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ABSTRACT

The description of principal lines of the ellipsoid on the
3-dimensional Minkowski space is established. A global
principal parametrization of a triple orthogonal system of
quadrics is also achieved, and the focal set of the ellipsoid
is sketched.
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Glavne krivulje zakrivljenosti elipsoida u trodi-
menzionalnom prostoru Minkowskog

SAŽETAK

U radu su opisane glavne krivulje zakrivljenosti (crte krivine)
elipsoida u trodimenzionalnom Minkowskijevom prostoru.
Navedena je i globalna parametrizacija trostruko ortogo-
nalnog sustava te je prikazan fokalni skup elipsoida.

Ključne riječi: glavne krivulje zakrivljenosti (crte krivine),
glavna konfiguracija, trodimenzionalni prostor Minkowskog,
elipsoid, trostruko ortogonalni sustav

1 Introduction

The goal of this work is to describe the global behavior
of principal lines of the ellipsoid in the three dimensional
Minkwoswki space R2,1. We recall that the concept of
principal lines were introduced by G. Monge [11] and ge-
ometrically they can be characterized as the curves on the
surface such that the ruled surface having the rules being
the normal straight lines along the curve is a developable
surface [18, page 93].

The principal lines of the ellipsoid with three different axes
in the Euclidean space R3 are as illustrated in Fig. 1. In
this case, the principal lines of the triaxial ellipsoid are
obtained by Dupin’s theorem. The ellipsoid belongs to a
triple orthogonal family of surfaces, formed by the ellipsoid
and two hyperboloids (one of one leaf and the other of two
leaves).

For more recent and historical developments of principal
lines on surfaces see [4], [13], [14], [15] and [16]. This
work is organized as follows. In section 2 we recall the
basic properties of the Minkowski 3-space and principal
lines. In section 3 we describe the global behavior of prin-
cipal lines in the ellipsoid. In section 4 we will describe the

topological equivalence of the principal configuration of
the ellipsoid. In section 5 we will show that the geometric
inversion in Minkowski 3-space preserves lines of curva-
ture. In section 6 we obtain a triple orthogonal system of
quadrics. Finally, in section 7 the focal set of the ellipsoid
is analyzed.

Figure 1: Principal lines on the triaxial ellipsoid. There
are four umbilic points, the singularities. Also, there are
four umbilic separatrices and other principal lines are
closed.
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2 Preliminaries

The Minkowski 3-space R2,1 = (R3,〈,〉) is the vector space
R3 endowed with the inner product 〈u,v〉= u1v1 +u2v2−
u3v3, where u = (u1,u2,u3) and v = (v1,v2,v3). The norm
is ‖v‖=

√
|〈v,v〉|.

The vector product u× v, is a vector such that 〈u× v,u〉=
〈u× v,v〉= 0. Then

u× v =

∣∣∣∣∣∣
i j −k

u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ .
A vector v is said to be

• spacelike, if 〈v,v〉> 0 or v = 0,

• timelike, if 〈v,v〉< 0,

• lightlike, if 〈v,v〉= 0 and v 6= 0.

A plane is called spacelike (resp. timelike, lightlike), if the
normal vector is timelike (resp. spacelike, lightlike).

A regular curve is spacelike (resp. timelike, lightlike) if
the tangent vector is spacelike (resp. timelike, lightlike). A
smooth surface is called spacelike (resp. timelike) if the
tangent planes are spacelike (resp. timelike).

Let α : M→ R2,1 be a Cr (r ≥ 4) immersion of a smooth
and oriented surface M of dimension two in R2,1. Let
X(u,v) : R2→M be a local parametrization. The first fun-
damental form is

I = Edu2 +2Fdudv+Gdv2,

where E = 〈Xu,Xu〉, F = 〈Xu,Xv〉 and G = 〈Xv,Xv〉.

Given p ∈M, if det(Ip) = EG−F2 is positive (resp. nega-
tive), the surface is spacelike or Riemannian (resp. timelike
or Lorentzian) in the point p. This is equivalent to say that
tangent plane is spacelike or timelike. The metric induced
on M can be degenerate; this happens at the points p on M
where the tangent space T Mp is lightlike, or equivalently
that det(Ip) = EG−F2 = 0. We call this set of points the
tropic and will be denoted by LD (Locus of Degeneracy).

