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ABSTRACT

This paper presents an overview of some properties of a
complete quadrangle ABCD in the Euclidean plane. We
study the circles with diameters AB, AC, AD, BC, BD, and
CD, as well as the pedal triangles and the pedal circles of
the points A, B, C, D with respect to the triangles BCD,
ACD, ABD and ABC, respectively. The presented results
are known in literature, but here we prove them using a
single method.

Key words: complete quadrangle, pedal triangles, pedal
circles

MSC2020: 51N20

Kružnice pridružene potpunom četverovrhu

SAŽETAK

U radu dajemo pregled nekih svojstava potpunog
četverovrha ABCD u euklidskoj ravnini. Proučavamo
kružnice s promjerima AB, AC, AD, BC, BD, CD, kao i
nožǐsne trokute i nožǐsne kružnice točaka A, B, C, D s
obzirom na trokute BCD, ACD, ABD, ABC redom nave-
dene. Svi prikazani rezultati su poznati iz literature, ali ih
ovdje dokazujemo koristeći istu metodu.

Ključne riječi: potpuni četverovrh, nožǐsni trokuti, nožǐsne
kružnice

1 Introduction

Studying the geometry of the complete quadrangle in the
Euclidean plane, we came across a large number of papers
in which the properties of the quadrangle are proven in
different ways. Our aim was to prove these claims using
one method and, if possible, to prove some original claim.
This paper is the third in a series of such works. In [12] we
introduced the choice of the suitable coordinate system that
enables us to prove all the properties in the same way, while
in [13] we focused on the center, anticenter and a diagonal
triangle of the quadrangle, as well as on the isogonality
with respect to the four triangles formed by the sides of
the quadrangle. In this paper we give an overview of some
properties of the quadrangle regarding the circles related
to it. Let us start by recalling some basic definitions and
statements proved in [12] and [13].

The complete quadrangle ABCD is formed by four points
A,B,C,D and six lines AB, AC, AD, BC, BD, CD. There we
distinguish the opposite sides, ones that have no common
vertex. We use rectangular coordinates working with four
parameters a,b,c,d 6= 0. For such a quadrangle we have

proved: each quadrangle with no perpendicular opposite
sides has a circumscribed rectangular hyperbola.
Choosing suitable coordinate system we get for the circum-
scribed hyperbola H

xy = 1. (1)

The center of this hyperbola is the point O and we will call
it the center of the quadrangle ABCD. Asymptotes of H
are the axes of the quadrangle ABCD.
Vertices of the quadrangle ABCD are

A =

(
a,

1
a

)
,B =

(
b,

1
b

)
,C =

(
c,

1
c

)
,D =

(
d,

1
d

)
, (2)

and the sides are

AB . . .x+aby = a+b, AC . . .x+acy = a+ c,

AD . . .x+ady = a+d, BC . . .x+bcy = b+ c, (3)
BD . . .x+bdy = b+d, CD . . .x+ cdy = c+d.

Very often we will use elementary symmetric function in
four variables a,b,c,d:

s = a+b+ c+d, q = ab+ac+ad +bc+bd + cd,

r = abc+abd +acd +bcd, p = abcd. (4)
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The Euler’s circles of the triangles BCD, ACD, ABD, and
ABC are given in the next equation on the example of the
circle Nd of the triangle ABC

Nd . . . 2abc
(
x2 + y2)+[1−abc(a+b+ c)]x

−
(
a2b2c2−ab−ac−bc

)
y = 0 (5)

with the center

Nd =

(
1
4

(
a+b+ c− 1

abc

)
,

1
4

(
1
a
+

1
b
+

1
c
−abc

))
. (6)

By Ha,Hb,Hc,Hd we denote the orthocenters of the trian-
gles BCD, ACD, ABD, and ABC, respectively. Their forms
are

Ha =

(
− 1

bcd
,−bcd

)
, Hb =

(
− 1

acd
,−acd

)
,

Hc =

(
− 1

abd
,−abd

)
, Hd =

(
− 1

abc
,−abc

)
. (7)

The diagonal triangle UVW of the quadrangle ABCD is
given by the vertices

U =AB∩CD=

(
ab(c+d)−cd(a+b)

ab− cd
,

a+b−c−d
ab− cd

)
,

V =AC∩BD=

(
ac(b+d)−bd(a+ c)

ac−bd
,

a+ c−b−d
ac−bd

)
, (8)

W =AD∩BC=

(
ad(b+ c)−bc(a+d)

ad−bc
,

a+d−b−c
ad−bc

)
,

and the sides are

U =VW . . . (9)
(a+b− c−d)x+[ab(c+d)− cd(a+b)]y = 2(ab− cd),

V =UW . . .

