1}$.

3 One-fold specialized Pascal sets

Let $A_{1}, A_{2}, A_{3}, A_{4}$ be four points such that any three of them are non-collinear and let a_{1} be a line such that $A_{i} \mathrm{I} a_{1}$ iff $i=1$. An one-fold specialized Pascal set determined by the flag $A_{1} a_{1} A_{1}$ and the points A_{2}, A_{3}, A_{4} is the set of points $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\} \cup\{X \mid$ $\left.P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}, X\right)\right\}$.
According to Theorem 1.5 we have $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)=$ $p\left(A_{1} a_{1} A_{1}, A_{i_{2}}, A_{i_{3}}, A_{i_{4}}\right)$, where $\left(i_{2}, i_{3}, i_{4}\right)$ is any permutation of $\{2,3,4\}$.

Theorem 3.1

$p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)=p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4^{\prime}}\right)$ for any point $A_{4^{\prime}} \in p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right) \backslash\left\{A_{1}, A_{2}, A_{3}\right\}$.

Proof. If $A_{4^{\prime}}=A_{4}$, the statement is trivial. Let be further $A_{4^{\prime}} \neq A_{4}$. As $A_{4^{\prime}} \in p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right) \backslash$ $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$, so we have $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}, A_{4^{\prime}}\right)$, wherefrom by Theorem $1.4 P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4^{\prime}}, A_{4}\right)$ follows, i.e. $A_{4} \in p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4^{\prime}}\right) \backslash\left\{A_{1}, A_{2}, A_{3}, A_{4^{\prime}}\right\}$ holds. Let $X \in p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right) \backslash\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$, i.e, let $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}, X\right)$ holds, and let $X \neq A_{4^{\prime}}$. It is necessary to prove $X \in p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4^{\prime}}\right) \backslash$ $\left\{A_{1}, A_{2}, A_{3}, A_{4^{\prime}}\right\}$, i.e. $\quad P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4^{\prime}}, X\right)$. Therefore, because of Theorem 1.5 we must prove that $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{4}, A_{3}, A_{4^{\prime}}\right), \quad P\left(A_{1} a_{1} A_{1}, A_{2}, A_{4}, A_{3}, X\right) \quad$ and $A_{4^{\prime}} \neq X$ imply $P\left(A_{1} a_{1} A_{1}, A_{2}, X, A_{3}, A_{4^{\prime}}\right)$. But, the first two hypotheses mean that $a_{1} \cap A_{4} A_{3}=U, A_{1} A_{2} \cap A_{3} A_{4^{\prime}}=V$, $A_{2} A_{4} \cap A_{4^{\prime}} A_{1}=W$ resp. $a_{1} \cap A_{4} A_{3}=U, A_{1} A_{2} \cap A_{3} X=V^{\prime}$, $A_{2} A_{4} \cap X A_{1}=W^{\prime}$ are collinear points (Fig. 5). Consider two triangles with the vertices W, A_{1}, U resp. A_{2}, X, V^{\prime}. As the lines $W A_{2}, A_{1} X, U V^{\prime}$ pass through the point W^{\prime} so by Desargues theorem $A_{1} U \cap X V^{\prime}=U^{\prime \prime}$, $U W \cap V^{\prime} A_{2}=V, W A_{1} \cap A_{2} X=W^{\prime \prime}$ are collinear points. But, $U^{\prime \prime}=a_{1} \cap X A_{3}, V=A_{1} A_{2} \cap A_{3} A_{4^{\prime}}, W^{\prime \prime}=A_{2} X \cap A_{4^{\prime}} A_{1}$ and we have $P\left(A_{1} a_{1} A_{1}, A_{2}, X, A_{3}, A_{4^{\prime}}\right)$. On the same manner (by the substitution $A_{4} \leftrightarrow A_{4^{\prime}}$) we can prove that $X \in$ $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4^{\prime}}\right) \backslash\left\{A_{1}, A_{2}, A_{3}, A_{4^{\prime}}\right\}$ and $X \neq A_{4}$ imply $X \in p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right) \backslash\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$.

Figure 5

Theorem 3.2

$p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)=p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}}, A_{3^{\prime}}, A_{4^{\prime}}\right)$ for any different points $A_{2^{\prime}}, A_{3^{\prime}}, A_{4^{\prime}} \in p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right) \backslash\left\{A_{1}\right\}$, i.e, an one-fold specialized Pascal set is uniquely determined by its flag $A_{1} a_{1} A_{1}$ and any three of its points, which are mutually different and different from A_{1}.

Proof. At least one of the points $A_{2^{\prime}}, A_{3^{\prime}}, A_{4^{\prime}}$ is different from the points A_{2}, A_{3}. Let be e.g. $A_{4^{\prime}} \neq A_{2}, A_{3}$. From $A_{4^{\prime}} \in p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right) \backslash\left\{A_{1}, A_{2}, A_{3}\right\}$ by Theorem $3.1 p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)=p\left(A_{1} a_{1} A_{1}, A_{4^{\prime}}, A_{2}, A_{3}\right)$ follows. At least one of the points $A_{2^{\prime}}, A_{3^{\prime}}$ is different from the point A_{2}. Let be e.g. $A_{3^{\prime}} \neq A_{2}$. From $A_{3^{\prime}} \in p\left(A_{1} a_{1} A_{1}, A_{4^{\prime}}, A_{2}, A_{3}\right) \backslash\left\{A_{1}, A_{4^{\prime}}, A_{2}\right\}$ by Theorem $3.1 p\left(A_{1} a_{1} A_{1}, A_{4^{\prime}}, A_{2}, A_{3}\right)=p\left(A_{1} a_{1} A_{1}, A_{3^{\prime}}, A_{4^{\prime}}, A_{2}\right)$ follows. Finally, from $A_{2^{\prime}} \in p\left(A_{1} a_{1} A_{1}, A_{3^{\prime}}, A_{4^{\prime}}, A_{2}\right) \backslash$ $\left\{A_{1}, A_{3^{\prime}}, A_{4^{\prime}}\right\}$ by Theorem $3.1 p\left(A_{1} a_{1} A_{1}, A_{3^{\prime}}, A_{4^{\prime}}, A_{2}\right)=$ $p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}}, A_{3^{\prime}}, A_{4^{\prime}}\right)$ follows.

Theorem 3.2 and the definition of one-fold specialized Pascal set p determined by the flag AaA imply that any three different points of p are non-collinear and that $X I a$ iff $X=A$ for any point $X \in p$.

A line a_{2} such that $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}, A_{4}\right)$ holds is said to be a tangent of the one-fold specialized Pascal set $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ at the point A_{2}. According to Theorem 1.7 then a_{2} is a tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{4}, A_{3}\right)$ at the point A_{2}. The line a_{1} is said to be the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ at the point A_{1}.

Theorem 3.3

There is one and only one tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ at the point A_{2}.

Proof. Let $U=a_{1} \cap A_{2} A_{3}, V=A_{1} A_{2} \cap A_{3} A_{4}$. A line a_{2} is a tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ at the point A_{2} iff $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}, A_{4}\right)$ holds, i.e. iff $U, V, W=$ $a_{2} \cap A_{4} A_{1}$ are collinear points, i.e. iff $a_{2}=A_{2} W$, where $W=A_{4} A_{1} \cap U V$.

Theorem 3.4

Let be $A_{4^{\prime}} \in p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right) \backslash\left\{A_{1}, A_{2}, A_{3}\right\}$. A line a_{2} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ at the point A_{2} iff a_{2} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4^{\prime}}\right)$ at the point A_{2}.

Proof. The statement is trivial if $A_{4^{\prime}}=A_{4}$. Let further $A_{4^{\prime}} \neq A_{4}$. By Theorem $1.5 A_{4^{\prime}} \in p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right) \backslash$ $\left\{A_{1}, A_{2}, A_{3}\right\} \quad$ implies $\quad A_{4} \in p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4^{\prime}}\right) \backslash$ $\left\{A_{1}, A_{2}, A_{3}\right\}$ and we have $P\left(A_{1} a_{1} A_{1}, A_{4}, A_{2}, A_{4^{\prime}}, A_{3}\right)$, i.e. $a_{1} \cap A_{2} A_{4^{\prime}}=U, \quad A_{1} A_{4} \cap A_{4^{\prime}} A_{3}=V, \quad A_{4} A_{2} \cap A_{3} A_{1}=$ W are collinear points (Fig. 6). Let a_{2} be the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ at the point A_{2}, i.e. let $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}, A_{4}\right)$ hold. Then by Theorem 1.6 we have $P\left(A_{1} a_{1} A_{1}, A_{3}, A_{2} a_{2} A_{2}, A_{4}\right)$, i.e. $a_{1} \cap a_{2}=U^{\prime}$, $A_{1} A_{3} \cap A_{2} A_{4}=W, A_{3} A_{2} \cap A_{4} A_{1}=W^{\prime}$ are collinear points. Consider the triangles with the vertices A_{2}, U^{\prime}, A_{1} resp. A_{3}, W, V. The lines $A_{2} A_{3}, U^{\prime} W, A_{1} V$ pass through the point W^{\prime} and Desargues theorem implies that $U^{\prime} A_{1} \cap W V=U$, $A_{1} A_{2} \cap V A_{3}=V^{\prime \prime}, A_{2} U^{\prime} \cap A_{3} W=W^{\prime \prime}$ are collinear points. But, $U=a_{1} \cap A_{2} A_{4^{\prime}}, V^{\prime \prime}=A_{1} A_{2} \cap A_{4^{\prime}} A_{3}, W^{\prime \prime}=a_{2} \cap A_{3} A_{1}$ and we have $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{4^{\prime}}, A_{3}\right)$, i.e. a_{2} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{4^{\prime}}, A_{3}\right)=p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4^{\prime}}\right)$ at the point A_{2}. The proof of the converse follows by the substitution $A_{4} \leftrightarrow A_{4^{\prime}}$.

