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STRUČNI RADOVI
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ABSTRACT

The description of principal lines of the ellipsoid on the
3-dimensional Minkowski space is established. A global
principal parametrization of a triple orthogonal system of
quadrics is also achieved, and the focal set of the ellipsoid
is sketched.

Key words: principal lines, configuration principal,
Minkowski three-dimensional space, ellipsoid, triple orthog-
onal system
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Glavne krivulje zakrivljenosti elipsoida u trodi-
menzionalnom prostoru Minkowskog

SAŽETAK

U radu su opisane glavne krivulje zakrivljenosti (crte krivine)
elipsoida u trodimenzionalnom Minkowskijevom prostoru.
Navedena je i globalna parametrizacija trostruko ortogo-
nalnog sustava te je prikazan fokalni skup elipsoida.

Ključne riječi: glavne krivulje zakrivljenosti (crte krivine),
glavna konfiguracija, trodimenzionalni prostor Minkowskog,
elipsoid, trostruko ortogonalni sustav

1 Introduction

The goal of this work is to describe the global behavior
of principal lines of the ellipsoid in the three dimensional
Minkwoswki space R2,1. We recall that the concept of
principal lines were introduced by G. Monge [11] and ge-
ometrically they can be characterized as the curves on the
surface such that the ruled surface having the rules being
the normal straight lines along the curve is a developable
surface [18, page 93].

The principal lines of the ellipsoid with three different axes
in the Euclidean space R3 are as illustrated in Fig. 1. In
this case, the principal lines of the triaxial ellipsoid are
obtained by Dupin’s theorem. The ellipsoid belongs to a
triple orthogonal family of surfaces, formed by the ellipsoid
and two hyperboloids (one of one leaf and the other of two
leaves).

For more recent and historical developments of principal
lines on surfaces see [4], [13], [14], [15] and [16]. This
work is organized as follows. In section 2 we recall the
basic properties of the Minkowski 3-space and principal
lines. In section 3 we describe the global behavior of prin-
cipal lines in the ellipsoid. In section 4 we will describe the

topological equivalence of the principal configuration of
the ellipsoid. In section 5 we will show that the geometric
inversion in Minkowski 3-space preserves lines of curva-
ture. In section 6 we obtain a triple orthogonal system of
quadrics. Finally, in section 7 the focal set of the ellipsoid
is analyzed.

Figure 1: Principal lines on the triaxial ellipsoid. There
are four umbilic points, the singularities. Also, there are
four umbilic separatrices and other principal lines are
closed.

3



KoG•27–2023 R. Garcia, D. Tejada: Principal Lines on an Ellipsoid in a Minkowski Three-Dimensional Space

2 Preliminaries

The Minkowski 3-space R2,1 = (R3,〈,〉) is the vector space
R3 endowed with the inner product 〈u,v〉= u1v1 +u2v2−
u3v3, where u = (u1,u2,u3) and v = (v1,v2,v3). The norm
is ‖v‖=

√
|〈v,v〉|.

The vector product u× v, is a vector such that 〈u× v,u〉=
〈u× v,v〉= 0. Then

u× v =

∣∣∣∣∣∣
i j −k

u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ .
A vector v is said to be

• spacelike, if 〈v,v〉> 0 or v = 0,

• timelike, if 〈v,v〉< 0,

• lightlike, if 〈v,v〉= 0 and v 6= 0.

A plane is called spacelike (resp. timelike, lightlike), if the
normal vector is timelike (resp. spacelike, lightlike).

A regular curve is spacelike (resp. timelike, lightlike) if
the tangent vector is spacelike (resp. timelike, lightlike). A
smooth surface is called spacelike (resp. timelike) if the
tangent planes are spacelike (resp. timelike).

Let α : M→ R2,1 be a Cr (r ≥ 4) immersion of a smooth
and oriented surface M of dimension two in R2,1. Let
X(u,v) : R2→M be a local parametrization. The first fun-
damental form is

I = Edu2 +2Fdudv+Gdv2,

where E = 〈Xu,Xu〉, F = 〈Xu,Xv〉 and G = 〈Xv,Xv〉.

Given p ∈M, if det(Ip) = EG−F2 is positive (resp. nega-
tive), the surface is spacelike or Riemannian (resp. timelike
or Lorentzian) in the point p. This is equivalent to say that
tangent plane is spacelike or timelike. The metric induced
on M can be degenerate; this happens at the points p on M
where the tangent space T Mp is lightlike, or equivalently
that det(Ip) = EG−F2 = 0. We call this set of points the
tropic and will be denoted by LD (Locus of Degeneracy).

On a spacelike (resp. timelike) surface, we define the Gauss
map

N(u,v) = ε · αu×αv

‖αu×αv‖
(u,v)

such that N : M→H2,1 with ε = 1 (resp. N : M→ S2,1 with
ε =−1), where H2,1 = {(x,y,z) ∈ R3 : x2 + y2− z2 =−1}
and S2,1 = {(x,y,z) ∈ R3 : x2 + y2− z2 = 1}.

The sign ε =±1 is only necessary to define the base posi-
tively oriented {αu,αv,N} in all over the surface (except in
the tropic), this is,
det(αu,αv,N) =

ε

‖αu×αv‖
〈αu×αv,αu×αv〉> 0,

[9, page 50].

The second fundamental form is

II = edu2 +2 f dudv+gdv2,

where e = 〈Xuu,N〉, f = 〈Xuv,N〉 and g = 〈Xvv,N〉.

The mean curvature H and Gauss curvature K are defined
by

H =
Eg+Ge−2F f

2(EG−F2)
and K =

eg− f 2

EG−F2 ,

and the principal curvatures k1 and k2 are defined by

k1 = H +
√

H2−K and k2 = H−
√

H2−K.

In general, a surface M ⊂ R2,1 has a Riemannian part and
a Lorentzian part. On the Riemannian part, dNp does have
real eigenvalues; on Lorentzian part, dNp does not always
have real eigenvalues. These eigenvalues are the princi-
pal curvatures k1 and k2 in each point and the respective
eigendirections of dNp are called principal directions and
they define two line fields L1 and L2 mutually orthogonal
in M. They are determined by non-zero vectors on Tp(M)
which satisfy the implicit differential equation

(Fg−G f )dv2 +(Eg−Ge)dudv+(E f −Fe)du2 = 0.

(1)

The integral curves of the equation (1) are called lines
of curvature or principal lines. The families of principal
lines F1 and F2 associated with L1 and L2, respectively,
are called principal foliations of M. An umbilic point is
defined as a point where II = cI for some constant c. It is
called a spacelike (resp. timelike) umbilic point when it
is on Riemannian (resp. Lorentzian) part of M. The set of
umbilic points is denoted by U.

The map N is not defined on the tropic, but since the
equation (1) is homogeneous, we can multiply the coeffi-
cients of (1) by ‖αu×αv‖. Let L1 = ‖αu×αv‖(Fg−G f ),
M1 = ‖αu×αv‖(Eg−Ge) and N1 = ‖αu×αv‖(E f −Fe).
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So, the equation of curvature lines (or principal lines) can
be extended to the tropic by

L1dv2 +M1dvdu+N1du2 = 0. (2)

The tropic LD = (EG−F2)−1(0) is generically a curve
that is solution of the equation (2), [21, Lemma 1.31]. The
discriminant of the equation (2), define the set of points
where it determines a unique direction or an umbilic point,
the first set is denoted by LPL (Ligthlike Principal Locus).
On the Riemannian part LPL = /0, and on the Lorentzian
part the set LPL is generically a curve that divide locally
the surface into two regions, in one of them there are no
real principal directions and in the other there are two real
principal directions at each point, [7].

Definition 1 The quintuple PM = {F1,F2,U,LD,LPL} is
called the principal configuration of M, or rather of the
immersion α of M in R2,1.

Definition 2 Two principal configurations PM1 and PM2

are C0-principally equivalent if there exists a homeomor-
phism h : M1 → M2 which is a topological equivalence
between them, i.e., h sends principal foliations, umbilic set,
LD and LPL of M1 in the correspondent of M2.

Remark 1 The umbilic points can also be seen as the
points where L1 = M1 = N1 = 0.

Remark 2 A smooth curve c is a principal line, if this
curve satisfies the equation (2) and there are no umbilic
points on c.

Remark 3 Let X(u,v) be a local parametrization of M.
If F = f = 0 then L1 = N1 = 0 and (u,v) is a principal
curvature coordinate system. It is called a principal chart.

Triply orthogonal system (see [8, 18]).

In this subsection, it will be introduced a triple orthogonal
systems of surfaces in the Minkowski space R2,1.

Definition 3 A triply orthogonal system of surfaces is a
differentiable map X : W → R2,1, defined on an open set
W ⊂ R2,1, satisfying:

a) The linear map dX(u,v,w) : T(u,v,w)R2,1→ TX(u,v,w)R2,1

is bijective for all (u,v,w) ∈W.

b) 〈Xu,Xv〉= 〈Xu,Xw〉= 〈Xw,Xv〉= 0.

Let p = (u0,v0,w0) ∈W . Consider the three surfaces

(u,v) 7−→ X(u,v,w0)

(u,w) 7−→ X(u,v0,w)

(v,w) 7−→ X(u0,v,w),

we denote these surfaces by Mw0 , Mv0 and Mu0 , respectively.
They are regular surfaces by the condition a).

Notice that by condition b), F = 0 on each of them. Further-
more, Xw(u,v,w0) is normal to Mw0 at (u,v,w0) (similarly
to other two surfaces) and differentiating,

〈Xu,Xv〉w = 〈Xu,Xw〉v = 〈Xw,Xv〉u = 0.

Therefore,

〈Xuv,Xw〉= 〈Xuw,Xv〉= 〈Xvw,Xu〉= 0,

which means that f = 0 on each of the surfaces. By remark
(3), we may conclude that:

Theorem 1 The coordinate curves on a surface belong-
ing to a triply orthogonal system in a Minkowski three-
dimensional space are principal curvature lines.

3 The Ellipsoid in the Minkowski space

Consider the family of surfaces

Fu = {(x,y,z) :
x2

a2−u
+

y2

b2−u
+

z2

c2 +u
= 1}

Gv = {(x,y,z) :
x2

a2− v
+

y2

b2− v
+

z2

c2 + v
= 1}

Hw = {(x,y,z) :
x2

a2−w
+

y2

b2−w
+

z2

c2 +w
= 1}

where a > b > 0 (the case b > a > 0 is similar) and c > 0.

Let UE := {(u,v,w) ∈ (−c2,b2)× (b2,a2)× (−c2,b2)}.
For (u,v,w) ∈UE , Fu, Hw are ellipsoids and Gv is a hyper-
boloid of one leaf.

Theorem 2 The surfaces Fu, Gv and Hw define a triple
orthogonal system for (u,v,w) ∈UE , u 6= w.

5
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Proof. Solving the system below in the variables {x,y,z}

x2

a2−u
+

y2

b2−u
+

z2

c2 +u
−1 = 0

x2

a2− v
+

y2

b2− v
+

z2

c2 + v
−1 = 0

x2

a2−w
+

y2

b2−w
+

z2

c2 +w
−1 = 0,

it is obtained in the positive octant:

x(u,v,w) =

√
(a2−u)(a2− v)(a2−w)

(a2−b2)(a2 + c2)

y(u,v,w) =

√
−(b2−u)(b2− v)(b2−w)

(a2−b2)(b2 + c2)

z(u,v,w) =

√
(c2 +u)(c2 + v)(c2 +w)

(a2 + c2)(b2 + c2)
·

A long and straightforward calculations show that

X(u,v,w) = (x(u,v,w),y(u,v,w),z(u,v,w)) (3)

satisfies 〈Xu,Xv〉= 〈Xu,Xw〉= 〈Xv,Xw〉= 0. Moreover,

det(DX(u,v,w)) =

(u− v)(u−w)(v−w)
8x(u,v,w)y(u,v,w)z(u,v,w)(a2−b2)(a2 + c2)(b2 + c2)

6= 0.

�

Since {Fu,Gv,Hw} is a triple orthogonal system, these
surfaces intersect along their curvature lines. The curvature
lines can be obtained globally by symmetry in relation to
the coordinates planes.

Now, we fixed w and defined the ellipsoid Ew = Hw with
(u,v,w) ∈UE , so we have that the principal lines on Ew are
the intersection curves, with the hyperboloid of one leaf Gv
and with the other ellipsoid Fu (See Fig. 2).

In each octant, we have that for Ew the parametrization (3)
is a principal chart, i.e., f = F = 0. So, the principal lines
are u = constant and v = constant, and these curves are
exactly the intersection between surfaces.

Remark 4 The triply orthogonal system of quadratic sur-
faces in the Euclidean space is make up by an ellipsoid, a
hyperboloid of one leaf and a hyperboloid of two leaves [4,
Chapter 2]. See also [12, Chapter 7] for more details about
the geometric properties of confocal quadrics.

Figure 2: Triply orthogonal system defined by two ellip-
soids and one hyperboloid of one leaf.

To complete the description, the principal configuration
is necessary to analyze the curves of the intersections of
the ellipsoid with the coordinates planes. Without loss of
generality, we do w = 0, i.e., we analyze

E0 =

{
(x,y,z) :

x2

a2 +
y2

b2 +
z2

c2 = 1
}

with a > b > 0 and c > 0 (it is allowed a = c or b = c).

The parametrization below is inspired in the Euclidean case.
See also Section 6 where a global parametrization will be
obtained in a triple orthogonal system of quadrics.

Lemma 1 The parametrization

X(u,v) =(acos(u)A(v),bsin(u)sin(v),ccos(v)B(u))

A(v) =
√

A1 cos2(v)+ sin2(v),

B(u) =
√

B1 cos2(u)+ sin2(u) (4)

with (u,v) ∈U1 = [0,π]× [0,2π] or (u,v) ∈U2 = [0,2π]×
[0,π], where A1 =

a2−b2

a2+c2 and B1 =
b2+c2

a2+c2 , defines a principal
chart (u,v) on the ellipsoid E0.

6



KoG•27–2023 R. Garcia, D. Tejada: Principal Lines on an Ellipsoid in a Minkowski Three-Dimensional Space

Proof. Calculating of the coefficients of the first and second
fundamental form, we have

E =−
((

a2−b2)cos2 u−a2)((a2−b2)cos2 u+
(
b2 + c2)cos2 v−a2− c2)(

a2−b2
)

cos2 u−a2− c2

F =0

G =−
((

a2−b2)cos2 u+
(
b2 + c2)cos2 v−a2− c2)((b2 + c2)cos2 v− c2)
−
(
b2 + c2

)
cos2 v+a2 + c2

e =
abc
((

a2−b2)cos2 u+
(
b2 + c2)cos2 v−a2− c2)2√(

b2 + c2
)

cos2 v− c2−a2
((

a2−b2
)

cos2 u−a2− c2
) 3

2

f =0

g =
b
((

a2−b2)cos2 u+
(
b2 + c2)cos2 v−a2− c2)2 ac((

b2 + c2
)

cos2 v− c2−a2
) 3

2

√(
a2−b2

)
cos2 u−a2− c2

.

Since that, F = f = 0 then L1 = N1 = 0 in the equation (2).
So, by Remark 3, we have that X defines a parametrization
by principal lines, i.e., (u,v) is a principal chart.

The parametrization (X ,U1) (resp. (X ,U2)) cover all the
ellipsoid and is smooth, except in the curves X(0,v) and
X(π,v) (resp. X(u,0) and X(u,π)). �

Proposition 1 On the ellipsoid E0, we have that:

a. The curves cx = {(x,y,z) : x = 0} ∩ E0 and cz =

{(x,y,z) : z = 0}∩E0 are principal lines.

b. E0 has exactly four spacelike umbilic points,±a

√
a2−b2

a2 + c2 ,0,±c

√
b2 + c2

a2 + c2

 .

c. The umbilic points are of type D1.

d. The curve cy = {(x,y,z) : y = 0}∩E0 is the union of
principal lines. Moreover, these are the separatrices
of the umbilic points.

e. The tropic is composed by two disjoint regular closed
curves. Moreover, these curves are principal lines.

f. The principal lines are globally defined, i.e., the set
LPL = /0.

Figure 3: Principal lines on the Ellipsoid in the Minkowski
space. Parameters a = 2.0, b = 1.5, c = 2.2.

Proof.
a) Consider the principal chart (X ,U1) (resp. (X ,U2))
given by Lemma 1. We have cx = X(π

2 ,v) (resp. cz =
X(u, π

2 )).

The principal chart (X ,U1) (resp. (X ,U2)) is smooth, ex-
cept in the curves X(0,v) and X(π,v) (resp. X(u,0) and
X(u,π)), but this curves not intersect with cx (resp. cz).
Therefore, cx (resp. cz) is a principal line of the ellipsoid.

b) Consider the parametrization,

X(u,v) =
(

au,bv,±c
√

1−u2− v2
)
. (5)

Then the differential equation of principal lines (2) with X
is

E(u,v,du : dv) =

−uv(a2 + c2)du2 +uv(b2 + c2)dv2

+(u2(a2 + c2)− v2(b2 + c2)−a2 +b2)dudv = 0. (6)

We have that L1 = N1 = 0 when u = 0 or v = 0. If u = 0
then M1 = −v2(b2 + c2)− a2 + b2 6= 0. If v = 0, we have
that M1 = u2(a2 + c2)−a2 +b2 = 0 if and only if

u0 =±

√
a2−b2

a2 + c2 .

So, there are four umbilic points. Moreover,

(EG−F2)(u0,0) =
b4(a2 + c2)

b2 + c2 > 0,

and then the umbilic points are in the Riemannian part of
E0, i.e., they are spacelike umbilic points.

7
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c) For completeness, it will be included a detailed sketch
of proof. We take p = dv

du in the equation (6), so

F(u,v, p) =−uv(a2 + c2)

+(u2(a2 + c2)− v2(b2 + c2)−a2 +b2)p

+uv(b2 + c2)p2 = 0.

Under the hypothesis, the implicit surface F−1(0) is a regu-
lar surface, contain the projective line, and is topologically
a cylinder. The map π : F−1(0)→ R2, π(x,y, p) = (x,y)
is a ramified double covering and π−1(u0,0) is the projec-
tive line parametrized by [du : dv]. The umbilic point P1 =(

a
√

a2−b2

a2+c2 ,0,c
√

b2+c2

a2+c2

)
has coordinates u0 =

√
a2−b2

a2+c2 and
v = 0. The Lie-Cartan line field associated to the implicit
equation F(u,v, p) = 0 is Y = (Fp, pFp,−(Fx + pFy)) on
the surface M = F−1(0), M ⊂ R2×RP1. The solutions
of the implicit differential equation F(u,v, p) = 0 are the
projections of the integral curves of Y . See [1] and [4].

We have that

Y (u0,0, p) =0,0,−

√
a2−b2

a2 + c2 p(b2 p2 + c2 p2 +a2 + c2)

= (0,0,0)

if and only if p = 0.

Moreover, the eigenvalues of DY (u0,0,0) are,

λ1 = 2

√
a2−b2

a2 + c2 (a
2 + c2), λ2 =−2

√
a2−b2

a2 + c2 (a
2 + c2).

Therefore, (u0,0,0) is a hyperbolic saddle point of Y . To
complete the analysis, it is also necessary to consider the
chart q = du/dv in the equation (6) to obtain an implicit
surface G(u,v,q) = 0. Now the Lie-Cartan vector field is
Z = (qGq,Gq,−(qGu +Gv)). We have that Z(u0,0,q) 6= 0.
Gluing the phase portraits of Y and Z near the projective
line [du : dv] we obtain a line field on the cylinder with a
unique hyperbolic singular point. The projections of the
leaves (integral curves of X and Y ) are the principal lines
of the ellipsoid near the umbilic point. See Fig. 4.

Therefore, the umbilic point P1 is Darbouxian of type D1
(see also [4]). By symmetry, all the other umbilic points are
also of type D1.

d) Using the parametrization (5), a curve cy satisfies the
equation the principal lines (6). Furthermore, the umbilic
points are on cy, so this curve is a union of principal lines
and the umbilic points. Since the umbilic points are D1, we
obtain the result as stated.

Figure 4: Implicit surface F(u,v, p) = 0 (cylinder) and a
ramified double covering π with π−1(u0,0) being the pro-
jective line. The top and bottom lines with inclination p = 0
are identified.

e) Using the chart defined by equation (4) with (u,v) ∈U1,
we have that

EG−F2 =
(
(b2 + c2)cos2(v)− c2)((a2−b2)cos2(u)−a2)(

(a2−b2)cos2(u)+(b2 + c2)cos2(v)−a2− c2)2
= 0.

if, and only if, v1 = arccos
(

c√
c2+b2

)
or v2 =

arccos
(
− c√

c2+b2

)
= π− v1.

The tropic is the union of the closed curves c1(u) = X(u,v1)
and c2(u) = X(u,v2). As v = constant and (X ,U1) is a prin-
cipal chart, then c1 and c2 are principal lines.

f) Since the parametrization (4) is defined globally on E0
and defines a principal chart, it follows that L1 =N1 = 0 and
LPL = M2

1 ≥ 0. Therefore, the principal lines are globally
defined. �

Confocal and orthogonal family of conics

Performing the change of coordinates by u =
√

b2+c2

a2+c2 x and
v = y, then equation (6) is given by

−xydx2 +
(
x2− y2−λ

2)dxdy+ xydy2 = 0

with λ2 = a2−b2

b2+c2 . The coordinates axes, the family of el-
lipses

u(t) = Rcos(t), v(t) = r sin(t), R2 = r2 +λ
2

8
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and the family of hyperbolas

u(t) = Rcosh(t), v(t) = r sinh(t), R2− r2 = λ
2

are the solutions of the differential equation above. This is
similar to Euclidean case, see [4].

Figure 5: Confocal and orthogonal family of conics. The
tropic is shown in green and is parametrized by cos2 v =
c/(b+ c).

Horizontal ellipsoid of revolution.

When a = c or b = c, we have four spacelike umbilic points
of type D1, while with the Euclidean scalar product only
have two umbilic points of center type.

Vertical ellipsoid of revolution and Euclidean sphere.

