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V. Volenec, E. Jurkin, M. Šimić Horvath: Potpuni četverostran u pravokutnim koordinatama . . . . . . . . . . . . . . . . . . . 62



KoG•26–2022 F. Bellio, R. Garcia, D. Reznik: Parabola-Inscribed Poncelet Polygons ...

https://doi.org/10.31896/k.26.1
Original scientific paper
Accepted 24. 1. 2022.

FILIPE BELLIO
RONALDO GARCIA

DAN REZNIK

Parabola-Inscribed Poncelet Polygons
Derived from the Bicentric Family

Parabola-Inscribed Poncelet Polygons Derived
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ABSTRACT

We study loci and properties of a Parabola-inscribed family
of Poncelet polygons whose caustic is a focus-centered
circle. This family is the polar image of a special case of
the bicentric family with respect to its circumcircle. We
describe closure conditions, curious loci, and new conserved
quantities.
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Ponceletovi poligoni upisani paraboli i dobiveni iz
bicentričkih familija

SAŽETAK

Proučavamo geometrijska mjesta i svojstva familija Pon-
celetovih poligona upisanih paraboli koji omataju kružnicu
sa sredǐstem u fokusu parabole. Ova familija je polarna
slika specijalnog slučaja bicentrične familije s obzirom na
svoju opisanu kružnicu. Opisujemo uvjete zatvaranja, geo-
metrijska mjesta, i nove invarijante.

Ključne riječi: Poncelet, zatvaranje, porizam, parabola,
bicentričan, očuvanost, invarijante

1 Introduction

This is a continuation of our investigation of Euclidean
phenomena of Poncelet families [11, 12, 14, 20]. Recall
Poncelet’s porism: specially-chosen pairs of conics C ,C ′
admit a one-parameter family of polygons inscribed in C
while simultaneously circumscribed about C ′ [5, 7, 8].

Here we consider a certain family such that C is a parabola
P while C ′ is a circle centered on the focus of P . As shown
in Figure 1, this is simply the polar image of the bicentric
family (interscribed between two circles) with respect to
its circumcircle, see Appendices A and B for construction
details. We derive closure conditions for this new family for
N = 3,4,5,6 cases (N is the number of sides) and describe
some of its properties and loci of associated points. Also
considered is its polar image with respect to P .

Main results

• The loci of vertex, perimeter, and area centroids are
parabolas. Recall that in general, the locus of the
perimeter centroid is not a conic [22].

• The loci of vertex and area centroids of polar poly-
gons are straight lines, whereas that of the perimeter
centroid is a non-conic.

• In the N = 3 case, the locus of the orthocenter is a
straight line as are those of many triangle centers of
the polar family. The Euler line of the polar family
always passes through the parabola’s focus.

• Several centers of the N = 3 polar family are station-
ary and/or sweep circles. In the latter case, they all
belong to a single parabolic pencil.

• We prove that the quantity ∑sinθi/2 is conserved,
where θi are the interior angles of parabola-inscribed
polygons. In fact, this quantity is conserved by any
conic-inscribed polar image of the bicentric family.

Most of the above properties were first noticed via simula-
tion [25], and later proved with a computer-algebra system
(CAS) [17], using the explicit parametrizations given in
Appendix A. For brevity, we omit any CAS-based proofs.
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Related work

We can roughly divide it into three groups: (i) the study
of point loci over certain triangle families [18, 19, 27], (ii)
proving that loci of certain Poncelet triangle families are of
a given curve type [9, 13, 21, 23], and (iii) proving proper-
ties and invariants over N ≥ 3 Poncelet families [2, 4, 6, 22].
Also related is the Steiner-Soddy Poncelet family which
are the polar image of the so-called Brocard porism with
respect to the circumcircle [10].