(a+ c−b−d)x+[ac(b+d)−bd(a+ c)]y = 2(ac−bd),

W =UV . . .

(a+d−b− c)x+[ad(b+ c)−bc(a+d)]y = 2(ad−bc).

By A′,B′,C′,D′ we consider the points isogonal to the
points A,B,C,D with respect to the triangles BCD, ACD,
ABD, ABC, respectively. E. g.

D′ =
(

2d− s
p−1

,
r−2abc

p−1

)
. (10)

And, the following relations are also valid

AB ·CD =

∣∣∣∣ (a−b)(c−d)
p

∣∣∣∣√λλ′,

AC ·BD =

∣∣∣∣ (a− c)(b−d)
p

∣∣∣∣√µµ′, (11)

AD ·BC =

∣∣∣∣ (a−d)(b− c)
p

∣∣∣∣√νν′.

where the next notations are used

λ = a2b2 +1, µ = a2c2 +1, ν = a2d2 +1,

λ
′ = c2d2 +1, µ′ = b2d2 +1, ν

′ = b2c2 +1. (12)

The circumscribed circles of the triangles BCD, ACD, ABD,
ABC are given by

Ka . . . bcd
(
x2 + y2)− [1+bcd (b+ c+d)]x

−
(
b2c2d2 +bc+bd + cd

)
y

+b+ c+d +bcd (bc+bd + cd) = 0,
Kb . . . acd

(
x2 + y2)− [1+acd (a+ c+d)]x

−
(
a2c2d2 +ac+ad + cd

)
y

+a+ c+d +acd (ac+ad + cd) = 0,
Kc . . . abd

(
x2 + y2)− [1+abd (a+b+ c)]x

−
(
a2b2d2 +ab+ad +bd

)
y

+a+b+d +abd (ab+ad +bd) = 0,
Kd . . . abc

(
x2 + y2)− [1+abc(a+b+ c)]x

−
(
a2b2c2 +ab+ac+bc

)
y

+a+b+ c+abc(ab+ac+bc) = 0

with the centers

Oa =

(
1
2

(
b+ c+d +

1
bcd

)
,

1
2

(
1
b
+

1
c
+

1
d
+bcd

))
,

Ob =

(
1
2

(
a+ c+d +

1
acd

)
,

1
2

(
1
a
+

1
c
+

1
d
+acd

))
,

Oc =

(
1
2

(
a+b+d +

1
abd

)
,

1
2

(
1
a
+

1
b
+

1
d
+abd

))
,

Od =

(
1
2

(
a+b+ c+

1
abc

)
,

1
2

(
1
a
+

1
b
+

1
c
+abc

))

and the radii

ρa =
1
2

∣∣∣∣ ap
∣∣∣∣√λ′µ′ν′, ρb =

1
2

∣∣∣∣ bp
∣∣∣∣√λ′µν,

ρc =
1
2

∣∣∣∣ c
p

∣∣∣∣√λµ′ν, ρd =
1
2

∣∣∣∣dp
∣∣∣∣√λµν′, (13)

respectively.
It would be important the following formula for two lines
L and L ′ with slopes m

n and m′
n′ and their oriented angle

∠(L ,L ′)

tg∠(L ,L ′) =
m′n−mn′

mm′+nn′
. (14)
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2 Circles with diameters AB, AC, AD, BC,
BD, CD and few more circles

The points P1 = (x1,y1) and P2 = (x2,y2) are incident to
the circle with the equation

x2 + y2− (x1 + x2)x− (y1 + y2)y+ x1x2 + y1y2 = 0 (15)

with the center in the midpoint ( 1
2 (x1 + x2),

1
2 (y1 + y2)) of

these points, so (15) is the equation of the circle with the
diameter P1P2. Using this formula, for the circle with diam-
eter AB we get the equation

x2 + y2− (a+b)x− a+b
ab

y+ab+
1

ab
= 0

so the power pAB of the point P = (x,y) with respect to that
circle is

pAB = x2 + y2− (a+b)x− a+b
ab

y+ab+
1

ab
.