When a = b and c > 0, the parametrization (4) is reduced to

X(u,v) = (asin(v)cos(u),asin(v)sin(u),ccos(v)).

The equation of principal lines is

a2c(a2 cos2(v)+ c2 cos2(v)−a2− c2)4dudv = 0.

Therefore, the principal lines are u = constant and
v = constant. We have only two spacelike umbilic points
(0,0,±c) of type center.

On ellipsoid of revolution with a = b and c 6= a, the princi-
pal lines are the same in the two geometries (Euclidean and
Lorentzian).

With the Euclidean scalar product the Eucidean sphere is a
umbilic surface, while with the Lorentzian scalar product
the Euclidean sphere has only two spacelike umbilic points
of type center.

Umbilic surfaces.

The umbilic surfaces with Euclidean inner scalar are the
Euclidean sphere and planes, while with Lorentzian inner
scalar the umbilic surfaces are planes, the vertical hyper-
boloid of one leaf S2

1(c,r) = {p ∈R2,1 : 〈p− p0, p− p0〉=
r2} and vertical hyperboloid of two leaves H2

1(c,r) = {p ∈
R2,1 : 〈p− p0, p− p0〉 = −r2}, see [3, page 191] and [9,
page 85].

Remark 5 For the study of geodesics on an ellipsoid in
the Minkowski space R2,1 see [5]. The analysis of umbilic
points in smooth surfaces in R2,1 of the form fε(x,y,z) =
x2/a2 + y2/b2 + z2/c2 +h.o.t = ε was developed in [6].

4 Topological equivalence of principal folia-
tions

In this section we will obtain that the principal configura-
tions of the ellipsoids of three distinct axes are all principal
topologically equivalent. The Euclidean case was estab-
lished by J. Sotomayor [15].

Proposition 2 Consider an ellipsoid E(x,y,z) = ax2 +
by2 + cz2 + 2dxy + 2exz + 2 f yz + gx + hy + kz + l = 0.
Then there exists an isometry h : R2,1 → R2,1 such that
E(h(u,v,w)) = λ1u2 + λ2v2 + λ3w2 = 1, with λi > 0 for
(i = 1,2,3).

Proof. The rotation group of R2,1 is SO(2,1) of dimen-
sion 3 and is generated by the Euclidean and Hyperbolic
rotations defined by:

R(u,v,w) = (ucosθ+ vsinθ,−usinθ+ vcosθ,w)

S(u,v,w) = (ucoshα+wsinhα,v,usinhα+wcoshα)

T (u,v,w) = (u,vcoshβ+wsinhβ,vsinhβ+wcoshβ)

The quadric form q(x,y,z) = ax2 + by2 + cz2 + 2dxy +
2exz+2 f yz is positive definite when one of the following
conditions holds:

a > 0, ab−d2 > 0, abc−a f 2−be2−cd2 +2de f = ∆ > 0,

b > 0, bc− f 2 > 0, ∆ > 0,

c > 0, ac− e2 > 0, ∆ > 0.

In this case the eigenvalue problem

det

a− x d e
d b− x f
e f c+ x

= 0

9
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has three real eigenvalues x1 ≤ x2 ≤ x3 and the correspon-
dent eigenvectors e1,e2,e3 are orthonormal relative to the
Minkowski inner product. Therefore, one of the eigen-
vectors, say e3, is timelike and the other two {e1,e2} are
spacelike. There exists an isometry h (composition of
hyperbolic rotations) such that h(0,0,−1) = e3. In the
new coordinates we have that q1(u,v,w) = q(h(u,v,w)) =
a1u2 +b1v2 + c1w2 +d1uv.

Also, there exists an isometry H (Euclidean rotation) such
that

q1(H(u1,v1,w1)) = a2u2
1 +b2v2

1 + c1w2
1,a2 > 0,

b2 > 0, c1 > 0.

Finally, with a translation we obtain the result stated. �

Remark 6 In general, a hyperboloid is not isometric to
one given in a diagonal form. The classification of conics
in Minkowski plane is carried out in [10].

Theorem 3 Consider the set of ellipsoids E with three dis-
tinct axes in the space of quadrics Q of R3. Then the prin-
cipal configurations of any two elements of E are principal
topologically equivalent.

Proof. The principal configuration of an ellipsoid with three
different axes in the diagonal form x2/a2+y2/b2+z2/c2 =
1 has the following properties.

i) There are four umbilic points of Darbouxian type D1.

ii) The set LD is the union of two regular curves.

iii) The set LPL is empty.

iv) The principal foliations F1 and F2 have all leaves
closed, with the exception of the umbilic separatrices.
See Fig. 3.

The construction of the topological equivalence can be done
explicitly using the method of canonical regions defined
by the union of two topological disks and a cylinder; the
boundary being the tropics. See [17] and Fig. 6. By Propo-
sition 2, any ellipsoid is isometric to an ellipsoid in the
diagonal form. This ends the proof. �

Figure 6: Decomposition of the ellipsoid in three canoni-
cal regions foliated by principal lines; the boundary of each
region is formed by the tropic lines.

5 Geometric Inversion in Minkowski space

In this section, we will show that the principal lines are
the same when we consider the inversion of the surface
with respect to a given point in the space. Recall that the
inversion is defined by:

Iq(p) =
p−q

〈p−q, p−q〉
.

Proposition 3 Consider a regular surface S and a point
q ∈ R2,1 \S. Let Sq = Iq(S), where Iq is the inversion with
respect to the point q. The principal lines on S are the same
that on Sq.

Proof. Consider the local parametrization

X(u,v) = (u,v,h(u,v)).

Calculating the equation of principal lines of X , we have
that:

(huvh2
v−hvvhuhv−huv)dv2

+(huuh2
v +hvv−hvvh2

u−huu)dvdu

+(huv +huhvhuu−huvh2
u)du2 = 0.

(7)

The local parametrization of the inverted surface in the
relation to the point q = (q1,q2,q3), is given by:

X̄(u,v) =
1

〈X(u,v)−q,X(u,v)−q〉
(X(u,v)−q)

=
1

(u−q1)2 +(v−q2)2− (h(u,v)−q3)2 ·

· (u−q1,v−q2,h(u,v)−q3) .

Calculating the first fundamental form of X̄ it follows that

E =− h2
u−1
Q2

0
, F =−huhv

Q2
0
, G =−h2

v−1
Q2

0
,

with Q0 = 〈X(u,v)−q,X(u,v)−q〉. Similarly, we calculate
the coefficients of the second fundamental form:

e =
1

Q4
0

[
2(q1−u)h3

u +2((q2− v)hv +h−q3)h2
u

+2(u−q1)hu +2(v−q2)hv +2q3−2h

+(h2−2hq3−q2
1 +2q1u−q2

2 +2q2v+q2
3−u2−v2)huu

]
f =

1
Q4

0

[
2(q1−u)hvh2

u +2((q2− v)h2
v +(h−q3)hv)hu

+h2huv−2hhuvq3−huvq2
1 +2huvq1u−huvq2

2

+2huvq2v+huvq2
3−huvu2−huvv2]

g =
1

Q4
0

[
2((q1−u)h2

v +u−2q1)hu +2(q2−2v)h3
v

+2(h−q3)h2
v +2(v−q2)hv +2q3−2h

+(h2−2hq3−q2
1+2q1u−q2

2 +2q2v+q2
3−u2−v2)hvv

]
.
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Then, the coefficients of the differential equation of the
principal lines are given by:

L = Fg−G f =
huhvhvv−huvh2

v +huv

〈X−q,X−q〉5
,

M = Eg−Ge =
h2

uhvv−huuh2
v +huu−hvv

〈X−q,X−q〉5
,

N = E f −Fe =
h2

uhuv−huhuuhv−huv

〈X−q,X−q〉5
.

So, the differential equation of the principal lines of X̄
is exactly (7). The analysis, with local parametrization
(u,h(u,v),v) or (h(u,v),u,v) are analog.

Therefore, the principal lines of the surface S and of the
inverted surface Sq are related by the inversion Iq, i.e., if
γ(s) is a principal line of S, then Iq(γ(s)) is a principal line
of Sq. �

6 Triple Orthogonal System in Minkowski
space

In this section a global parametrization of a triple orthog-
onal system of quadrics in the Minkowski 3-space will be
established.

Let Z(u,v,w) = (A(u,v,w),B(u,v,w),C(u,v,w)) defined
by:

A(u,v,w) = cosu coshw
√
(εn2 +m2)cos2 v+m2 sin2 v

B(u,v,w) = msinusinvsinhw

C(u,v,w) =

cos(v)

√(
εn2 cos2 u−m2 sin2 u

)(
εn2 cosh2 w+m2 sinh2 w

)
εn2 +m2

(8)

Here ε =±1.

Theorem 4 The map Z defined by equation (8) is a triple
orthogonal system of quadrics in R2,1 (Minkowski 3-space).
More precisely, the quadrics are given by:

E1 :
x2

m2 cosh2 w
+

y2

m2 sinh2 w
+

z2 (m2 + εn2)(
εn2 cosh2 w−m2 sinh2 w

)
m2

= 1

E2 :
x2 (m2 + εn2)

m2
(
m2 + εn2 cos2 v

) + (m2 + εn2)y2

εm2n2 sin2 v
+

z2 (m2 + εn2)
εm2n2 cos2 v

= 1

H1 :
x2

m2 cos2 u
− y2

m2 sin2 u
+

z2 (m2 + εn2)
m2
(
m2 sin2 u+ εn2 cos2 u

) = 1.

Proof. The map Z defined by equation (8) was inspired in
[19] where a similar map was obtained in the Euclidean

case. The main idea is to try a parametrization with separa-
tion of variables as

Z(u,v,w) =
(h1 cosucoswa(v),h2 sinusinvsinhw,h3 c(u)d(w) cosv).

A long, and straightforward calculation, using the equation
(8), leads to

〈Zu,Zv〉= 〈Zu,Zw〉= 〈Zv,Zw〉= 0.

The quadrics defined by equation (8) was obtained by the
method of elimination of variables from the equations

A(u,v,w)− x = 0, B(u,v,w)− y = 0, C(u,v,w)− z = 0.

�

Remark 7 For ε = −1, m =
√

a2−b2, n =√
(b2 + c2)(a2−b2)/

√
a2 + c2 and coshw = a/

√
a2−b2

it follows that Zw(u,v) = Z(u,v,w) is a parametrization of
the ellipsoid x2/a2 + y2/b2 + z2/c2 = 1.

7 Focal set of a surface in the Minkowski
space

The focal set of a surface M can be defined as the singular
set of the congruence of lines given by

L(u,v, t) = α(u,v)+ tN(u,v)

where α is a parametrization of M and N is the normal
vector to the surface. Also, the focal set can be seen as the
locus of the centers of curvature of the given surface.

Fi : α(u,v)+ 1
ki(u,v)

N(u,v), (i = 1,2).

See [2] and [20].

Proposition 4 The focal set F1 of the ellipsoid is
parametrized by

(A1(u,v),B1(u,v),C1(u,v))

where:

A1(u,v) =
cos3 u

(
a2−b2)

a
√

a2 +b2

√(
a2−b2

)
cos2 v+

(
a2 + c2

)
sin2 v

B1(u,v) =−
sin3 usinv

(
a2−b2)

b

C1(u,v) =
cosv

c
√

a2 + c2

[(
b2 + c2

)
cos2 u+

(
a2 + c2

)
sin2 u

] 3
2
.
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The focal set F2 of the ellipsoid is parametrized by
(A2(u,v),B2(u,v),C2(u,v)) where:

A2(u,v) =
cosu

a
√

a2 + c2

[
(a2−b2)cos2 v+(a2 + c2)sin2 v

] 3
2

B2(u,v) =
sinusin3 v

(
b2 + c2

)
b

C2(u,v) =
(b2+c2)cos3 v

c
√

a2 + c2

√
(b2+c2)cos2 u+(a2+c2)sin2 u

Figure 7: The focal surfaces F1 and F2 of the ellipsoid.
Both are singular on two arcs of ellipses connecting the
umbilic points and each is singular in an ellipse contained
in a coordinate plane. At the umbilic points the singularities
are of type D+

4 (Arnold’s notation).

Proof. It follows directly from the parametrization of the
ellipsoid Zw given by Remark 7. It is worth to observe that
at the tropics defined by cosv =±c/

√
b2 + c2 the principal

curvatures ki are unbounded but at these sets the normal N
has norm zero and the product (1/ki)N has a finite limit.
See [20]. �
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Instituto de Matemática e Estat́ıstica
Universidade Federal de Goiás
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A Miquel-Steiner Transformation

ABSTRACT

Each complete quadrilateral has three Miquel-Steiner
points. Any triangle together with an arbitrarily chosen
point not on a triangle side also defines a complete quadri-
lateral, and thus, this pivot point defines three Miquel-
Steiner points. These three Miquel points form a triangle
which is perspective with the base triangle. The mapping
that assigns to the pivot point the uniquely defined per-
spector is a quadratic and not involutive Cremona transfor-
mation and shall be called Miquel-Steiner transformation.
We shall study the action of the Miquel-Steiner transfor-
mation and its inverse.

Key words: Miquel points, quadrilateral, triangle,
quadratic Cremona transformation

MSC2020: 14A25, 51N15

Miquel-Steinerova transformacija

SAŽETAK

Svaki potpuni četverokut ima tri Miquel-Steinerove točke.
Bilo koji trokut zajedno s po volji odabranom točkom
koja ne leži na stranicama trokuta takod-er definira pot-
puni četverokut, pa stoga ova točka odred-uje tri Miquel-
Steinerove točke. Te tri Miquelove točke tvore trokut koji
je perspektivan polaznom trokutu. Preslikavanje koje točki
pridružuje jedinstveno definirano sredǐste perspektiviteta
je kvadratna neinvolutivna Cremonina transformacija koju
ćemo zvati Miquel-Steinerova transformacija. Proučavat
ćemo djelovanje Miquel-Steinerove transformacije i njen
inverz.

Ključne riječi: Miquelove točke, četverokut, trokut,
kvadratna Cremonina transformacija

1 Introduction

There are several theorems in geometry that are ascribed
to the French geometer AUGUSTE MIQUEL (1816-1851).
The most common of his results (originally published in
[10]) may be the following (see Figure 1):

Figure 1: Miquel’s theorem as a theorem in triangle geom-
etry.

Let A, B, C be the vertices of a triangle and let A′, B′, C′ be
arbitrary points (different from A, B, C and not collinear)
on the sides lines [B,C], [C,A], [A,B]. Then, the three
circles kAB′C′ , kA′BC′ , kA′B′C have a common point M, the
Miquel point. Here and in the following, kXY Z denotes the
circle on the (non-collinear) points X , Y , and Z. Some-
times, this theorem is also called the Pivot Theorem (see
[5]).
There are other results on geometric configurations as-
cribed to Miquel:
(i) Miquel’s Five Circles Theorem (cf. Figure 2, top) states
that consecutive circumcircles of the spikes of a pentago-
nal star intersect in five concyclic points (see [3, pp. 151–
152]).
(ii) Miquel’s Six Circles Theorem (cf. Figure 2, bottom)
states that if five circles meet four times in three points,
then the remaining four common points are concyclic. This
circle configuration can be viewed as an image of the
stereographic projection of all circumcircles of the faces
of a cube under a Möbius transformation. (cf. [1, 11]).
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Figure 2: Top: MIQUEL’s Five Circles Theorem. Bottom:
MIQUEL’s Six Circles Theorem.

In this article, we make use of the Miquel-Steiner Quadri-
lateral Theorem: We assume that Q = ABCD is a quadri-
lateral, i.e., no three of these points are collinear. The to-
tality of the six lines [A,B], . . . , [C,D] joining these points
forms a complete quadrilateral. The points

D1 := [A,B]∩ [C,D],
D2 := [B,C]∩ [D,A],
D3 := [C,A]∩ [B,D],

are usually referred to as the diagonal points of Q . In the
complete quadrilateral built on Q , we can find the follow-
ing three quadruples of subtriangles

ABD3, CDD3, ACD1, BDD1;
ADD1, BCD1, ABD2, CDD2;
ACD2, BDD2, ADD3, BCD3;

each of which defining its own circumcircle. Then, the
Miquel-Steiner Theorem reads:

Theorem 1 The following quadruples of circumcircles of
subtriangles in a complete quadrilateral share a single
point:

kABD3 ∩ kCDD3 ∩ kACD1 ∩ kBDD1 =: M1,
kADD1 ∩ kBCD1 ∩ kABD2 ∩ kCDD2 =: M2,
kACD2 ∩ kBDD2 ∩ kADD3 ∩ kBCD3 =: M3.

(1)

The quadruple points

M1, M2, M3

are called the Miquel-Steiner points of Q , see [12, 13].
Figure 3 illustrates the contents of Thm. 1. (It is well-
known, but nonetheless surprising that the four centers of
the circles defining a Miquel point are concyclic, cf. [13].)
As outlined in [12], the triangle ∆M = M1M2M3 of Miquel
points is perspective to the triangle ∆D = D1D2D3 of di-
agonal points. Further, ∆M is also perspective to ∆ = ABC
(see Figure 4). The perspector P of the triangles ∆ and ∆M
shall be called Miquel perspector. Later, we shall replace
the point D by an arbitrarily chosen point Z and consider
the mapping µ : Z 7→ P which shall be called the Miquel-
Steiner transformation.

Figure 3: The triple of Miquel points of a quadrilateral.

In the following, we derive an analytical description of
the Miquel-Steiner transformation µ. This will allow us
to study its properties (cf. Section 2). Further, we derive
the inverse which turns out to be different from the initial
mapping. The Miquel-Steiner transformation is one of the
rare examples of quadratic Cremona transformation that is
not involutive as we shall see in Section 3. This is a good
reason to have a closer look onto its properties and its ac-
tion on objects which are occurring frequently in triangle
geometry. In Section 3.3, we shall also investigate the six-
parameter manifold of triangle cubics attached to the base
triangle ∆ which is left fixed as a whole under the Miquel-
Steiner transformation. Besides that, we want to give a
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geometric meaning to at least some known triangle centers
that show up in the inflationarily increasing Encyclopedia
of Triangle Centers (cf. [9]).

Figure 4: Miquel points of a point Z with respect to a tri-
angle ∆ = ABC and the Miquel perspector P.

2 A quadratic Miquel-Steiner
transformation

Let us now assume that we are given a triangle ∆ = ABC
in the Euclidean plane. Any point Z that does not lie on a
side line of ∆ gives rise to a quadrilateral Q = ABCZ, i.e.,
in comparison to Sec. 1, we have replaced D by Z, and the
diagonal points are as defined above. Hence, the Miquel
points are the quadruple points given in (1). Provided that
Z is a triangle center (in the sense of [8, 9]), the Miquel
perspector P is also a triangle center.
In order to study the mapping µ : Z→ P, we shall derive
an analytic description. For that purpose, we use homo-
geneous trilinear coordinates in the plane of ∆. The side
lengths of ∆ are

c := AB, a := BC, b :=CA.

We use the vertices of the triangle ∆ = ABC as the base
points of the projective frame and the incenter X1 as the
unit point. (Here and in the following, we use C. KIM-
BERLING’s notation for triangle centers, cf. [8, 9]). Thus,
we have

A = 1 : 0 : 0, B = 0 : 1 : 0,
C = 0 : 0 : 1, X1 = 1 : 1 : 1.

With this coordinatization, the line at infinity (ideal line) ω

is given by the homogeneous equation aξ+ bη+ cζ = 0,
or in terms of homogeneous trilinear line coordinates, as
a : b : c.
We may assume that the fourth point Z has the homoge-
neous trilinear coordinates

ξ : η : ζ 6= 0 : 0 : 0.

It is rather elementary to compute the three Miquel points
M1, M2, M3 as the intersections of the circumcircles men-
tioned in (1) and we find

M1 := a(−a2 +b2 + c2)ξ2−b(a2−b2)ξη

−abcηζ+ c(c2−a2)ζξ :
: b(aξ+bη)(aξ+bη+ cζ) :
: c(cζ+aξ)(aξ+bη+ cζ),

M2 := a(aξ+bη)(aξ+bη+ cζ) :
: a(a2−b2)ξη+b(a2−b2 + c2)η2

−abcζξ+ c(c2−b2)ηζ :
: c(bη+ cζ)(aξ+bη+ cζ),

M3 := a(cζ+aξ)(aξ+bη+ cζ) :
: b(bη+ cζ)(aξ+bη+ cζ) :

: c(a2 +b2− c2)ζ2 +a(a2− c2)ζξ

+b(b2− c2)ηζ−abcξη.

With this it is easily verified that the triangles ∆ and ∆M =
M1M2M3 are perspective. The Miquel perspector can be
given in terms of trilinear coordinates

P = a(aξ+bη)(aξ+cζ) ::=
1

bc(bη+cζ)
::, (2)

where the :: indicates that the subsequent coordinate func-
tions are obtained by cyclically replacing all variables, i.e.,
a→ b→ c→ a and ξ→ η→ ζ→ ξ.
The cyclic symmetry of the coordinate functions of the
Miquel perspector indicates that the Miquel perspector as-
signed to a triangle center is also a triangle center (in the
sense of C. KIMBERLING, see [8, 9]).
We can state:

Theorem 2 The mapping µ : Z 7→ P /∈ ∆a that assigns to
each point Z = ξ : η : ζ which does not lie on a side line of
∆’s anticomplementary triangle ∆a the Miquel perspector
P as given in (2) is a quadratic Cremona transformation.
The orthocenter X4 of ∆ is fixed under µ.

Proof. The fact that µ from (2) is quadratic is obvious. We
have to show that this mapping meets the requirements of
a quadratic mapping to be invertible, i.e., the (not neces-
sarily regular) base conics defined by the three (homoge-
neous) quadratic coordinate functions (set equal to zero)
share three points (cf. [4, 7]).
For that end, we look at the polynomial representation of
µ given in (2) (in the middle). The two linear factors set
equal to zero yield the equations of two straight lines:
aξ + bη = 0 is parallel to [A,B] and passes through C,
while aξ+ cζ = 0 is parallel to [C,A] and passes through
B. The latter lines meet in Aa = −bc : ca : ab. By virtue
of the cyclic symmetry of µ’s coordinate functions, we see
that the exceptional set of µ consists of the lines

aξ+bη = 0, bη+ cζ = 0, cζ+aξ = 0
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which meet in the points

Aa =−bc : ca : ab,
Ba = bc :−ca : ab,
Ca = bc : ca :−ab.