On a spacelike (resp. timelike) surface, we define the Gauss
map

N(u,v) = ε · αu×αv

‖αu×αv‖
(u,v)

such that N : M→H2,1 with ε = 1 (resp. N : M→ S2,1 with
ε =−1), where H2,1 = {(x,y,z) ∈ R3 : x2 + y2− z2 =−1}
and S2,1 = {(x,y,z) ∈ R3 : x2 + y2− z2 = 1}.

The sign ε =±1 is only necessary to define the base posi-
tively oriented {αu,αv,N} in all over the surface (except in
the tropic), this is,
det(αu,αv,N) =

ε

‖αu×αv‖
〈αu×αv,αu×αv〉> 0,

[9, page 50].

The second fundamental form is

II = edu2 +2 f dudv+gdv2,

where e = 〈Xuu,N〉, f = 〈Xuv,N〉 and g = 〈Xvv,N〉.

The mean curvature H and Gauss curvature K are defined
by

H =
Eg+Ge−2F f

2(EG−F2)
and K =

eg− f 2

EG−F2 ,

and the principal curvatures k1 and k2 are defined by

k1 = H +
√

H2−K and k2 = H−
√

H2−K.

In general, a surface M ⊂ R2,1 has a Riemannian part and
a Lorentzian part. On the Riemannian part, dNp does have
real eigenvalues; on Lorentzian part, dNp does not always
have real eigenvalues. These eigenvalues are the princi-
pal curvatures k1 and k2 in each point and the respective
eigendirections of dNp are called principal directions and
they define two line fields L1 and L2 mutually orthogonal
in M. They are determined by non-zero vectors on Tp(M)
which satisfy the implicit differential equation

(Fg−G f )dv2 +(Eg−Ge)dudv+(E f −Fe)du2 = 0.

(1)

The integral curves of the equation (1) are called lines
of curvature or principal lines. The families of principal
lines F1 and F2 associated with L1 and L2, respectively,
are called principal foliations of M. An umbilic point is
defined as a point where II = cI for some constant c. It is
called a spacelike (resp. timelike) umbilic point when it
is on Riemannian (resp. Lorentzian) part of M. The set of
umbilic points is denoted by U.

The map N is not defined on the tropic, but since the
equation (1) is homogeneous, we can multiply the coeffi-
cients of (1) by ‖αu×αv‖. Let L1 = ‖αu×αv‖(Fg−G f ),
M1 = ‖αu×αv‖(Eg−Ge) and N1 = ‖αu×αv‖(E f −Fe).
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So, the equation of curvature lines (or principal lines) can
be extended to the tropic by

L1dv2 +M1dvdu+N1du2 = 0. (2)

The tropic LD = (EG−F2)−1(0) is generically a curve
that is solution of the equation (2), [21, Lemma 1.31]. The
discriminant of the equation (2), define the set of points
where it determines a unique direction or an umbilic point,
the first set is denoted by LPL (Ligthlike Principal Locus).
On the Riemannian part LPL = /0, and on the Lorentzian
part the set LPL is generically a curve that divide locally
the surface into two regions, in one of them there are no
real principal directions and in the other there are two real
principal directions at each point, [7].

Definition 1 The quintuple PM = {F1,F2,U,LD,LPL} is
called the principal configuration of M, or rather of the
immersion α of M in R2,1.

Definition 2 Two principal configurations PM1 and PM2

are C0-principally equivalent if there exists a homeomor-
phism h : M1 → M2 which is a topological equivalence
between them, i.e., h sends principal foliations, umbilic set,
LD and LPL of M1 in the correspondent of M2.

Remark 1 The umbilic points can also be seen as the
points where L1 = M1 = N1 = 0.

Remark 2 A smooth curve c is a principal line, if this
curve satisfies the equation (2) and there are no umbilic
points on c.

Remark 3 Let X(u,v) be a local parametrization of M.
If F = f = 0 then L1 = N1 = 0 and (u,v) is a principal
curvature coordinate system. It is called a principal chart.

Triply orthogonal system (see [8, 18]).

In this subsection, it will be introduced a triple orthogonal
systems of surfaces in the Minkowski space R2,1.

Definition 3 A triply orthogonal system of surfaces is a
differentiable map X : W → R2,1, defined on an open set
W ⊂ R2,1, satisfying:

a) The linear map dX(u,v,w) : T(u,v,w)R2,1→ TX(u,v,w)R2,1

is bijective for all (u,v,w) ∈W.

b) 〈Xu,Xv〉= 〈Xu,Xw〉= 〈Xw,Xv〉= 0.