Analogously, the power pCD of the point P with respect to
the circle with the diameter CD equals

pCD = x2 + y2− (c+d)x− c+d
cd

y+ cd +
1
cd

,

so it follows

pAB + pCD = 2x2 +2y2− sx− r
p

y+ab+ cd +
ab+ cd

p
.

For the power of the point P with respect to the circles with
diameters AC,BD and AD,BC the following equalities are
valid

pAC + pBD = 2x2 +2y2− sx− r
p

y+ac+bd +
ac+bd

p
,

pAD + pBC = 2x2 +2y2− sx− r
p

y+ad +bc+
ad +bc

p
.

The midpoints of the sides AB and CD are points ( a+b
2 , a+b

2ab ),
( c+d

2 , c+d
2cd ), and a power pu of the point P with respect to

the circle whose the diameter is connecting line of these
two midpoints, is equal to

pu = x2 + y2− s
2

x− r
2p

y+
1
4
(a+b)(c+d)+

1
4p

(a+b)(c+d).

Two more equalities are valid

pv = x2 + y2− s
2

x− r
2p

y+
1
4
(a+ c)(b+d)+

1
4p

(a+ c)(b+d),

pw = x2 + y2− s
2

x− r
2p

y+
1
4
(a+d)(b+ c)+

1
4p

(a+d)(b+ c)

for the powers of the point P with respect to the circles, for
which the diameters are connecting lines of the midpoints
of the sides AC, BD and AD, BC. Out of these equalities
the following statement is valid

Theorem 1 The powers of the point P with respect to the
circles, for which the diameters are connecting lines of the
midpoints of the sides AB, CD; AC, BD and AD, BC fulfil

pAB + pCD + pAC + pBD = 4pw,

pAB + pCD + pAD + pBC = 4pv,

pAC + pBD + pAD + pBC = 4pu

and

pAB + pCD + pAC + pBD + pAD + pBC = 2(pu + pv + pw),

where pu, pv, pw are powers of the point P with respect
to the circle whose the diameter is connecting line of the
midpoints of AB,CD; AC,BD and AD,BC.

The first three equalities can be found in [4], and the last
equality is in [11].
Let L be the line with the equation f x+gy+h = 0. Its in-
tersection points with lines AB and CD from (3) are points
PAB = (u1,v1) and PCD = (u2,v2), where

u1 =−
ag+bg+abh

ab f −g
,v1 =

a f +b f +h
ab f −g

,

u2 =−
cg+dg+ cdh

cd f −g
,v2 =

c f +d f +h
cd f −g

.

As (ab f −g)(cd f −g) = p f 2− (ab+ cd) f g+g2, and

(ab f −g)(cd f −g)(u1 +u2) =

= (ab+ cd)gh+ sg2− r f g−2p f h,

(ab f −g)(cd f −g)(v1 + v2) =

= (ab+ cd) f h+ r f 2− s f g−2gh,

(ab f −g)(cd f −g)(uu′+ vv′) =

= ph2 + rgh+(q−ab− cd)( f 2 +g2)+ s f h+h2,

then the circle KAB,CD with the diameter PABPCD has the
equation

[p f 2− (ab+ cd) f g+g2](x2 + y2)

− [(ab+ cd)gh+ sg2− r f g−2p f h]x

− [(ab+ cd) f h+ r f 2− s f g−2gh]y+ ph2 + rgh

+(q−ab− cd)( f 2 +g2)+ s f h+h2 = 0.

Analogously, the circle KAC,BD with the diameter PACPBD
has the equation

[p f 2− (ac+bd) f g+g2](x2 + y2)

− [(ac+bd)gh+ sg2− r f g−2p f h]x

− [(ac+bd) f h+ r f 2− s f g−2gh]y

+ ph2 + rgh+(q−ac−bd)( f 2 +g2)+ s f h+h2 = 0.

53
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Figure 1: Visualization of Theorem 2.

Subtracting these two equations and dividing the obtained
result by the common factor (a−d)(b−c) we get the equa-
tion of a circle K in the form

f g(x2 + y2)+ghx+ f hy+ f 2 +g2 = 0.