The latter lines and points are the side lines and vertices of
the anticomplementary triangle ∆a of ∆. (Sometimes, ∆a is
called the antimedial triangle, see, e.g., [6]).
The fact that µ(X4) = X4 can easily be shown by inserting
the orthocenters trilinear representation into (2). �

It is clear that no further point (different from X4) can be
fixed under µ. The Miquel-Steiner image of a point X can
be found as the isogonal conjugate (with respect to ∆) of
a collinear image of X (see Thm. 3). Under the isogonal
conjugation ι, ∆’s incenter X1 is the only fixed point.
The base conics of the quadratic mapping µ are singular as
is the case with the base conics in the isogonal and isotomic
conjugation (cf. [7, 8]), and in the case of any inversion in
a conic (see [7]).
According to Thm. 2, µ is a quadratic Cremona transfor-
mation, and as such, it is invertible. However, µ differs
from the well-known quadratic Cremona transformations
that occur frequently in triangle geometry. So, we state
and prove:

Theorem 3 The Miquel-Steiner transformation µ is not in-
volutive. Its inverse is not defined on the side lines of ∆.
The Miquel-Steiner transformation is the composition of
the isogonal conjugation ι with respect to ∆ and the cen-
tral similarity α with ∆’s centroid X2 as the center and the
scaling factor 2, i.e., µ = ι◦α. ∆’s orthocenter is also fixed
under µ−1.

Proof. The mapping µ is not involutive, since µ2 6= id as
can easily be verified.
By virtue of the right-hand side of (2), we set

ρx =
1

bc(bη+ cζ)
,

ρy =
1

ca(cζ+aξ)
,

ρz =
1

ab(aξ+bη)
,

where ρ 6= 0 (is the complex but constant homogenizing
factor). By applying the isogonal conjugation ι, we can
rewrite the latter equations in the form

ρ−1x−1 = bc(bη+ cζ),

ρ−1y−1 = ca(cζ+aξ),

ρ−1z−1 = ab(aξ+bη).

Finally, we have to solve this system of three linear equa-
tions in the three unknowns ξ, η, ζ. By replacing x, y, z

with ξ, η, ζ, we find

µ−1(ξ,η,ζ) = bc(−aηζ+bζξ+ cξη) :: . (3)

The inverse of µ is not defined on the side lines of the base
triangle. The coordinate functions of µ−1 describe three
independent regular conics in the plane of ∆ which share
∆’s vertices.
The coordinate representation (2) of µ shows that µ can be
considered as the composition of the isogonal transforma-
tion ι : (ξ,η,ζ) 7→ (ξ−1,η−1,ζ−1) with respect to the base
triangle ∆ and a collineation α with the transformation ma-
trix

T =

 0 b2c bc2

a2c 0 ac2

a2b ab2 0

 .

The collineation α has ∆’s centroid X2 = bc :: as fixed point
and the ideal line ω = a :: of the projectively closed Eu-
clidean plane of the initial triangle ∆ is an axis of α. In
order to show that α is a central similarity with the scaling
factor −2, we compute the characteristic crossratio. For
that end, we impose a projective frame on a fixed line (dif-
ferent from the axis, passing through the center X2) and
assign the coordinates 1 : 0 to the center X2 and 0 : 1 to
a generic point Q 6= X2 and Q /∈ ω. We assume that the
generic point Q has the homogeneous trilinear coordinates

m : n : o 6= 0 : 0 : 0

with respect to ∆. Then, the homogeneous coordinates of
α(Q) and U = [Q,α(Q)]∩ω with respect to the frame on
[X2,Q] are equal to

am+bn+ co :−abc and am+bn+ co :−3abc.

Hence, we have

cr(X2,U,Q,α(Q)) =−2.

The orthocenter of ∆ is fixed under µ−1. �

Figure 5: The centers Hi of the three base conics bi of µ−1

form a triangle perspective with ∆. X25 serves as
the perspector, L66 is the perspectrix.

Further, we can show what is illustrated in Figure 5:
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Theorem 4 The triangle of the centers of the three base
conics of µ−1 is perspective with ∆. The perspector is the
center triangle center X25 (of ∆).

Proof. The centers H1, H2, H3 of the conics given in (3)
are found by multiplying the inverses of their coefficient
matrices with a coordinate vector of the ideal line, i.e., for
example with (a,b,c). This yields

H1 = σ : 2b2 cosC : 2c2 cosB,

H2 = 2a2 cosC : σ : 2c2 cosA,

H3 = 2a2 cosB : 2b2 cosA : σ,

where
σ := a2 +b2 + c2

and

cosA =
b2 + c2−a2

2bc
(cyclic)

is the cosine of ∆’s interior angle at A (cyclic). The per-
spector between ∆ and ∆H = H1H2H3 has the trilinear cen-
ter function

a(−a2 +b2 + c2)−1

which belongs to the triangle center X25 in KIMBERLING’s
list (cf. [8, 9]). It is the homothetic center of the orthic
triangle and the tangential triangle of ∆. �

The perspectrix p of ∆ and ∆H is the line carrying the tri-
angle centers X8673 ∈ω as well as the proper centers X2485,
X14396, X52950, i.e., p= [X2485,X8673] =L66 (after canonical
identification of line coordinates with point coordinates).

2.1 The square of µ

Since µ is not involutive, the square of the Miquel-Steiner
transformation is a non-trivial and quartic Cremona trans-
formation. It is obvious that µ2 is a Cremona transforma-
tion, i.e., it is invertible, since (µ−1)2 ◦µ2 = id. In terms of
trilinear coordinates the square of µ reads

µ2(ξ,η,ζ) =
(
bc(bη+cζ)(a(b2+c2)ξ+b3

η+c3
ζ)
)−1 :: .

The mapping µ2 is not defined on the sides of the excen-
tral triangle ∆a of ∆ and on the sides of further triangle ∆ f
which is perspective with ∆. Here, X4 (of ∆) serves as the
perspector, while the perspectrix between ∆ and ∆ f is the
line with homogeneous coordinates a3 : b3 : c3. The canon-
ical identification of point and line coordinates assigns the
perspectrix to the 3rd power point X32 (cf. [8, 9]).

3 Action of µ and µ−1

Since µ is a quadratic mapping, it sends algebraic curves
c of degree n to algebraic curves of degree 2n. Degree re-
ductions occur if c passes through a base point of the trans-

formation. The same holds true for its inverse. In what fol-
lows, we shall have a look at the µ-images and µ−1-images
of some geometric objects related to the base triangle.
In order to increase the readability of equations, we shall
write the coordinates ξ, η, ζ with bold characters.

3.1 Images of straight lines

We restrict ourselves to the µ-images and µ−1-images of
some very special lines related to a triangle. It is clear that
images and pre-images of straight lines under the Miquel-
Steiner transformations are conics in general, and straight
lines only if the lines under consideration pass through at
most one base point of the transformation.

3.1.1 Antiorthic axis

The antiorthic axis L1 = 1 : 1 : 1 is the harmonic conjugate
of X1 with respect to the base triangle ∆. Its µ-image is the
central conic

µ(L1) : ∑
cyclic

c(bc+ ca−ab)ξη = 0

passing through the triangle centers Xi with

i ∈ {100,34071,52923}.

The center of the conic µ(L1) is the yet unnamed, and thus,
unlabelled triangle center defined by the homogeneous tri-
linear center function

a(ab+ac−bc)·
·
(
a3(b+ c)−a2bc−a(b+ c)(b− c)2−bc(b2 + c2)

)
.

The µ-pre-image of the antiorthic axis is again a conic and
has the trilinear equation

µ−1(L1) : ∑
cyclic

a3
ξ

2 +ab(a+b+ c)ξη = 0.

It is centered at the Gergonne point X7 and houses the cen-
ters

i∈{149,4440,20355,20533,21220,21221,30578,37781}.

Figure 6 shows a triangle with its antiorthic axis L1 the
conics µ(L1) and µ−1(L1).

Figure 6: Image and pre-image of the antiorthic axis L1.
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Figure 7: The Euler line and its µ-image and µ−1-image.

3.1.2 Euler line

The µ-pre-image of the Euler line (cf. Figure 7)

L647 = [X2,X3] = a(b2− c2)(a2−b2− c2) ::

is the central conic with the trilinear equation

µ−1(L647) : ∑
cyclic

a4(b2− c2)(a2−b2− c2)ξ2 =

= 2 ∏
cyclic

(a2−b2) ∑
cyclic

abξη

centered at X110, the focus of the Kiepert parabola.
The conic µ−1(L647) passes through the proper triangle
centers Xi with the Kimberling indices

i ∈ {4,20,69,146,193,2888,2889,2892,3868,3869,
5596,6193,6225,10340,11061,11271,11469,

12383,17220,18387,22647,32354,37889,39355}

and carries also the centers X2574 and X2575 located on the
line at infinity.
The µ-image of the Euler line is the conic

µ(L647) : ∑
cyclic

c(a2−b2)(a2 +b2− c2)ξη = 0

centered at X125 which is the center of the Jeřabek hyper-
bola. The latter conic carries 272 known triangle center
of which X2574 and X2575 are points at infinity while the
proper points have the Kimberling indices

i ∈ {3,4,6,54,64−74,248,265,290,695,879,895,
1173,1175−1177,1242−1246,1439,1798,

1903,1942,1987,2213,2435,3426,3431,3519,
3521,3527,3531,3532,3657,4846,5486,5504,
5505,5900,6145,6391,8044,8612,8795,8811,
8814,9399,9513,10097,10099,10100,10262,

10293,10378,10693,11270,11559,11564,11738,
11744,12023,13418,13452,13472,13603,13622,
13623,14220,14374,14375,14380,14457,14483,
14487,14490,14491,14498,14528,14542,14841,
14843,14861,15002,15077,15232,15316,15317,

15320,15321,15328,15453,15460,15461,15740,
15749,16000,16540,16620,16623,16665,16774,
16835,16867,17040,17505,17711,18123,18124,
18125,18296,18363,18368,18434,18532,18550,
19151,19222,20029,20421,21400,22334,22336,

22466,26861,28786−28788,30496,31366,31371,
32533,33565,34207,34221,34222,34259,

34435−34440,34483,34567,34800−34802,34817,
35364,35373,35512,35909,36214,37142,38005,
38006,38257,38260,38263,38264,38433,38436,
38439,38442,38443,38445,38447,38449,38534,
38535,38955,39372,39379,39665,39666,40048,
40441,41433,41435,41518,41519,42016,42021,
42059,42299,43689−43727,43834,43891,43908,
43918,43949,44207,44718,43892,44750,44835,
44836,45011,45088,45302,45733,45736,45788,
45835,45972,46765,46848,46851,47060,48362,
51223,51480,52222,52390,52391,52518,52559,

52560,52561,54124,54125}.
The two conics µ(L647) and µ−1(L647) are both passing
through the circumcenter X3 and the orthocenter X4. Fur-
ther, µ−1(L647) is a circumconic of ∆a and contains the de
Longchamp point X20 of ∆. Since X20 is at the same time
the orthocenter of ∆a, we can summarize and state:

Theorem 5 The µ-image and the µ-pre-image of the Euler
line are equilateral hyperbolae with the same ideal points
(and hence, parallel asymptotes). The first is centered at
X125, the second is centered at X110.

3.1.3 Brocard axis

The Brocard axis L523 = [X3,X6] with trilinear coordinates
bc(b2− c2) :: is sent to the conic with the equation

µ−1(L523) : ∑
cyclic

a2(b2− c2)ξ2 = 0

via the inverse of the Steiner-Miquel transformation. This
conic is centered at X99 (Steiner point) and contains the
triangle centers Xi with Kimberling indices

i ∈ {1,2,20,63,147,194,487,488,616,617,627,628,
1670,1671,1764,2128,2582,2583,2896,3413,3414,

6194,6462,6463,7616,8591,8782,9742,10336,11148,
13174,13678,13798,16552,16563,17147,18301,18596,
20371,21378,30562,30564,30579,33404,33405,33608,
33609,33610,33611,33612,33613,36857,41914,41923,
41930,44010,45029,46625,46717,46944,51860,51952,

51953,52025,52676,53856},

where X3413 and X3414 are real points on the line at infinity.
Hence, µ−1(L523) is a hyperbola.
On the other hand, µ sends the Brocard axis to the central
conic

µ(L523) : ∑
cyclic

c(a2−b2)·
(
a2(b2+c2)+c2(b2−c2)

)
ξη= 0
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centered at the yet unnamed triangle center with the trilin-
ear center function

a(b2− c2)2(a4−a2b2−a2c2−b2c2)·
·
(
a6−2a4(b2 + c2)+a2(b4−b2c2 + c4)−b2c2(b2 + c2)

)
.

Finally, we shall note that the triangle centers Xi with Kim-
berling numbers

i ∈ {54,98,251,1078,1179,1342,1343,1629,3453,
5012,5481,10312,11816,38826,39396,42346}

are located on the conic µ(L523).

3.2 Images of conics

Again, the huge variety of conics makes it necessary to
pick out some special representatives. It is clear that con-
ics only map to conics if they are circumscribed to the tri-
angle of base points, i.e., the anticomplementary triangle
∆a. The Miquel-Steiner transforms of circumconics of the
initial triangle ∆ are quartic curves in general.

3.2.1 Steiner circumellipse

Degeneracies of the image curves can only be expected if
the circumconics of ∆ touch the anticomplementary trian-
gle. This happens escpecially in the following case:

Theorem 6 The Miquel-Steiner pre-image of the Steiner
circumellipse is the central line L3051 = [X316,X512].

Proof. We insert (2) into the equation

s : bcηζ+ caζξ+abξη = 0

of the Steiner ellipse and find

µ−1(s) : ∑
cyclic

a3(b2 + c2)ξ = 0.

Now, it is an elementary task to verify that µ−1(s) is
spanned by X316 (Droussent pivot) and X512 ∈ ω. The
canonical identification of the trilinear coordinates of
µ−1(s) with the coordinates results in a center with the tri-
linear center function a3(b2+c2) which is that of X3051 (cf.
[8, 9]). �

Furthermore, the following triangle centers Xi with Kim-
berling indices

i ∈ {316,850,3766,3978,11450,14957,14962,17995,
20022,20295,20352,20556,21282,21301,21302,

21303,33873,44445,47128,52618,53331,53365,54263}

are located on µ−1(s).

Figure 8: Steiner-Miquel image and pre-image of the
Steiner circumellipse.

The µ-image of s is a quartic with three cusps at the vertices
of ∆ passing through the centers Xi with

i ∈ {249,1016,1252,1262,2226,6185,10630,23586,
23592,23964,23984,34536,34537,34538,34539,40384}.

The tangents at the cusps concur in the Symmedian point
X6 = a : b : c. Figure 8 shows the Steiner-Miquel image
and pre-image of the Steiner circumellipse s of ∆.

3.2.2 Circumcircle

The µ-pre-image of the circumcircle

u : aηζ+bζξ+ cξη = 0

is the ideal line

ω : aξ+bη+ cζ = 0.

The circumcircle is mapped under the Miquel-Steiner
transformation to the quartic curve

µ(u) : ∑
cyclic

a2(−a2 +b2 + c2)η2ζ
2 =

= 2abcξηζ(aξ+bη+ cζ)
(4)

housing the triangle centers Xi with

i ∈ {59,249,250,2065,10419,15378−15388,
15395−15397,15401−15407,15460,

15461,41511,44174}.

The vertices of ∆ are ordinary double points of µ(u). The
tangents at the double points are the Cevians through the
circumcenter X3 and the Symmedian point X6, cf. Figure
9. This can easily be verified by extracting the coefficients
of ξ

2, η2, and ζ
2 from (4) and showing that the result-

ing quadratic forms factor and split into two linear factors
which (if set equal to zero) yield the equations of the tan-
gents at the double points. For example, the coefficient of
ξ

2 equals

(bζ− cη)
(
b(a2−b2 + c2)ζ− c(a2 +b2− c2)η

)
.

The first factor describes the Cevian through X6, the second
that through X3.
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Figure 9: The Miquel-Steiner transform of the circumcir-
cle u is a quartic with three ordinary double
points at the vertices of ∆. The tangents at the
double points are the joins with the circumcen-
ter X3 and the Symmedian point X6.

By virtue of (4), it is clear that µ(u) degenerates if ∆ is a
right triangle. Let (for example) the right angle be at C.
Then, a2 +b2 = c2, the term ξ

2
η2 vanishes, and the right-

hand side becomes

2a2b2
ζ

2(ξ2 +η
2).

Thus, the side [A,B] (opposite to the vertex C) splits off
from µ(u).
For an equilateral triangle ∆, i.e., a = b = c 6= 0, the curve
µ(u) becomes a Steiner hypocycloid.

Figure 10: A sequence of right triangles with ratios of
cathetus’s lengths 1:1, 20:21, 3:4, 5:12, 9:40,
19:180, 41:840 and the corresponding cubic
curves as µ-images of the circumcircle u.

3.2.3 Incircle

The µ-pre-image of the incircle

i : ∑
cyclic

a2(a−b−c)2
ξ

2= ∑
cyclic

2ab(a−b+c)(−a+b+c)ξη

is the quartic curve

µ−1(i) : ∑
cyclic

a9bc(a+b+ c)(a−b− c)2ξ
4

−2a5
(
b(b− c)a6− (b3−2b2c−bc2 + c3)a5

−(2b4−b3c−2bc3− c4)a4

+(2b5−3b4c−b3c2−7b2c3−bc4 +2c5)a3

+(b6 +2b4c2 +2b3c3 +3b2c4−2bc5−2c6)a2

−(b− c)(b6 +2b4c2 +b3c3 +2b2c4−bc5− c6)a
c3(b− c)2(b+ c)3

)
ξ

3(bη+ cζ)
−a2b2

(
b(4b− c)a8− (b− c)(4b2−bc−2c2)a7

−(8b4−b3c+6b2c2−3bc3−2c4)a6

+(8b5−9b4c+7b3c2−5b2c3−bc4 +4c5)a5

+(4b6−b5c+10b4c2 +2b3c3 +8b2c4−5bc5−4c6)a4

−(4b7−5b6c+15b5c2−6b4c3−5b2c5−bc6 +2c7)a3

c(b5 +2b3c2 +10b2c3 +7bc4 +2c5)(b− c)2a2

−bc(b− c)2(b− c)(b4−2b3c−2b2c2 + c4)a
+2b3c2(b+ c)2(b− c)3

)
ξ

2
η2

−2a2bc
(
b(3b−2c)a8− (3b3−5b2c−2bc2 +3c3)a7

−(6b4−2b3c+2b2c2−5bc3−3c4)a6

+(6b5−8b4c+2b3c2−18b2c3−2bc4 +6c5)a5

+(3b6−b5c+8b4c2 +4b3c3 +9b2c4−7bc5−6c6)a4

−(3b7−4b6c+13b5c2−3b4c3−b3c4−6b2c5−bc6−3c7)a3

c(b− c)2(b5 +3b3c2 +13b2c3 +10bc4 +3c5)a2

−bc(b+ c)(b− c)2(b4−2b3c−2b2c2 + c4)a
+2b3c2(b+ c)2(b− c)3

)
ξ

2
ηζ = 0.

Figure 11: Miquel-Steiner transforms and the (cusped) in-
verses of the incircle for an equilateral, an acute,
a right, and an obtuse triangle.

This quartic curve has three cusps at the vertices of the an-
ticomplementary triangle ∆a of ∆. Therefore, they map to
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a conic that touches the three sides lines of the exceptional
triangle of the mapping µ−1 (which is ∆). In the case of an
equilateral triangle ∆ (and thus also ∆a), the curve µ−1(i)
is a Steiner hypocycloid (cf. Figure 11).
The µ-image of the incircle is the quartic

µ(i) : ∑
cyclic

c2
(
(2a6−4a5(b− c)−3a4(2b2 +bc−2c2)

+a3(8b3−b2c−bc2−8c3)
+a2(6b4−9b3c+2b2c2 +7bc3 +6c4)
−a(4b5−b4c+b3c2 +b2c3 +7bc4−4c5)

−2(b2 + c2)(b2− c2)2
)

ξ
2
η2

+2b2c
(
2a5 +a4(2b− c)−a3(b+ c)(4b−7c)
−a2(4b3−7b2c−2bc2 + c3)

+a(b+ c)(2b3−b2c−8bc2 +3c3)

+2(b+ c)2(b− c)3
)

ξ
2
ηζ = 0.

The vertices of ∆ are isolated double points on the µ-
images of i since the incircle of ∆ always lies completely in
the interior of the anticomplementary triangle ∆a. Figure
11 shows the Miquel-Steiner image and pre-image of the
incircle for four triangles (obtuse, right, acute, equilateral).

3.2.4 Nine-Point Circle

The nine-point circle n can be described by the homoge-
neous trilinear equation

n : ∑
cyclic

a2(−a2 +b2 + c2)ξ
2 = 2abc(aηζ+bζξ+ cξη).

The nine-point-circle is mapped under µ−1 to the quartic
curve

µ−1(n) : ∑
cyclic

a8(a2−b2− c2)ξ
4+

2a5b
(
a4−a2(b2 + c2)+2b2c2

)
ξ

3
η

−2ab5
(
a2(b2−2c2)−b2(b2− c2)

)
ξη3

+a2b2
(
a6−a4(b2 + c2)−a2(b4−8b2c2 + c4)

+(b2 + c2)(b2− c2)2
)

ξ
2
η2 =

=−2abcξηζ ∑
cyclic

a(2a6−2a4(b2 + c2)

−a2(b2 + c2)(b2− c2)2)ξ.