Let p = (u0,v0,w0) ∈W . Consider the three surfaces

(u,v) 7−→ X(u,v,w0)

(u,w) 7−→ X(u,v0,w)

(v,w) 7−→ X(u0,v,w),

we denote these surfaces by Mw0 , Mv0 and Mu0 , respectively.
They are regular surfaces by the condition a).

Notice that by condition b), F = 0 on each of them. Further-
more, Xw(u,v,w0) is normal to Mw0 at (u,v,w0) (similarly
to other two surfaces) and differentiating,

〈Xu,Xv〉w = 〈Xu,Xw〉v = 〈Xw,Xv〉u = 0.

Therefore,

〈Xuv,Xw〉= 〈Xuw,Xv〉= 〈Xvw,Xu〉= 0,

which means that f = 0 on each of the surfaces. By remark
(3), we may conclude that:

Theorem 1 The coordinate curves on a surface belong-
ing to a triply orthogonal system in a Minkowski three-
dimensional space are principal curvature lines.

3 The Ellipsoid in the Minkowski space

Consider the family of surfaces

Fu = {(x,y,z) :
x2

a2−u
+

y2

b2−u
+

z2

c2 +u
= 1}

Gv = {(x,y,z) :
x2

a2− v
+

y2

b2− v
+

z2

c2 + v
= 1}

Hw = {(x,y,z) :
x2

a2−w
+

y2

b2−w
+

z2

c2 +w
= 1}

where a > b > 0 (the case b > a > 0 is similar) and c > 0.

Let UE := {(u,v,w) ∈ (−c2,b2)× (b2,a2)× (−c2,b2)}.
For (u,v,w) ∈UE , Fu, Hw are ellipsoids and Gv is a hyper-
boloid of one leaf.

Theorem 2 The surfaces Fu, Gv and Hw define a triple
orthogonal system for (u,v,w) ∈UE , u 6= w.
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Proof. Solving the system below in the variables {x,y,z}

x2

a2−u
+

y2

b2−u
+

z2

c2 +u
−1 = 0

x2

a2− v
+

y2

b2− v
+

z2

c2 + v
−1 = 0

x2

a2−w
+

y2

b2−w
+

z2

c2 +w
−1 = 0,

it is obtained in the positive octant:

x(u,v,w) =

√
(a2−u)(a2− v)(a2−w)

(a2−b2)(a2 + c2)

y(u,v,w) =

√
−(b2−u)(b2− v)(b2−w)

(a2−b2)(b2 + c2)

z(u,v,w) =

√
(c2 +u)(c2 + v)(c2 +w)

(a2 + c2)(b2 + c2)
·

A long and straightforward calculations show that

X(u,v,w) = (x(u,v,w),y(u,v,w),z(u,v,w)) (3)

satisfies 〈Xu,Xv〉= 〈Xu,Xw〉= 〈Xv,Xw〉= 0. Moreover,

det(DX(u,v,w)) =

(u− v)(u−w)(v−w)
8x(u,v,w)y(u,v,w)z(u,v,w)(a2−b2)(a2 + c2)(b2 + c2)

6= 0.

�

Since {Fu,Gv,Hw} is a triple orthogonal system, these
surfaces intersect along their curvature lines. The curvature
lines can be obtained globally by symmetry in relation to
the coordinates planes.

Now, we fixed w and defined the ellipsoid Ew = Hw with
(u,v,w) ∈UE , so we have that the principal lines on Ew are
the intersection curves, with the hyperboloid of one leaf Gv
and with the other ellipsoid Fu (See Fig. 2).

In each octant, we have that for Ew the parametrization (3)
is a principal chart, i.e., f = F = 0. So, the principal lines
are u = constant and v = constant, and these curves are
exactly the intersection between surfaces.

Remark 4 The triply orthogonal system of quadratic sur-
faces in the Euclidean space is make up by an ellipsoid, a
hyperboloid of one leaf and a hyperboloid of two leaves [4,
Chapter 2]. See also [12, Chapter 7] for more details about
the geometric properties of confocal quadrics.

Figure 2: Triply orthogonal system defined by two ellip-
soids and one hyperboloid of one leaf.