Hence, the circles KAB,CD, KAC,BD, K belong to the same
pencil of circles. However, out of symmetry of the circle
K on a,b,c,d we conclude that KAB,CD, KAD,BC, K belong
to one pencil of circles. Hence,

Theorem 2 Let L be a line. Three circles with diameters
PABPCD, PACPBD, PADPBC belong to one pencil of circles,
where PAB,PCD,PAC,PBD,PAD,PBC are intersection points
of the line L with lines AB,CD,AC,BD,AD,BC.

This result can be found in [7], [9] and [10]. See Figure 1.

3 Pedal triangles and pedal circles of the
points A,B,C,D with respect to the trian-
gles BCD, ACD, ABD, ABC

A normal from the point A= (a, 1
a ) to the line BC with equa-

tion x+bcy = b+c has the equation bcx−y = abc− 1
a , and

these two lines are intersected in the point

Ad =

(
1

aν′
(a2b2c2 +ab+ac−bc),

1
aν′

(ab2c+abc2−a2bc+1)
)
,

(16)

and, analogously, the pedal of the normal from A to the
line BD is the point

Ac =

(
1

aµ′
(a2b2d2 +ab+ad−bd),

1
aµ′

(ab2d +abd2−a2bd+1)
)
.

(17)

Because of that,

a2µ′2ν
′2AcAd

2 =

= [µ′(a2b2c2 +ab+ac−bc)−ν
′(a2b2d2 +ab+ad−bd)]2

+[µ′(ab2c+abc2−a2bc+1)−ν
′(ab2d+abd2−a2bd+1)]2.

It is easy to see

(b2d2 +1)(a2b2c2 +ab+ac−bc)

− (b2c2 +1)(a2b2d2 +ab+ad−bd)]2 =

= (a−b)(c−d)(ab2c+ab2d−b2cd +1),

(b2d2 +1)(ab2c+abc2−a2bc+1)

− (b2c2 +1)(ab2d +abd2−a2bd +1) =

= (a−b)(c−d)(ab3cd−ab+bc+bd),

(ab2c+ab2d−b2cd +1)2 +(ab3cd−ab+bc+bd)2 =

= (a2b2 +1)(b2c2 +1)(b2d2 +1) = λµ′ν′,

so a2µ′2ν′2AcAd
2 = (a − b)2(c − d)2λµ′ν′ or, finally,

a2µ′ν′AcAd
2 = (a− b)2(c− d)2λ. We proved the first of
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three analogous formulae

AcAd =

∣∣∣∣ (a−b)(c−d)
a

∣∣∣∣
√

λ

µ′ν′
,

AbAd =

∣∣∣∣ (a− c)(b−d)
a

∣∣∣∣√ µ
λ′ν′

, (18)

AbAc =

∣∣∣∣ (a−d)(b− c)
a

∣∣∣∣√ ν

λ′µ′

for the lengths of the sides of the pedal triangle AbAcAd of
the point A with respect to the triangle BCD. Analogous
formulae for the lengths of the pedal triangle BaBcBd of the
point B with respect to the triangle ACD are

BcBd =

∣∣∣∣ (a−b)(c−d)
b

∣∣∣∣
√

λ

µν
,

BaBc =

∣∣∣∣ (a− c)(b−d)
b

∣∣∣∣
√

µ′

λ′ν
,

BaBd =

∣∣∣∣ (a−d)(b− c)
b

∣∣∣∣
√

ν′

λ′µ

Formulae for the lengths of the sides of the pedal triangles
CaCbCd and DaDbDc of the points C and D with respect to
the triangles ABD and ABC look similarly. Out of previ-
ously mentioned formulae

AcAd : BcBd = AbAd : BaBc = AbAc : BaBd =

∣∣∣∣ba
∣∣∣∣√ µν

µ′ν′

follow, meaning that triangles AbAcAd and BaBdBc are sim-
ilar. Due to analogy, the triangles CdCaCb and DcDbDa are
also similar to these triangles. So, we proved the result that
can be found in [2], [3] and [6].

Theorem 3 The pedal triangles of the points A,B,C,D
with respect to the triangles BCD,ACD,ABD,ABC, respec-
tively, are similar.