On it we can find the centers X35258, X47785, and X54280.
The µ-image of n is also a quartic curve with the trilinear
equation

µ(n) : ∑
cyclic

c2(c2−3a2−3b2)ξ
2
η2 =

= 2ξηζ ∑
cyclic

bc(−5a2 +b2 + c2)ξ.

Surprisingly, there are only two labelled triangle centers
on µ(n): X18771 (the Miquel-Steiner image of the Feuer-
bach point X11) and X46426. Depending on the shape of the
triangle ∆, the curve µ(n) may have three cusps (equilateral

triangle) or two double points and one cusp (isosceles tri-
angle). For a right triangle ∆, µ(n) splits into a cubic and a
straight line. If the right angle is at the vertex C, the linear
component is given by aξ+bη = 0 and the cusp lies in the
vertex Ca of the anticomplementary triangle ∆a, i.e., ∆a’s
vertex opposite to C.

Figure 12: Images and pre-images of the nine-point circle of
an acute, an obtuse, a right, and an equilateral
triangle.
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3.3 Triangle cubics

It is clear that the 6-parameter family of triangle cubics

C 6 : ∑
cyclic

a2

c2 q102 ξ
3− ∑

cyclic
q210 ξ

2
η−q111 ∑

cyclic

a2

bc ξ
3

+ 1
a2b2c2

(
a4c2q120 ξ

3 +b4a2q012 η3 + c4b2q201 ζ
3)

−(q120 ξη2 +q012 ηζ
2 +q201 ζξ

2)+q111 ξηζ = 0

(5)

that pass through the vertices of ∆a are mapped to cubics
under µ (since the side lines of ∆a split off from the image
curve). According to Thms. 2 and 3, the orthocenter X4 of
∆ is fixed under µ and µ−1. If a triangle cubic C contains
X4, then X4 ∈ µ(C ) and X4 ∈ µ−1(C ).
Among the triangle cubics listed in B. GIBERT’s Cata-
logue of Triangle Cubics (see [6]), we find the following
cubics Ki with indices

i ∈ {7,8,45,80,92,133,141,142,144,146,154,
170,211,240,242,254,279,311,347,355,371,
380,449,455,548,605,611,617,659,753,860,

985,1000,1002,1004,1053a,b,1078,1131}

which are also contained in the 6-parameter family (5).
For some of the cubics in B. GIBERT’s list, their µ-images
are also contained in the catalogue of cubics, see Tab. 1.

Ki 7 8 80 141 170
K j 2 273 361 644 233
Ki 254 311 355 449 611
K j 379 454 380 447 1172
Ki 617 753 1000 1002 1037
K j 28 73 354 135 1013
Ki 1053a,b 1131
K j 1145a,b 1134

Table 1: Triangle cubics Ki with µ-images K j both con-
tained in B. GIBERT’s catalogue [6].

Ki X j ∈ µ(Ki)
45 2, 4, 6, 54, 275, 1993, 8882, 34756

240 6, 69, 316, 512, 3448, 14360, 53365
242 6, 69, 316, 3448, 14360, 53365
279 2, 4, 6, 30, 323, 2986, 5504, 10419, 15262
380 4, 6, 251, 1976, 2065
455 1, 6, 35, 37, 1126, 1171, 1255, 21353, 33635
605 6, 58, 63, 81, 284, 2287, 7123, 40403
659 6, 32, 83, 251, 51951
860 6, 15, 16, 74, 40384
985 6, 58, 81, 291, 1922, 2311, 7132, 24479,

38810, 38813
1078 1, 6, 56, 57, 266, 289, 1743

Table 2: Triangle cubics Ki (from GIBERT’s) catalogue
whose images are defined by triangle centers X j
(from KIMBERLING’s encyclopedia).

The images of some other cubics are not contained in GIB-
ERT’s catalogue, but nevertheless, well defined solely by
the triangle centers contained in them, see Tab. 2.
As can be seen in Tab. 1, the Lucas cubic K007 is mapped to
the Thomson cubic K002. The image of the Droussent cu-
bic K008 is the pivotal isocubic K273. Figure 13 shows the
cubic K254 with some triangle centers on it. The µ-image
K379 as well as the µ−1-image of K254 is shown.

Figure 13: The cubic K254, its µ-image K379, and its µ−1 im-
age together with the centers on it.

4 Final remarks

As mentioned earlier (and also in [12]), there exists a per-
spector R for the triangles ∆M and ∆D. In terms of trilinear
coordinates and depending on Z = ξ : η : ζ, the perspector
R reads

R=
(
a(a2−b2−c2)ξ2+b(a2−b2)ξη+c(a2−c2)ζξ+abcηζ

)(
a(bη+ cζ)ηζ−bcξ(η2+ζ

2)+(2a2−b2−c2)ξηζ
)

:: .

The mapping Z 7→ R is quintic and by no means involutive.
The Miquel-Steiner transformation is not involutive. We
can give some chains of triangles centers, where each trian-
gle center in the chain is the Miquel-Steiner transformation
of its predecessor (see Tab. 3.).
It is possible to define some more algebraic transforma-
tions based on Miquel’s theorem (the triangle related the-
orem illustrated in Figure 1). For example, the assumption
that the three points A′, B′, C′ be collinear yields a quartic
transformation that sends lines to to points. Unfortunately,
this transformation is not invertible. If the points A′, B′,
C′ are the vertices of the Cevian triangle of a point P, then
the mapping that sends P to the respective Miquel point
(as illustrated in Figure 1) is sextic. In this case it has to
be clarified under which circumstances this mapping is in-
vertible.
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µ−3 µ−2 µ−1 µ0 µ1 µ2

3436 8 1 58 3453
1370 69 2 6 251
6225 20 3 54 1166

4
2888 5 1173

6 ↑ 2
3434 7 57 3451

8 ↑ 1
329 9 1174
1330 10 1126

17035 51
52 1179

54 ↑ 3
144 55 3449

42020 56 3450
57 ↑ 7
58 ↑ 1

149 513 100 59
2975 60
146 30 74 10419
146 66 18018 40404
6327 75 81 1169

147 511 98 2065
148 512 99 249

100 ↑ 59
150 514 101 15378
151 515 102 15379
152 516 103 15380
153 517 104 15381

20344 518 105 15382
21290 519 106 15383
34186 520 107 15384
34188 521 108 15385
33650 522 109 15386
3448 523 110 250
14360 524 111 15387
13219 525 112 15388

Table 3: Some centers and the repeated µ-images. 6 ↑ 2
indicates that the center with Kimberling index
6 already shows up in the chain defined by cen-
ter with Kimberling index 2.
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On the Geometry of Spherical Trochoids

ABSTRACT

We provide a synthetic study of the top-views of spherical
trochoids. These projections turn out to be higher tro-
choids, i.e., curves generated by the superposition of more
than two rotations. Special shapes of these trochoids show
up for special choices of the spherical radii of the rolling
circles. A relation to closed algebraic curves of constant
width is shown. These curves allow for a kinematic gener-
ation.

Key words: spherical trochoid, rolling, evolute, involute,
curve of constant width

MSC2020: 53A17, 51N05, 14H45

O geometriji sfernih trohoida

SAŽETAK

U ovom radu se proučavaju tlocrti sfernih trohoida pomoću
sintetičke metode. Pokazuje se da su te projekcije vǐse
trohoide, tj. krivulje nastale istovremenim djelovanjem
vǐse od dvije rotacije. Posebni oblici ovih trohoida po-
javljuju se u slučajevima posebnih odabira sfernih polum-
jera kružnica koje se kotrljaju. Prikazana je veza sa
zatvorenim algebarskim krivuljama konstantne širine. Ove
krivulje dopuštaju kinematičko izvod-enje.

Ključne riječi: sferna trohoida, kotrljanje, evoluta, invo-
luta, krivulja konstantne širine

1 Introduction

1.1 Motivation, prior work, and contribu-
tions of the present paper

This paper is devoted to the memory of WALTHER
JANK (1939–2016). An unpublished and hand written
manuscript of a talk given by W. JANK at the Geometrie-
tagung in Vorau (Austria) in June 2004 was the basis of this
article. It deals with the geometric deduction of results on
the shapes of the top-views of spherical trochoids. Since
W. JANK was a dedicated follower of WALTER WUNDER-
LICH’s work of merit on kinematics (cf. [19]) and espe-
cially on trochoids and higher trochoids (see [20]), he ap-
plied some of these results to spherical trochoids which
have gained a little less attention than their planar counter-
parts.

There exist only a few notable publications on spherical
trochoidal curves related to W. JANK’s manuscript. In [6],
we find historical remarks and a collection of known re-
sults. Maybe, it was RUDOLF BEREIS who first described
the images of spherical trochoids under various parallel
projections in [1].

This article shall first follow W. JANK’s manuscript, i.e.,
we lay down his results and his reasoning. This includes a
detailed description of spherical trochoids based on a con-
structive approach. The kinematic generation of the top-
views of spherical trochoids leads to the finding that some
of these top-views are curves of constant width.

Moreover, a synthetic proof of ENNEPER’s theorem on the
shape of the top-views of curves of constant slope on ellip-
soids of revolution (with their axis in lead direction, i.e., in
the direction of the projection) can be found along the way.

At the end of the manuscript, the author raised the ques-
tion whether it is possible to describe planar algebraic and
closed curves of constant width, i.e., planar curves whose
projection onto a line (within their plane) is a segment of
fixed length independent of the direction of the projec-
tion, see [17]. Such curves, comparable to the example
given in Fig. 14, were derived in [14]. The results therein
were veryfied and improved by [12] and the related Zindler
curves were described in [15]. The approaches towards
curves of constant width in these references are analytic
and algebraic in nature, and by no means, constructive or
geometric. We shall close this gap.
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The present paper is organized as follows: The remain-
der of this section describes the constructive treatment of
spherical trochoids and discusses the kinematic generation.
Special cases occur for special assumptions on the spheri-
cal radii of the rolling circles which causes special shapes
of the curves and their top-views. We try to follow W.
JANK’s diction by trying to translate his manuscript as di-
rect as possible. This does not necessarily include the orig-
inal notation and symbols. In Sec. 2, a special spherical
trochoid and its top-view are the starting point for the in-
vestigation of algebraic curves of constant width and their
kinematic generation.

1.2 Generation of spherical trochoids

In the three-dimensional Euclidean space R3 of our percep-
tion, we distinguish a certain direction L (lead direction)
and a fixed sphere Σ centered at O. Further, we assume
that the equator e lies in the horizontal plane through Σ’s
center O (i.e., in the plane orthogonal to the lead L and
through O). On a fixed circle p0 ⊂ Σ (fixed polhode) with
its axis parallel to L, spherical center M0, and spherical ra-
dius >r0, we roll another circle p⊂Σ (moving polhode) with
spherical center M and spherical radius >r.

Figure 1: Front-view of the initial configuration of the
rolling cones and circles.

The path l ⊂ Σ of an arbitrary point X ∈ Σ firmly attached
to p is called a spherical trochoid of order 2. Note that any
point rigidly attached to p and not necessarily on Σ traces
a spherical trochoid on a sphere concentric with Σ.
The spherical trochoid motion can also be considered as
the glide-free rolling of the cone of revolution Γ = p∨O
along the cone (of revolution) Γ0 = p0∨P (sharing the ver-
tex O) during the entire motion. The point P is the point of
contact of c and c0 and is also referred to as the spher-
ical instantaneous pole (see Fig. 1). Γ is rolling on Γ0

without gliding. These cones play the role of the axodes
and the instantaneous axis equals the common generator
m = [O,P] of these two cones along which they share the
tangent plane (cf. [5, 16]).
For the constructive treatment of spherical trochoids, we
intersect Σ with the plane ε which is orthogonal to the
axis [O,M] of p and passes through X . Then, we con-
sider the rolling of the parallel circle c = ε ∩ Σ (center
N = ε ∩ [O,M]) together with the point X on the fixed
cone’s parallel circle c0 (in the plane ε0, with the spheri-
cal radius >r0, and axis [O,M0]).
We shall make explicit that each spherical (or planetary)
trochoidal motion is equivalent to the (glide-free) rolling
of a sphere S on two coaxial circles c1 and c2, see Fig. 3.

Figure 2: Construction of osculating circles of the spheri-
cal trochoid l at X according to BOBILLIER.

The tangent of l at X is orthogonal to the (spherical) in-
stantaneous pole P.
Spherical kinematics mirrors another well-known result
from planar kinematics. In the Euclidean plane, the the-
orem by S. ARONHOLD and A.B.W. KENNEDY (cf. [19])
states that the instantaneous poles P01, P02, P12 of the rela-
tive motions of three moving systems Σ0, Σ1, Σ2 (concentric
with and congruent to Σ) are collinear. Further the relative
angular velocities ω01, ω02 and the distances between the
poles are related by

P01 P12 : P02 P12 = ω02 : ω01.

The center of the osculating circle of l at X can be con-
structed with the help of É. BOBILLIER’s construction (cf.
[19]) which is also valid on the sphere. This result holds
also in spherical kinematics, see [5, 10, 16].
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Figure 3: Alternative generation of a spherical trochoid: A
sphere S is rolling on two coaxial circles k1 and k2.

1.2.1 Top-views, trochoids of higher order

The following results on the top-views (orthogonal projec-
tions in the direction of the lead L) of spherical trochoids
were deduced by W. STRÖHER in an analytic way (see
[16]). Here, these results shall be proved by means of syn-
thetical reasoning. In the beginning, we recall a theorem
by H. POTTMANN (cf. [13] and see Fig. 4):

Theorem 1 Let k
′
be an ellipse with center N′, semi-major

axis length a, and the moving point X ′ ∈ k
′
. Assume fur-

ther that the angular velocities of the rods N′S and SX ′ in
the crank slider mechanism N′SX ′ (derived from the paper
strip construction of k

′
) are equal to −β and β (with regard

to k
′
) and let k

′
0 be the ellipse’s circumcircle (which is an

affine image of k
′
). Then, any two out of the following three

statements are equivalent:

• β = const.
• N′X ′

0 rotates with constant angular velocity, and
therefore, also constant area velocity (with regard
to k′0).

• N′X ′ rotates with constant area velocity with respect
to k′.

The top-view of the situation shown in the front-view in
Fig. 1 is displayed in Fig. 5. From the latter we can deduce
some results on the top-views of spherical trochoids:

Theorem 2 The top-view l′ of a spherical trochoid l is (in
general) a trochoid of order 3 (cf. [19, 20]).

Proof. We see that k
′
rotates with angular velocity α about

O′. Provided that α is constant, NX rotates with constant
angular and area velocity (with respect to k) according to

Thm. 1. Thus, N′X ′ rotates with constant area velocity with
respect to k

′
. Because of the existence of the affine map-

ping between the ellipse and its circumcircle, N′X ′ rotates
with constant area velocity −β with respect to k

′
. Hence,

N′X ′ moves with constant and absolute angular velocity
α−β(α+β). □

Figure 4: The crank slider mechanism and the equivalen-
cies around an ellipse.

In [1], it is already mentioned that the top-view (orthogonal
projection in the direction of the axis of the fixed cone) is a
trochoid of order 3. Moreover, R. BEREIS has shown that
the generic orthogonal projection of a spherical trochoid
of order 2 is a planar trochoid of order 5, and a generic
(oblique) parallel projection results in a planar trochoid of
order 8 (see also [1]). This means that the latter curves are
path curves of points under planar motions which are the
superpositions of 5 or 8 planar rotations (cf. [20]).
More precisely, we can infer:

Theorem 3 The top-view l′ of a spherical trochoid l is, in
general, a trochoid of order 3, and its characteristic equals

α : (α−β) : (α+β),

cf. [19, p. 164] and [20]. It can be generated by the open-
loop three-bar mechanism O′N′SX ′.

In the special case
>
b =

>
MX = π

2 and N = O, l′ has the char-
acteristic

(α−β) : (α+β). (1)

In this case, a great circle k is rolling, taking the point X ∈ k
with it. Hence, l a spherical involute of a (spherical) circle,
and also, a spherical curve of constant slope. Naturally, l′
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is a curve with cusps gathering on a circle which is con-
centric with the equator’s top view e′. (It is the top view
of that parallel circle of Σ along which Σ’s tangent planes
have the same slope as l.) The vertices of l′ lie on e′. By
virtue of (1), l′ is an epicycloid.

Figure 5: The top view of a spherical trochoid is a planar
trochoid of order three. It can be generated by an open
three-bar mechanism.

Referring to the very special case of spherical trochoids l
as curves of constant slope on Σ, we shall point out the fol-
lowing: It is possible to transform the sphere Σ into ellip-
soids of revolution by applying orthogonal affine mappings
with the equator plane as a fixed plane (corresponding
points are joined by lines orthogonal to the equator plane).
Although such an orthogonal affine mapping changes the
value of the slope of l, the slope remains constant. Some
examples of curves of constant slope are shown in Fig. 6.
Hence, we have verified that part of ENNEPER’s theorem
(see [7, p. 138] and [11, p.462]) describing the shape of
curves of constant slope on ellipsoids of revolution (see
Fig. 7): The top-view (orthogonal projection in the direc-
tion of the lead L) of a curve of constant slope on an ellip-
soid of revolution is an epicycloid, provided that the axis
of revolution is parallel to L.

Figure 6: Some curves of constant slope on an ellipsoid of
revolution with vertical axis.

Figure 7: The top-view of the curves of constant slope on
an ellipsoid shows some epicycloids.

In Fig. 8, the top-view of the case of congruent polhodes
k0 and k1 is illustrated. In the top-view, we can see a so-
called symmetric rolling if we flip the moving circle k1

1

into the horizontal plane of the fixed circle k0. So, we see
that the locus l◦′ of all points X◦

i
′′ (i.e., the orbit of X◦

1
′ or

X◦
2
′) equals a Pascal limaçon. Further, we can deduce that

the top-view l′ of the spherical trochoid is also a limaçon
which is a similar and smaller copy of l◦′. The mapping

1Here, the indices 1, 2, . . . assigned to the moving circle refer to different (time) instances.
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ζ : l◦′ → l′ is a central similarity with center Z (cf. Fig. 8)
and similarity factor

0 < µ =
1
2
(1+ cosν)< 1, (2)

where ν is the angle enclosed by the planes of the moving
circles (on Σ) and the horizontal planes.

Figure 8: Top: The similarity factor between l′ and l◦′ de-
pends on the inclination of the rolling circle’s plane. Bot-
tom: The fixed and moving polhodes are congruent and
the top-view shows a symmetric rolling. Therefore, l′ is a
Pascal limaçon, as is l◦′.

In Fig. 9, another special case is illustrated: A great circle
k ⊂ Σ is rotating about Σ’s vertical axis while its radius OX
rotates with the same absolute angular velocity. By rotat-
ing the initial position ε1 (which is projecting in the front-
view) into a generic position ε2, we find that the interior
angle bisector of [O′,X ′

1] and [O′,X◦
2
′] equals the trace of

ε2 in the equator plane. Therefore, l′ is the image of e′ un-
der a central similarity ζ with center X ′

1 and the similarity
factor (2). Hence, l′ is a circle.

Figure 9: A very simple form of a spherical trochoid which
is still a similar copy of an undistorted image: a circle.

In the much more special case ν = π

2 , we have µ = 1
2 , and

it is rather obvious that the latitude and the longitude of
each point X ∈ l are equal, provided that Σ is considered
as the Earth and the contour for the top-view is assumed to
be the zero meridian. In this case, l is Viviani’s curve (see
Fig. 10, the orange curve l).

Figure 10: Viviani’s curve (orange) can also be found
among the spherical trochoids.

In Fig. 11, we recall again the constructive approach and
flip the plane ε (including k, N, and X) to both sides, i.e.,
to the interior and exterior of the sphere. For the inner ver-
sion, this yields the circle k◦ with the center N◦ and radius
r1. The moving point shall be denoted by X◦. The outer
circle k◦ has the center N◦, the radius r2, and the moving
point shall be labelled with X◦.
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Figure 11: The top-view l′ of a spherical trochoid is the involute of a hypocycloid z. The two different flips of k′’s plane are
displayed in different colors (blue = to the outside, violet = to the inside).

Then, we complete the parallelograms

O′N◦′X◦′Q1 and O′N′
◦X ′

◦Q2.

Now, we have 0 < r0, 0 < r1 < r0, r1 =−r2, and α = r2 =
const., see Fig. 11. If now O′N◦′N′

◦ rotates with the angu-
lar velocity α, then O′Qi rotates with angular velocity βi
(i ∈ {1,2}), where

0 < β1=r0+r2 and 0 > β2=−r0+r2

holds. According to [19, p. 151], we can see the two-
fold generation of a hypocycloid z as the envelope of
n = [Q1,Q2,X◦′,X ′,X ′

◦] with the characteristic β1 : β2 < 0
(cf. [19, p. 156]). From the top-view O′N◦′N′

◦ of the instan-
taneous axis, we can infer that n is orthogonal to l′ at X ′.
Therefore, l′ is the involute of z or an offset curve (paral-
lel curve) of its similar involute. For the two instantaneous
poles Pi (i ∈ {1,2}) corresponding to the i-th Euler gener-
ation (cf. [19, p. 151]) of the path (or i-th generation as the

envelope of a straight line) of z, we have: OPi = OQi · r0
ri

.
Further, the circle c centered at O′ with radius O′Pi carries
the cusps of z and the concentric circle v with radius O′Qi
carries the vertices of z
Special values of some spherical distances result in spe-
cial shapes of the spherical trochoid and simplify their top-
views:

Theorem 4 For the following values of spherical dis-
tances >r0, >r, >a =

>
M0M,

>
b =

>
MX, the top-views of spherical

trochoids are ordinary trochoids (of order 2):

• If >r =
>
b = π

2 , l′ is an epicycloid.

• If >r0 =
>r, l′ is a Pascal limaçon.

• In the special case >r0 =
>r, b = π

2 , l is a hippopede of
Eudoxus with a circle l′ for its top-view.

• If >r0 =
>r and >a =

>
b = π

2 , l is Viviani’s curve.
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• If >r0 =
π

2 , l′ is the envelope of a straight line under-
going an ordinary trochoid (planetary) motion or the
offset of a cycloid (cf. [19]).