To complete the description, the principal configuration
is necessary to analyze the curves of the intersections of
the ellipsoid with the coordinates planes. Without loss of
generality, we do w = 0, i.e., we analyze

E0 =

{
(x,y,z) :

x2

a2 +
y2

b2 +
z2

c2 = 1
}

with a > b > 0 and c > 0 (it is allowed a = c or b = c).

The parametrization below is inspired in the Euclidean case.
See also Section 6 where a global parametrization will be
obtained in a triple orthogonal system of quadrics.

Lemma 1 The parametrization

X(u,v) =(acos(u)A(v),bsin(u)sin(v),ccos(v)B(u))

A(v) =
√

A1 cos2(v)+ sin2(v),

B(u) =
√

B1 cos2(u)+ sin2(u) (4)

with (u,v) ∈U1 = [0,π]× [0,2π] or (u,v) ∈U2 = [0,2π]×
[0,π], where A1 =

a2−b2

a2+c2 and B1 =
b2+c2

a2+c2 , defines a principal
chart (u,v) on the ellipsoid E0.
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Proof. Calculating of the coefficients of the first and second
fundamental form, we have

E =−
((

a2−b2)cos2 u−a2)((a2−b2)cos2 u+
(
b2 + c2)cos2 v−a2− c2)(

a2−b2
)

cos2 u−a2− c2

F =0

G =−
((

a2−b2)cos2 u+
(
b2 + c2)cos2 v−a2− c2)((b2 + c2)cos2 v− c2)
−
(
b2 + c2

)
cos2 v+a2 + c2

e =
abc
((

a2−b2)cos2 u+
(
b2 + c2)cos2 v−a2− c2)2√(

b2 + c2
)

cos2 v− c2−a2
((

a2−b2
)

cos2 u−a2− c2
) 3

2

f =0

g =
b
((

a2−b2)cos2 u+
(
b2 + c2)cos2 v−a2− c2)2 ac((

b2 + c2
)

cos2 v− c2−a2
) 3

2

√(
a2−b2

)
cos2 u−a2− c2

.

Since that, F = f = 0 then L1 = N1 = 0 in the equation (2).
So, by Remark 3, we have that X defines a parametrization
by principal lines, i.e., (u,v) is a principal chart.

The parametrization (X ,U1) (resp. (X ,U2)) cover all the
ellipsoid and is smooth, except in the curves X(0,v) and
X(π,v) (resp. X(u,0) and X(u,π)). �

Proposition 1 On the ellipsoid E0, we have that:

a. The curves cx = {(x,y,z) : x = 0} ∩ E0 and cz =

{(x,y,z) : z = 0}∩E0 are principal lines.

b. E0 has exactly four spacelike umbilic points,±a

√
a2−b2

a2 + c2 ,0,±c

√
b2 + c2

a2 + c2

 .

c. The umbilic points are of type D1.

d. The curve cy = {(x,y,z) : y = 0}∩E0 is the union of
principal lines. Moreover, these are the separatrices
of the umbilic points.

e. The tropic is composed by two disjoint regular closed
curves. Moreover, these curves are principal lines.

f. The principal lines are globally defined, i.e., the set
LPL = /0.

Figure 3: Principal lines on the Ellipsoid in the Minkowski
space. Parameters a = 2.0, b = 1.5, c = 2.2.

Proof.
a) Consider the principal chart (X ,U1) (resp. (X ,U2))
given by Lemma 1. We have cx = X(π

2 ,v) (resp. cz =
X(u, π

2 )).

The principal chart (X ,U1) (resp. (X ,U2)) is smooth, ex-
cept in the curves X(0,v) and X(π,v) (resp. X(u,0) and
X(u,π)), but this curves not intersect with cx (resp. cz).
Therefore, cx (resp. cz) is a principal line of the ellipsoid.

b) Consider the parametrization,

X(u,v) =
(

au,bv,±c
√

1−u2− v2
)
. (5)

Then the differential equation of principal lines (2) with X
is

E(u,v,du : dv) =

−uv(a2 + c2)du2 +uv(b2 + c2)dv2

+(u2(a2 + c2)− v2(b2 + c2)−a2 +b2)dudv = 0. (6)

We have that L1 = N1 = 0 when u = 0 or v = 0. If u = 0
then M1 = −v2(b2 + c2)− a2 + b2 6= 0. If v = 0, we have
that M1 = u2(a2 + c2)−a2 +b2 = 0 if and only if

u0 =±

√
a2−b2

a2 + c2 .