Out of the corresponding equalities (11) and (18) we get
the ratios

AB ·CD : AcAd = AC ·BD : AbAd = AD ·BC : AbAc =

=
√

λ′µ′ν′ : |bcd|

i.e.

Theorem 4 The lengths of sides of the pedal triangles of
AbAcAd , BaBcBd , CaCbCd , DaDbDc are related as the prod-
ucts of the lengths of pairs of opposite sides of the quadran-
gle ABCD.

The last ratio equals to 2ρa because of (13). These state-
ments can be found in [6].
The point Ad from (16) is incident to the circle Pa with the
equation

a(p−1)(x2 + y2)−a [a(p+1)− s]x+(p+1−ar)y = 0

i.e.

(p−1)(x2 + y2)−[a(p+1)− s]x+
(

p+1
a
− r
)

y = 0

(19)

because of

(p−1)[(a2b2c2+ab+ac−bc)2+(ab2c+abc2−a2bc+1)2]−
−a(b2c2 +1)(a2b2c2 +ab+ac−bc)(a(p+1)− s)+

+(b2c2 +1)(ab2c+abc2−a2bc+1)(p+1−ar) = 0.

Because of symmetry on b,c,d, of the equation (19) the
circle Pa is a pedal circle of A with respect to the triangle
BCD. Obviously, it is incident to the center O. Hence,

Theorem 5 The pedal circles Pa,Pb,Pc,Pd of the points A,
B, C, D with respect to the triangles BCD, ACD, ABD, ABC,
respectively are incident to the center O of the quadrangle
ABCD.

This result can be found in [1], [2], [5], [6].
The circle (19) has the center

Pa =
( 1

2(p−1)
(a2bcd−b− c−d),

1
2(p−1)

(abc+abd +acd− 1
a
)
)

(20)

and the length OPa is the radius ra of that circle and easily
we get

ra =
1

2|a(p−1)|

√
(a2b2 +1)(a2c2 +1)(a2d2 +1) =

=
1

2|a(p−1)|
√

λµν,

together with the first equality from (13) it proves the equal-
ity ρara = 1

4|p(p−1)|
√

λµνλ′µ′ν′. This equality together
with three analogous equalities prove that ρara = ρbrb =
ρcrc = ρdrd , i.e.

Theorem 6 The radii of the pedal circles Pa,Pb,Pc,Pd
of the points A, B, C, D with respect to the triangles
BCD,ACD,ABD,ABC respectively, are inversely propor-
tional to the radii of the circles BCD,ACD,ABD,ABC.

This result can be reached in [6] and [8].
The point Pa from (20) is the midpoint of the point A and
the point A′ analogous to the point D′ from (10), that is in
accordance with the fact that the pedal circle of the point
with respect to the triangle has the center in the midpoint
of that point and its isogonal point with respect to this
triangle. The ratio of the radii ra = 1

2|a(p−1)|
√

λµν and

rb =
1

2|b(p−1)|
√

λµ′ν′ is equal to the coefficient | ba |
√

µν

µ′ν′ of
the similarity of the triangles AbAcAd and BaBdBc.
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Figure 2: Visualization of Theorem 5.

The points A′ and B′ analogous to D′ from (10) have the
midpoint

Mab =

(
− c+d

p−1
,ab

c+d
p−1

)
, (21)

that is incident to the circle Pa with the equation (19). Tak-
ing the analogous results in consideration, we proved

Theorem 7 The midpoints of the triples of seg-
ments A′B′,A′C′,A′D′; A′B′,B′C′,B′D′; A′C′,B′C′,C′D′;
A′D′,B′D′,C′D′ are incident to the pedal circles
Pa,Pb,Pc,Pd of points A,B,C,D with respect to the tri-
angles BCD,ACD,ABD,ABC, respectively.

This result can be reached in [1].
The point Ac from (17) is incident to the line with equation

(a2bd +abd2−ab2d +1)x+(a2b2d2 +ab+bd−ad)y =

= 2b(a2d2 +1),

and the point Dc is also incident to this line because of
symmetry of this equation on a and d. We conclude that
this is the line AcDc. It is incident to the point(
− 2b

(p−1)λ
(a2bc+a2bd−a2cd +1),

2b
(p−1)λ

(a3bcd +ac+ad−ab)
)

(22)

as well. Because the symmetry on c and d in the form of
this point, obviously it lies on the line AdCd , hence this
point is AcDc∩AdCd .