Figure 1: Several configurations of the parabola-inscribed
Poncelet family (green), obtainable as the polar image of
the bicentric family (blue) with respect to the outer circle
(black), provided the bicentric incircle passes through the
circumcenter, see Apendix B. Also shown is the polar fam-
ily (red) of the parabola-inscribed one with respect to the
parabola itself. This family is inscribed in a hyperbola
(dark dashed red). So you can think of this trio (blue, green,
red) as successive polar images with respect to the outer
conic of each preceding family.

Article organization

In Sections 2 and 3 we examine parabola-inscribed Pon-
celet triangles (as well as its polar polygons with respect
to the parabola), deriving closure conditions and expres-
sions for many of its their triangle center loci. In Section
4 we derive geometric closure conditions for N = 4,5,6
families, respectively, detecting the abovementioned pat-
tern for the loci of their centroids (as well as in the polar
family), followed by conjectured generalizations in Section
7. In Section 8 we describe a new quantity conserved by
the parabola-inscribed family (and variations thereof).

In Appendix A we provide explicit parametrizations for
the vertices of both the N = 3 and N = 4 families, as well
as their respective polar families. In Appendix B we ex-
plore the relation of parabola-inscribed families with the
traditional bicentric family.

2 Loci of parabola-inscribed triangles

Referring to Figure 2, consider a Poncelet family T of trian-
gles inscribed in a parabola P , and circumscribed about a
focus-centered circle. Let F = [− f ,0] and V = [0,0] denote
focus and vertex, respectively, where f is the focal distance.
Consider a circle C centered at F with radius r.

Figure 2: A Poncelet triangle (green) is shown inscribed in
a parabola P (gold), circumscribed about a focus-centered
circle C ′ (brown). Over the family, X4 sweeps a line (solid
green) parallel to the directrix (dashed gold). The loci of
barycenter X2, circumcenter X3, and Spieker center X10 are
coaxial parabolas (blue); their foci are labeled F2, F3, and
F10, respectively. Notice the latter is on an intersection of
C ′ and the axis of the P (dashed gray). Since the family cir-
cumscribes a circle centered on F, F,X2,X10 are collinear
(dashed blue) and X10 = F +(3/2)(X2−F), see Remark 1.

Proposition 1 P and C will admit a Poncelet family of
triangles if, and only if, r/ f = 2(

√
2−1).

Proof. Consider the Poncelet triangle with two paral-
lel sides shown in Figure 3, inscribed in the parabola
y = x2/(4 f ), where f is the focal length. At x = r the
parabola must be at y = f − r, i.e., f − r = r2/(4 f ), and the
result follows. �
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Figure 3: Construction used to derive r/ f in Proposition
1. Side P1P2 of the Poncelet triangle is perpendicular to the
axis while the other two sides are parallel to it, i.e., vertex
P3 lies on the line at infinity.

2.1 Straight-line orthocenter locus

let T denote our parabola-inscribed triangle family and D
the directrix of P . Henceforth we shall adopt Kimberling’s
notation Xk to refer to triangle centers [16].

Proposition 2 Over T , the locus of the orthocenter X4
is the line parallel to D given by x = (5− 2

√
2) f , with

y ∈ R\{±2(
√

2−1) f}.

The proof below was kindly contributed by Alexey Za-
slavsky [26]:

Proof. Let C be the unit circle in the complex plane and
A, B, C the touching points with the sides of the parabola-
inscribed triangles. The polar transformation with cen-
ter F maps the parabola to a circle with center I pass-
ing through F and touching AB, BC, CA. Using Euler’s

formula |FI|2 = r2 = R(R− 2r) [24], with R = 1 its ra-
dius, and r =

√
2− 1. Consider the line FI as the real

axis. Since I is self-conjugated with respect to ABC, we
have a+b+ c = 2

√
2−2+(3−2

√
2)abc, ab+bc+ ca =

3−
√

2+(2
√

2−2)abc. The polar images of the altitudes
of the original triangle are the common points of BC, CA,
AB with the lines passing through F , and perpendicular to
FA, FB, FC respectively. We have to calculate the com-
mon point of the line passing through these three points
and the real axis. The coordinate functions of this point are
symmetric functions in a,b,c, so we can express them as el-
ementary symmetric functions on said variables, and verify
that they are constant. The restriction on y coordinates are
poles in the parametric equation that describes the locus. �

Note that in [10, Section 4] a more general result was
proved: the locus of the orthocenter X4 of any Poncelet
triangle family inscribed in a parabola P whose caustic is a
circle centered on the axis of P , is a straight line parallel to
the directrix of P .