1.3 Algebraic spherical trochoids

The spherical trochoids are algebraic if the ratio r0 : r1 : r2
is rational. With a proper scaling, we can achieve that each
ri ( j ∈ {0,1,2}) is an integer.
Then, the rotation number w and the algebraic degree d of
the top-view are

w =
β1 −β2

|gcd(β1,β2)|
and d = 2

∣∣∣∣ β2

gcd(β1,β2)

∣∣∣∣ .
Since the spherical curve can be considered as the inter-
section of the projection cyclinder and the sphere Σ, the

algebraic degree of the spherical trochoid equals

2d = 4
∣∣∣∣ β2

gcd(β1,β2)

∣∣∣∣ .
We shall have a look at the following example, see Fig. 12.
Here, a circle k is rolling on Σ’s equator e and the radius
of the rolling circle k is half that of e. That means r0 = 2
and r1 = 1, and thus, β1 = 1, β2 =−3, and α =−1. Since
w= 4 and d = 6, z is an astroid. Since a point on the bound-
ary of k is moving, l′ is an involute of z with two cusps X ′

1
and X ′

3 of the third kind2.
The initial position of the rolling circle shall be labelled
with k1.

Figure 12: The spherical trochoid with r0 = 2, r1 = 1, and thus, with β1 = 1, β2 = −3, and α = −1 is mapped to a sextic
curve l′ in the top-view with two cusps of the third kind at X ′

1 and X ′
3, to the upper half l′′ of a doubly covered cubic (with

an ordinary node) in the front-view, and to a part l′′′ of Neil’s parabola in the left-side view.

2Cusps of the first and second are characterized by the initial terms of their local expansions (t2, t3) and (t2, t4), respectively. The expansion at a cusp
of the third kind starts with (t3, t4). In German such a point is called Spitzpunkt.
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2 Some algebraic curves of constant width

A further example shall be illustrated in Fig. 14. Here, we
have chosen r0 = 3 and r1 = 1. Therefore, β1 = 2, β2 =−4,
and α = −1. This yields w = 3 and d = 4 which makes z
a Steiner hypocycloid. In this case, l′ is a closed algebraic
curve of constant width. This raises the question, if spheri-
cal trochoids can be generated such that their top-views are
curves of constant width.
As mentioned earlier, the top-view l′ of the spherical tro-
choid is the involute of a cycloid. It is well-known (see
[4, 8, 9, 18]) that the involute of a cycloid is a trochoid,
and moreover, it is also the envelope of a straight line un-
der a trochoidal motion. Therefore, it is nearby to look for
curves of constant width among trochoidal, and eventually,
among higher order trochoidal curves.
Up to scale and w.r.t. a properly chosen Cartesian coordi-
nate system, the curve z in Fig. 14 can be parametrized as

z(t) = 2e2it + e−4it , t ∈ [0,π[

and l′ allows the representation

l′(t) =
2
3

e2it − 1
3

e−4it −de−it . (3)

The curve l′ is an involute of z and the choice of real
constant d determines the starting point of the involute.
We shall use the support function h : S2 → R which as-
signs to each point on the unit circle the oriented dis-
tance of the curve’s tangent from the origin of the co-
ordinate system. From the parametrization of z, we ob-
tain the unit normal vector field n = (sin t,cos t). Now,
the support function h equals the canonical scalar product
of the position vector l′ = (Re l′, Im l′) of the points of l′

(from (3)) with the corresponding unit normal. This yields
h= ⟨n, l′⟩= d− 1

3 cos3t which agrees, up to a scaling, with
the support function used in [14] to compute a closed alge-
braic curve of constant width. It is necessary and sufficient
that h fulfills

h(t)+h(t +π) = const., const. width
ḣ(t)+ ḣ(t +π) = 0,
h(t)−h(t +2π) = 0, closedness

(4)

besides some conditions on continuity and differentiabil-
ity (which are always fulfilled in the case of trochoidal
curves). The dot indicates differentiation w.r.t. the para-
meter t.
It is a matter of fact that functions that fulfill (4) can be
expanded in Fourier series

h(t) = a0 +
n
∑

k=1
(ak coskt +bk sinkt) =

= 1
2

∞

∑
k=0

(ak − ibk)eikt +(ak + ibk)e−ikt ,
(5)

where n∈N× and ak,bk ∈R (not all zero at the same time).
Fourier series are to be preferred for they naturally ful-
fill the third condition in (4). An alternatively, Chebyshev
polynomials were used in [15].
Closed algebraic curves of constant width whose support
functions can be given as a finite Fourier series are always
rational and their representations can always be converted
into an equivalent series of complex exponential functions

l′(t) = h(t)eit + ḣ(t)e−it (6)

with h from (5). Hence, these curves are higher trochoids
of order n and first and intensively studied in [20]. They al-
low for a generation as the superposition of n independent
rollings in n! ways which includes the two-fold generation
of ordinary trochoids (were n = 2). Further, they can be
generated by closed n-bar linkages.

Figure 13: Two curves of constant width (similar to those
mentioned in the text and scaled to equally sized circum-
circles. The vicinity of the right vertex is enlarged by the
factor 15 in order to display the differences between the
two curves.
The example of a closed algebraic curve of constant width
given in [14] can be described by the support function

h = 9+ cos3t

and is an algebraic curve of degree 8. It admits a ratio-
nal parametrization, and thus, it has to have the maxi-
mum number of singularities two of which are the absolute
points of Euclidean geometry (pair of complex conjugate
ideal points, ordinary double points with self-osculation)
and three of which are real isolated ordinary double points
on the curves’ lines of symmetry. In [12], the authors mod-
ified the support function to

h̃ = 8+ cos3t
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in order to remove the isolated double points. This particu-
lar choice of the support function pushes the isolated dou-
ble points to points on the curve, and thus, they become
cusps of the third kind (see [2, 3, 4, 18]).

The choice of a support function of the form (3) (such that
it fulfills (4)) leads in any case to a curve of constant width
which allows for a kinematic generation by means of suffi-

ciently many rotations. These curves can always be inter-
preted as the top-view of spherical curves. Depending on

whether
√

1− l′(t)l′(t) can be written as a finite sum of
exponential functions (or trigonometric functions) or not,
the curve l allows for a kinematic generation by means of
superposed rollings on a sphere. The order of the spherical
trochoid l will, in general, be higher than 2.

Figure 14: The top-view l′ of a spherical trochoid may even be a closed and algebraic curve of constant width.
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ABSTRACT

In this article, we observe a one-parameter triangle family,
where two vertices are fixed and the third vertex lies on
a given line. For this family of triangles, we observe the
loci of centroids, orthocenters, circumcenters, incenters,
excenters and some triangle elements associated to these
triangle points.

Key words: family of triangles, centroid, orthocenter, cir-
cumcenter, incenter, excenter
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Lokus krivulje u familijama trokuta

SAŽETAK

U ovom članku proučava se jedanparametarska familija
trokuta kojemu su dva vrha fiksna, a treći vrh leži na
zadanom pravcu. Za takvu familiju trokuta promatraju se
geometrijska mjesta težǐsta, ortocentara, sredǐsta opisanih
kružnica, sredǐsta upisanih i pripisanih kružnica te nekih
elemenata vezanih za te karakteristične točke trokuta.

Ključne riječi: familija trokuta, težǐste, ortocentar,
sredǐste opisane kružnice, sredǐste upisane kružnice,
sredǐste pripisane kružnice

1 Introduction

The evergrowing field of triangle geometry can be sys-
tematically researched in [8] where we can find numerous
points, lines, circles, curves, objects etc. associated to a tri-
angle. If we observe a set of triangles somehow connected,
i.e., a one-parameter family of triangles or a pencil of tri-
angles, then the locus of a certain triangle center of those
triangles lies on a curve. In the same way, we can observe
what will be the locus of a certain line, or other object as-
sociated to triangles in a triangle family. Some results in

this area, especially for the Euclidean plane can be found
in [1, 2, 4, 9, 10, 12], while [5, 6, 7] deal with the situ-
ation in the isotropic plane. This paper contains a family
of triangles whose basic elements are dual to the family of
triangles in [4] but the resulting locus curves are different.

We will define the triangle family τ as it follows:
Let A and B be two different fixed points and let p be a
fixed line. We study one-parameter family τ of triangles
4ABCi such that the point Ci lies on the line p.

τ = {4ABCi : Ci ∈ p} , i ∈ R∪{∞}.

a) b)

Figure 1: The family of triangles4ABCi where Ci ∈ p: a) p in general position, b) p ‖ c.
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We will use the following notation

ai = BCi, bi = ACi, i ∈ R∪{∞}, (1)
c = AB, C0 = p∩ c,

and the ideal point on the line p will be denoted with C∞

(see Fig. 1).
From the view point of projective geometry, in this struc-
ture we view a line p as a range of points (Ci), i∈R∪{∞},
the points A and B as vertices of pencils of lines ai and
bi, i ∈ R∪{∞}, which contain the triangle sides BCi and
ACi of the triangles 4ABCi in the family τ. The pencils
will be denoted with (A) and (B).

Fig. 1 shows two different families of triangles:

• (case a) when the line p is in an arbitrary position to
the line c,

• (case b) when the line p and c are parallel.

In every family, we have two special triangles that are de-
generate which occur when i = {0,∞}:

• (case 0)4ABC0, C0 = p∩c, i.e., when vertices of the
triangle are collinear and the triangle degenerates to
a line segment,

• (case ∞)4ABC∞, where C∞ is the ideal point of the
line p, i.e., when a triangle has a vertex at infinity.

If the line p is parallel to the line c (case b) then the degen-
erate triangles coincide, i.e., C0 =C∞ (see Fig. 1b).

Figure 2: The family of triangles τ positioned in the coor-
dinate system.

For all analytic treatment, we will put the coordinate sys-
tem such that the x-axis is the line c and the points A and
B are symmetric regarding to the origin of the coordinate

system (see Fig. 2), i.e., we will put the family of triangles
τ in the coordinate system as follows:

A = (−xa,0), B = (xa,0),
c . . . y = 0, p . . . y = kx+ l, (2)

Ci = (xi, kxi + l), C0 = (p0,0), p0 =−
l
k

ai . . . y =
kxi + l
xi− xa

(x− xa), bi . . . y =
kxi + l
xi + xa

(x+ xa).

2 The locus of centroids

Lemma 1 The midpoints Mai and Mbi of the correspond-
ing triangle sides BCi and ACi of the triangle family τ lie
on lines parallel to the line p.

Figure 3: The locus of midpoints and centroids are paral-
lel lines.

Lemma 1 is an immediate consequence of the Intercept
Theorem.
From the view point of projective geometry, the range of
points Ci is in perspectivity with ranges of points Mai and
Mbi where the centers of perspectivity are the points A and
B

(Ci)[ (Mai), (Ci)[ (Mbi).

Theorem 1 The triangle centroids Gi of the triangle fam-
ily τ lie on a line parallel to the line p.

Proof. The points A and B are fixed, hence the midpoint
Mc of the triangle side AB is fixed. Since the centroid di-
vides the segment McCi in ratio 1:2, the locus of all points
Gi is a line parallel to the line p. �

From (2) the equations of the triangle medians are

tai . . . y =
kxi + l

xi +3xa
(x+ xa),

tbi . . . y =
kxi + l

xi−3xa
(x− xa), (3)

tci . . . y =
kxi + l

xi
(x− xi).
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Hence, the coordinates of the centroids Gi are

Gi =
(xi

3
,

kxi + l
3

)
, (4)

and satisfy the following equation of a line

Gi . . . y = kx+
l
3

(5)

From the view point of projective geometry, the correspon-
dence between the pencils (A) and (B) is established so
that for every triangle 4ABCi of the family τ the median
tai corresponds to the median tbi . This is a 1-1 correspon-
dence, but in the degenerate triangle 4ABC0 the medians
coincide and the centroid G0 can be interpreted as line c.
Therefore, we have a projectivity between the pencils (A)
and (B) for which the product degenerates to two lines, the
one with the locus of all centroids of the triangle family τ

and the line c of the degenerate case 0.

3 The locus of orthocenters

Theorem 2 The orthocenters Hi of the triangle family τ

lie on a conic, which is a hyperbola or parabola or degen-
erates to two lines.

Proof. From (2) we can calculate the equations of the tri-
angle altitudes

vai . . . y =
xa− xi

kxi + l
(x+ xa),

vbi . . . y =−xa + xi

kxi + l
(x− xa), (6)

vci . . . x = xi,

and they are lines of the pencils (A), (B) and a pencil of
parallel lines orthogonal to the line c, respectively. The
coordinates of the orthocenters Hi are

Hi =
(

xi,
x2

a− x2
i

kxi + l

)
, (7)

and satisfy the following equation

Hi . . . x2 + kxy+ ly− x2
a = 0 (8)

which is an equation of a conic. A conic is degenerate
if the coefficient matrix (ci j), i, j ∈ {0,1,2} of its homo-
geneous equation is singular, i.e, the determinant of (ci j)
equals zero.
In our case, this yields∣∣∣∣∣∣
1 k

2 0
k
2 0 l

2
0 l

2 −x2
a

∣∣∣∣∣∣=− l2

4
+

k2

4
x2

a = 0, (9)

p0 =−
l
k
=⇒ xa =±p0.

Figure 4: The locus of orthocenters is a hyperbola when
p is in general position.

Figure 5: The locus of orthocenters is a parabola when
p ‖ c.

Figure 6: The locus of orthocenters are two lines when
C0 = A.

From this and (2) follows that the conic degenerates to two
lines if the line p intersects c at point A or B, i.e., C0 = A
or C0 = B (see Fig. 6).
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The matrix H associated to the quadratic form of the conic
(8) is

H =

(
1 k

2
k
2 0

)
(10)

and its determinant is

detH =−k2

4
, (11)

wherefrom we can read off the affine type of the conic Hi
([3], p.20).
The determinant of the conic can never be positive, so Hi
cannot be an ellipse. For k = 0, we have detH = 0 and the
line p is parallel to the line c and the conic is a parabola
(see Fig. 5). From (8), we can derive that the equation of
the parabola is

Pi . . . y =
−x2 + x2

a

l
.

For k 6= 0, the determinant is always negative, and there-
fore, Hi is a hyperbola. �

From the view point of projective geometry, for every line
in the pencil (A) there is a unique triangle 4ABCi where
that line is the altitude vai which corresponds to one line
from the pencil (B) which is the altitude vbi . This is an
1-1 correspondence between these two projective pencils,
hence the locus of orthocenters is a conic. For the degen-
erate triangle 4ABC0, the altitudes are orthogonal to the
line c, hence they are parallel and the orthocenter H0 is at
infinity. For the degenerate triangle 4ABC∞ the altitudes
are orthogonal to the line p, thus the orthocenter H∞ is also
an ideal point. Therefore the conic has two different real
points at infinity, hence is a hyperbola where from the de-
generate triangles, we can conclude the directions of the
asymptotes.
In the case p ‖ c, C0 = C∞ and H0 = H∞, the conic is a
parabola. In this case, we can also conclude, that the in-
finite point of the conic is the infinite point of the line or-
thogonal to the line AB so that the axis of the parabola will
also be orthogonal to the line AB.
In the case p∩c = {A,B}, the altitudes vai (or vbi ) coincide
if i 6= 0. For i = 0, the altitudes of the degenerate triangle
4ABC0 are parallel lines orthogonal to the line c whereby
altitudes va0 and vc0 (or vb0 and vc0 ) coincide.

Lemma 2 The intersection Nai and Nbi of the triangle al-
titudes vai and vbi with the triangle sides BCi and ACi, re-
spectively, of the triangle family τ lie on a circle whose
diameter is the line segment AB.

The Lemma 2 is an immediate consequence of the Thales’s
theorem.
The equation of the circle k is

k . . . x2 + y2 = x2
a

Figure 7: The locus of vai ∩ACi and vbi ∩BCi is a circle.

4 The locus of circumcenters

Theorem 3 The circumcenters Oi for the triangle family τ

lie on a line.

Proof. The circumcenter of a triangle is the intersection
of the bisectors of the triangle sides and since all the tri-
angles 4ABCi of the triangle family τ share the same side
AB the bisector of that side for every triangle is always the
same line sc. Therefore the circumcenters Oi for the trian-
gle family τ lie on it. �

Figure 8: The locus of circumcenters is the bisector of sc.

Theorem 4 The bisectors sai and sbi of the triangle sides
BCi and ACi, respectively, in the triangle family τ enve-
lope parabolas. The line p is the common directrix of
the parabolas and the points B and A are the foci of the
parabolas, respectively.

Proof. Let Pi be the intersection point of the bisector sai

and the line p, and Sai the intersection point of the orthog-
onal line from the points Ci to the line p and the bisector
sai (see Fig. 9). It follows that

4PiSaiCi ∼=4PiSaiB
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because two sides of triangles and the angle between them
are congruent. This is valid for every triangle 4ABCi in
the triangle family τ, thus from

|CiSai |= |BSai |, ∠CiSaiPi = ∠PiSaiB

we can conclude that the bisector sai will be the tangent
line with the contact point Sai of a parabola whose focus is
the point B and directrix p. We can argue, analogously, for
the other envelope corresponding to the point A. �

Figure 9: The locus of bisectors of sai and sbi envelop
parabolas.

From here, we can conclude that the axis of parabolas will
be orthogonal to the line p and passing through vertices A
or B, respectively. This property of a tangent to a parabola
can be found in ([3], p. 31-32), from where we can also
conclude that the locus of midpoints Mai and Mbi of the
triangle sides of the family τ from Lemma 1 are the tan-
gent lines to parabolas at the vertex of the parabola.

Since the bisectors of a triangle side do not depend on the
opposite vertex, we can choose the line p to be vertical

p . . .x = l.

Then the equations of the parabolas are

y2 = 2(l± xa)x.

5 The locus of incenters and excenters

Theorem 5 The incenters Ii and excenters Iai , Ibi , Ici of the
triangle family τ lie on a cubic or degenerate cubic which
can be the union of a hyperbola and a straight line, or even
the union of three lines.

Figure 10: The locus of incenters and excenters when p in-
tersects AB in an interior point.

For the triangle4ABCi, the angle bisectors at the vertex A
will be denoted with iai1

(interior bisector) and iai2
(exte-

rior bisector). Analogously, we denote the angle bisectors
ibi1

, ibi2
at vertex B and angle bisectors ici1

, ici2
at vertex Ci

(see Fig. 10).

Proof. From the view point of projective geometry, every
line of the pencil (A) corresponds to two lines of the pencil
(B), i.e., to every line of the pencil (A) which is an angle
bisector at vertex A correspond two angle bisectors (inte-
rior and exterior) at vertex B, and vice versa. Three out of
these four points of intersection are different points, i.e.,
one of them is counted twice, therefore the result of these
two projective pencils is a curve of degree three.

We can also view it in this way: for every triangle4ABCi,
the angle bisectors iai1

, iai2
, ibi1

, ibi2
determine a quadrilat-

eral whose vertices and two diagonal points are points A,
B, Ii, Iai , Ibi , and Ici . Diagonals of the quadrilateral are the
line c and the angle bisectors ici1

, ici2
.

If the line p is the bisector sc of the line segment AB, then
the family τ is a family of isosceles triangles (see Fig. 11).
The intersection of bisectors iai1

, ibi1
and iai2

, ibi2
, i.e., the

incenters Ii and the excenters Ici lie on the bisector sc. To
any line from the (A) which is an interior angle bisector
iai1

there exists a corresponding line from the pencil (B)
which is an exterior angle bisector ibi2

, and vice versa. The
intersection points are excenters Iai and Ibi . Hence, from
the latter we have a 1-1 correspondence and the set of in-
tersection points is a conic. For the degenerate triangle
4ABC∞, the angle bisector ia∞1

is parallel to the angle bi-
sector ib∞2

, and vice versa, hence the conic is a hyperbola.
Note that these two points of the locus curve of incenters
and excenters are at infinity. This is also true in the case of

39



KoG•27–2023 I. Kodrnja, H. Koncul: Locus Curves in Triangle Families

an arbitrary line p (see Fig. 13). The third diagonal point
of the aforementioned quadrilateral is the point C0 = Mc.

If the line p is incident with the point A (or B), then the
sides ACi (or BCi) of triangles in the family τ lie on the line
p. Therefore, for every triangle 4ABCi the angle bisec-
tors at the vertex A (or B) are always the same two lines
ia1 and ia2 (or ib1 , ib2 ) which is the part of the degenerate
cubic. The third line of the degenerate cubic is the exterior
angle bisector ib02

at the vertex B for the degenerate trian-
gle ABC0, respectively ia02

if the line p is incident with the
point B (see Fig. 12). �

Figure 11: The locus of incenters and excenters if p = sc.

Figure 12: The locus of incenters and excenters consists of
three lines if C0 = B.

Figure 13: The directions of the asymptotes of the cubic.

We can distinguish these cases for the initial elements:

• (case a) The line p is in general position relative to
the line AB when the intersection point C0 = p∩AB
lies between the points A and B.

• (case b) The line p is in general position to the line
AB when the intersection point C0 = p∩AB lies out-
side the segment AB.

• (case c) The line p is parallel to AB.

• (case d) The line p is the bisector of segment AB.

• (case e) The line p passes through either A or B.

