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ABSTRACT

We provide a synthetic study of the top-views of spherical
trochoids. These projections turn out to be higher tro-
choids, i.e., curves generated by the superposition of more
than two rotations. Special shapes of these trochoids show
up for special choices of the spherical radii of the rolling
circles. A relation to closed algebraic curves of constant
width is shown. These curves allow for a kinematic gener-
ation.
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O geometriji sfernih trohoida

SAŽETAK

U ovom radu se proučavaju tlocrti sfernih trohoida pomoću
sintetičke metode. Pokazuje se da su te projekcije vǐse
trohoide, tj. krivulje nastale istovremenim djelovanjem
vǐse od dvije rotacije. Posebni oblici ovih trohoida po-
javljuju se u slučajevima posebnih odabira sfernih polum-
jera kružnica koje se kotrljaju. Prikazana je veza sa
zatvorenim algebarskim krivuljama konstantne širine. Ove
krivulje dopuštaju kinematičko izvod-enje.

Ključne riječi: sferna trohoida, kotrljanje, evoluta, invo-
luta, krivulja konstantne širine

1 Introduction

1.1 Motivation, prior work, and contribu-
tions of the present paper

This paper is devoted to the memory of WALTHER
JANK (1939–2016). An unpublished and hand written
manuscript of a talk given by W. JANK at the Geometrie-
tagung in Vorau (Austria) in June 2004 was the basis of this
article. It deals with the geometric deduction of results on
the shapes of the top-views of spherical trochoids. Since
W. JANK was a dedicated follower of WALTER WUNDER-
LICH’s work of merit on kinematics (cf. [19]) and espe-
cially on trochoids and higher trochoids (see [20]), he ap-
plied some of these results to spherical trochoids which
have gained a little less attention than their planar counter-
parts.

There exist only a few notable publications on spherical
trochoidal curves related to W. JANK’s manuscript. In [6],
we find historical remarks and a collection of known re-
sults. Maybe, it was RUDOLF BEREIS who first described
the images of spherical trochoids under various parallel
projections in [1].

This article shall first follow W. JANK’s manuscript, i.e.,
we lay down his results and his reasoning. This includes a
detailed description of spherical trochoids based on a con-
structive approach. The kinematic generation of the top-
views of spherical trochoids leads to the finding that some
of these top-views are curves of constant width.

Moreover, a synthetic proof of ENNEPER’s theorem on the
shape of the top-views of curves of constant slope on ellip-
soids of revolution (with their axis in lead direction, i.e., in
the direction of the projection) can be found along the way.

At the end of the manuscript, the author raised the ques-
tion whether it is possible to describe planar algebraic and
closed curves of constant width, i.e., planar curves whose
projection onto a line (within their plane) is a segment of
fixed length independent of the direction of the projec-
tion, see [17]. Such curves, comparable to the example
given in Fig. 14, were derived in [14]. The results therein
were veryfied and improved by [12] and the related Zindler
curves were described in [15]. The approaches towards
curves of constant width in these references are analytic
and algebraic in nature, and by no means, constructive or
geometric. We shall close this gap.
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The present paper is organized as follows: The remain-
der of this section describes the constructive treatment of
spherical trochoids and discusses the kinematic generation.
Special cases occur for special assumptions on the spheri-
cal radii of the rolling circles which causes special shapes
of the curves and their top-views. We try to follow W.
JANK’s diction by trying to translate his manuscript as di-
rect as possible. This does not necessarily include the orig-
inal notation and symbols. In Sec. 2, a special spherical
trochoid and its top-view are the starting point for the in-
vestigation of algebraic curves of constant width and their
kinematic generation.

1.2 Generation of spherical trochoids

In the three-dimensional Euclidean space R3 of our percep-
tion, we distinguish a certain direction L (lead direction)
and a fixed sphere Σ centered at O. Further, we assume
that the equator e lies in the horizontal plane through Σ’s
center O (i.e., in the plane orthogonal to the lead L and
through O). On a fixed circle p0 ⊂ Σ (fixed polhode) with
its axis parallel to L, spherical center M0, and spherical ra-
dius >r0, we roll another circle p⊂Σ (moving polhode) with
spherical center M and spherical radius >r.

Figure 1: Front-view of the initial configuration of the
rolling cones and circles.