Figure 6

Theorem 3.5

Let $\quad A_{3^{\prime}}, A_{4^{\prime}} \in p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right) \backslash\left\{A_{1}, A_{2}\right\} \quad$ be two different points. A line a_{2} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ at the point A_{2} iff a_{2} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3^{\prime}}, A_{4^{\prime}}\right)$ at the point A_{2}.

Proof. By Theorem $3.2 p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)=$ $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3^{\prime}}, A_{4^{\prime}}\right)$. At least one of the points $A_{3^{\prime}}, A_{4^{\prime}}$ is different from the point A_{3}. Let be e.g. $A_{4^{\prime}} \neq A_{3}$. From $A_{4^{\prime}} \in p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right) \backslash\left\{A_{1}, A_{2}, A_{3}\right\}$ by Theorem 3.2 $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)=p\left(A_{1} a_{1} A_{1}, A_{2}, A_{4^{\prime}}, A_{3}\right)$ follows and by Theorem $3.4 a_{2}$ is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ at the point A_{2} iff a_{2} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{4^{\prime}}, A_{3}\right)$ at the point A_{2}. From $A_{3^{\prime}} \in p\left(A_{1} a_{1} A_{1}, A_{2}, A_{4^{\prime}}, A_{3}\right) \backslash$ $\left\{A_{1}, A_{2}, A_{4^{\prime}}\right\}$ by Theorem 3.2 it follows that a_{2} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{4^{\prime}}, A_{3}\right)$ at the point A_{2} iff a_{2} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{4^{\prime}}, A_{3^{\prime}}\right)=p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3^{\prime}}, A_{4^{\prime}}\right)$ at the point A_{2}.

Theorem 3.6

If a_{2} is the tangent of $p=p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ at the point A_{2}, then A_{2} is the unique point such that $A_{2} \in p$ and $A_{2} \mathrm{I} a_{2}$.

Proof. We have $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}, A_{4}\right)$ and therefore $A_{i} \mathrm{I} a_{2}$ iff $i=2$. Suppose that there is a point $A_{5} \in p \backslash$ $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ such that $A_{5} \mathrm{I} a_{2}$. Owing to Theorem 3.2 we have $p=p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{5}\right)$ and by Theorem 3.5 a_{2} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{5}\right)$ at the point A_{2}. Therefore we have $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}, A_{5}\right)$ which contradicts with $A_{5} \mathrm{I} a_{2}$.

If p is an one-fold specialized Pascal set and a_{2} is a tangent of p at its point A_{2}, then we say that $A_{2} a_{2} A_{2}$ is a flag of p.

Theorem 3.7

If $A_{2} a_{2} A_{2}$ is a flag of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$, then $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)=P\left(A_{2} a_{2} A_{2}, A_{1}, A_{3}, A_{4}\right)$.

Proof. The line a_{2} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ at the point A_{2} and so $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}, A_{4}\right)$ holds, wherefrom by Theorem $1.7 P\left(A_{2} a_{2} A_{2}, A_{1} a_{1} A_{1}, A_{3}, A_{4}\right)$ follows, i.e. a_{1} is the tangent of $p\left(A_{2} a_{2} A_{2}, A_{1}, A_{3}, A_{4}\right)$ at the point A_{1}, and $a_{1} \cap A_{2} A_{3}=U, \quad A_{1} A_{2} \cap$ $A_{3} A_{4}=V, \quad a_{2} \cap A_{4} A_{1}=W$ are collinear points (Fig. 7). Let $X \in p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right) \backslash\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$, i.e. let $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}, X\right)$ holds. We must prove $X \in p\left(A_{2} a_{2} A_{2}, A_{1}, A_{3}, A_{4}\right) \backslash\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$, i.e. $P\left(A_{2} a_{2} A_{2}, A_{1}, A_{3}, A_{4}, X\right)$. According to Theorem 1.5 we have $P\left(A_{1} a_{1} A_{1}, A_{2}, X, A_{3}, A_{4}\right)$, i.e. $a_{1} \cap X A_{3}=U^{\prime}$, $A_{1} A_{2} \cap A_{3} A_{4}=V, A_{2} X \cap A_{4} A_{1}=W^{\prime}$ are collinear points. The lines $A_{3} X, V W^{\prime}, U A_{1}$ pass through the point U^{\prime} and

Desargues theorem implies the collinearity of the points $V U \cap W^{\prime} A_{1}=W, U A_{3} \cap A_{1} X=V^{\prime \prime}, A_{3} V \cap X W^{\prime}=W^{\prime \prime}$. But, we have $W=a_{2} \cap A_{4} A_{1}, V^{\prime \prime}=A_{2} A_{3} \cap A_{1} X, W^{\prime \prime}=$ $A_{3} A_{4} \cap X A_{2}$, i.e. $\quad P\left(A_{2} a_{2} A_{2}, A_{3}, A_{4}, A_{1}, X\right)$, and Theorem 1.5 implies $P\left(A_{2} a_{2} A_{2}, A_{1}, A_{3}, A_{4}, X\right)$. On the same manner (by the substitutions $A_{1} \leftrightarrow A_{2}, a_{1} \leftrightarrow a_{2}$) it can be proved that $X \in p\left(A_{2} a_{2} A_{2}, A_{1}, A_{3}, A_{4}\right) \backslash\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ implies $X \in p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right) \backslash\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$.

Figure 7

Theorem 3.8

Let $A_{2} a_{2} A_{2}$ be a flag of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$. A line a_{3} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ at the point A_{3} iff a_{3} is the tangent of $p\left(A_{2} a_{2} A_{2}, A_{1}, A_{3}, A_{4}\right)$ at the point A_{3}.

Proof. As in the proof of Theorem 3.7 we conclude that a_{1} is the tangent of $p\left(A_{2} a_{2} A_{2}, A_{1}, A_{3}, A_{4}\right)$ at the point A_{1}. We have $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}, A_{4}\right)$ i.e. by Theorem $1.6 P\left(A_{1} a_{1} A_{1}, A_{3}, A_{2} a_{2} A_{2}, A_{4}\right)$, and $a_{1} \cap a_{2}=U, A_{1} A_{3} \cap A_{2} A_{4}=V, A_{3} A_{2} \cap A_{4} A_{1}=W$ are collinear points (Fig. 8). Let a_{3} be the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)=p\left(A_{1} a_{1} A_{1}, A_{3}, A_{2}, A_{4}\right)$ at the point A_{3}. Then $P\left(A_{1} a_{1} A_{1}, A_{3} a_{3} A_{3}, A_{2}, A_{4}\right)$ holds, i.e. $a_{1} \cap$ $A_{3} A_{2}=U^{\prime}, A_{1} A_{3} \cap A_{2} A_{4}=V, a_{3} \cap A_{4} A_{1}=W^{\prime}$ are collinear points. The lines $W^{\prime} V, A_{3} A_{2}, A_{1} U$ pass through the point U^{\prime} and Desargues theorem implies that $A_{3} A_{1} \cap A_{2} U=U^{\prime \prime}$, $A_{1} W^{\prime} \cap U V=W, W^{\prime} A_{3} \cap V A_{2}=W^{\prime \prime}$ are collinear points. But, $U^{\prime \prime}=a_{2} \cap A_{3} A_{1}, W=A_{2} A_{3} \cap A_{1} A_{4}, W^{\prime \prime}=a_{3} \cap A_{4} A_{2}$ and we have $P\left(A_{2} a_{2} A_{2}, A_{3} a_{3} A_{3}, A_{1}, A_{4}\right)$, i.e. a_{3} is the tangent of $p\left(A_{2} a_{2} A_{2}, A_{3}, A_{1}, A_{4}\right)=p\left(A_{2} a_{2} A_{2}, A_{1}, A_{3}, A_{4}\right)$ at the point A_{3}. The proof of the converse follows by the substitutions $A_{1} \leftrightarrow A_{2}, a_{1} \leftrightarrow a_{2}$.