For the first three cases, the locus curve is a cubic. For the
last two, according to Theorem 5, the curve degenerates.
In (case a), for the degenerate triangle 4ABC0, the bisec-
tors ia02

, ib02
, and ic01

are parallel lines which are orthog-
onal to the line AB. Therefore one asymptote of the locus
curve of the incenters and the excenters is orthogonal to the
line AB. The other two directions of the asymptotes we can
deduce from the triangle 4ABC∞ where two of the trian-
gle excenters are at infinity whereas the angle bisectors are
parallel as stated in the proof of Theorem 5 (see Fig. 12).
In (case b), for the degenerate triangle 4ABC0, the bisec-
tors ia02

, ib01
, and ic02

are parallel but the way to find the
direction of the asymptotes is the same as in (case a).
We will now derive the equation of the curve.
The general equation of a cubic is

P(x,y) =Ax3 +Bx2y+Cxy2 +Dy3

+Ex2 +Fxy+Gy2 +Hx+Ky+L = 0 (12)
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where we will denote the cubic homogeneous part as

P3(x,y) = Ax3 +Bx2y+Cxy2 +Dy3 (13)

and the quadratic part as

P2(x,y) = Ex2 +Fxy+Gy2. (14)

Let k1,− 1
k1

be the slopes of the angle bisectors between the
lines p and c, k1 = tan ϕ

2 , and p0 = − l
k (see Fig. 2) hence

the asymptotes of the cubic are

x = p0, y = k1x+ l1, y =− 1
k1

x+ l2. (15)

Now one can use results from [11] and [13] regarding
asymptotes of algebraic curves and their relations to the
equation of the curve. In [11] we find relations between
linear factors of the highest degree homogeneous part of
the equation and equations of asymptotes as follows in our
case of degree 3 polynomial P:

• a linear factor (ax+by) is a simple factor of P3(x,y)
if P3(x,y) = (ax+by)Q3(x,y) where Q3(b,−a) 6= 0,
with

P3(x,y) = (ax+by)Q3(x,y)

and to this simple factor is associated the single
asymptote to P(x,y) = 0 given by

(ax+by)Q3(b,−a)+P2(b,−a) = 0. (16)

From (15) we know the three linear factors of P3 to be as
follows, with respect to (18):

P3(x,y) =
1
k1

x(y− k1x)(k1y+ x)

=−x3 +

(
1
k1
− k1

)
yx2 + xy2

and it follows that

A =−1, B =

(
1
k1
− k1

)
, C = 1, D = 0. (17)

If we include in consideration the three intersections of the
curve with the x-axis, which tells us that the equation (12)
contains the expression (x− p0)(x2− x2

a) we can deduce
that

A =−1, E = p0, H = x2
a, L =−p0x2

a. (18)

This leaves us to determine the remaining three coefficients
F,G,K. We used a particular curve and solved the system
of equations from the condition of the incenter and excen-
ter being on the curve and calculated the following values:

F = 0, G = p0, K =−
(

1
k1
− k1

)
x2

a. (19)

Hence, the equation of the cubic, in (case a) and (case b),
can be written as(

1
k1
− k1

)
y(x2− x2

a)+ y2(x+ p0) = (x− p0)(x2− x2
a).

If the line p intersects outside the segment AB (case b) the
curve has three open branches and an oval (see Fig. 14). If
the line p intersects the segment AB inside (case a), then
an open branch is stretched along the vertical asymptote
which the cubic intersects and converges to the asymptote
from different directions and different sides.
In (case c), if p ‖ c then C0 = C∞, i.e., there is only one
degenerate triangle from which we can conclude that one
asymptote of the cubic is parallel to the line c and the line
at infinity is a tangent of the cubic with the tangent point
at the ideal point of the axis y. The cubic has a parabolic
asymptote. The equation of the cubic is

− l
2

y2 +(x2− x2
a)

(
y− l

2

)
= 0

Figure 14: The locus of incenters and excenters when p in-
tersects AB outside.

Figure 15: The locus of incenters and excenters when p ‖ c.
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42
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Krivulje u 3-dimenzionalnom
Minkowskijevom prostoru

Curves in 3-dimensional Minkowski Space

ABSTRACT

In this paper curves in threedimensional Minkowski space
were analyzed and the main differences in local theory of
curves in Euclidean and Minkowski space were emphasized.
Special attention is paid to curves with no Euclidean co-
unterpart. There are numerous examples of studied curves
whose graphic representations were made by Mathematica
software.

Key words: Minkowski space, spacelike curve, timelike
curve, lightlike curve
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Krivulje u trodimenzionalnom Minkowskijevom
prostoru

SAŽETAK

U radu su promatrane krivulje u trodimenzionalnom Min-
kowskijevom prostoru, te su istaknute razlike u lokalnoj te-
oriji krivulja u odnosu na euklidski prostor. Posebna pažnja
posvećena je krivuljama koje nemaju svoj analogon u eu-
klidskom prostoru. Navedeni su i brojni primjeri krivulja,
za čiju vizualizaciju je korǐsten program Mathematica.

Ključne riječi: Minkowskijev prostor, prostorna krivulja,
vremenska krivulja, svjetlosna krivulja

1 Uvod

Iako je francuski matematičar i teorijski fizičar Henri Po-
incaré (1854.-1912.) predvi�ao da će euklidska geometrija
zauvijek ostati najprikladnija za proučavanje fizike, danas
je, zahvaljujući njemačkom matematičaru i fizičaru Her-
mannu Minkowskom (1864.-1909.), poznato da je to za-
pravo 4-dimenzionalna ne-euklidska mnogostrukost.
U jesen 1907. Minkowski je uvidio značaj Einsteinove
teorije relativnosti za cjelokupnu fiziku te je održao pre-
davanje Matematičkom društvu Göttingena pod naslovom
“O principu relativnosti u elektroidnamici: novi oblik jed-
nadžbi elektrodinamike”. Tom prilikom je Minkowski
predstavio svoju reformulaciju zakona fizike u terminima
4-dimenzionalnog prostora, koja se temeljila na Lorent-
zovoj invarijantnosti kvadratne forme x2 + y2 + z2− c2t2,
gdje su x,y,z pravokutne prostorne koordinate, t je vri-
jeme, a c brzina svjetlosti u vakuumu. Svjetlosni sig-
nal iz točke O se širi u obliku kružnice zadane jed-
nadžbom (ct)2 = x2 + y2 + z2 i ona predstavlja doseg
širenja informacija brzinama ispod brzine svjetlosti. Svaki
doga�aj T u 4-dimenzionalnom prostoru zadan s kordi-
natama (t,x,y,z) koji zadovoljava gornju jednadžbu pri-

pada svjetlosnom konusu. Takav konus možemo pridružiti
svakom doga�aju T , pri čemu doga�aji s t > 0 predsta-
vljaju doga�aje koje je moguće posjetiti iz doga�aja T br-
zinom gibanja manjom ili jednakom brzini svjetlosti. Po-
taknut time, Minkowski definira metriku zadanu s ds2 =
(ct)2− dx2− dy2− dz2 koja očito nije definitna, odnosno
postoje doga�aji čija je udaljenost od fiksnog doga�aja
jednaka nuli. Takvi doga�aji su doga�aji koji se odvijaju
istovremeno. Četiridimenzionalni prostor s ovako defini-
ranom (pseudo)-metrikom naziva se Minkowskijev prostor
i to je najprikladniji prostor za izučavanje moderne fizike.
Definiranu (pseudo)-metriku možemo analogno definirati
i na trodimenzionalnom prostoru, te izučavati krivulje i
plohe unutar takvog prostora, što možemo lako vizualno
predočiti. Dakle, Minkowskijev 3-dimenzionalni (ili čak
n-dimenzionalni) prostor je vrlo privlačan za izučavanje
objekata diferencijalne geometrije, budući da se u njemu
javljaju razlike u odnosu na teoriju euklidskog prostora.
U ovom radu bavit ćemo se krivuljama u Minkowskije-
vom trodimenzionalnom prostoru, s posebnim naglaskom
na krivulje kakvih nema u euklidskom prostoru, te ćemo
isticati bitne razlike u teoriji krivulja u odnosu na euk-
lidski slučaj. Dijelovi ovog članka temelje se na diplom-
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skom radu [3] kojeg je pod voditeljstvom doc.dr.sc.Ljiljane
Primorac Gajčić izradila studentica Odjela za matematiku,
Sveučilišta u Osijeku, Monika Ðuzel.

2 Trodimenzionalni Minkowskijev prostor

Minkowskijev trodimenzionalni prostor, koji se zbog
važnosti Lorentzovih transformacija pri njegovom defini-
ranju naziva još i Lorentz-Minkowskijev, a katkad i samo
Lorentzov prostor predstavlja ure�eni par realnog trodi-
menzionalnog vektorskog prostora i odgovarajuće pseudo-
metrike.

Definicija 1 Minkowskijev prostor je metrički prostor
R3

1 = (R3,〈,〉), gdje je metrika (pseudo-skalarni produkt
indeksa 1) definirana s

〈x,y〉= x1y1 + x2y2− x3y3,

x = (x1,x2,x3), y = (y1,y2,y3).

Neki autori ([7]), definiraju metriku s minusom na prvoj
koordinati (〈x,y〉=−x1y1 + x2y2 + x3y3), dok ćemo se mi
u radu služiti definicijom 1.
Definirana metrika je pseudo-metrika budući da ne zado-
voljava svojstvo pozitivne definitnosti. S obzirom na defi-
niranu pseudo-metriku u Minkowskijevom prostoru razli-
kujemo tri vrste vektora koje definiramo kao slijedi:

Definicija 2 Za vektor x ∈ R3
1 kažemo da je prostorni ako

je 〈x,x〉> 0 ili x= 0, vremenski ako je 〈x,x〉< 0 i svjetlosni
(nul, izotropni) ako je 〈x,x〉= 0 i x 6= 0.

Svojstvo vektora iz prethodne definicije nazivamo kauzal-
nim karakterom vektora. Promotrimo li sad klasifikaciju
vektora s obzirom na skalarni kvadrat vektora, možemo
uočiti da prostorni vektori pripadaju jednoplošnom hiper-
boloidu zadanom jednadžbom x2+y2−z2 = r2, r > 0, vre-
menski vektori pripadaju dvoplošnom hiperboloidu zada-
nom jednadžbom x2 +y2− z2 =−r2, r > 0, dok svjetlosni
vektori pripadaju stošcu zadanom jednadžbom x2 + y2 −
z2 = 0. Spomenute plohe su i primjeri kvadrika u Minkow-
skijevom prostoru [12], te ih redom nazivamo, vremenska
ili pseudo-sfera, prostorna sfera ili hiperbolična ravnina te
svjetlosni stožac, slika 1.

Slika 1: Pseudo-sfera, hiperbolična ravnina i svjetlosni
stožac

Primjer 1 Vektor x1 = (3,2,1) je prostorni jer je
〈x1,x1〉 = 12 > 0. Vektor x2 = (1,2,3) je vremenski jer je
〈x2,x2〉= −4 < 0 i vektor x3 = (2,0,2) je svjetlosni jer je
〈x3,x3〉= 0.

Okomitost vektora u R3
1 definira se isto kao i u euklidskom

prostoru.

Definicija 3 Za vektore x, y ∈ R3
1 kažemo da su okomiti

(ortogonalni) ako je 〈x,y〉= 0.

Istaknimo da za razliku od euklidskog prostora, gdje za
kolinearne vektore x, y ∈ R3 \{(0,0,0)} nikako ne vrijedi
da je 〈x,y〉 = 0 jer bi to značilo da su vektori istovremeno
kolinearni i okomiti, u Minkowskijevom prostoru to nije
tako. Štoviše, za svaka dva kolinearna svjetlosna vektora
x, y ∈ R3

1 vrijedi 〈x,y〉 = 0, Odnosno, svjetlosni ortogo-
nalni vektori su kolinearni vektori.

Primjer 2 Neka su x = (1,0,1) i y = (λ,0,λ), λ ∈ R dva
svjetlosna vektora. Očito su x i y kolinearni jer vrijedi
y = λx, no za njih tako�er vrijedi 〈x,y〉 = 0 što znači da
su okomiti.

Za vremenske vektore vrijedi druga osobitost. Naime,
može se pokazati da takva dva vektora nisu nikada oko-
mita, tj. ako su x, y ∈ R3

1 vremenski vektori onda vrijedi
〈x,y〉 6= 0. Nadalje, vrijede sjedeća svojstva za dva ortogo-
nalna v i w vektora u R3

1.

1. Ako je v vremenski vektor, onda je w prostorni ve-
ktor.

2. Ako je v prostorni vektor, onda je w ili prostorni ili
vremenski ili svjetlosni vektor.

3. Ako je v svjetlosni vektor, onda je w prostorni ili
svjetlosni vektor.

Definicija 4 Pseudo-norma vektora x ∈R3
1 definirana je s

‖x‖=
√
|〈x,x〉|.

Napomena 1 Za vektor x ∈ R3
1 kažemo da je jedinični

(normiran) ako je ‖x‖ = 1. Za razliku od euklidskog pro-
stora gdje se svaki vektor različit od~0 može normirati, u
Minkowskijevom prostoru to nije tako. Svaki prostorni vek-
tor različit od~0 i svaki vremenski vektor može se normirati,
dok svjetlosni vektori se ne mogu normirati jer je njihova
norma 0.

Euklidski i Minkowskijev prostor razlikuju se i u Cauchy-
Schwarzovoj nejednakosti. Ako su x,y ∈ R3 tada vrijedi
|〈x,y〉| ≤ ‖x‖‖y‖, dok u Minkowskijevom prostoru za vre-
menske vektore x,y ∈ R3

1 vrijedi |〈x,y〉| ≥ ‖x‖‖y‖. Jedna-
kost vrijedi ako i samo ako su vektori x,y kolinearni.

Definicija vektorskog produkta je analogna definiciji vek-
torskog produkta u R3.
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Definicija 5 Vektorski produkt v×L w vektora v i w u R3
1

dan je s v×L w = J(v×w), gdje× označava euklidski vek-
torski produkt, a matrica J je dana s

J =

 1 0 0
0 1 0
0 0 −1

 .

Dalje u radu ispuštamo indeks L u oznaci ×L, te će oz-
naka × predstavljati vektorski produkt u Minkowskijevom
prostoru, osim ako nije istaknuto drugačije.

Promotrimo sad kut izme�u dva vektora u Minkowskije-
vom prostoru. S obzirom na vezu izme�u skalarnog pro-
dukta dva vektora i kuta koji zatvaraju, prirodno je za
očekivati da će postojati razlike pri definiciji kuta izme�u
dva vektora u Minkowskijevom prostoru. Za dva vektora
x,y∈R3 u euklidskom prostoru koji zatvaraju kut θ, vrijedi
〈x,y〉 = ‖x‖‖y‖cosθ. U Minkowskijevom prostoru vrijedi
slična jednakost pomoću koje se definira kut izme�u vek-
tora pri čemu definicija kuta ovisi o kauzalnom karakteru
vektora koji ga zatvaraju ([13]). Pri definiranju kuta treba
voditi računa i o vremenskoj orijentaciji vektora koja se
definira na sljedeći način:

Definicija 6 Neka je e1 = (1,0,0). Za dani vektor x ∈ R3
1

kažemo da je orijentiran u budućnost (odnosno prošlost)
ako vrijedi 〈x,e1〉< 0 (odnosno 〈x,e1〉> 0).

Definicija 7 Neka su x i y vremenski vektori iste orijenta-
cije u R3

1. Tada postoji jedinstveni realni broj θ ≥ 0 takav
da

〈x,y〉=−‖x‖‖y‖coshθ.

Broj θ se naziva hiperbolički kut izme�u vektora x i y.

Definicija 8 Neka su x i y prostorni vektori u R3
1 koji ra-

zapinju vremenski (prostorni) potprostor. Tada postoji je-
dinstveni realni broj θ≥ 0 takav da

〈x,y〉= ‖x‖‖y‖coshθ, (〈x,y〉= ‖x‖‖y‖cosθ).

Broj θ se naziva središnji kut izme�u vektora x i y.

Definicija 9 Neka je x prostorni, a y vremenski vektor u
R3

1. Tada postoji jedinstveni realni broj θ≥ 0 takav da

〈x,y〉= ‖x‖‖y‖sinhθ.

Broj θ se naziva Lorentzov vremenski kut izme�u vektora x
i y.

Za razliku od euklidskog prostora gdje možemo definirati
kut izme�u bilo koja dva ne-nul vektora, u Minkowski-
jevom prostoru kut izme�u dva vektora od kojih je jedan
svjetlosnog karaktera se ne definira.

Definicija i svojstva baze za Minkowskijev prostor ana-
logni su onima u euklidskom prostoru tako da ćemo ih
izostaviti. Navest ćemo samo definiciju svjetlosne baze i
propoziciju koja nema euklidski analogon.

Definicija 10 Ure�enu trojku (A,B,C) koja se sastoji od
dva svjetlosna i jednog prostornog vektora za koje vrijedi:

〈A,A〉= 〈B,B〉= 0, 〈C,C〉= 1

〈A,B〉= 1, 〈A,C〉= 0, 〈B,C〉= 0

nazivamo svjetlosni (nul) trobrid ili svjetlosna baza.

Propozicija 1 Svaka ortonormirana baza {a1, a2, a3} za
R3

1 (ai⊥a j za sve i 6= j i ‖ai‖= 1 za i ∈ {1,2,3}) sastoji se
od točno dva prostorna i jednog vremenskog vektora.

Potprostore Minkowskijevog prostora tako�er možemo
razlikovati po kauzalnom karakteru, što je odre�eno
sljedećom definicijom.

Definicija 11 Za potprostor W ≤ R3
1 kažemo da je:

1. prostorni ako je svaki vektor x ∈W prostorni,

2. vremenski ako sadrži neki vremenski vektor,

3. svjetlosni ako sadrži neki svjetlosni vektor, ali ne
sadrži vremenski vektor.

Definicija 12 Neka je W ≤ R3
1 potprostor. Za pseudo-

skalarni produkt u R3
1 kažemo da je degeneriran na W ako

postoji vektor v ∈W, v 6= 0 takav da je v⊥x za svaki x ∈W.
U suprotnom kažemo da je pseudo-skalarni produkt nede-
generiran na W.

Pseudo-skalarni produkt na potprostoru W ≤ R3
1 je dege-

neriran ako i samo ako je W svjetlosni potprostor.

Propozicija 2 Ako je W ≤ R3
1 potprostor.

1. W je prostorni ako i samo ako je W⊥ vremenski.

2. W je vremenski ako i samo ako je W⊥ prostorni.

3. W je svjetlosni ako i samo ako je W⊥ svjetlosni.

U prva dva slučaja je W ∩W⊥ = {0}, dok je u trećem
W ∩W⊥ 6= {0}, odnosno u trećem slučaju vrijedi dim(W ∩
W⊥) = 1.
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3 Lokalna teorija krivulja u R3
1

Krivulje u Minkowskijevom prostoru definiramo kao i u
euklidskom. Njihova lokalna teorija je u mnogočemu
analogna lokalnoj teoriji krivulja u euklidskom prostoru.
No ipak postoje neke razlike uzrokovane indefinitnošću
pseudo-metrike o kojima će više riječi biti u nastavku.

Kauzalni karakter krivulje u Minkowskijevom prostoru
odre�en je kauzalnim karakterom njezinog tangencijalnog
vektora.

Definicija 13 Krivulja c : I ⊂ R→ R3
1 je prostorna (od-

nosno vremenska, svjetlosna (nul)) u točki s0 ∈ I ako je
vektor c′(s0) prostorni (odnosno vremenski, svjetlosni).

Krivulja c : I ⊂ R → R3
1 je prostorna (odnosno vremen-

ska, svjetlosna (nul)) ako je prostorna (odnosno vremen-
ska, svjetlosna) u svakoj točki s ∈ I.

Primjer 3 Krivulja α : R→R3
1, α(s) = (coshs,

s2

2
,sinhs)

nema jedinstveni kauzalni karakter. Budući da je
〈α′(s),α′(s)〉= s2−1, onda je α prostorna krivulja na in-
tervalu (−∞,−1)∪ (1,∞), vremenska na intervalu (−1,1)
i svjetlosna u točkama s =±1. Vidi sliku 2.

Slika 2: Plavi dio krivulje α je prostorni, zeleni dio je
vremenski, a crveni svjetlosni.

Definicija 14 Za prostornu (vremensku) krivulju c : I →
R3

1 kažemo da je jedinične brzine ili da je parametrizirana
duljinom luka ako je ‖c′(s)‖= 1, s ∈ I.

Napomena 2 Svjetlosnu krivulju c ne možemo parametri-
zirati parametrom duljine luka jer vrijedi ‖c′(s)‖= 0, ali je
možemo parametrizirati tzv. parametrom duljine pseudo-
luka. Kasnije ćemo opisati tu reparametrizaciju.

Budući da se teorija prostornih i vremenskih krivulja u R3
1

razlikuje od teorije svjetlosnih krivulja, najprije ćemo na-
vesti rezultate vezane za prostorne i vremenske krivulje,
a zatim za svjetlosne krivulje. Prostorne krivulje razliku-
jemo s obzirom na kauzalni karakter normale, koji može
biti prostorni, vremenski ili svjetlosni. Vremenske krivulje
i prostorne krivulje s prostornom ili vremenskom norma-
lom nazivamo Frenetove krivulje.

Za svaku Frenetovu krivulju c u R3
1, analogno kao u euk-

lidskom prostoru, definiramo ortonormirani trobrid (re-
per), tj. ortonormiranu bazu vektorskog prostora R3

1,c(s)

u svakoj točki krivulje c(s). Neka je c : I → R3
1 Frene-

tova krivulja parametrizirana duljinom luka pri čemu c′ i
c′′ nisu kolinearni vektori. Polje T (s) = c′(s) je jedinično
tangencijalno polje od c. Polje vektora glavnih normala

dano je s N(s) =
c′′(s)
‖c′′(s)‖

, c′′(s) 6= 0, a polje binormala s

B(s) = T (s)× N(s). Tada je {T (s),N(s),B(s)} ortonor-
mirana baza od R3

1,c(s) i nazivamo je Frenetovim (Frenet-
Serretovim) trobridom (reperom, okvirom) krivulje c ([9]).

Definiramo sada za krivulju parametriziranu duljinom luka
i sljedeće funkcije:

Definicija 15 Neka je c : I→ R3
1 Frenetova krivulja para-

metrizirana duljinom luka.

1. Funkciju κ : I → R, κ(s) = ‖c′′(s)‖ nazivamo za-
krivljenošću (fleksijom) krivulje c u točki c(s).

2. Funkciju τ : I → R, τ(s) = 〈N(s),B′(s)〉 nazivamo
torzijom (sukanjem) krivulje c u točki c(s).

U R3
1 tako�er vrijede Frenetove formule analogne onima u

euklidskom prostoru, T ′

N′

B′

=

 0 κ 0
−εηκ 0 τ

0 ετ 0

 T
N
B


pri čemu je ε = 〈T,T 〉=±1, η = 〈N,N〉=±1.