The path l ⊂ Σ of an arbitrary point X ∈ Σ firmly attached
to p is called a spherical trochoid of order 2. Note that any
point rigidly attached to p and not necessarily on Σ traces
a spherical trochoid on a sphere concentric with Σ.
The spherical trochoid motion can also be considered as
the glide-free rolling of the cone of revolution Γ = p∨O
along the cone (of revolution) Γ0 = p0∨P (sharing the ver-
tex O) during the entire motion. The point P is the point of
contact of c and c0 and is also referred to as the spher-
ical instantaneous pole (see Fig. 1). Γ is rolling on Γ0

without gliding. These cones play the role of the axodes
and the instantaneous axis equals the common generator
m = [O,P] of these two cones along which they share the
tangent plane (cf. [5, 16]).
For the constructive treatment of spherical trochoids, we
intersect Σ with the plane ε which is orthogonal to the
axis [O,M] of p and passes through X . Then, we con-
sider the rolling of the parallel circle c = ε ∩ Σ (center
N = ε ∩ [O,M]) together with the point X on the fixed
cone’s parallel circle c0 (in the plane ε0, with the spheri-
cal radius >r0, and axis [O,M0]).
We shall make explicit that each spherical (or planetary)
trochoidal motion is equivalent to the (glide-free) rolling
of a sphere S on two coaxial circles c1 and c2, see Fig. 3.

Figure 2: Construction of osculating circles of the spheri-
cal trochoid l at X according to BOBILLIER.

The tangent of l at X is orthogonal to the (spherical) in-
stantaneous pole P.
Spherical kinematics mirrors another well-known result
from planar kinematics. In the Euclidean plane, the the-
orem by S. ARONHOLD and A.B.W. KENNEDY (cf. [19])
states that the instantaneous poles P01, P02, P12 of the rela-
tive motions of three moving systems Σ0, Σ1, Σ2 (concentric
with and congruent to Σ) are collinear. Further the relative
angular velocities ω01, ω02 and the distances between the
poles are related by

P01 P12 : P02 P12 = ω02 : ω01.

The center of the osculating circle of l at X can be con-
structed with the help of É. BOBILLIER’s construction (cf.
[19]) which is also valid on the sphere. This result holds
also in spherical kinematics, see [5, 10, 16].
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Figure 3: Alternative generation of a spherical trochoid: A
sphere S is rolling on two coaxial circles k1 and k2.

1.2.1 Top-views, trochoids of higher order

The following results on the top-views (orthogonal projec-
tions in the direction of the lead L) of spherical trochoids
were deduced by W. STRÖHER in an analytic way (see
[16]). Here, these results shall be proved by means of syn-
thetical reasoning. In the beginning, we recall a theorem
by H. POTTMANN (cf. [13] and see Fig. 4):

Theorem 1 Let k
′
be an ellipse with center N′, semi-major

axis length a, and the moving point X ′ ∈ k
′
. Assume fur-

ther that the angular velocities of the rods N′S and SX ′ in
the crank slider mechanism N′SX ′ (derived from the paper
strip construction of k

′
) are equal to −β and β (with regard

to k
′
) and let k

′
0 be the ellipse’s circumcircle (which is an

affine image of k
′
). Then, any two out of the following three

statements are equivalent:

• β = const.
• N′X ′

0 rotates with constant angular velocity, and
therefore, also constant area velocity (with regard
to k′0).

• N′X ′ rotates with constant area velocity with respect
to k′.

The top-view of the situation shown in the front-view in
Fig. 1 is displayed in Fig. 5. From the latter we can deduce
some results on the top-views of spherical trochoids:

Theorem 2 The top-view l′ of a spherical trochoid l is (in
general) a trochoid of order 3 (cf. [19, 20]).

Proof. We see that k
′
rotates with angular velocity α about

O′. Provided that α is constant, NX rotates with constant
angular and area velocity (with respect to k) according to

Thm. 1. Thus, N′X ′ rotates with constant area velocity with
respect to k

′
. Because of the existence of the affine map-

ping between the ellipse and its circumcircle, N′X ′ rotates
with constant area velocity −β with respect to k

′
. Hence,

N′X ′ moves with constant and absolute angular velocity
α−β(α+β). □

Figure 4: The crank slider mechanism and the equivalen-
cies around an ellipse.

In [1], it is already mentioned that the top-view (orthogonal
projection in the direction of the axis of the fixed cone) is a
trochoid of order 3. Moreover, R. BEREIS has shown that
the generic orthogonal projection of a spherical trochoid
of order 2 is a planar trochoid of order 5, and a generic
(oblique) parallel projection results in a planar trochoid of
order 8 (see also [1]). This means that the latter curves are
path curves of points under planar motions which are the
superpositions of 5 or 8 planar rotations (cf. [20]).
More precisely, we can infer:

Theorem 3 The top-view l′ of a spherical trochoid l is, in
general, a trochoid of order 3, and its characteristic equals

α : (α−β) : (α+β),

cf. [19, p. 164] and [20]. It can be generated by the open-
loop three-bar mechanism O′N′SX ′.