So, there are four umbilic points. Moreover,

(EG−F2)(u0,0) =
b4(a2 + c2)

b2 + c2 > 0,

and then the umbilic points are in the Riemannian part of
E0, i.e., they are spacelike umbilic points.
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c) For completeness, it will be included a detailed sketch
of proof. We take p = dv

du in the equation (6), so

F(u,v, p) =−uv(a2 + c2)

+(u2(a2 + c2)− v2(b2 + c2)−a2 +b2)p

+uv(b2 + c2)p2 = 0.

Under the hypothesis, the implicit surface F−1(0) is a regu-
lar surface, contain the projective line, and is topologically
a cylinder. The map π : F−1(0)→ R2, π(x,y, p) = (x,y)
is a ramified double covering and π−1(u0,0) is the projec-
tive line parametrized by [du : dv]. The umbilic point P1 =(

a
√

a2−b2

a2+c2 ,0,c
√

b2+c2

a2+c2

)
has coordinates u0 =

√
a2−b2

a2+c2 and
v = 0. The Lie-Cartan line field associated to the implicit
equation F(u,v, p) = 0 is Y = (Fp, pFp,−(Fx + pFy)) on
the surface M = F−1(0), M ⊂ R2×RP1. The solutions
of the implicit differential equation F(u,v, p) = 0 are the
projections of the integral curves of Y . See [1] and [4].

We have that

Y (u0,0, p) =0,0,−

√
a2−b2

a2 + c2 p(b2 p2 + c2 p2 +a2 + c2)

= (0,0,0)

if and only if p = 0.

Moreover, the eigenvalues of DY (u0,0,0) are,

λ1 = 2

√
a2−b2

a2 + c2 (a
2 + c2), λ2 =−2

√
a2−b2

a2 + c2 (a
2 + c2).

Therefore, (u0,0,0) is a hyperbolic saddle point of Y . To
complete the analysis, it is also necessary to consider the
chart q = du/dv in the equation (6) to obtain an implicit
surface G(u,v,q) = 0. Now the Lie-Cartan vector field is
Z = (qGq,Gq,−(qGu +Gv)). We have that Z(u0,0,q) 6= 0.
Gluing the phase portraits of Y and Z near the projective
line [du : dv] we obtain a line field on the cylinder with a
unique hyperbolic singular point. The projections of the
leaves (integral curves of X and Y ) are the principal lines
of the ellipsoid near the umbilic point. See Fig. 4.

Therefore, the umbilic point P1 is Darbouxian of type D1
(see also [4]). By symmetry, all the other umbilic points are
also of type D1.

d) Using the parametrization (5), a curve cy satisfies the
equation the principal lines (6). Furthermore, the umbilic
points are on cy, so this curve is a union of principal lines
and the umbilic points. Since the umbilic points are D1, we
obtain the result as stated.

Figure 4: Implicit surface F(u,v, p) = 0 (cylinder) and a
ramified double covering π with π−1(u0,0) being the pro-
jective line. The top and bottom lines with inclination p = 0
are identified.

e) Using the chart defined by equation (4) with (u,v) ∈U1,
we have that

EG−F2 =
(
(b2 + c2)cos2(v)− c2)((a2−b2)cos2(u)−a2)(

(a2−b2)cos2(u)+(b2 + c2)cos2(v)−a2− c2)2
= 0.

if, and only if, v1 = arccos
(

c√
c2+b2

)
or v2 =

arccos
(
− c√

c2+b2

)
= π− v1.

The tropic is the union of the closed curves c1(u) = X(u,v1)
and c2(u) = X(u,v2). As v = constant and (X ,U1) is a prin-
cipal chart, then c1 and c2 are principal lines.

f) Since the parametrization (4) is defined globally on E0
and defines a principal chart, it follows that L1 =N1 = 0 and
LPL = M2

1 ≥ 0. Therefore, the principal lines are globally
defined. �

Confocal and orthogonal family of conics

Performing the change of coordinates by u =
√

b2+c2

a2+c2 x and
v = y, then equation (6) is given by

−xydx2 +
(
x2− y2−λ

2)dxdy+ xydy2 = 0

with λ2 = a2−b2

b2+c2 . The coordinates axes, the family of el-
lipses

u(t) = Rcos(t), v(t) = r sin(t), R2 = r2 +λ
2

8
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and the family of hyperbolas

u(t) = Rcosh(t), v(t) = r sinh(t), R2− r2 = λ
2

are the solutions of the differential equation above. This is
similar to Euclidean case, see [4].