U primjeru 4 dane su parametarske jednadžbe ravninskih
krivulja s pripadnim trobridima.

Primjer 4

(1) Krivulja α(s) = r
(

cos
( s

r

)
,sin

( s
r

)
,0
)

je prostorna
krivulja s prostornom normalom. Leži u prostornoj
ravnini s jednadžbom z = 0. Njezin Frenetov trobrid
je

T (s) =
(
− sin

( s
r

)
,cos

( s
r

)
,0
)
,

N(s) =
(
− cos

( s
r

)
,−sin

( s
r

)
,0
)
,

B(s) = (0,0,−1)

i zakrivljenosti su κ =
1
r

i τ = 0. Budući da je α rav-
ninska krivulja s konstantnom zakrivljenošću, ona je
kružnica u Minkowskijevom prostoru, kao i u euklid-
skom. Vidi sliku 4 lijevo.
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(2) Krivulja α(s) = r
(
0,sinh

( s
r

)
,cosh

( s
r

))
je pros-

torna krivulja s vremenskom normalom. Leži u vre-
menskoj ravnini s jednadžbom x = 0. Njezin Frene-
tov trobrid je

T (s) =
(
0,cosh

( s
r

)
,sinh

( s
r

))
,

N(s) =
(
0,sinh

( s
r

)
,cosh

( s
r

))
,

B(s) = (1,0,0)

i zakrivljenosti su κ =
1
r

i τ = 0. Budući da je α rav-
ninska krivulja s konstantnom zakrivljenošću, ona
je kružnica u Minkowskijevom prostoru. Euklidskim
očima gledano ona je jednakostrana hiperbola. Vidi
sliku 4 sredina (žuta).

(3) Krivulja α(s) = r
(
0,cosh

( s
r

)
,sinh

( s
r

))
je vremen-

ska krivulja koja leži u vremenskoj ravnini s jed-
nadžbom x = 0. Njezin Frenetov trobrid je

T (s) =
(
0,sinh

( s
r

)
,cosh

( s
r

))
,

N(s) =
(
0,cosh

( s
r

)
,sinh

( s
r

))
,

B(s) = (−1,0,0)

i zakrivljenosti su κ =
1
r

i τ = 0. Budući da je α rav-
ninska krivulja s konstantnom zakrivljenošću, ona
je kružnica u Minkowskijevom prostoru. Euklidskim
očima gledano ona je jednakostrana hiperbola. Vidi
sliku 4 sredina (zelena).

Sada ćemo navesti neke primjere prostornih krivulja u R3
1.

Primjer 5

(1) Obična cilindrična spirala α(s)=(r coss, r sins, hs),
h 6= 0, r > 0 je prostorna (vremenska, svjetlosna)
krivulja ako je r2 > h2, (r2 < h2, r2 = h2).

(2) Obična cilindrična hiperbolična spirala
α(s) = (hs, r sinhs, r coshs), h 6= 0, r > 0 je pros-
torna krivulja (slika 3 lijevo).

(3) Obična cilindrična spirala
α(s) = (hs, r coshs, r sinhs), h 6= 0, r > 0 je pros-
torna (vremenska, svjetlosna) krivulja ako je h2 >
r2, (h2 < r2, r2 = h2).

(4) Krivulja(
2s− 4

c
arctan(cs),−1

c

(
3+2ln(1+ c2s2)

)
,2s
)
,

c ∈ R je nul krivulja (slika 3 desno).

Slika 3: Prostorna krivulja (20s, 2sinhs, 2coshs)

i svjetlosna krivulja
(

2s−2arctan(2s),− 1
2

(
3+

2ln(1+4s2)
)
,2s
)
, u prostoru.

Za razliku od euklidskog prostora, u Minkowskijevom
prostoru postoje tzv. pseudo-nul krivulje ([14]). To su
prostorne krivulje sa svjetlosnom normalom. Njihove Fre-
netove formule su T ′

N′

B′

=

 0 κ 0
0 τ 0
−κ 0 −τ

 T
N
B


gdje zakrivljenost κ poprima samo dvije vrijednosti, 0 ili
1. Ako je κ = 0, onda je c(u) pravac. Vrijedi i obrat. Ako
je c(u) pravac, onda je c′′(u) = 0 = T ′(u), što znači da je
κ = 0. Ako c(u) nije pravac, onda postoji interval na kojem
je c′′(u) 6= 0. N(u) je definiran kao N(u) = c′′(u) = T ′(u),
prema tome κ = 1. Polje binormala B(u) je svjetlosni vek-
tor okomit na T (u) u svakoj točki krivulje c(u) takav da
vrijedi 〈N,B〉 = 1. (T, N, B) je svjetlosna baza (vidi defi-
niciju 10). Torzija krivulje c(u) je definirana s τ = 〈N′,B〉 i
autor u ([9]) je naziva pseudo-torzija. Poznato je da su sve
pseudo-nul krivulje ravninske krivulje koje leže u svjetlos-
noj ravnini ([1, 2]).

Primjer 6 Krivulja α(s) = r
( s

r
,
( s

r

)2
,
( s

r

)2
)

je pseudo-
nul krivulja koja leži u svjetlosnoj ravnini s jednadžbom
y− z = 0. Njena svjetlosna baza je

T (s) =
(
1,

2s
r
,

2s
r

)
, N(s) =

(
0,

2
r
,

2
r

)
, B(s) =

(
0,

r
4
,− r

4
)

i zakrivljenosti su κ = 1 i τ = 0. Budući da je α ravnin-
ska krivulja s konstantnom zakrivljenošću, ona je kružnica
u Minkowskijevom prostoru. Euklidskim očima gledano,
ona je parabola čija je os paralelna sa svjetlosnim smje-
rom. Vidi sliku 4 desno.

47
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Slika 4: Kružnice u Minkowskijevom prostoru.

Euklidska elipsa je tako�er Minkowskijeva kružnica, što je
pokazano u [11]. Promatran je presjek svjetlosnog stošca

LC(p) = {q ∈ R3
1 \{p} : 〈q− p,q− p〉= 0},

prostornom, vremenskom i svjetlosnom ravninom. U pre-
sjeku se dobiju Minkowsijeve kružnice koje su euklidske
elipsa, jednakostrana hiperbola i parabola, slika 5.

Slika 5: Kružnice u Minkowskijevom prostoru kao pre-
sjeci svjetlosnog stošca i ravnine.

Poznato je da u euklidskom prostoru vrijedi tvrdanja: Neka
je c : I→ R3 regularna krivulja pri čemu c′ i c′′ nisu koli-
nearni. Krivulja c je ravninska ako i samo ako je τ = 0. U
Minkowskijevom prostoru za pseudo-nul krivulje ta tvrd-
nja ne vrijedi. Sljedeća dva primjera pokazuju da su
pseudo-nul krivulje ravninske, iako je τ 6= 0.

Primjer 7 Dana je pseudo-nul krivulja

α(s) =
1
τ
(cosh(τs)+ sinh(τs),τ2s,cosh(τs)+ sinh(τs)).

To je ravninska krivulja koja leži u svjetlosnoj ravnini
x− z = 0. Svjetlosni trobrid (T (s), N(s), B(s)) krivulje
α(s) je

T (s) =
(cosh(τs)+ sinh(τs)

τ
,1,

cosh(τs)+ sinh(τs)
τ

)
,

N(s) =
(

cosh(τs)+ sinh(τs),0,cosh(τs)+ sinh(τs)
)
,

B(s) =
(−(1+ τ2)cosh(τs)+(−1+ τ2)sinhτs)

2τ2 ,−1
τ
,

(−1+ τ2)cosh(τs)− (1+ τ2 sinh(τs)
2τ2

)
.

To je jedina pseudo-nul prostorna krivulja s pseudo-
torzijom τ = const. 6= 0, [14]. Vidi sliku 6 lijevo.

Primjer 8 Neka je α(s) pseudo-nul prostorna krivulja

α(s) =
( s3−12s

12
√

2
,

s3 +12s
12
√

2
,

s3

12
)

s pseudo-torzijom τ =
1
s

. Ona leži u svjetlosnoj ravnini

x+ y =
√

2z i njezin svjetlosni trobrid je

T =
(−4+ s2

4
√

2
,

4+ s2

4
√

2
,

s2

4
)
, N =

( s
2
√

2
,

s
2
√

2
,

s
2
)
,

B =
(16+8s2− s4

16
√

2s
,

16−8s2− s4

16
√

2s
,−16+ s4

16s

)
.

Vidi sliku 6 desno.

Slika 6: Pseudo-nul krivulja s parametrizacijom
α(s) = (coshs+ sinhs,s,coshs+ sinhs),
(lijevo), odnosno α(s) =

( s3−12s
12
√

2
, s3+12s

12
√

2
, s3

12

)
(desno).

Sada ćemo definirati funkcije zakrivljenosti svjetlosne kri-
vulje i njenu reparametrizaciju pseudo-lukom.

Teorem 1 (Osnovni teorem za svjetlosne krivulje, [7])
Ako su zadani početni podatci (p,k0,k1,k2,k3), gdje
je p fiksna točka i k0, k1, k2, k3 funkcije klase C1,
tada postoji jedinstvena svjetlosna Frenetova kri-
vulja (c(t),(A(t),B(t),C(t))) takva da c(0) = p,
ċ(t) = k0(t)A(t) i vrijede Frenet-Serretove formule: A′

B′

C′

=

 k1 0 k2
0 −k1 k3
−k3 −k2 0

 A
B
C

 .

Funkcije κi, i = 1,2,3 se nazivaju zakrivljenosti funkcije
c(t) s obzirom na svjetlosni trobrid (A(t),B(t),C(t)). Svje-
tlosni trobrid nije jedinstven, stoga je potrebno uz svje-
tlosnu krivulju navesti njezin trobrid. Svjetlosna krivulja u
R3

1 je pravac ako i samo ako je κ2 = 0 ([2, 10]).

U sljedeća dva primjera dani su primjeri svjetlosnih pra-
vaca kojima su pridruženi različiti svjetlosni trobridi i pri-
padne zakrivljenosti.

Primjer 9 Nul pravac c(s) =
(

as− s2

2
,−a,as− s2

2

)
,

a ∈ R sa svjetlosnim trobridom

A = (1,0,1), B =
1
2
(1,0,−1), C = (0,−1,0),
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ima zakrivljenosti κ0(s) = a− s, κ1 = κ2 = κ3 = 0.
Ako krivulji c(s) pridružimo svjetlosni trobrid

A = (a− s)(1,0,1), B =
1

s−a

( s2−1
2

,−s,
s2 +1

2

)
,

C = (s,−1,s),

tada krivulja c(s) ima zakrivljenosti κ0 = 1,

κ1(s) = κ3(s) =
1

(s−a)
, κ2 = 0.

Primjer 10 Nul pravac

c(s)=
(2s3−3a

(
s2−4

)
12
√

2
,

2s3−3a
(
4+ s2

)
12
√

2
,
(2s−3a)s2

12

)
,

a ∈ R sa svjetlosnim trobridom o

A =

(
1

2
√

2
,

1
2
√

2
,

1
2

)
, B = (

√
2,−
√

2,−2),

C = (0,−
√

2,−1),

ima zakrivljenosti κ0 = s(s−a), κ1 = κ2 = κ3 = 0, dok sa
svjetlosnim trobridom

A =
( 1

2
√

2
,

1
2
√

2
,

1
2

)
B =

(
−
√

2m2 +mκ3s−
κ2

3s2−8
4
√

2
,

−
√

2m2 +m(κ3s−4)+
κ3s(8−κ3s)−8

4
√

2
,

−2−2m2− 1
4

κ3s(κ3s−4)+
√

2m(κ3s−2)
)

C =
(1

4
(√

2κ3s−4m
)
,

1
4
(√

2(κ3s−4)−4m
)
,

−
(
1+
√

2m− κ3s
2
))

, m = const.,

ima zakrivljenosti κ0(s) = s(s − a), κ1 = κ2 = 0 i
κ3 = const.

Svjetlosnu krivulju c(t) možemo reparametrizirati t = t(u)
tako da je k1 = 0. Duggal i Bejancu ([4]) zovu parametar u
istaknuti parametar od c i krivulju c(u) svjetlosna Frene-
tova krivulja.

Nadalje, svjetlosnu Frenetovu krivulju c(u) za koju vrijedi

〈d
2c

du2 ,
d2c
du2 〉> 0 (pa vrijedi i uvjet k2 6= 0) mažemo repara-

metrizirati u = u(s) tako da vrijedi 〈css,css〉= 1. Stoga, za
trobrid (A,B,C) pridružen krivulji c(s) vrijedi

A = cs =
dc
ds

i C = css =
d2c
ds2 .

Parametar s nazivamo parametar duljine pseudo-luka ([6,
7]) i trobrid (A,B,C) krivulje c(s) zadovoljava sljedeće
Frenetove formule: A′

B′

C′

=

 0 0 1
0 0 kL
−kL −1 0

 A
B
C

 .

Funkciju kL = 〈B′,C〉 = −〈C′,B〉 zovemo svjetlosna za-
krivljenost od c(s), B binormalni vektor i C glavna nor-
mala krivulje c(s) ([7]). Ako je k2 = 0, tada krivulju ne
možemo reparametrizirati na opisani način. Neki autori
poput ([9]) koriste drugačije definicije i oznake ((T,N,B)
za svjetlosni trobrid i τ za odgovarajuću zakrivljenost koju
nazivaju pseudo-torzija).

Primjer 11 Svjetlosna zavojnica parametrizirana para-
metrom duljine pseudo-luka, ([5, 7]), kongruentna je s jed-
nom od sljedećih krivulja:

c1(s) =
( 1

σ2 cos(σs),
1

σ2 sin(σs),− s
σ

)
, kL =

σ2

2
> 0

c2(s) =
(
− s

σ
,

1
σ2 cosh(σs),

1
σ2 sinh(σs)

)
, kL =−σ2

2
< 0

c3(s) =
( s3

4
− s

3
,

s2

2
,

s3

4
+

s
3
)
, kL = 0.

Krivulju c3(s) zovemo svjetlosna kubika (slika 7).

Slika 7: Svjetlosna kubika.
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Circles Related to a Complete Quadrangle

ABSTRACT

This paper presents an overview of some properties of a
complete quadrangle ABCD in the Euclidean plane. We
study the circles with diameters AB, AC, AD, BC, BD, and
CD, as well as the pedal triangles and the pedal circles of
the points A, B, C, D with respect to the triangles BCD,
ACD, ABD and ABC, respectively. The presented results
are known in literature, but here we prove them using a
single method.

Key words: complete quadrangle, pedal triangles, pedal
circles

MSC2020: 51N20

Kružnice pridružene potpunom četverovrhu

SAŽETAK

U radu dajemo pregled nekih svojstava potpunog
četverovrha ABCD u euklidskoj ravnini. Proučavamo
kružnice s promjerima AB, AC, AD, BC, BD, CD, kao i
nožǐsne trokute i nožǐsne kružnice točaka A, B, C, D s
obzirom na trokute BCD, ACD, ABD, ABC redom nave-
dene. Svi prikazani rezultati su poznati iz literature, ali ih
ovdje dokazujemo koristeći istu metodu.

Ključne riječi: potpuni četverovrh, nožǐsni trokuti, nožǐsne
kružnice

1 Introduction

Studying the geometry of the complete quadrangle in the
Euclidean plane, we came across a large number of papers
in which the properties of the quadrangle are proven in
different ways. Our aim was to prove these claims using
one method and, if possible, to prove some original claim.
This paper is the third in a series of such works. In [12] we
introduced the choice of the suitable coordinate system that
enables us to prove all the properties in the same way, while
in [13] we focused on the center, anticenter and a diagonal
triangle of the quadrangle, as well as on the isogonality
with respect to the four triangles formed by the sides of
the quadrangle. In this paper we give an overview of some
properties of the quadrangle regarding the circles related
to it. Let us start by recalling some basic definitions and
statements proved in [12] and [13].

The complete quadrangle ABCD is formed by four points
A,B,C,D and six lines AB, AC, AD, BC, BD, CD. There we
distinguish the opposite sides, ones that have no common
vertex. We use rectangular coordinates working with four
parameters a,b,c,d 6= 0. For such a quadrangle we have

proved: each quadrangle with no perpendicular opposite
sides has a circumscribed rectangular hyperbola.
Choosing suitable coordinate system we get for the circum-
scribed hyperbola H

xy = 1. (1)

The center of this hyperbola is the point O and we will call
it the center of the quadrangle ABCD. Asymptotes of H
are the axes of the quadrangle ABCD.
Vertices of the quadrangle ABCD are

A =

(
a,

1
a

)
,B =

(
b,

1
b

)
,C =

(
c,

1
c

)
,D =

(
d,

1
d

)
, (2)

and the sides are

AB . . .x+aby = a+b, AC . . .x+acy = a+ c,

AD . . .x+ady = a+d, BC . . .x+bcy = b+ c, (3)
BD . . .x+bdy = b+d, CD . . .x+ cdy = c+d.

Very often we will use elementary symmetric function in
four variables a,b,c,d:

s = a+b+ c+d, q = ab+ac+ad +bc+bd + cd,

r = abc+abd +acd +bcd, p = abcd. (4)
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The Euler’s circles of the triangles BCD, ACD, ABD, and
ABC are given in the next equation on the example of the
circle Nd of the triangle ABC

Nd . . . 2abc
(
x2 + y2)+[1−abc(a+b+ c)]x

−
(
a2b2c2−ab−ac−bc

)
y = 0 (5)

with the center

Nd =

(
1
4

(
a+b+ c− 1

abc

)
,

1
4

(
1
a
+

1
b
+

1
c
−abc

))
. (6)

By Ha,Hb,Hc,Hd we denote the orthocenters of the trian-
gles BCD, ACD, ABD, and ABC, respectively. Their forms
are

Ha =

(
− 1

bcd
,−bcd

)
, Hb =

(
− 1

acd
,−acd

)
,

Hc =

(
− 1

abd
,−abd

)
, Hd =

(
− 1

abc
,−abc

)
. (7)

The diagonal triangle UVW of the quadrangle ABCD is
given by the vertices

U =AB∩CD=

(
ab(c+d)−cd(a+b)

ab− cd
,

a+b−c−d
ab− cd

)
,

V =AC∩BD=

(
ac(b+d)−bd(a+ c)

ac−bd
,

a+ c−b−d
ac−bd

)
, (8)

W =AD∩BC=

(
ad(b+ c)−bc(a+d)

ad−bc
,

a+d−b−c
ad−bc

)
,

and the sides are

U =VW . . . (9)
(a+b− c−d)x+[ab(c+d)− cd(a+b)]y = 2(ab− cd),

V =UW . . .

(a+ c−b−d)x+[ac(b+d)−bd(a+ c)]y = 2(ac−bd),

W =UV . . .

(a+d−b− c)x+[ad(b+ c)−bc(a+d)]y = 2(ad−bc).

By A′,B′,C′,D′ we consider the points isogonal to the
points A,B,C,D with respect to the triangles BCD, ACD,
ABD, ABC, respectively. E. g.

D′ =
(

2d− s
p−1

,
r−2abc

p−1

)
. (10)

And, the following relations are also valid

AB ·CD =

∣∣∣∣ (a−b)(c−d)
p

∣∣∣∣√λλ′,

AC ·BD =

∣∣∣∣ (a− c)(b−d)
p

∣∣∣∣√µµ′, (11)

AD ·BC =

∣∣∣∣ (a−d)(b− c)
p

∣∣∣∣√νν′.

where the next notations are used

λ = a2b2 +1, µ = a2c2 +1, ν = a2d2 +1,

λ
′ = c2d2 +1, µ′ = b2d2 +1, ν

′ = b2c2 +1. (12)

The circumscribed circles of the triangles BCD, ACD, ABD,
ABC are given by

Ka . . . bcd
(
x2 + y2)− [1+bcd (b+ c+d)]x

−
(
b2c2d2 +bc+bd + cd

)
y

+b+ c+d +bcd (bc+bd + cd) = 0,
Kb . . . acd

(
x2 + y2)− [1+acd (a+ c+d)]x

−
(
a2c2d2 +ac+ad + cd

)
y

+a+ c+d +acd (ac+ad + cd) = 0,
Kc . . . abd

(
x2 + y2)− [1+abd (a+b+ c)]x

−
(
a2b2d2 +ab+ad +bd

)
y

+a+b+d +abd (ab+ad +bd) = 0,
Kd . . . abc

(
x2 + y2)− [1+abc(a+b+ c)]x

−
(
a2b2c2 +ab+ac+bc

)
y

+a+b+ c+abc(ab+ac+bc) = 0

with the centers

Oa =

(
1
2

(
b+ c+d +

1
bcd

)
,

1
2

(
1
b
+

1
c
+

1
d
+bcd

))
,

Ob =

(
1
2

(
a+ c+d +

1
acd

)
,

1
2

(
1
a
+

1
c
+

1
d
+acd

))
,

Oc =

(
1
2

(
a+b+d +

1
abd

)
,

1
2

(
1
a
+

1
b
+

1
d
+abd

))
,

Od =

(
1
2

(
a+b+ c+

1
abc

)
,

1
2

(
1
a
+

1
b
+

1
c
+abc

))

and the radii

ρa =
1
2

∣∣∣∣ ap
∣∣∣∣√λ′µ′ν′, ρb =

1
2

∣∣∣∣ bp
∣∣∣∣√λ′µν,

ρc =
1
2

∣∣∣∣ c
p

∣∣∣∣√λµ′ν, ρd =
1
2

∣∣∣∣dp
∣∣∣∣√λµν′, (13)

respectively.
It would be important the following formula for two lines
L and L ′ with slopes m

n and m′
n′ and their oriented angle

∠(L ,L ′)

tg∠(L ,L ′) =
m′n−mn′

mm′+nn′
. (14)
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2 Circles with diameters AB, AC, AD, BC,
BD, CD and few more circles

The points P1 = (x1,y1) and P2 = (x2,y2) are incident to
the circle with the equation

x2 + y2− (x1 + x2)x− (y1 + y2)y+ x1x2 + y1y2 = 0 (15)

with the center in the midpoint ( 1
2 (x1 + x2),

1
2 (y1 + y2)) of

these points, so (15) is the equation of the circle with the
diameter P1P2. Using this formula, for the circle with diam-
eter AB we get the equation

x2 + y2− (a+b)x− a+b
ab

y+ab+
1

ab
= 0

so the power pAB of the point P = (x,y) with respect to that
circle is

pAB = x2 + y2− (a+b)x− a+b
ab

y+ab+
1

ab
.