Figure 8

Theorem 3.9

If $A_{1^{\prime}}, A_{2^{\prime}}, A_{3^{\prime}}, A_{4^{\prime}} \in p=p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ are four different points and if $a_{1^{\prime}}$ is a tangent of p at the point $A_{1^{\prime}}$ then $p=p\left(A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, A_{2^{\prime}}, A_{3^{\prime}}, A_{4^{\prime}}\right)$, i.e. an one-fold specialized Pascal set is uniquely determined by anyone of its flags AaA and any three of its points which are mutually different and different from the point A.

Proof. If $A_{1^{\prime}}=A_{1}$ then we use Theorem 3.2. Let be further $A_{1^{\prime}} \neq A_{1}$. At most one of the points $A_{2^{\prime}}, A_{3^{\prime}}$, $A_{4^{\prime}}$ is equal to A_{1}. Let be e.g. $A_{1} \neq A_{2^{\prime}} \cdot A_{3^{\prime}}$. Then Theorem 3.2 implies $p=p\left(A_{1} a_{1} A_{1}, A_{1^{\prime}}, A_{2^{\prime}}, A_{3^{\prime}}\right)$. By Theorem $3.5 a_{1^{\prime}}$ is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{1^{\prime}}, A_{2^{\prime}}, A_{3^{\prime}}\right)$ at the point $A_{1^{\prime}}$. Therefore, Theorem 3.7 im plies $p\left(A_{1} a_{1} A_{1}, A_{1^{\prime}}, A_{2^{\prime}}, A_{3^{\prime}}\right)=p\left(A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, A_{1}, A_{2^{\prime}}, A_{3^{\prime}}\right)$. So we have $A_{4^{\prime}} \in p\left(A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, A_{1}, A_{2^{\prime}}, A_{3^{\prime}}\right)$ and finally Theorem 3.2 implies $p\left(A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, A_{1}, A_{2^{\prime}}, A_{3^{\prime}}\right)=$ $p\left(A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, A_{2^{\prime}}, A_{3^{\prime}}, A_{4^{\prime}}\right)$.

Theorem 3.10

Let $A_{1^{\prime}}, A_{2^{\prime}}, A_{3^{\prime}} \in p=p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ be different points such that $A_{1^{\prime}}, A_{2^{\prime}}, A_{3^{\prime}} \neq A_{4}$ and let $a_{1^{\prime}}$ be the tangent of p at the point $A_{1^{\prime}}$. A line a_{4} is the tangent of p at the point A_{4} iff a_{4} is the tangent of $p\left(A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, A_{2^{\prime}}, A_{3^{\prime}}, A_{4}\right)$ at the point A_{4}, i.e. the tangent of an one-fold specialized Pascal set at anyone of its points is uniquely determined.

Proof. If $A_{1^{\prime}}=A_{1}$, then we use Theorem 3.5. Let be further $A_{1^{\prime}} \neq A_{1}$. At most one of the points $A_{2^{\prime}}, A_{3^{\prime}}$ is equal to A_{1}. Let be e.g. $A_{1} \neq A_{2^{\prime}}$. By Theorem 3.5 it follows that a_{4} is the tangent of p at the point A_{4} iff a_{4} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{1^{\prime}}, A_{2^{\prime}}, A_{4}\right)$ at the point A_{4}. If we apply this fact to the point $A_{1^{\prime}}$ instead of the point A_{4}, then it follows that $a_{1^{\prime}}$ is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{1^{\prime}}, A_{2^{\prime}}, A_{4}\right)$ at the point
$A_{1^{\prime}}$. Therefore, Theorem 3.8 implies that a_{4} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{1^{\prime}}, A_{2^{\prime}}, A_{4}\right)$ at the point A_{4} iff a_{4} is the tangent of $p\left(A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, A_{1}, A_{2^{\prime}}, A_{4}\right)$ at the point A_{4}. But, $A_{3^{\prime}}$ $p\left(A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, A_{1}, A_{2^{\prime}}, A_{4}\right)$ and Theorem 3.5 implies that a_{4} is the tangent of $p\left(A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, A_{1}, A_{2^{\prime}}, A_{4}\right)$ in the point A_{4} iff a_{4} is the tangent of $p\left(A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, A_{2^{\prime}}, A_{3^{\prime}}, A_{4}\right)$ at the point A_{4}.

4 Two-fold specialized Pascal sets

Let A_{1}, A_{2}, A_{3} be three non-collinear points and a_{1}, a_{2} two lines such that $A_{i} \mathrm{I} a_{j}$ iff $i=j$. A two-fold specialized Pascal set determined by the flags $A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}$ and the point A_{3} is the set of points $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)=$ $\left\{A_{1}, A_{2}, A_{3}\right\} \cup\left\{X \mid P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}, X\right)\right\}$.

Theorem 4.1

$p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)=p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3^{\prime}}\right)$ for any point $A_{3^{\prime}} \in p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right) \backslash\left\{A_{1}, A_{2}\right\}$.

Proof. If $A_{3^{\prime}}=A_{3}$, the statement is trivial.
Let be further $A_{3^{\prime}} \neq A_{3}$. As $A_{3^{\prime}} \in P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right) \backslash$ $\left\{A_{1}, A_{2}, A_{3}\right\}$, so we have $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}, A_{3^{\prime}}\right)$, wherefrom by Theorem $1.7 P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3^{\prime}}, A_{3}\right)$ follows, i.e. $A_{3} \in p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3^{\prime}}\right) \backslash\left\{A_{1}, A_{2}, A_{3^{\prime}}\right\}$. Let now be $X \in p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right) \backslash\left\{A_{1}, A_{2}, A_{3^{\prime}}\right\}$, i.e. let we have $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}, X\right)$, and let $X \neq A_{3^{\prime}}$. We must prove $X \in p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3^{\prime}}\right) \backslash$ $\left\{A_{1}, A_{2}, A_{3^{\prime}}\right\}$, i.e. $\quad P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3^{\prime}}, X\right)$. Therefore, because of Theorem 1.6, we must prove that $P\left(A_{1} a_{1} A_{1}, A_{3}, A_{2} a_{2} A_{2}, A_{3^{\prime}}\right), P\left(A_{1} a_{1} A_{1}, A_{3}, A_{2} a_{2} A_{2}, X\right)$ and $A_{3^{\prime}} \neq X$ imply $P\left(A_{1} a_{1} A_{1}, A_{3^{\prime}}, A_{2} a_{2} A_{2}, X\right)$. But, the first two hypotheses mean that $a_{1} \cap a_{2}=U, A_{1} A_{3} \cap A_{2} A_{3^{\prime}}=V$, $A_{3} A_{2} \cap A_{3^{\prime}} A_{1}=W$ resp. $a_{1} \cap a_{2}=U, A_{1} A_{3} \cap A_{2} X=V^{\prime}$, $A_{3} A_{2} \cap X A_{1}=W^{\prime}$ are collinear points (Fig. 9).

Figure 9

By Pappus theorem we have $P\left(V, W, A_{1}, W^{\prime}, V^{\prime}, A_{2}\right)$, i.e. $\quad V W \cap W^{\prime} V^{\prime}=U, W A_{1} \cap V^{\prime} A_{2}=V^{\prime \prime}, A_{1} W^{\prime} \cap$ $A_{2} V=W^{\prime \prime}$ are collinear points. But, $U=a_{1} \cap a_{2}$, $V^{\prime \prime}=A_{1} A_{3^{\prime}} \cap A_{2} X, W^{\prime \prime}=A_{3^{\prime}} A_{2} \cap X A_{1}$, and we have $P\left(A_{1} a_{1} A_{1}, A_{3^{\prime}}, A_{2} a_{2} A_{2}, X\right)$. On the same manner (by the substitution $A_{3} \leftrightarrow A_{3^{\prime}}$) it can be proved that $X \in$ $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3^{\prime}}\right) \backslash\left\{A_{1}, A_{2}, A_{3^{\prime}}\right\}$ and $X \neq A_{3}$ imply $X \in p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right) \backslash\left\{A_{1}, A_{2}, A_{3}\right\}$.
Theorem 4.1 and the definition of two-fold specialized Pascal set p determined by flags $A_{1} a_{1} A_{1}$ and $A_{2} a_{2} A_{2}$ imply that any point of $p \backslash\left\{A_{1}, A_{2}\right\}$ is not-incident with the lines $a_{1}, a_{2}, A_{1} A_{2}$.

A line a_{3} such that $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3} a_{3} A_{3}\right)$ holds is said to be a tangent of the two-fold specialized Pascal set $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ at the point A_{3}. The lines a_{1} and a_{2} are said to be the tangents of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ at the points A_{1} and A_{2}, respectively.

Theorem 4.2

There is one and only one tangent of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ at the point A_{3}.

Proof. Let $U=a_{1} \cap A_{2} A_{3}, W=a_{2} \cap A_{3} A_{1}$. A line a_{3} is a tangent of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ at the point A_{3} iff $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3} a_{3} A_{3}\right)$ holds, i.e. iff $A_{3} I a_{3}$ and iff $U, V=A_{1} A_{2} \cap a_{3}, W$ are collinear points, i.e. iff $a_{3}=A_{3} V$, where $V=A_{1} A_{2} \cap U W$.