Figure 5: Confocal and orthogonal family of conics. The
tropic is shown in green and is parametrized by cos2 v =
c/(b+ c).

Horizontal ellipsoid of revolution.

When a = c or b = c, we have four spacelike umbilic points
of type D1, while with the Euclidean scalar product only
have two umbilic points of center type.

Vertical ellipsoid of revolution and Euclidean sphere.

When a = b and c > 0, the parametrization (4) is reduced to

X(u,v) = (asin(v)cos(u),asin(v)sin(u),ccos(v)).

The equation of principal lines is

a2c(a2 cos2(v)+ c2 cos2(v)−a2− c2)4dudv = 0.

Therefore, the principal lines are u = constant and
v = constant. We have only two spacelike umbilic points
(0,0,±c) of type center.

On ellipsoid of revolution with a = b and c 6= a, the princi-
pal lines are the same in the two geometries (Euclidean and
Lorentzian).

With the Euclidean scalar product the Eucidean sphere is a
umbilic surface, while with the Lorentzian scalar product
the Euclidean sphere has only two spacelike umbilic points
of type center.

Umbilic surfaces.

The umbilic surfaces with Euclidean inner scalar are the
Euclidean sphere and planes, while with Lorentzian inner
scalar the umbilic surfaces are planes, the vertical hyper-
boloid of one leaf S2

1(c,r) = {p ∈R2,1 : 〈p− p0, p− p0〉=
r2} and vertical hyperboloid of two leaves H2

1(c,r) = {p ∈
R2,1 : 〈p− p0, p− p0〉 = −r2}, see [3, page 191] and [9,
page 85].

Remark 5 For the study of geodesics on an ellipsoid in
the Minkowski space R2,1 see [5]. The analysis of umbilic
points in smooth surfaces in R2,1 of the form fε(x,y,z) =
x2/a2 + y2/b2 + z2/c2 +h.o.t = ε was developed in [6].

4 Topological equivalence of principal folia-
tions

In this section we will obtain that the principal configura-
tions of the ellipsoids of three distinct axes are all principal
topologically equivalent. The Euclidean case was estab-
lished by J. Sotomayor [15].

Proposition 2 Consider an ellipsoid E(x,y,z) = ax2 +
by2 + cz2 + 2dxy + 2exz + 2 f yz + gx + hy + kz + l = 0.
Then there exists an isometry h : R2,1 → R2,1 such that
E(h(u,v,w)) = λ1u2 + λ2v2 + λ3w2 = 1, with λi > 0 for
(i = 1,2,3).

Proof. The rotation group of R2,1 is SO(2,1) of dimen-
sion 3 and is generated by the Euclidean and Hyperbolic
rotations defined by:

R(u,v,w) = (ucosθ+ vsinθ,−usinθ+ vcosθ,w)

S(u,v,w) = (ucoshα+wsinhα,v,usinhα+wcoshα)

T (u,v,w) = (u,vcoshβ+wsinhβ,vsinhβ+wcoshβ)

The quadric form q(x,y,z) = ax2 + by2 + cz2 + 2dxy +
2exz+2 f yz is positive definite when one of the following
conditions holds:

a > 0, ab−d2 > 0, abc−a f 2−be2−cd2 +2de f = ∆ > 0,

b > 0, bc− f 2 > 0, ∆ > 0,

c > 0, ac− e2 > 0, ∆ > 0.

In this case the eigenvalue problem

det

a− x d e
d b− x f
e f c+ x

= 0

9
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has three real eigenvalues x1 ≤ x2 ≤ x3 and the correspon-
dent eigenvectors e1,e2,e3 are orthonormal relative to the
Minkowski inner product. Therefore, one of the eigen-
vectors, say e3, is timelike and the other two {e1,e2} are
spacelike. There exists an isometry h (composition of
hyperbolic rotations) such that h(0,0,−1) = e3. In the
new coordinates we have that q1(u,v,w) = q(h(u,v,w)) =
a1u2 +b1v2 + c1w2 +d1uv.

Also, there exists an isometry H (Euclidean rotation) such
that

q1(H(u1,v1,w1)) = a2u2
1 +b2v2

1 + c1w2
1,a2 > 0,

b2 > 0, c1 > 0.

Finally, with a translation we obtain the result stated. �

Remark 6 In general, a hyperboloid is not isometric to
one given in a diagonal form. The classification of conics
in Minkowski plane is carried out in [10].