In Appendix B we describe how the parabola-inscribed fam-
ily is the polar image of the bicentric family with respect
to its circumcircle. Referring to Figure 4, Proposition 2 is
actually a special case of:

Proposition 3 The locus of X4 of an family which is the
polar image of N = 3 bicentrics with respect to its outer
circle is an ellipse, straight line, or hyperbola if the circum-
center of the bicentric triangle lies in the interior, on top,
or outside its incircle.

Figure 4: Consider perturbing to the bicentric family (blue) such that the circumcenter O is interior (resp. exterior) to the
incircle, as shown on the left (resp. right). The tangential family (green) becomes ellipse- (resp. hyperbola-) inscribed (gold
curve). In the former (resp. latter) case, the locus of the orthocenter X4 is an ellipse (resp. hyperbola).
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2.2 Three parabolic loci

Referring to Figure 2, we show below that over T , the loci
of the barycenter, circumcenter, and Spieker centers are all
parabolas. The first and last correspond to the vertex and
perimeter centroids of a triangle. This is curious since, in
general, the locus of the perimeter centroid of a Poncelet
family is not a conic [22].

Proposition 4 Over T , the locus of the barycenter X2 is a
parabola coaxial with P , with focus F2 = [− f/3,0], and
vertex V2 = [2 f (1−2

√
2)/3,0].

Proposition 5 Over T , the locus of the circumcenter X3 of
T is a parabola coaxial with P , with focus F3 = [− f (2

√
2−

3)/2,0], and vertex V3 = [− f (2
√

2+3)/2,0].

Proposition 6 Over T , the locus of the Spieker center
X10 is a parabola coaxial with P , with focus F10 = [(1−
2
√

2) f ,0] and vertex V10 = [ f (3/2− 2
√

2),0]. In partic-
ular, F10 = [− f − r,0], i.e., it lies on the left extreme of
C .

Note that X10 is the perimeter centroid of a triangle, while
X2 doubles up as both the vertex and area centroid. A.
Akopyan has reminded us of the following general fact:

Remark 1 If a polygon circumscribes a circle (let its cen-
ter be O), then C1,C2,O are collinear and (C1 −O) =
(3/2)(C2−O).

Therefore:

Corollary 1 Over T , X10 is collinear with X2 and X10 =
F +(3/2)(X2−F).

3 The polar N = 3 family

Referring to Figure 5, let T ′ denote the polar triangle of
a triangle T in T , i.e., whose sidelines are the polars of
T with respect to P . Since T is inscribed in P these are
simply the tangents.

Recall some known properties of the polar triangle with
respect to any parabola [3]: (i) the circumcircle of T ′ passes
through the focus F; (ii) the orthocenter of T ′ is on the
directrix; (iii) its area is half that of the reference triangle.

Proposition 7 The T ′ family is Ponceletian. It is circum-
scribed about P and is inscribed in a hyperbola H with
center [ f ,0]. Its axes are the axis and directrix of P . Its
implicit equation reads

H :
(√

2+
3
2

)
(x− f )2− y2

2
−2 f 2 = 0.

Figure 5: The polar triangle T ′ (red) with respect to the
parabola P (gold) to which our Poncelet family (green) is
inscribed. It is Ponceletian as it is inscribed in a hyperbola
(dashed dark red). Well-know properties include (i) the
circumcircle (dashed red) passes through the focus F, and
(ii) the orthocenter X ′4 lies (and therefore sweeps) the direc-
trix of P [3]. Also shown are the visually-straight, though
quartic loci of the polar incenter X ′1 and Spieker center X ′10
(red and olive, respectively). The loci of X ′k, k = 2,3,4 are
straight lines parallel to the directrix (red, red, and dashed
gold), the latter the directrix itself.