Theorem 4.3

If a_{3} is the tangent of $p=p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ at the point A_{3}, then A_{3} is the unique point such that $A_{3} \in p$ and $A_{3} \mathrm{I} a_{3}$.

Proof. We have $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3} a_{3} A_{3}\right)$ and therefore $A_{i} \mathrm{I} a_{3}$ iff $i=3$. The points $a_{1} \cap A_{2} A_{3}=U, A_{1} A_{2} \cap$ $a_{3}=V, a_{2} \cap A_{3} A_{1}=W$ are collinear. Suppose that there is a point $A_{4} \in p \backslash\left\{A_{1}, A_{2}, A_{3}\right\}$ such that $A_{4} I a_{3}$. Then we have $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}, A_{4}\right)$, i.e. $a_{1} \cap A_{2} A_{3}=U$, $A_{1} A_{2} \cap A_{3} A_{4}=A_{1} A_{2} \cap a_{3}=V, a_{2} \cap A_{4} A_{1}=W^{\prime}$ are collinear points. Therefore we have $W^{\prime} I U V$ and $W^{\prime}=a_{2} \cap U V=W$ i.e. finally $A_{4}=a_{3} \cap A_{1} W^{\prime}=a_{3} \cap A_{1} W=A_{3}$, contrary to the hypothesis.

If p is a two-fold specialized Pascal set and a_{3} a tangent of p at its point A_{3}, then we say that $A_{3} a_{3} A_{3}$ is a flag of p .

Theorem 4.4

If $A_{3} a_{3} A_{3}$ is a flag of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$, then $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)=p\left(A_{1} a_{1} A_{1}, A_{3} a_{3} A_{3}, A_{2}\right)$.

Proof. The line a_{3} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ at the point A_{3} and so $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3} a_{3} A_{3}\right)$, i.e. $P\left(A_{1} a_{1} A_{1}, A_{3} a_{3} A_{3}, A_{2} a_{2} A_{2}\right)$ holds, and a_{2} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{3} a_{3} A_{3}, A_{2}\right)$ at the point A_{2}. Moreover, we have collinear points $a_{1} \cap A_{2} A_{3}=U, A_{1} A_{2} \cap a_{3}=V$, $a_{2} \cap A_{3} A_{1}=W$ (Fig. 10). Let $X \in p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right) \backslash$ $\left\{A_{1}, A_{2}, A_{3}\right\}$, i.e. let $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}, X\right)$ hold. Then $a_{1} \cap A_{2} A_{3}=U, A_{1} A_{2} \cap A_{3} X=V^{\prime}, a_{2} \cap X A_{1}=W^{\prime}$ are collinear points. The lines $W A_{2}, U V^{\prime}, A_{1} X$ pass through the point W^{\prime} and by Desargues theorem $U A_{1} \cap V^{\prime} X=$ $U^{\prime \prime}, A_{1} W \cap X A_{2}=V^{\prime \prime}, W U \cap A_{2} V^{\prime}=V$ are collinear points. But, $U^{\prime \prime}=a_{1} \cap A_{3} X, V^{\prime \prime}=A_{1} A_{3} \cap X A_{2}, V=$ $a_{3} \cap A_{2} A_{1}$ and we have $P\left(A_{1} a_{1} A_{1}, A_{3} a_{3} A_{3}, X, A_{2}\right)$, i.e. $P\left(A_{1} a_{1} A_{1}, A_{3} a_{3} A_{3}, A_{2}, X\right)$ because of Theorem 1.7. Hence $X \in p\left(A_{1} a_{1} A_{1}, A_{3} a_{3} A_{3}, A_{2}\right) \backslash\left\{A_{1}, A_{2}, A_{3}\right\}$. On the same manner (by the substitutions $A_{2} \leftrightarrow A_{3}, a_{2} \leftrightarrow a_{3}$) we can prove that $X \in p\left(A_{1} a_{1} A_{1}, A_{3} a_{3} A_{3}, A_{2}\right) \backslash\left\{A_{1}, A_{2}, A_{3}\right\}$ implies $X \in p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right) \backslash\left\{A_{1}, A_{2}, A_{3}\right\}$.

Figure 10

Theorem 4.5

Let $A_{4} \in p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right) \backslash\left\{A_{1}, A_{2}, A_{3}\right\}$. A line a_{3} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ at the point A_{3} iff a_{3} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ at the point A_{3}.

Proof. By Theorem 1.7 we have $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{4}, A_{3}\right)$, i.e. $\quad a_{1} \cap A_{2} A_{4}=U, \quad A_{1} A_{2} \cap A_{4} A_{3}=V, \quad a_{2} \cap$ $A_{3} A_{1}=W$ are collinear points (Fig. 11). We must prove that $P\left(A_{1} a_{1} A_{1}, A_{3} a_{3} A_{3}, A_{4}, A_{2}\right)$ is equivalent to $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3} a_{3} A_{3}\right)$. If $a_{1} \cap A_{3} A_{4}=U^{\prime}, A_{1} A_{3} \cap$ $A_{4} A_{2}=V^{\prime}, a_{3} \cap A_{2} A_{1}=W^{\prime}$ are collinear points, then Pappus theorem implies $P\left(A_{3}, A_{2}, V, U, U^{\prime}, V^{\prime}\right)$, i.e. $A_{3} A_{2} \cap$ $U U^{\prime}=U^{\prime \prime}, A_{2} V \cap U^{\prime} V^{\prime}=W^{\prime}, V U \cap V^{\prime} A_{3}=W$ are collinear points. But, $U^{\prime \prime}=a_{1} \cap A_{2} A_{3}, W^{\prime}=A_{1} A_{2} \cap a_{3}, W=$ $a_{2} \cap A_{3} A_{1}$. Conversely, if $a_{1} \cap A_{2} A_{3}=U^{\prime \prime}, A_{1} A_{2} \cap a_{3}=W^{\prime}$,
$a_{2} \cap A_{3} A_{1}=W$ are collinear points, then Pappus theorem implies $P\left(U^{\prime \prime}, U, A_{2}, V, A_{3}, W\right)$, i.e. $U^{\prime \prime} U \cap V A_{3}=U^{\prime}$, $U A_{2} \cap A_{3} W=V^{\prime}, A_{2} V \cap W U^{\prime \prime}=W^{\prime}$ are collinear points. But, $U^{\prime}=a_{1} \cap A_{3} A_{4}, V^{\prime}=A_{1} A_{3} \cap A_{4} A_{2}, W^{\prime}=a_{3} \cap A_{2} A_{1}$.

Figure 11

Theorem 4.6

Let $A_{3} a_{3} A_{3}$ be a flag and A_{4} a point of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$. A line a_{4} is a tangent of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ at the point A_{4} iff a_{4} is a tangent of $p\left(A_{1} a_{1} A_{1}, A_{3} a_{3} A_{3}, A_{2}\right)$ at the point A_{4}.

Proof. The statement is obvious if $A_{4} \in\left\{A_{1}, A_{2}, A_{3}\right\}$. Let be further $A_{4} \neq A_{1}, A_{2}, A_{3}$. We have $A_{4} \in$ $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right) \backslash\left\{A_{1}, A_{2}, A_{3}\right\}$ and Theorem 1.7 implies $A_{3} \in p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{4}\right) \backslash\left\{A_{1}, A_{2}, A_{4}\right\}$. Let us suppose that a_{4} is a tangent of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ at the point A_{4}. Then, by the definition, a_{4} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{4}\right)$ at the point A_{4}. Therefore, Theorem 4.5 implies (by the substitutions $A_{3} \leftrightarrow A_{4}$, $\left.a_{3} \leftrightarrow a_{4}\right)$ that a_{4} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{4}, A_{3}\right)=$ $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ at the point A_{4}. But $A_{3} a_{3} A_{3}$ is a flag of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ and Theorem 4.4 implies $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)=p\left(A_{1} a_{1} A_{1}, A_{3} a_{3} A_{3}, A_{2}\right)$. So we have $A_{4} \in p\left(A_{1} a_{1} A_{1}, A_{3} a_{3} A_{3}, A_{2}\right)$ and by Theorem 1.7 we obtain $P\left(A_{1} a_{1} A_{1}, A_{3} a_{3} A_{3}, A_{4}, A_{2}\right)$, i.e. $A_{2} \in$ $p\left(A_{1} a_{1} A_{1}, A_{3} a_{3} A_{3}, A_{4}\right) \backslash\left\{A_{1}, A_{3}, A_{4}\right\}$. Moreover, a_{4} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)=p\left(A_{1} a_{1} A_{1}, A_{3}, A_{4}, A_{2}\right)$ at the point A_{4} and Theorem 4.5 implies (by the substitutions $A_{2} \rightarrow A_{3}, A_{3} \rightarrow A_{4}, A_{4} \rightarrow A_{2}, a_{3} \rightarrow a_{4}$) that a_{4} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{3} a_{3} A_{3}, A_{4}\right)$ at the point A_{4}. Then, by the definition, a_{4} is a tangent of $p\left(A_{1} a_{1} A_{1}, A_{3} a_{3} A_{3}, A_{2}\right)$ at the point A_{4}. As $A_{3} a_{3} A_{3}$ is a flag of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$, so $A_{2} a_{2} A_{2}$ is a flag of $p\left(A_{1} a_{1} A_{1}, A_{3} a_{3} A_{3}, A_{2}\right)$. Moreover, $A_{4} \in p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ implies $A_{4} \in$ $p\left(A_{1} a_{1} A_{1}, A_{3} a_{3} A_{3}, A_{2}\right)$ because of Theorem 4.4. Now, if
we suppose that a_{4} is a tangent of $p\left(A_{1} a_{1} A_{1}, A_{3} a_{3} A_{3}, A_{2}\right)$ at the point A_{4}, then on the same way as in the first part of this proof (by the substitutions $A_{2} \leftrightarrow A_{3}, a_{2} \leftrightarrow a_{3}$) it follows that a_{4} is a tangent of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ at the point A_{4}.