Analogously, the power pCD of the point P with respect to
the circle with the diameter CD equals

pCD = x2 + y2− (c+d)x− c+d
cd

y+ cd +
1
cd

,

so it follows

pAB + pCD = 2x2 +2y2− sx− r
p

y+ab+ cd +
ab+ cd

p
.

For the power of the point P with respect to the circles with
diameters AC,BD and AD,BC the following equalities are
valid

pAC + pBD = 2x2 +2y2− sx− r
p

y+ac+bd +
ac+bd

p
,

pAD + pBC = 2x2 +2y2− sx− r
p

y+ad +bc+
ad +bc

p
.

The midpoints of the sides AB and CD are points ( a+b
2 , a+b

2ab ),
( c+d

2 , c+d
2cd ), and a power pu of the point P with respect to

the circle whose the diameter is connecting line of these
two midpoints, is equal to

pu = x2 + y2− s
2

x− r
2p

y+
1
4
(a+b)(c+d)+

1
4p

(a+b)(c+d).

Two more equalities are valid

pv = x2 + y2− s
2

x− r
2p

y+
1
4
(a+ c)(b+d)+

1
4p

(a+ c)(b+d),

pw = x2 + y2− s
2

x− r
2p

y+
1
4
(a+d)(b+ c)+

1
4p

(a+d)(b+ c)

for the powers of the point P with respect to the circles, for
which the diameters are connecting lines of the midpoints
of the sides AC, BD and AD, BC. Out of these equalities
the following statement is valid

Theorem 1 The powers of the point P with respect to the
circles, for which the diameters are connecting lines of the
midpoints of the sides AB, CD; AC, BD and AD, BC fulfil

pAB + pCD + pAC + pBD = 4pw,

pAB + pCD + pAD + pBC = 4pv,

pAC + pBD + pAD + pBC = 4pu

and

pAB + pCD + pAC + pBD + pAD + pBC = 2(pu + pv + pw),

where pu, pv, pw are powers of the point P with respect
to the circle whose the diameter is connecting line of the
midpoints of AB,CD; AC,BD and AD,BC.

The first three equalities can be found in [4], and the last
equality is in [11].
Let L be the line with the equation f x+gy+h = 0. Its in-
tersection points with lines AB and CD from (3) are points
PAB = (u1,v1) and PCD = (u2,v2), where

u1 =−
ag+bg+abh

ab f −g
,v1 =

a f +b f +h
ab f −g

,

u2 =−
cg+dg+ cdh

cd f −g
,v2 =

c f +d f +h
cd f −g

.

As (ab f −g)(cd f −g) = p f 2− (ab+ cd) f g+g2, and

(ab f −g)(cd f −g)(u1 +u2) =

= (ab+ cd)gh+ sg2− r f g−2p f h,

(ab f −g)(cd f −g)(v1 + v2) =

= (ab+ cd) f h+ r f 2− s f g−2gh,

(ab f −g)(cd f −g)(uu′+ vv′) =

= ph2 + rgh+(q−ab− cd)( f 2 +g2)+ s f h+h2,

then the circle KAB,CD with the diameter PABPCD has the
equation

[p f 2− (ab+ cd) f g+g2](x2 + y2)

− [(ab+ cd)gh+ sg2− r f g−2p f h]x

− [(ab+ cd) f h+ r f 2− s f g−2gh]y+ ph2 + rgh

+(q−ab− cd)( f 2 +g2)+ s f h+h2 = 0.

Analogously, the circle KAC,BD with the diameter PACPBD
has the equation

[p f 2− (ac+bd) f g+g2](x2 + y2)

− [(ac+bd)gh+ sg2− r f g−2p f h]x

− [(ac+bd) f h+ r f 2− s f g−2gh]y

+ ph2 + rgh+(q−ac−bd)( f 2 +g2)+ s f h+h2 = 0.

53
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Figure 1: Visualization of Theorem 2.

Subtracting these two equations and dividing the obtained
result by the common factor (a−d)(b−c) we get the equa-
tion of a circle K in the form

f g(x2 + y2)+ghx+ f hy+ f 2 +g2 = 0.

Hence, the circles KAB,CD, KAC,BD, K belong to the same
pencil of circles. However, out of symmetry of the circle
K on a,b,c,d we conclude that KAB,CD, KAD,BC, K belong
to one pencil of circles. Hence,

Theorem 2 Let L be a line. Three circles with diameters
PABPCD, PACPBD, PADPBC belong to one pencil of circles,
where PAB,PCD,PAC,PBD,PAD,PBC are intersection points
of the line L with lines AB,CD,AC,BD,AD,BC.

This result can be found in [7], [9] and [10]. See Figure 1.

3 Pedal triangles and pedal circles of the
points A,B,C,D with respect to the trian-
gles BCD, ACD, ABD, ABC

A normal from the point A= (a, 1
a ) to the line BC with equa-

tion x+bcy = b+c has the equation bcx−y = abc− 1
a , and

these two lines are intersected in the point

Ad =

(
1

aν′
(a2b2c2 +ab+ac−bc),

1
aν′

(ab2c+abc2−a2bc+1)
)
,

(16)

and, analogously, the pedal of the normal from A to the
line BD is the point

Ac =

(
1

aµ′
(a2b2d2 +ab+ad−bd),

1
aµ′

(ab2d +abd2−a2bd+1)
)
.

(17)

Because of that,

a2µ′2ν
′2AcAd

2 =

= [µ′(a2b2c2 +ab+ac−bc)−ν
′(a2b2d2 +ab+ad−bd)]2

+[µ′(ab2c+abc2−a2bc+1)−ν
′(ab2d+abd2−a2bd+1)]2.

It is easy to see

(b2d2 +1)(a2b2c2 +ab+ac−bc)

− (b2c2 +1)(a2b2d2 +ab+ad−bd)]2 =

= (a−b)(c−d)(ab2c+ab2d−b2cd +1),

(b2d2 +1)(ab2c+abc2−a2bc+1)

− (b2c2 +1)(ab2d +abd2−a2bd +1) =

= (a−b)(c−d)(ab3cd−ab+bc+bd),

(ab2c+ab2d−b2cd +1)2 +(ab3cd−ab+bc+bd)2 =

= (a2b2 +1)(b2c2 +1)(b2d2 +1) = λµ′ν′,

so a2µ′2ν′2AcAd
2 = (a − b)2(c − d)2λµ′ν′ or, finally,

a2µ′ν′AcAd
2 = (a− b)2(c− d)2λ. We proved the first of
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three analogous formulae

AcAd =

∣∣∣∣ (a−b)(c−d)
a

∣∣∣∣
√

λ

µ′ν′
,

AbAd =

∣∣∣∣ (a− c)(b−d)
a

∣∣∣∣√ µ
λ′ν′

, (18)

AbAc =

∣∣∣∣ (a−d)(b− c)
a

∣∣∣∣√ ν

λ′µ′

for the lengths of the sides of the pedal triangle AbAcAd of
the point A with respect to the triangle BCD. Analogous
formulae for the lengths of the pedal triangle BaBcBd of the
point B with respect to the triangle ACD are

BcBd =

∣∣∣∣ (a−b)(c−d)
b

∣∣∣∣
√

λ

µν
,

BaBc =

∣∣∣∣ (a− c)(b−d)
b

∣∣∣∣
√

µ′

λ′ν
,

BaBd =

∣∣∣∣ (a−d)(b− c)
b

∣∣∣∣
√

ν′

λ′µ

Formulae for the lengths of the sides of the pedal triangles
CaCbCd and DaDbDc of the points C and D with respect to
the triangles ABD and ABC look similarly. Out of previ-
ously mentioned formulae

AcAd : BcBd = AbAd : BaBc = AbAc : BaBd =

∣∣∣∣ba
∣∣∣∣√ µν

µ′ν′

follow, meaning that triangles AbAcAd and BaBdBc are sim-
ilar. Due to analogy, the triangles CdCaCb and DcDbDa are
also similar to these triangles. So, we proved the result that
can be found in [2], [3] and [6].

Theorem 3 The pedal triangles of the points A,B,C,D
with respect to the triangles BCD,ACD,ABD,ABC, respec-
tively, are similar.

Out of the corresponding equalities (11) and (18) we get
the ratios

AB ·CD : AcAd = AC ·BD : AbAd = AD ·BC : AbAc =

=
√

λ′µ′ν′ : |bcd|

i.e.

Theorem 4 The lengths of sides of the pedal triangles of
AbAcAd , BaBcBd , CaCbCd , DaDbDc are related as the prod-
ucts of the lengths of pairs of opposite sides of the quadran-
gle ABCD.

The last ratio equals to 2ρa because of (13). These state-
ments can be found in [6].
The point Ad from (16) is incident to the circle Pa with the
equation

a(p−1)(x2 + y2)−a [a(p+1)− s]x+(p+1−ar)y = 0

i.e.

(p−1)(x2 + y2)−[a(p+1)− s]x+
(

p+1
a
− r
)

y = 0

(19)

because of

(p−1)[(a2b2c2+ab+ac−bc)2+(ab2c+abc2−a2bc+1)2]−
−a(b2c2 +1)(a2b2c2 +ab+ac−bc)(a(p+1)− s)+

+(b2c2 +1)(ab2c+abc2−a2bc+1)(p+1−ar) = 0.

Because of symmetry on b,c,d, of the equation (19) the
circle Pa is a pedal circle of A with respect to the triangle
BCD. Obviously, it is incident to the center O. Hence,

Theorem 5 The pedal circles Pa,Pb,Pc,Pd of the points A,
B, C, D with respect to the triangles BCD, ACD, ABD, ABC,
respectively are incident to the center O of the quadrangle
ABCD.

This result can be found in [1], [2], [5], [6].
The circle (19) has the center

Pa =
( 1

2(p−1)
(a2bcd−b− c−d),

1
2(p−1)

(abc+abd +acd− 1
a
)
)

(20)

and the length OPa is the radius ra of that circle and easily
we get

ra =
1

2|a(p−1)|

√
(a2b2 +1)(a2c2 +1)(a2d2 +1) =

=
1

2|a(p−1)|
√

λµν,

together with the first equality from (13) it proves the equal-
ity ρara = 1

4|p(p−1)|
√

λµνλ′µ′ν′. This equality together
with three analogous equalities prove that ρara = ρbrb =
ρcrc = ρdrd , i.e.

Theorem 6 The radii of the pedal circles Pa,Pb,Pc,Pd
of the points A, B, C, D with respect to the triangles
BCD,ACD,ABD,ABC respectively, are inversely propor-
tional to the radii of the circles BCD,ACD,ABD,ABC.

This result can be reached in [6] and [8].
The point Pa from (20) is the midpoint of the point A and
the point A′ analogous to the point D′ from (10), that is in
accordance with the fact that the pedal circle of the point
with respect to the triangle has the center in the midpoint
of that point and its isogonal point with respect to this
triangle. The ratio of the radii ra = 1

2|a(p−1)|
√

λµν and

rb =
1

2|b(p−1)|
√

λµ′ν′ is equal to the coefficient | ba |
√

µν

µ′ν′ of
the similarity of the triangles AbAcAd and BaBdBc.
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Figure 2: Visualization of Theorem 5.

The points A′ and B′ analogous to D′ from (10) have the
midpoint

Mab =

(
− c+d

p−1
,ab

c+d
p−1

)
, (21)

that is incident to the circle Pa with the equation (19). Tak-
ing the analogous results in consideration, we proved

Theorem 7 The midpoints of the triples of seg-
ments A′B′,A′C′,A′D′; A′B′,B′C′,B′D′; A′C′,B′C′,C′D′;
A′D′,B′D′,C′D′ are incident to the pedal circles
Pa,Pb,Pc,Pd of points A,B,C,D with respect to the tri-
angles BCD,ACD,ABD,ABC, respectively.

This result can be reached in [1].
The point Ac from (17) is incident to the line with equation

(a2bd +abd2−ab2d +1)x+(a2b2d2 +ab+bd−ad)y =

= 2b(a2d2 +1),

and the point Dc is also incident to this line because of
symmetry of this equation on a and d. We conclude that
this is the line AcDc. It is incident to the point(
− 2b

(p−1)λ
(a2bc+a2bd−a2cd +1),

2b
(p−1)λ

(a3bcd +ac+ad−ab)
)

(22)

as well. Because the symmetry on c and d in the form of
this point, obviously it lies on the line AdCd , hence this
point is AcDc∩AdCd .

The point

Cd=

(
1
cλ

(a2b2c2+ac+bc−ab),
1
cλ

(a2bc+ab2c−abc2+1)
)

is analogous to Ad from (16). It is incident to the line

c(a3bcd +ab+ad−ac)x− c(a2bc+a2cd−a2bd +1)y =

= (p−1)(a2c2 +1),

and again because of symmetry on b and d, Cb is incident
to it as well, so it is the line CdCb. This line is incident to
the point( p−1

2acdλ
(a2bc+a2bd−a2cd +1),

− p−1
2acdλ

(a3bcd +ac+ad−ab)
)
,

and that point lies on the line DcDb because of the sym-
metry on c and d in the form of this point. Hence, this
point is CdCb ∩DbDc. The obtained points AcDc ∩AdCd
and CdCb ∩DbDc have the proportional coordinates. Ho-
mothety with the center O and coefficient − 1

4p (p− 1)2

associates one point to another. As this coefficient is sym-
metric on parameters a,b,c,d then by cyclic permutation
of b,c,d and B,C,D it follows that the same homothety
associates the point AdBd ∩AbDb to the point DbDc∩BcBd ,
and the point AbCb∩AcBc to the point BcBd ∩CdCb, i.e. the
mentioned homothety associates the triangle with vertices
AcDc ∩ AdCd , AdBd ∩ AbDb, AbCb ∩ AcBc to the triangle
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formed by lines BcBd ,CdCb,DbDc. It can be checked the
following theorem and also three more analogous state-
ments

Theorem 8 Let Ab,Ac,Ad be pedal points and Pa pedal
circle of A with respect to the triangle BCD. Let Ba,Bc,Bd ,
Ca,Cb,Cd , Da,Db,Dc be pedal points of B, C, D with re-
spect to the triangle ACD, ABD, ABC, respectively. The
points AcDc∩AdCd , AdBd ∩AbDb and AbCb∩AcBc are in-
cident to Pa.

Because of the mentioned homothety, there is and the next
result

Theorem 9 The triangle formed by lines BcBd ,CdCb,DbDc
is inscribed to the circle that passes through the center O
and at that point touches the circle Pa.

All of these results can be found in [1] and they are associ-
ated to Q.T. Bui.
In [1] the center of the quadrangle ABCD′ is studied as
well. From Theorem 1 from [13] and Theorem 5 we know
that the center O of the quadrangle ABCD is incident to
the Euler’s circle Nd of the triangle ABC and to the pedal
circle Pd of the point D with respect to that same triangle.
So the center of the quadrangle ABCD′ is incident to the
Euler’s circle Nd of the triangle ABC and to the pedal circle
of the point D′ with respect to that triangle. The latter circle
is the circle Pd because the isogonal points in the triangle
have the same pedal circle. There is a question appearing:
Is this center the center of the quadrangle O or the other
intersection point of the circles Nd and Pd? In the first
case the point D′ would lie on the hyperbola H and that is
possible, but if it would be always like that then the same
it should be valid for the points B′,C′ and D′. The point D′

is incident to the hyperbola H under the condition that the
equality (d−a−b−c)(abd+acd+bcd−abc) = (p−1)2

is valid. The conditions for the points B′,C′ and D′ look
similarly. However, adding up these four conditions we get
the equality −16p = 4(p− 1)2 = 0 i. e. p = −1 and the
quadrangle ABCD is the orthocentric. If we exclude this
case, then we get the following statement.

Theorem 10 The center of the quadrangle ABCD′ is the
second intersection point of the circles Nd and Pd next to
the center O.

Three more analogous statements follow up.
The circle Pa with the equation (19) and the circle Pb with
analogous equation

(p−1)(x2 + y2)− [b(p+1)− s]x+
(

p+1
b
− r
)

y = 0

have the radical axis with the equation abx+y= 0. The mid-
point of the point C and the point Hd from (7) is the point
( 1

2 (c−
1

abc ),
1
2 (

1
c −abc)) and it is incident to the radical axis.

The same is valid and for the midpoint of points D and Hc.

Points C and Hc are incident to the line abdx− cy = p−1
that passes through the point ( p−1

ab(c+d) ,−
p−1
c+d ). Because of

symmetry on c and d, this point is also incident to DHd .
However, the intersection point CHc∩DHd is lying on the
mentioned radical axis, see Figure 3. This result can be
reached in [6] and [8]. The point Mab from (21) is also
incident to the mentioned radical axis with the equation
abx+ y = 0. The statement on the collinearity of these four
points as well as five more such collinearities is given in [1].
Hence, the radical axis of the circles Pa and Pb bisects the
segments CHd , DHc and A′B′. That radical axis is antipar-
allel to the line AB with respect the axes of the hyperbola
H , and the similar is valid for five more analogous radical
axes. We have just proved the following theorem and five
more analogous statements

Theorem 11 Let Hc,Hd be orthocenters of ABD, ABC, re-
spectively, and let A′, B′ be isogonal points of A,B and with
respect to BCD, ACD respectively, and Pa,Pb pedal circles
of the points A, B with respect to the triangles BCD,ACD.
Then the following four points lie on the radical axis of Pa
and Pb: midpoints of three segments A′B′, DHc, CHd and
the intersection point CHc∩DHd .

The point Mab obviously lies on the line CD as well as the
points Ab and Ba. It is easy to check that the point Mab is
incident to the line

(a2bc+ab2d−abcd +1)x+(a2b2cd +ac+bd−ab)y =

= (a2b2 +1)(c+d),

as well as the point Ac from (17). By substituting a↔ b and
c↔ d in the previous equation one obtains the line incident
to the point Bd . Hence, the point Mab is incident to the
line AcBd , and analogously to the line AdBc. It means that
the point Mab is the center of the perspectivity for triangles
AbAcAd and BaBcBd . Out of (17) it follows that the line
OAc has the slope

m′

n′
=

ab2d +abd2−a2bd +1
a2b2d2 +ab+ad−bd

,

and, analogously, the line OAb has the slope

m
n
=

ac2d +acd2−a2cd +1
a2c2d2 +ac+ad− cd

.

After some calculation we get

m′n−mn′=(a2d2 +1)(a−d)(b− c)(p−1),

mm′+nn′=(a2d2+1)[(p−1)2+ad(b2+c2)+bc(a2+d2)],

so due to (14) it follows

tg∠AbOAc =
(a−d)(b− c)(p−1)

(p−1)2 +ad(b2 + c2)+bc(a2 +d2)
.
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Figure 3: Visualization of Theorem 11

Substituting a↔ b and c↔ d the equality

tg∠BaOBd =
(a−d)(b− c)(p−1)

(p−1)2 +ad(b2 + c2)+bc(a2 +d2)

follows up. By this we achieved the equality of the oriented
angles ∠AbOAc =∠BaOBd , as well as ∠AbOAd =∠BaOBc.
However, out of these equalities the equality ∠AbOBa =
∠AcOBd = ∠AdOBc is valid meaning that the center O is
the center of the similarity of triangles AbAcAd and BaBdBc.
So, we have just proved the following result and five more
analogous results that can be found in [6]:

Theorem 12 The triangles AbAcAd and BaBdBc are simi-
lar and perspective where the center of the similarity is the
center O, one intersection point of the circles AbAcAd and
BaBdBc, and the center of the perspectivity is their other
intersection point Mab.

For the oriented segments
−→
AB and

−−→
PaPb the following equal-

ities are valid

−→
AB =

(
b−a,

1
b
− 1

a

)
=

b−a
ab

(ab,−1),

−−→
PaPb =

1
2(p−1)

(
ab2cd−a−a2bcd+b,bcd−1

b
−acd+

1
a

)
=

(b−a)(p+1)
2ab(p−1)

(ab,1).

As the vectors [ab,−1] and [ab,1] have the same square
of the lengths equals to a2b2 +1, then from previous men-
tioned two equalities it follows that the ratio of the lengths

PaPb and AB equals to p+1
2(p−1) , the same is valid for the rest

of the corresponding sides of ABCD and PaPbPcPd . So, we
can conclude

Theorem 13 The quadrangles ABCD and PaPbPcPd are
similar and the coefficient of the similarity is p+1

2(p−1) .

This result can be reached in [8].
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Kačićeva 26, HR-10000 Zagreb, Croatia

59

https://doi.org/10.1007/s00022-023-00692-4
https://doi.org/10.1007/s00022-023-00692-4


KoG•27–2023 Instructions for Authors / How to get KoG?

INSTRUCTIONS FOR AUTHORS

SCOPE. “KoG” publishes scientific and professional papers from the fields of geometry, applied geometry and computer
graphics.

SUBMISSION. Scientific papers submitted to this journal should be written in English, professional papers should be
written in Croatian or English. The papers have not been published or submitted for publication elsewhere.
The manuscript should be sent in PDF format via e-mail to the editor:

Ema Jurkin
ema.jurkin@rgn.unizg.hr

The first page should contain the article title, author and coauthor names, affiliation, a short abstract in English, a list of
keywords and the Mathematical subject classification.

UPON ACCEPTANCE. After the manuscript has been accepted for publication authors are requested to send its LaTex file
via e-mail to the address:

ema.jurkin@rgn.unizg.hr

Figures should be titled by the figure number that match to the figure number in the text of the paper.

The corresponding author and coauthors will receive hard copies of the issue free of charge.

How to get KoG?

The easiest way to get your copy of KoG is by contacting the editor’s office:
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