In the special case
>
b =

>
MX = π

2 and N = O, l′ has the char-
acteristic

(α−β) : (α+β). (1)

In this case, a great circle k is rolling, taking the point X ∈ k
with it. Hence, l a spherical involute of a (spherical) circle,
and also, a spherical curve of constant slope. Naturally, l′
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is a curve with cusps gathering on a circle which is con-
centric with the equator’s top view e′. (It is the top view
of that parallel circle of Σ along which Σ’s tangent planes
have the same slope as l.) The vertices of l′ lie on e′. By
virtue of (1), l′ is an epicycloid.

Figure 5: The top view of a spherical trochoid is a planar
trochoid of order three. It can be generated by an open
three-bar mechanism.

Referring to the very special case of spherical trochoids l
as curves of constant slope on Σ, we shall point out the fol-
lowing: It is possible to transform the sphere Σ into ellip-
soids of revolution by applying orthogonal affine mappings
with the equator plane as a fixed plane (corresponding
points are joined by lines orthogonal to the equator plane).
Although such an orthogonal affine mapping changes the
value of the slope of l, the slope remains constant. Some
examples of curves of constant slope are shown in Fig. 6.
Hence, we have verified that part of ENNEPER’s theorem
(see [7, p. 138] and [11, p.462]) describing the shape of
curves of constant slope on ellipsoids of revolution (see
Fig. 7): The top-view (orthogonal projection in the direc-
tion of the lead L) of a curve of constant slope on an ellip-
soid of revolution is an epicycloid, provided that the axis
of revolution is parallel to L.

Figure 6: Some curves of constant slope on an ellipsoid of
revolution with vertical axis.

Figure 7: The top-view of the curves of constant slope on
an ellipsoid shows some epicycloids.

In Fig. 8, the top-view of the case of congruent polhodes
k0 and k1 is illustrated. In the top-view, we can see a so-
called symmetric rolling if we flip the moving circle k1

1

into the horizontal plane of the fixed circle k0. So, we see
that the locus l◦′ of all points X◦

i
′′ (i.e., the orbit of X◦

1
′ or

X◦
2
′) equals a Pascal limaçon. Further, we can deduce that

the top-view l′ of the spherical trochoid is also a limaçon
which is a similar and smaller copy of l◦′. The mapping

1Here, the indices 1, 2, . . . assigned to the moving circle refer to different (time) instances.
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ζ : l◦′ → l′ is a central similarity with center Z (cf. Fig. 8)
and similarity factor

0 < µ =
1
2
(1+ cosν)< 1, (2)

where ν is the angle enclosed by the planes of the moving
circles (on Σ) and the horizontal planes.

Figure 8: Top: The similarity factor between l′ and l◦′ de-
pends on the inclination of the rolling circle’s plane. Bot-
tom: The fixed and moving polhodes are congruent and
the top-view shows a symmetric rolling. Therefore, l′ is a
Pascal limaçon, as is l◦′.

In Fig. 9, another special case is illustrated: A great circle
k ⊂ Σ is rotating about Σ’s vertical axis while its radius OX
rotates with the same absolute angular velocity. By rotat-
ing the initial position ε1 (which is projecting in the front-
view) into a generic position ε2, we find that the interior
angle bisector of [O′,X ′

1] and [O′,X◦
2
′] equals the trace of

ε2 in the equator plane. Therefore, l′ is the image of e′ un-
der a central similarity ζ with center X ′

1 and the similarity
factor (2). Hence, l′ is a circle.

Figure 9: A very simple form of a spherical trochoid which
is still a similar copy of an undistorted image: a circle.

In the much more special case ν = π

2 , we have µ = 1
2 , and

it is rather obvious that the latitude and the longitude of
each point X ∈ l are equal, provided that Σ is considered
as the Earth and the contour for the top-view is assumed to
be the zero meridian. In this case, l is Viviani’s curve (see
Fig. 10, the orange curve l).

Figure 10: Viviani’s curve (orange) can also be found
among the spherical trochoids.