Theorem 4.7

If $A_{1^{\prime}}, \quad A_{2^{\prime}}, \quad A_{3^{\prime}} \in p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ are different points and $a_{1^{\prime}}, a_{2^{\prime}}$ are two tangents of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ at the points $A_{1^{\prime}}, A_{2^{\prime}}$, respectively, then $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)=p\left(A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{3^{\prime}}\right)$ i.e. a two-fold specialized Pascal set is uniquely determined by any two of its flags $A a A, B a B$ and anyone of its points different from A, B.

Proof. At least one of the points $A_{1^{\prime}}, A_{2^{\prime}}$ is different from A_{1}. Let be e.g. $A_{2^{\prime}} \neq A_{1}$. At first let be $A_{2^{\prime}} \neq A_{2}$. Then $A_{2^{\prime}} \in p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right) \backslash$ $\left\{A_{1}, A_{2}\right\}$ implies by Theorem $4.1 p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)=$ $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{2^{\prime}}\right)$. As $a_{2^{\prime}}$ is a tangent of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ at the point $A_{2^{\prime}}$ so $a_{2^{\prime}}$ is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{2^{\prime}}\right)$ at this point. Therefore, Theorem 4.4 implies $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{2^{\prime}}\right)=$ $p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{2}\right)$. At least one of the points A_{1}, A_{2} is different from $A_{3^{\prime}}$. Let be e.g. $A_{1} \neq$ $A_{3^{\prime}}$. Then $A_{3^{\prime}} \in p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{2}\right) \backslash\left\{A_{1}, A_{2^{\prime}}\right\}$ implies $p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{2}\right)=p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{3^{\prime}}\right)$. Therefore, if we have $A_{2^{\prime}} \neq A_{2}$, then $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)=$ $p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{3^{\prime}}\right)$ holds. As $a_{1^{\prime}}$ is a tangent of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ at the point $A_{1^{\prime}}$, then $a_{1^{\prime}}$ is a tangent of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{2^{\prime}}\right)$ at this point. By Theorem $4.6 a_{1^{\prime}}$ is a tangent of $p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{2}\right)$ at the point $A_{1^{\prime}}$, i.e. a tangent of $p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{3^{\prime}}\right)$ at this point. If we have $A_{2^{\prime}}=A_{2}$ and then necessarily $A_{2^{\prime}} \neq A_{3^{\prime}}$ then obviously $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)=$ $p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{3}\right)$ and we conclude again that $p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{3}\right)=p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{3^{\prime}}\right)$ and that $a_{1^{\prime}}$ is a tangent of $p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{3^{\prime}}\right)$ at the point $A_{1^{\prime}}$. Therefore, in every case we have $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)=p\left(A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{1} a_{1} A_{1}, A_{3^{\prime}}\right)$ and so $A_{1^{\prime}} \in p\left(A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{1} a_{1} A_{1}, A_{3^{\prime}}\right)$. Moreover, $a_{1^{\prime}}$ is a tangent of $p\left(A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{1} a_{1} A_{1}, A_{3^{\prime}}\right)$ at the point $A_{1^{\prime}}$. Now, let $A_{1^{\prime}} \neq A_{1}$ at first. From $A_{1^{\prime}} \in p\left(A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{1} a_{1} A_{1}, A_{3^{\prime}}\right) \backslash$ $\left\{A_{2^{\prime}}, A_{1}\right\}$ we obtain $p\left(A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{1} a_{1} A_{1}, A_{3^{\prime}}\right)=$ $p\left(A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{1} a_{1} A_{1}, A_{1^{\prime}}\right)$ by Theorem 4.1. As $a_{1^{\prime}}$ is a tangent of $p\left(A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{1} a_{1} A_{1}, A_{3^{\prime}}\right)$ at the point $A_{1^{\prime}}$ so $a_{1^{\prime}}$ is the tangent of $p\left(A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{1} a_{1} A_{1}, A_{1^{\prime}}\right)$ at the same point $A_{1^{\prime}}$. Therefore, Theorem 4.4 implies $p\left(A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{1} a_{1} A_{1}, A_{1^{\prime}}\right)=p\left(A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, A_{1}\right)$. From $\quad A_{3^{\prime}} \in p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right) \backslash\left\{A_{1^{\prime}}, A_{2^{\prime}}\right\}=$ $p\left(A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{1}\right) \backslash\left\{A_{1^{\prime}}, A_{2^{\prime}}\right\}$ we obtain finally
$p\left(A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{1}\right)=p\left(A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{3^{\prime}}\right)$ by Theorem 4.1. If we have $A_{1^{\prime}}=A_{1}$, then $p\left(A_{1} a_{1} a_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{3^{\prime}}\right)=p\left(A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{3^{\prime}}\right)$ obviously holds.

Theorem 4.8

Let $A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, \quad A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}$ be two different flags of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ and let $A_{1^{\prime}}, A_{2^{\prime}} \neq A_{3}$. A line a_{3} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ at the point A_{3} iff a_{3} is a tangent of $p\left(A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{3^{\prime}}\right)$ at this point, i.e. the tangent of a two-fold specialized Pascal set in anyone of its points is uniquely determined.

Proof. At least one of the points $A_{1^{\prime}}, A_{2^{\prime}}$ is different from A_{1}. Let be e.g. $A_{2^{\prime}} \neq A_{1}$. At first, let $A_{2^{\prime}} \neq A_{2}$. According to proof of Theorem 4.7 we have $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)=$ $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{2^{\prime}}\right)=p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{2}\right)$. Then $A_{3} \in p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{2}\right) \backslash\left\{A_{1}, A_{2^{\prime}}\right\}$ and Theorem 4.1 implies $p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{2}\right)=$ $p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{3}\right)$. Moreover, $A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}$ is a flag of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ and therefore a flag of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{2^{\prime}}\right)$. So, Theorem 4.6 implies that a_{3} is a tangent of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{2^{\prime}}\right)$ at the point A_{3} iff a_{3} is a tangent of $p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{2}\right)$ at this point. Moreover, we conclude that a_{3} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ at the point A_{3} iff a_{3} is a tangent of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{2^{\prime}}\right)$ at this point and that a_{3} is a tangent of $p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{2}\right)$ at the point A_{3} iff a_{3} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{3}\right)$ at this point. Therefore, it follows finally in the case $A_{2^{\prime}} \neq A_{2}$ that a_{3} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ at the point A_{3} iff a_{3} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{3}\right)$ at this point. In the case $A_{2^{\prime}}=A_{2}$ this statement is trivial. Therefore, we have the conclusion: if $A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}$ is a flag of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ and $A_{2^{\prime}} \neq A_{1}, A_{3}$ then $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)=p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{3}\right)$ and a_{3} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ at the point A_{3} iff a_{3} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{3}\right)$, i.e. of $p\left(A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{1} a_{1} A_{1}, A_{3}\right)$ at this point. So, we have now a flag $A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}$ of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)=$ $p\left(A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{1} a_{1} A_{1}, A_{3}\right)$ and $A_{1^{\prime}} \neq A_{2^{\prime}}, A_{3}$ and on the same manner (by the substitutions $A_{1} \rightarrow A_{2^{\prime}}, A_{2} \rightarrow A_{1}$, $A_{2^{\prime}} \rightarrow A_{1^{\prime}}, a_{1} \rightarrow a_{2^{\prime}}, a_{2} \rightarrow a_{1}, a_{2^{\prime}} \rightarrow a_{1^{\prime}}$) we conclude that $p\left(A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{1} a_{1} A_{1}, A_{3}\right)=p\left(A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, A_{3}\right)$ and that a_{3} is the tangent of $p\left(A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{1} a_{1} A_{1}, A_{3}\right)$ at the point A_{3} iff a_{3} is the tangent of $p\left(A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, A_{3}\right)$, i.e. of $p\left(A_{1^{\prime}} a_{1^{\prime}} A_{1^{\prime}}, A_{2^{\prime}} a_{2^{\prime}} A_{2^{\prime}}, A_{3}\right)$ at the point A_{3}.