Theorem 3 Consider the set of ellipsoids E with three dis-
tinct axes in the space of quadrics Q of R3. Then the prin-
cipal configurations of any two elements of E are principal
topologically equivalent.

Proof. The principal configuration of an ellipsoid with three
different axes in the diagonal form x2/a2+y2/b2+z2/c2 =
1 has the following properties.

i) There are four umbilic points of Darbouxian type D1.

ii) The set LD is the union of two regular curves.

iii) The set LPL is empty.

iv) The principal foliations F1 and F2 have all leaves
closed, with the exception of the umbilic separatrices.
See Fig. 3.

The construction of the topological equivalence can be done
explicitly using the method of canonical regions defined
by the union of two topological disks and a cylinder; the
boundary being the tropics. See [17] and Fig. 6. By Propo-
sition 2, any ellipsoid is isometric to an ellipsoid in the
diagonal form. This ends the proof. �

Figure 6: Decomposition of the ellipsoid in three canoni-
cal regions foliated by principal lines; the boundary of each
region is formed by the tropic lines.

5 Geometric Inversion in Minkowski space

In this section, we will show that the principal lines are
the same when we consider the inversion of the surface
with respect to a given point in the space. Recall that the
inversion is defined by:

Iq(p) =
p−q

〈p−q, p−q〉
.

Proposition 3 Consider a regular surface S and a point
q ∈ R2,1 \S. Let Sq = Iq(S), where Iq is the inversion with
respect to the point q. The principal lines on S are the same
that on Sq.

Proof. Consider the local parametrization

X(u,v) = (u,v,h(u,v)).

Calculating the equation of principal lines of X , we have
that:

(huvh2
v−hvvhuhv−huv)dv2

+(huuh2
v +hvv−hvvh2

u−huu)dvdu

+(huv +huhvhuu−huvh2
u)du2 = 0.

(7)

The local parametrization of the inverted surface in the
relation to the point q = (q1,q2,q3), is given by:

X̄(u,v) =
1

〈X(u,v)−q,X(u,v)−q〉
(X(u,v)−q)

=
1

(u−q1)2 +(v−q2)2− (h(u,v)−q3)2 ·

· (u−q1,v−q2,h(u,v)−q3) .

Calculating the first fundamental form of X̄ it follows that

E =− h2
u−1
Q2

0
, F =−huhv

Q2
0
, G =−h2

v−1
Q2

0
,

with Q0 = 〈X(u,v)−q,X(u,v)−q〉. Similarly, we calculate
the coefficients of the second fundamental form:

e =
1

Q4
0

[
2(q1−u)h3

u +2((q2− v)hv +h−q3)h2
u

+2(u−q1)hu +2(v−q2)hv +2q3−2h

+(h2−2hq3−q2
1 +2q1u−q2

2 +2q2v+q2
3−u2−v2)huu

]
f =

1
Q4

0

[
2(q1−u)hvh2

u +2((q2− v)h2
v +(h−q3)hv)hu

+h2huv−2hhuvq3−huvq2
1 +2huvq1u−huvq2

2

+2huvq2v+huvq2
3−huvu2−huvv2]

g =
1

Q4
0

[
2((q1−u)h2

v +u−2q1)hu +2(q2−2v)h3
v

+2(h−q3)h2
v +2(v−q2)hv +2q3−2h

+(h2−2hq3−q2
1+2q1u−q2

2 +2q2v+q2
3−u2−v2)hvv

]
.

10
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Then, the coefficients of the differential equation of the
principal lines are given by:

L = Fg−G f =
huhvhvv−huvh2

v +huv

〈X−q,X−q〉5
,

M = Eg−Ge =
h2

uhvv−huuh2
v +huu−hvv

〈X−q,X−q〉5
,

N = E f −Fe =
h2

uhuv−huhuuhv−huv

〈X−q,X−q〉5
.

So, the differential equation of the principal lines of X̄
is exactly (7). The analysis, with local parametrization
(u,h(u,v),v) or (h(u,v),u,v) are analog.

Therefore, the principal lines of the surface S and of the
inverted surface Sq are related by the inversion Iq, i.e., if
γ(s) is a principal line of S, then Iq(γ(s)) is a principal line
of Sq. �

6 Triple Orthogonal System in Minkowski
space

In this section a global parametrization of a triple orthog-
onal system of quadrics in the Minkowski 3-space will be
established.