In Fig. 11, we recall again the constructive approach and
flip the plane ε (including k, N, and X) to both sides, i.e.,
to the interior and exterior of the sphere. For the inner ver-
sion, this yields the circle k◦ with the center N◦ and radius
r1. The moving point shall be denoted by X◦. The outer
circle k◦ has the center N◦, the radius r2, and the moving
point shall be labelled with X◦.
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Figure 11: The top-view l′ of a spherical trochoid is the involute of a hypocycloid z. The two different flips of k′’s plane are
displayed in different colors (blue = to the outside, violet = to the inside).

Then, we complete the parallelograms

O′N◦′X◦′Q1 and O′N′
◦X ′

◦Q2.

Now, we have 0 < r0, 0 < r1 < r0, r1 =−r2, and α = r2 =
const., see Fig. 11. If now O′N◦′N′

◦ rotates with the angu-
lar velocity α, then O′Qi rotates with angular velocity βi
(i ∈ {1,2}), where

0 < β1=r0+r2 and 0 > β2=−r0+r2

holds. According to [19, p. 151], we can see the two-
fold generation of a hypocycloid z as the envelope of
n = [Q1,Q2,X◦′,X ′,X ′

◦] with the characteristic β1 : β2 < 0
(cf. [19, p. 156]). From the top-view O′N◦′N′

◦ of the instan-
taneous axis, we can infer that n is orthogonal to l′ at X ′.
Therefore, l′ is the involute of z or an offset curve (paral-
lel curve) of its similar involute. For the two instantaneous
poles Pi (i ∈ {1,2}) corresponding to the i-th Euler gener-
ation (cf. [19, p. 151]) of the path (or i-th generation as the

envelope of a straight line) of z, we have: OPi = OQi · r0
ri

.
Further, the circle c centered at O′ with radius O′Pi carries
the cusps of z and the concentric circle v with radius O′Qi
carries the vertices of z
Special values of some spherical distances result in spe-
cial shapes of the spherical trochoid and simplify their top-
views:

Theorem 4 For the following values of spherical dis-
tances >r0, >r, >a =

>
M0M,

>
b =

>
MX, the top-views of spherical

trochoids are ordinary trochoids (of order 2):

• If >r =
>
b = π

2 , l′ is an epicycloid.

• If >r0 =
>r, l′ is a Pascal limaçon.

• In the special case >r0 =
>r, b = π

2 , l is a hippopede of
Eudoxus with a circle l′ for its top-view.

• If >r0 =
>r and >a =

>
b = π

2 , l is Viviani’s curve.
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• If >r0 =
π

2 , l′ is the envelope of a straight line under-
going an ordinary trochoid (planetary) motion or the
offset of a cycloid (cf. [19]).

1.3 Algebraic spherical trochoids

The spherical trochoids are algebraic if the ratio r0 : r1 : r2
is rational. With a proper scaling, we can achieve that each
ri ( j ∈ {0,1,2}) is an integer.
Then, the rotation number w and the algebraic degree d of
the top-view are

w =
β1 −β2

|gcd(β1,β2)|
and d = 2

∣∣∣∣ β2

gcd(β1,β2)

∣∣∣∣ .
Since the spherical curve can be considered as the inter-
section of the projection cyclinder and the sphere Σ, the

algebraic degree of the spherical trochoid equals

2d = 4
∣∣∣∣ β2

gcd(β1,β2)

∣∣∣∣ .
We shall have a look at the following example, see Fig. 12.
Here, a circle k is rolling on Σ’s equator e and the radius
of the rolling circle k is half that of e. That means r0 = 2
and r1 = 1, and thus, β1 = 1, β2 =−3, and α =−1. Since
w= 4 and d = 6, z is an astroid. Since a point on the bound-
ary of k is moving, l′ is an involute of z with two cusps X ′

1
and X ′

3 of the third kind2.
The initial position of the rolling circle shall be labelled
with k1.

Figure 12: The spherical trochoid with r0 = 2, r1 = 1, and thus, with β1 = 1, β2 = −3, and α = −1 is mapped to a sextic
curve l′ in the top-view with two cusps of the third kind at X ′

1 and X ′
3, to the upper half l′′ of a doubly covered cubic (with

an ordinary node) in the front-view, and to a part l′′′ of Neil’s parabola in the left-side view.