5 Pascal sets

Now, we shall investigate the mutual relationships between different types of Pascal sets.

Theorem 5.1

a) If $A_{1} a_{1} A_{1}$ is a flag of $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$, then $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)=p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$.
b) If $A_{5} \in p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right) \backslash\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$, then $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)=p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$.

Proof. The hypothesis of a) resp. b) is that $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ holds, wherefrom by Theorem 1.4 $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{5}, A_{4}\right)$ follows, i.e, the points $a_{1} \cap A_{3} A_{5}=U^{\prime}, \quad A_{1} A_{2} \cap A_{5} A_{4}=U, \quad A_{2} A_{3} \cap$ $A_{4} A_{1}=W^{\prime}$ are collinear. We must show that $X \in$ $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ iff $X \in p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$. This is obvious if $X \in\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$. Let be further $X \neq A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$. We must show that $P\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, X\right)$ implies $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}, X\right)$ and conversely that $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}, X\right)$ implies $P\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, X\right)$. The first statement was proved in fact in the proof of Theorem 2.3 (instead of $A_{5^{\prime}}$ it must be taken X). Let us prove the second statement. $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}, X\right)$ implies by Theorem 1.5 $P\left(A_{1} a_{1} A_{1}, A_{3}, A_{2}, X, A_{4}\right)$, i.e. $\quad a_{1} \cap A_{2} X=U^{\prime \prime}, A_{1} A_{3} \cap$ $X A_{4}=W, A_{3} A_{2} \cap A_{4} A_{1}=W^{\prime}$ are collinear points (Fig. 4) with X instead of $A_{5^{\prime}}$). By Pappus theorem we have $P\left(A_{1}, A_{2}, U^{\prime \prime}, W^{\prime}, U^{\prime}, A_{3}\right)$, i.e. $A_{1} A_{2} \cap W^{\prime} U^{\prime}=U, A_{2} U^{\prime \prime} \cap$ $U^{\prime} A_{3}=V, U^{\prime \prime} W^{\prime} \cap A_{3} A_{1}=W$ are collinear points. But, $U=A_{1} A_{2} \cap A_{4} A_{5}, V=A_{2} X \cap A_{5} A_{3}, W=X A_{4} \cap A_{3} A_{1}$ and so $P\left(A_{1}, A_{2}, X, A_{4}, A_{5}, A_{3}\right)$ holds and Theorem 1.1 implies $P\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, X\right)$.

Theorem 5.2

If $A_{1}, A_{2}, A_{3}, A_{4}$ are four different points of an ordinary Pascal set p and a_{1} the tangent of p at the point A_{1}, then p is equal to the one-fold specialized Pascal set $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$. Conversely, if $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ are five different points of an one-fold specialized Pascal set p, then p is equal to the ordinary Pascal set $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$.

Proof. Let p be an ordinary Pascal set, $A_{1}, A_{2}, A_{3}, A_{4} \in p$ four different points and a_{1} the tangent of p at the point A_{1}. There is a point $A_{5} \in p \backslash\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ and by Theorem 2.1 we have $p=p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$. By Theorem $2.4 a_{1}$ is the tangent of $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ at the point A_{1}. So Theorem 5.1 implies $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)=$ $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$. Conversely, let p be an one-fold specialized Pascal set and $A_{1}, A_{2}, A_{3}, A_{4}, A_{5} \in p$ five different points. By Theorem 3.10 there is the tangent
a_{1} of p at the point A_{1} and according to Theorem 3.9 we have $p=p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$. As we have $A_{5} \in$ $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right) \backslash\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$, so Theorem 5.1 implies $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)=p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$.

Theorem 5.3

a) Let $A_{1} a_{1} A_{1}$ be a flag of $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$.
b) Let $A_{5} \in p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right) \backslash\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$.

In both cases a line a_{2} is the tangent of $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ at the point A_{2} iff it is tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ at the same point.

Proof. The hypothesis of a) resp. b) is that $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ holds, wherefrom by Theorem $1.5 p\left(A_{1} a_{1} A_{1}, A_{2}, A_{5}, A_{3}, A_{4}\right)$ follows, i.e. $a_{1} \cap A_{5} A_{3}=$ $U, A_{1} A_{2} \cap A_{3} A_{4}=V, A_{2} A_{5} \cap A_{4} A_{1}=W$ are collinear points (Fig. 12). We must show that $P\left(A_{2} a_{2} A_{2}, A_{1}, A_{3}, A_{4}, A_{5}\right)$ holds iff $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}, A_{4}\right)$. The hypothesis $P\left(A_{2} a_{2} A_{2}, A_{1}, A_{3}, A_{4}, A_{5}\right)$ implies by Theorem 1.5 $P\left(A_{2} a_{2} A_{2}, A_{4}, A_{1}, A_{3}, A_{5}\right)$, i.e. $a_{2} \cap A_{1} A_{3}=W^{\prime}, A_{2} A_{4} \cap$ $A_{3} A_{5}=V^{\prime}, A_{4} A_{1} \cap A_{5} A_{2}=W$ are collinear points. Using the Pappus theorem we have $P\left(A_{1}, U, W^{\prime}, V^{\prime}, A_{4}, A_{3}\right)$, i.e. $A_{1} U \cap V^{\prime} A_{4}=U^{\prime \prime}, U W \cap A_{4} A_{3}=V, W V^{\prime} \cap A_{3} A_{1}=W^{\prime}$ are collinear points. But, $U^{\prime \prime}=a_{1} \cap A_{2} A_{4}, V=A_{1} A_{2} \cap A_{4} A_{3}$, $W^{\prime}=a_{2} \cap A_{3} A_{1}$ and so $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{4}, A_{3}\right)$ holds, wherefrom by Theorem 1.7 $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}, A_{4}\right)$ follows. Conversely, let $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{4}, A_{3}\right)$, i.e. $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}, A_{4}\right)$ holds. Then $U^{\prime \prime}, V, W^{\prime}$ are collinear points. The Pappus theorem implies now $P\left(A_{1}, A_{3}, U, V, U^{\prime \prime}, A_{4}\right)$, i.e. $A_{1} A_{3} \cap V U^{\prime \prime}=W^{\prime}, A_{3} U \cap$ $U^{\prime \prime} A_{4}=V^{\prime}, U V \cap A_{4} A_{1}=W$ are collinear points. But, $W^{\prime}=a_{2} \cap A_{1} A_{3}, V^{\prime}=A_{2} A_{4} \cap A_{3} A_{5}, W=A_{4} A_{1} \cap A_{5} A_{2}$ and so $P\left(A_{2} a_{2} A_{2}, A_{4}, A_{1}, A_{3}, A_{5}\right), P\left(A_{2} a_{2} A_{2}, A_{1}, A_{3}, A_{4}, A_{5}\right)$ holds.

Figure 12

Theorem 5.4

Let p_{1} be an ordinary Pascal set and p_{2} an one-fold specialized Pascal set such that $p_{1}=p_{2}$ and let $A_{2} \in p_{1}=p_{2}$. A line a_{2} is the tangent of p_{1} at the point A_{2} iff it is the tangent of p_{2} at this point.

Proof. Let $A_{1}, A_{3}, A_{4}, A_{5} \in p_{1} \backslash\left\{A_{2}\right\}=p_{2} \backslash\left\{A_{2}\right\}$ be four different points and let a_{1} be the tangent of p_{2} at the point A_{1}. Then by Theorem 2.1 we have $p_{1}=p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ and by Theorem $3.9 p_{2}=$ $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ holds. Moreover, by Theorems 2.4 and 3.10 it follows that p_{1} and $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ resp. p_{2} and $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ have the same tangent at the point A_{2}. As $A_{5} \in p_{2} \backslash\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}=$ $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right) \backslash\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$, so by Theorem 5.3 b) it follows that a_{2} is the tangent of $p\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ at the point A_{2} iff a_{2} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ at the same point.

Theorem 5.5

a) If $A_{2} a_{2} A_{2}$ is a flag of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$, then $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)=p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$.
b) If $A_{4} \in p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right) \backslash\left\{A_{1}, A_{2}, A_{3}\right\}$, then $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)=p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$.

Proof. The hypothesis of a) resp. b) implies $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{4}, A_{3}\right)$ by Theorem 1.7, i.e. $a_{1} \cap$ $A_{2} A_{4}=U, A_{1} A_{2} \cap A_{4} A_{3}=V, a_{2} \cap A_{3} A_{1}=W$ are oollinear points (Fig. 13).