The point

Cd=

(
1
cλ

(a2b2c2+ac+bc−ab),
1
cλ

(a2bc+ab2c−abc2+1)
)

is analogous to Ad from (16). It is incident to the line

c(a3bcd +ab+ad−ac)x− c(a2bc+a2cd−a2bd +1)y =

= (p−1)(a2c2 +1),

and again because of symmetry on b and d, Cb is incident
to it as well, so it is the line CdCb. This line is incident to
the point( p−1

2acdλ
(a2bc+a2bd−a2cd +1),

− p−1
2acdλ

(a3bcd +ac+ad−ab)
)
,

and that point lies on the line DcDb because of the sym-
metry on c and d in the form of this point. Hence, this
point is CdCb ∩DbDc. The obtained points AcDc ∩AdCd
and CdCb ∩DbDc have the proportional coordinates. Ho-
mothety with the center O and coefficient − 1

4p (p− 1)2

associates one point to another. As this coefficient is sym-
metric on parameters a,b,c,d then by cyclic permutation
of b,c,d and B,C,D it follows that the same homothety
associates the point AdBd ∩AbDb to the point DbDc∩BcBd ,
and the point AbCb∩AcBc to the point BcBd ∩CdCb, i.e. the
mentioned homothety associates the triangle with vertices
AcDc ∩ AdCd , AdBd ∩ AbDb, AbCb ∩ AcBc to the triangle
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formed by lines BcBd ,CdCb,DbDc. It can be checked the
following theorem and also three more analogous state-
ments

Theorem 8 Let Ab,Ac,Ad be pedal points and Pa pedal
circle of A with respect to the triangle BCD. Let Ba,Bc,Bd ,
Ca,Cb,Cd , Da,Db,Dc be pedal points of B, C, D with re-
spect to the triangle ACD, ABD, ABC, respectively. The
points AcDc∩AdCd , AdBd ∩AbDb and AbCb∩AcBc are in-
cident to Pa.

Because of the mentioned homothety, there is and the next
result

Theorem 9 The triangle formed by lines BcBd ,CdCb,DbDc
is inscribed to the circle that passes through the center O
and at that point touches the circle Pa.

All of these results can be found in [1] and they are associ-
ated to Q.T. Bui.
In [1] the center of the quadrangle ABCD′ is studied as
well. From Theorem 1 from [13] and Theorem 5 we know
that the center O of the quadrangle ABCD is incident to
the Euler’s circle Nd of the triangle ABC and to the pedal
circle Pd of the point D with respect to that same triangle.
So the center of the quadrangle ABCD′ is incident to the
Euler’s circle Nd of the triangle ABC and to the pedal circle
of the point D′ with respect to that triangle. The latter circle
is the circle Pd because the isogonal points in the triangle
have the same pedal circle. There is a question appearing:
Is this center the center of the quadrangle O or the other
intersection point of the circles Nd and Pd? In the first
case the point D′ would lie on the hyperbola H and that is
possible, but if it would be always like that then the same
it should be valid for the points B′,C′ and D′. The point D′

is incident to the hyperbola H under the condition that the
equality (d−a−b−c)(abd+acd+bcd−abc) = (p−1)2

is valid. The conditions for the points B′,C′ and D′ look
similarly. However, adding up these four conditions we get
the equality −16p = 4(p− 1)2 = 0 i. e. p = −1 and the
quadrangle ABCD is the orthocentric. If we exclude this
case, then we get the following statement.

Theorem 10 The center of the quadrangle ABCD′ is the
second intersection point of the circles Nd and Pd next to
the center O.

Three more analogous statements follow up.
The circle Pa with the equation (19) and the circle Pb with
analogous equation

(p−1)(x2 + y2)− [b(p+1)− s]x+
(

p+1
b
− r
)

y = 0

have the radical axis with the equation abx+y= 0. The mid-
point of the point C and the point Hd from (7) is the point
( 1

2 (c−
1

abc ),
1
2 (

1
c −abc)) and it is incident to the radical axis.

The same is valid and for the midpoint of points D and Hc.