2Cusps of the first and second are characterized by the initial terms of their local expansions (t2, t3) and (t2, t4), respectively. The expansion at a cusp
of the third kind starts with (t3, t4). In German such a point is called Spitzpunkt.
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2 Some algebraic curves of constant width

A further example shall be illustrated in Fig. 14. Here, we
have chosen r0 = 3 and r1 = 1. Therefore, β1 = 2, β2 =−4,
and α = −1. This yields w = 3 and d = 4 which makes z
a Steiner hypocycloid. In this case, l′ is a closed algebraic
curve of constant width. This raises the question, if spheri-
cal trochoids can be generated such that their top-views are
curves of constant width.
As mentioned earlier, the top-view l′ of the spherical tro-
choid is the involute of a cycloid. It is well-known (see
[4, 8, 9, 18]) that the involute of a cycloid is a trochoid,
and moreover, it is also the envelope of a straight line un-
der a trochoidal motion. Therefore, it is nearby to look for
curves of constant width among trochoidal, and eventually,
among higher order trochoidal curves.
Up to scale and w.r.t. a properly chosen Cartesian coordi-
nate system, the curve z in Fig. 14 can be parametrized as

z(t) = 2e2it + e−4it , t ∈ [0,π[

and l′ allows the representation

l′(t) =
2
3

e2it − 1
3

e−4it −de−it . (3)

The curve l′ is an involute of z and the choice of real
constant d determines the starting point of the involute.
We shall use the support function h : S2 → R which as-
signs to each point on the unit circle the oriented dis-
tance of the curve’s tangent from the origin of the co-
ordinate system. From the parametrization of z, we ob-
tain the unit normal vector field n = (sin t,cos t). Now,
the support function h equals the canonical scalar product
of the position vector l′ = (Re l′, Im l′) of the points of l′

(from (3)) with the corresponding unit normal. This yields
h= ⟨n, l′⟩= d− 1

3 cos3t which agrees, up to a scaling, with
the support function used in [14] to compute a closed alge-
braic curve of constant width. It is necessary and sufficient
that h fulfills

h(t)+h(t +π) = const., const. width
ḣ(t)+ ḣ(t +π) = 0,
h(t)−h(t +2π) = 0, closedness

(4)

besides some conditions on continuity and differentiabil-
ity (which are always fulfilled in the case of trochoidal
curves). The dot indicates differentiation w.r.t. the para-
meter t.
It is a matter of fact that functions that fulfill (4) can be
expanded in Fourier series

h(t) = a0 +
n
∑

k=1
(ak coskt +bk sinkt) =

= 1
2

∞

∑
k=0

(ak − ibk)eikt +(ak + ibk)e−ikt ,
(5)

where n∈N× and ak,bk ∈R (not all zero at the same time).
Fourier series are to be preferred for they naturally ful-
fill the third condition in (4). An alternatively, Chebyshev
polynomials were used in [15].
Closed algebraic curves of constant width whose support
functions can be given as a finite Fourier series are always
rational and their representations can always be converted
into an equivalent series of complex exponential functions

l′(t) = h(t)eit + ḣ(t)e−it (6)

with h from (5). Hence, these curves are higher trochoids
of order n and first and intensively studied in [20]. They al-
low for a generation as the superposition of n independent
rollings in n! ways which includes the two-fold generation
of ordinary trochoids (were n = 2). Further, they can be
generated by closed n-bar linkages.

Figure 13: Two curves of constant width (similar to those
mentioned in the text and scaled to equally sized circum-
circles. The vicinity of the right vertex is enlarged by the
factor 15 in order to display the differences between the
two curves.
The example of a closed algebraic curve of constant width
given in [14] can be described by the support function

h = 9+ cos3t

and is an algebraic curve of degree 8. It admits a ratio-
nal parametrization, and thus, it has to have the maxi-
mum number of singularities two of which are the absolute
points of Euclidean geometry (pair of complex conjugate
ideal points, ordinary double points with self-osculation)
and three of which are real isolated ordinary double points
on the curves’ lines of symmetry. In [12], the authors mod-
ified the support function to

h̃ = 8+ cos3t
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in order to remove the isolated double points. This particu-
lar choice of the support function pushes the isolated dou-
ble points to points on the curve, and thus, they become
cusps of the third kind (see [2, 3, 4, 18]).

The choice of a support function of the form (3) (such that
it fulfills (4)) leads in any case to a curve of constant width
which allows for a kinematic generation by means of suffi-

ciently many rotations. These curves can always be inter-
preted as the top-view of spherical curves. Depending on

whether
√

1− l′(t)l′(t) can be written as a finite sum of
exponential functions (or trigonometric functions) or not,
the curve l allows for a kinematic generation by means of
superposed rollings on a sphere. The order of the spherical
trochoid l will, in general, be higher than 2.

Figure 14: The top-view l′ of a spherical trochoid may even be a closed and algebraic curve of constant width.
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