Figure 13

We must prove that $X \in p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ iff $X \in p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$. The statement is obvious if $X \in\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$. Let be now $X \neq$ $A_{1}, A_{2}, A_{3}, A_{4}$. Because of Theorem 1.5 and 1.6 we must show that $P\left(A_{1} a_{1} A_{1}, A_{3}, A_{4}, A_{2}, X\right)$ holds iff $P\left(A_{1} a_{1} A_{1}, A_{3}, A_{2} a_{2} A_{2}, X\right)$ holds. If we have
$P\left(A_{1} a_{1} A_{1}, A_{3}, A_{4}, A_{2}, X\right)$, then $a_{1} \cap A_{4} A_{2}=U, A_{1} A_{3} \cap$ $A_{2} X=V^{\prime}, A_{3} A_{4} \cap X A_{1}=W^{\prime}$ are collinear points. As the lines $W^{\prime} A_{3}, A_{1} A_{2}, U W$ pass through the point V, so Desargues theorem implies that $A_{1} U \cap A_{2} W=U^{\prime \prime}$, $U W^{\prime} \cap W A_{3}=V^{\prime}, W^{\prime} A_{1} \cap A_{3} A_{2}=W^{\prime \prime}$ are collinear points. But, $U^{\prime \prime}=a_{1} \cap a_{2}, V^{\prime}=A_{1} A_{3} \cap A_{2} X, W^{\prime \prime}=A_{3} A_{2} \cap X A_{1}$ and so $P\left(A_{1} a_{1} A_{1}, A_{3}, A_{2} a_{2} A_{2}, X\right)$ holds. Conversely, if $P\left(A_{1} a_{1} A_{1}, A_{3}, A_{2} a_{2} A_{2}, X\right)$ holds, then $U^{\prime \prime}, V^{\prime}, W^{\prime \prime}$ are collinear points. As the lines $W^{\prime \prime} A_{3}, A_{1} V, U^{\prime \prime} W$ pass through the point A_{2} so by Desargues theorem $A_{1} U^{\prime \prime} \cap V W=U, U^{\prime \prime} W^{\prime \prime} \cap W A_{3}=V^{\prime}, W^{\prime \prime} A_{1} \cap A_{3} V=W^{\prime}$ are collinear points. But, $U=a_{1} \cap A_{4} A_{2}, V^{\prime}=A_{1} A_{3} \cap A_{2} X$, $W^{\prime}=A_{3} A_{4} \cap X A_{1}$ and we have $P\left(A_{1} a_{1} A_{1}, A_{3}, A_{4}, A_{2}, X\right)$.

Theorem 5.6

If A_{1}, A_{2}, A_{3} are three different points of an one-fold specialized Pascal set p and a_{1}, a_{2} are the tangents of p at the points A_{1}, A_{2}, respectively, then p is equal to the two-fold specialized Pascal set $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$. Conversely, if $A_{1}, A_{2}, A_{3}, A_{4}$ are four different points of a two-fold specialized Pascal set p and a_{1} the tangent of p at the point A_{1}, then p is equal to the one-fold specialized Pascal set $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$.

Proof. Let p be an one-fold specialized Pascal set, A_{1}, $A_{2}, A_{3} \in p$ three different points and a_{1}, a_{2} the tangents of p at the points A_{1}, A_{2}, respectively. There is a point $A_{4} \in p \backslash\left\{A_{1}, A_{2}, A_{3}\right\}$ and by Theorem 3.9 we have $p=p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$. According to Theorem 3.10 a_{4} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ at the point A_{2}. Therefore, Theorem 5.5 implies $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)=$ $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$. Conversely, let p be a twofold specialized Pascal set, $A_{1}, A_{2}, A_{3}, A_{4} \in p$ four different points and a_{1} the tangent of p at the point A_{1}. According to Theorem 4.8 there is the tangent a_{2} of p at the point A_{2} and because of Theorem 4.7 we have the equality $p=p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$. As $A_{4} \in$ $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right) \backslash\left\{A_{1}, A_{2}, A_{3}\right\}$, so Theorem $5.5 \mathrm{im}-$ plies $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)=p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$.

Theorem 5.7

Let $A_{2} a_{2} A_{2}$ be a flag of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$. A line a_{3} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ at the point A_{3} iff it is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ at the same point.

Proof. The hypothesis $P\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}, A_{4}\right)$ is the same as the hypothesis of Theorem 4.5 and so the proof is the same as the proof of Theorem 4.5.

Theorem 5.8

Let p_{1} be an one-fold specialized Pascal set and $p_{2} a$
two-fold specialized Pascal set such that $p_{1}=p_{2}$ and let $A_{3} \in p_{1}=p_{2}$. A line a_{3} is the tangent of p_{1} at the point A_{3} iff it is the tangent of p_{2} at this point.

Proof. Let $A_{1}, A_{2}, A_{4} \in p_{1} \backslash\left\{A_{3}\right\}=p_{2} \backslash\left\{A_{3}\right\}$ be three different points and let a_{1}, a_{2} be the tangents of p_{2} at the points A_{1}, A_{2}, respectively. Then by Theorem 3.9 we have $p_{1}=p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3} A_{4}\right)$ and by Theorem $4.7 p_{2}=$ $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$. Moreover, by Theorem 3.10 resp. Theorem 4.8 it follows that p_{1} and $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ resp. p_{2} and $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ have the same tangent at the point A_{3}. As $A_{4} \in p_{2} \backslash\left\{A_{1}, A_{2}, A_{3}\right\}=$ $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right) \backslash\left\{A_{1}, A_{2}, A_{3}\right\}$ so by Theorem 4.5 it follows that a_{3} is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2}, A_{3}, A_{4}\right)$ at the point A_{3} iff it is the tangent of $p\left(A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3}\right)$ at this point.

Any ordinary Pascal set, any one-fold specialized Pascal set and any two-fold specialized Pascal set are said to be a Pascal set. Because of Theorems 5.1 and 5.5 any Pascal set is simultaneously an ordinary Pascal set, an one-fold specialized Pascal set, and a two-fold specialized Pascal set.

6 Pascal-Brianchon sets

A simple 6 -line $a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}$ is a set of six lines a_{1}, a_{2}, $a_{3}, a_{4}, a_{5}, a_{6}$ taken in this cyclic order in which any two consecutive lines and any other line are non-concurrent. We say that this 6 -line is a Brianchonian 6 -line and we write $B\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$ if the lines $\left(a_{1} \cap a_{2}\right)\left(a_{4} \cap a_{5}\right)$, $\left(a_{2} \cap a_{3}\right)\left(a_{5} \cap a_{6}\right),\left(a_{3} \cap a_{4}\right)\left(a_{6} \cap a_{1}\right)$ are concurrent.

The Pappus theorem can be stated now in the dual form:
If a_{1}, a_{3}, a_{5} resp. a_{2}, a_{4}, a_{6} are concurrent lines then $B\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$.

Now, we shall dualize the whole above-mentioned theory. E.g. a two-fold specialized simple 6-line $a_{1} A_{1} a_{1} a_{2} A_{2} a_{2} a_{3} a_{4}$ of type 1 is a set of four lines a_{1}, a_{2}, a_{3}, a_{4} taken in this cyclic order in which any three lines are non-concurrent, and of two points A_{1}, A_{2} such that $A_{i} \mathrm{I} a_{j}$ iff $i=j$. We say that this 6 -line is a Brianchonian two-fold specialized 6-line of type 1 and we write $B\left(a_{1} A_{1} a_{1}, a_{2} A_{2} a_{2}, a_{3}, a_{4}\right)$ if the lines $A_{1}\left(a_{2} \cap a_{3}\right)$, $\left(a_{1} \cap a_{2}\right)\left(a_{3} \cap a_{4}\right), A_{2}\left(a_{4} \cap a_{1}\right)$ are concurrent. A twofold specialized Brianchon set determined by two flags $a_{1} A_{1} a_{1}, a_{2} A_{2} a_{2}$ and a line a_{3} such that $A_{i} \mathrm{I} a_{j}$ iff $i=j$ is the set of lines $b\left(a_{1} A_{1} a_{1}, a_{2} A_{2} a_{2}, a_{3}\right)=\left\{a_{1}, a_{2}, a_{3}\right\} \cup\{x \mid$ $\left.B\left(a_{1} A_{1} a_{1}, a_{2} A_{2} a_{2}, a_{3}, x\right)\right\}$.

A tangent of a Pascal set at one of its points has for the dual the notion of a point of contact of a Brianchon set with one of its lines.

Now, we can prove:

Theorem 6.1

The set of tangents of a Pascal set is a Brianchon set. Conversely, the set of points of contact of a Brianchon set is a Pascal set.