Let Z(u,v,w) = (A(u,v,w),B(u,v,w),C(u,v,w)) defined
by:

A(u,v,w) = cosu coshw
√
(εn2 +m2)cos2 v+m2 sin2 v

B(u,v,w) = msinusinvsinhw

C(u,v,w) =

cos(v)

√(
εn2 cos2 u−m2 sin2 u

)(
εn2 cosh2 w+m2 sinh2 w

)
εn2 +m2

(8)

Here ε =±1.

Theorem 4 The map Z defined by equation (8) is a triple
orthogonal system of quadrics in R2,1 (Minkowski 3-space).
More precisely, the quadrics are given by:

E1 :
x2

m2 cosh2 w
+

y2

m2 sinh2 w
+

z2 (m2 + εn2)(
εn2 cosh2 w−m2 sinh2 w

)
m2

= 1

E2 :
x2 (m2 + εn2)

m2
(
m2 + εn2 cos2 v

) + (m2 + εn2)y2

εm2n2 sin2 v
+

z2 (m2 + εn2)
εm2n2 cos2 v

= 1

H1 :
x2

m2 cos2 u
− y2

m2 sin2 u
+

z2 (m2 + εn2)
m2
(
m2 sin2 u+ εn2 cos2 u

) = 1.

Proof. The map Z defined by equation (8) was inspired in
[19] where a similar map was obtained in the Euclidean

case. The main idea is to try a parametrization with separa-
tion of variables as

Z(u,v,w) =
(h1 cosucoswa(v),h2 sinusinvsinhw,h3 c(u)d(w) cosv).

A long, and straightforward calculation, using the equation
(8), leads to

〈Zu,Zv〉= 〈Zu,Zw〉= 〈Zv,Zw〉= 0.

The quadrics defined by equation (8) was obtained by the
method of elimination of variables from the equations

A(u,v,w)− x = 0, B(u,v,w)− y = 0, C(u,v,w)− z = 0.

�

Remark 7 For ε = −1, m =
√

a2−b2, n =√
(b2 + c2)(a2−b2)/

√
a2 + c2 and coshw = a/

√
a2−b2

it follows that Zw(u,v) = Z(u,v,w) is a parametrization of
the ellipsoid x2/a2 + y2/b2 + z2/c2 = 1.

7 Focal set of a surface in the Minkowski
space

The focal set of a surface M can be defined as the singular
set of the congruence of lines given by

L(u,v, t) = α(u,v)+ tN(u,v)

where α is a parametrization of M and N is the normal
vector to the surface. Also, the focal set can be seen as the
locus of the centers of curvature of the given surface.

Fi : α(u,v)+ 1
ki(u,v)

N(u,v), (i = 1,2).

See [2] and [20].

Proposition 4 The focal set F1 of the ellipsoid is
parametrized by

(A1(u,v),B1(u,v),C1(u,v))

where:

A1(u,v) =
cos3 u

(
a2−b2)

a
√

a2 +b2

√(
a2−b2

)
cos2 v+

(
a2 + c2

)
sin2 v

B1(u,v) =−
sin3 usinv

(
a2−b2)

b

C1(u,v) =
cosv

c
√

a2 + c2

[(
b2 + c2

)
cos2 u+

(
a2 + c2

)
sin2 u

] 3
2
.

11
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The focal set F2 of the ellipsoid is parametrized by
(A2(u,v),B2(u,v),C2(u,v)) where:

A2(u,v) =
cosu

a
√

a2 + c2

[
(a2−b2)cos2 v+(a2 + c2)sin2 v

] 3
2

B2(u,v) =
sinusin3 v

(
b2 + c2

)
b

C2(u,v) =
(b2+c2)cos3 v

c
√

a2 + c2

√
(b2+c2)cos2 u+(a2+c2)sin2 u

Figure 7: The focal surfaces F1 and F2 of the ellipsoid.
Both are singular on two arcs of ellipses connecting the
umbilic points and each is singular in an ellipse contained
in a coordinate plane. At the umbilic points the singularities
are of type D+

4 (Arnold’s notation).

Proof. It follows directly from the parametrization of the
ellipsoid Zw given by Remark 7. It is worth to observe that
at the tropics defined by cosv =±c/

√
b2 + c2 the principal

curvatures ki are unbounded but at these sets the normal N
has norm zero and the product (1/ki)N has a finite limit.
See [20]. �
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