Points C and Hc are incident to the line abdx− cy = p−1
that passes through the point ( p−1

ab(c+d) ,−
p−1
c+d ). Because of

symmetry on c and d, this point is also incident to DHd .
However, the intersection point CHc∩DHd is lying on the
mentioned radical axis, see Figure 3. This result can be
reached in [6] and [8]. The point Mab from (21) is also
incident to the mentioned radical axis with the equation
abx+ y = 0. The statement on the collinearity of these four
points as well as five more such collinearities is given in [1].
Hence, the radical axis of the circles Pa and Pb bisects the
segments CHd , DHc and A′B′. That radical axis is antipar-
allel to the line AB with respect the axes of the hyperbola
H , and the similar is valid for five more analogous radical
axes. We have just proved the following theorem and five
more analogous statements

Theorem 11 Let Hc,Hd be orthocenters of ABD, ABC, re-
spectively, and let A′, B′ be isogonal points of A,B and with
respect to BCD, ACD respectively, and Pa,Pb pedal circles
of the points A, B with respect to the triangles BCD,ACD.
Then the following four points lie on the radical axis of Pa
and Pb: midpoints of three segments A′B′, DHc, CHd and
the intersection point CHc∩DHd .

The point Mab obviously lies on the line CD as well as the
points Ab and Ba. It is easy to check that the point Mab is
incident to the line

(a2bc+ab2d−abcd +1)x+(a2b2cd +ac+bd−ab)y =

= (a2b2 +1)(c+d),

as well as the point Ac from (17). By substituting a↔ b and
c↔ d in the previous equation one obtains the line incident
to the point Bd . Hence, the point Mab is incident to the
line AcBd , and analogously to the line AdBc. It means that
the point Mab is the center of the perspectivity for triangles
AbAcAd and BaBcBd . Out of (17) it follows that the line
OAc has the slope

m′

n′
=

ab2d +abd2−a2bd +1
a2b2d2 +ab+ad−bd

,

and, analogously, the line OAb has the slope

m
n
=

ac2d +acd2−a2cd +1
a2c2d2 +ac+ad− cd

.

After some calculation we get

m′n−mn′=(a2d2 +1)(a−d)(b− c)(p−1),

mm′+nn′=(a2d2+1)[(p−1)2+ad(b2+c2)+bc(a2+d2)],

so due to (14) it follows

tg∠AbOAc =
(a−d)(b− c)(p−1)

(p−1)2 +ad(b2 + c2)+bc(a2 +d2)
.
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Figure 3: Visualization of Theorem 11

Substituting a↔ b and c↔ d the equality

tg∠BaOBd =
(a−d)(b− c)(p−1)

(p−1)2 +ad(b2 + c2)+bc(a2 +d2)

follows up. By this we achieved the equality of the oriented
angles ∠AbOAc =∠BaOBd , as well as ∠AbOAd =∠BaOBc.
However, out of these equalities the equality ∠AbOBa =
∠AcOBd = ∠AdOBc is valid meaning that the center O is
the center of the similarity of triangles AbAcAd and BaBdBc.
So, we have just proved the following result and five more
analogous results that can be found in [6]:

Theorem 12 The triangles AbAcAd and BaBdBc are simi-
lar and perspective where the center of the similarity is the
center O, one intersection point of the circles AbAcAd and
BaBdBc, and the center of the perspectivity is their other
intersection point Mab.

For the oriented segments
−→
AB and

−−→
PaPb the following equal-

ities are valid

−→
AB =

(
b−a,

1
b
− 1

a

)
=

b−a
ab

(ab,−1),

−−→
PaPb =

1
2(p−1)

(
ab2cd−a−a2bcd+b,bcd−1

b
−acd+

1
a

)
=

(b−a)(p+1)
2ab(p−1)

(ab,1).

As the vectors [ab,−1] and [ab,1] have the same square
of the lengths equals to a2b2 +1, then from previous men-
tioned two equalities it follows that the ratio of the lengths

PaPb and AB equals to p+1
2(p−1) , the same is valid for the rest

of the corresponding sides of ABCD and PaPbPcPd . So, we
can conclude

Theorem 13 The quadrangles ABCD and PaPbPcPd are
similar and the coefficient of the similarity is p+1

2(p−1) .

This result can be reached in [8].
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