Proof. It suffices to prove only the first statement. Let p be the given Pascal set and $A_{1} a_{1} A_{1}, A_{2} a_{2} A_{2}, A_{3} a_{3} A_{3}$ three different flags of p. Let $A a A$ be any flag of p. We shall prove that a is a line of the Brianchon set $B\left(a_{1} A_{1} a_{1}, a_{2} A_{2} a_{2}, a_{3}\right)$. The statement is trivial if $A \in\left\{A_{1}, A_{2}, A_{3}\right\}$, i.e. $a \in\left\{a_{1}, a_{2}, a_{3}\right\}$. Let be now $A \neq A_{1}, A_{2}, A_{3}$, i.e. $a \neq a_{1}, a_{2}, a_{3}$. We must show that $B\left(a_{1} A_{1} a_{1}, a_{2} A_{2} a_{2}, a_{3}, a\right)$ holds. By the hypothesis we have $P\left(A_{1} a_{1} A_{1}, A_{2}, A_{3} a_{3} a_{3}, A\right), \quad P\left(A_{2} a_{2} A_{2}, A_{1}, A a A, A_{3}\right)$, $P\left(A_{1} a_{1} A_{1}, A_{2}, A a A, A_{3}\right)$ and $P\left(A_{2} a_{2} A_{2}, A_{1}, A_{3} a_{3} A_{3}, A\right)$, i.e. the triples of points $a_{1} \cap a_{3}=V^{\prime \prime}, A_{1} A_{2} \cap A_{3} A=W, A_{2} A_{3} \cap$ $A A_{1}=U ; a_{2} \cap a=V^{\prime}, A_{2} A_{1} \cap A A_{3}=W, A_{1} A \cap A_{3} A_{2}=$ $U ; a_{1} \cap a=U^{\prime}, A_{1} A_{2} \cap A A_{3}=W, A_{2} A \cap A_{3} A_{1}=V$ and $a_{2} \cap a_{3}=U^{\prime \prime}, A_{2} A_{1} \cap A_{3} A=W, A_{1} A_{3} \cap A A_{2}=V$ are collinear (Fig. 14). Therefore, we have $V^{\prime \prime}, V^{\prime} I U W$, and $U^{\prime}, U^{\prime \prime} I V W$, i.e. $V^{\prime}, V^{\prime \prime}, W$ resp. $U^{\prime}, U^{\prime \prime}, W$ are collinear points. As the lines $A_{1} A_{2},\left(a_{1} \cap a_{3}\right)\left(a_{2} \cap a\right)=V^{\prime \prime} V^{\prime}$, $\left(a_{3} \cap a_{2}\right)\left(a \cap a_{1}\right)=U^{\prime \prime} U^{\prime}$ pass through the point W, so $B\left(a_{1} A_{1} a_{1}, a_{3}, a_{2} A_{2} a_{2}, a\right)$ holds, wherefrom by the dual of Theorem 1.6 $B\left(a_{1} A_{1} a_{1}, a_{2} A_{2} a_{2}, a_{3}, a\right)$ follows.

Figure 14

If p is a Pascal set and b a Brianchon set such that b is the set of tangents of p, i.e. p is the set of points of contact
of b, then the ordered pair (p, b) is said to be a PascalBrianchon set. If $A \in p$ is a point and $a \in b$ a line such that $A a A$ is a flag of p, i.e. $a A a$ is a flag of b, then we say that (A, a) is a flag of (p, b).

According to Theorems 2.1, 3.9, 4.7 and their duals the following theorem follows:

Theorem 6.2

A Pascal-Brianchon set is uniquely determined by:
a) any five different of its points;
b) anyone of its flags (A, a) and any three of its points which are mutual different and different from A;
c) any two different of its flags $\left(A_{1}, a_{1}\right),\left(A_{2}, a_{2}\right)$ and anyone of its points different from A_{1} and A_{2};
d) any two different of its flags $\left(A_{1}, a_{1}\right),\left(A_{2}, a_{2}\right)$ and anyone of its lines different from a_{1} and a_{2};
e) anyone of its flags (A, a) and any three of its lines which are mutual different and different from a;
f) any five different of its lines.

Theorems 2.5, 3.6 and 4.3 and their duals imply:

Theorem 6.3

If (A, a) is a flag of a Pascal-Brianchon set (p, b) and $A_{1} \in p, a_{1} \in b$, then $A_{1} \mathrm{I}$ a implies $A_{1}=A$ and $A \mathrm{I} a_{1}$ implies $a_{1}=a$.

Let us prove the following theorem.

Theorem 6.4

Let $\left(A_{1}, a_{1}\right)$ be a flag of a Pascal-Brianchon set (p, b). If b_{1} is any line such that $A_{1} \mathrm{I} b_{1}$ and $b_{1} \neq a_{1}$, then there is one and only one point X such that $X I b_{1}$ and $X \in p \backslash\left\{A_{1}\right\}$. Dually, if B_{1} is any point such that $B I a_{1}$ and $B_{1} \neq A_{1}$, then there is one and only one line x such that $B_{1} I x$ and $x \in b \backslash\left\{a_{1}\right\}$.

Proof. It suffices to prove the statement for an ordinary Pascal set p, any flag $A_{1} a_{1} A_{1}$ of p and any line b_{1} such that $A_{1} \mathrm{I} b_{1}$ and $b_{1} \neq a_{1}$. At first let us prove the existence of the required point X. Let $A_{2}, A_{3}, A_{4}, A_{5} \in p \backslash\left\{A_{1}\right\}$ be four different points. The statement of theorem is obvious if $A_{i} \mathrm{I} b_{1}$, for any $i \in\{2,3,4,5\}$. Let be further A_{2}, A_{3}, A_{4}, A_{5} non-incident with b_{1}. Put $A_{1} A_{2} \cap A_{4} A_{5}=U$, $A_{3} A_{4} \cap b_{1}=W, A_{2} A_{3} \cap U W=V, b_{1} \cap A_{5} V=X$. If it were $X=A_{1}$, then would be $P\left(A_{1} b_{1} A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$ because of the collinearity of the points $b_{1} \cap A_{3} A_{4}=W$,
$A_{1} A_{2} \cap A_{4} A_{5}=U, A_{2} A_{3} \cap A_{5} A_{1}=V$. But, then $A_{1} b_{1} A_{1}$ would be a flag of p, which is in contradiction with $b_{1} \neq a_{1}$. Therefore, we have $X \neq A_{1}$. The points $A_{1} A_{2} \cap A_{4} A_{5}=U$, $A_{2} A_{3} \cap A_{5} X=V, A_{3} A_{4} \cap X A_{1}=W$ are collinear and we have $P\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, X\right)$, i.e. $X \in p$. Let now X^{\prime} be a point such that $X^{\prime} I b_{1}$ and $X^{\prime} \in p \backslash\left\{A_{1}\right\}$. Because of non-collinearity of any three different points of p it follows necessarily $X^{\prime}=X$.

Theorem 6.4 implies that any Pascal or Brianchon set contains $n+1$ points resp. lines, where n is the order (finite or infinite) of the projective plane.

In virtue of Theorem 6.4 we can define two new notions.
Let (A, a) be a flag of a Pascal-Brianchon set (p, b). If c is any line such that $A I c$ and $c \neq a$, then the point X such that $X I c$ and $X \in p \backslash\{A\}$ is said to be the second intersection of the line c with the Pascal set p. If $c=a$, then we say that A is the second intersection of the line c with p. If C is any point, such that $C I a$ and $C \neq A$, then the line x such that $C I x$ and $x \in b \backslash\{a\}$ is said to be the second tangent from the point C onto the Brianchon set b. If $C=A$, then we say that a is the second tangent from the point C onto b.
We shall say that the simple 6-points $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$, $A_{1} a_{1} A_{1} A_{2} A_{3} A_{4} A_{5}, A_{1} a_{1} A_{1} A_{2} a_{2} A_{2} A_{3} A_{4}, A_{1} a_{1} A_{1} A_{2} A_{3} a_{3} A_{3} A_{4}$, or $A_{1} a_{1} A_{1} A_{2} a_{2} A_{2} A_{3} a_{3} A_{3}$ are inscribed resp. that the simple 6-lines $a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}, \quad a_{1} A_{1} a_{1} a_{2} a_{3} a_{4} a_{5}$, $a_{1} A_{1} a_{1} a_{2} A_{2} a_{2} a_{3} a_{4}, a_{1} A_{1} a_{1} a_{2} a_{3} A_{3} a_{3} a_{4}$ or $a_{1} A_{1} a_{1} a_{2} A_{2} a_{2} a_{3} A_{3} a_{3}$ are circumscribed to a Pascal-Brianchon set (p, b) if $A_{i} \in p$ and $a_{i} \in b$ for $i=1,2,3,4,5,6$.

Now, the definitions of various types of Pascal and Brianchon sets and of tangents of Pascal sets or of points of contact of Brianchon sets imply:

Theorem 6.5 (generalized Pascal theorem)
A simple 6-point is a Pascalian 6-point iff it is inscribed to a Pascal-Brianchon set.

Theorem 6.6 (generalized Brianchon theorem) A simple 6-line is a Brianchonian 6-line iff it is circumscribed to a Pascal-Brianchon set.

References

[1] LIEBMANN H., Synthetische Geometrie, Teubner, Leipzig-Berlin, 1934.
[2] VOLENEC V., "Projective definition of conic without use of theory of projectivities", Glasnik Mat. 12(32)(1977), 323-326.

Vladimir Volenec
Dept. of Mathematics
Faculty of Natural Sciences, University of Zagreb
Bijenička 30, Zagreb, Croatia
e-mail: volenec@math.hr