3.1 Straight and nearly-straight loci

An enduring conjecture has been that the locus of the incen-
ter X1 of a Poncelet triangle family can only be a conic if
the pair is confocal [15].

As shown in Figure 5, over the polars, the locus of the in-
center is, to the naked eye, a straight line. However, upon
an algebraic investigation:

Proposition 8 The locus of the incenter X ′1 of T ′ is one of
four branches of the following quartic:

X ′1 :(−5
√

2−6)x2y2 +(4
√

2+2) f 2x2 +(10
√

2+12) f xy2

+(8
√

2+4) f 3x+(3
√

2−16) f 2y2−14 f 4 = 0.

Specifically, the branch

X ′1 =

√2y2+2+2y2−
√
−4y2+4y4+8

√
2+8

√
2y2−2

√
2y4

y2(
√

2+2)−2
,y

,
where y 6=±

√
2−
√

2.

6
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The locus of X ′1 is bounded by two lines parallel to the
directrix and approximately f/850 apart, see Figure 6.

Figure 6: Left: The locus of the polar incenter X ′1 is the
branch of a quartic which visually is a straight line. It fits
within to lines parallel to the directrix and at a distance of
f/850. In the figure the curve is shown at aspect ratio of
28,000. Right: The locus of the polar Spieker center X ′10
(perimeter centroid) is an algebraic curve of degree at least
four, bounded by two vertical lines separated by f/1700.
The aspect ratio of the figure is 56,000.

Still referring to Figure 5:

Proposition 9 The locus of the barycenter X ′2 of T ′ is a
line parallel to D and parametrized by

X ′2 =
1
3

[(
2
√

2−1
)

f ,
(4−8

√
2) f 2y+ y3

(8
√

2−12) f 2 + y2

]
.

Proposition 10 The locus of the circumcenter X ′3 of T ′ is a
line parallel to D and parametrized by

X ′3 =

[
(
√

2−1) f ,
(3
√

2+2)(2
√

2y2−28 f 2 + y2)y
14(y
√

2−2 f + y)(y
√

2+2 f + y)

]
.

Referring to Figure 7, the above expressions for X ′2 and X ′3
yield:

Corollary 2 The (varying) Euler line X ′2X ′3 of the polar
family passes through the focus F = [− f ,0] of P .

Still referring to Figure 7, the next 4 propositions were ob-
tains from experimental evidence and verification by CAS:

Proposition 11 The locus of the symmedian point X ′6 of T ′

is a line parallel to D and parametrized by

X ′6 =

[
(5−3

√
2) f ,

(3
√

2+4)(2
√

2y2−28 f 2 + y2)y
14(y
√

2−2 f + y)(y
√

2+2 f + y)

]
.

Proposition 12 The locus of X ′10 of the polar family is an
algebraic curve of degree four given by

X ′10 : 4
(

11
√

2+16
)

x4−4
(

3
√

2+5
)

x2y2−4
(

37
√

2+50
)

f x3

+8
(

2
√

2+1
)

f xy2 +21
(

5
√

2+8
)

f 2x2−4
(

9
√

2+8
)

f 3x

−
(√

2+4
)

f 2y2 +7 f 4 = 0

This locus is tightly bound by the following two lines paral-
lel to the directrix:

x=

(
√

2−1+

√
10−7

√
2

2

)
f and x=

(√
2−2−1/4

)
f .

The distance between these lines is approx. f/1700.

Figure 7: Over the polar family (red), the Euler line
(dashed magenta) will always pass through the focus F of
the parabola-inscribed family (green). X ′26 (resp. X ′68 and
X ′110) remain stationary at the focus F (resp. the two ver-
tices of the hyperbola to which the polar family is inscribed).
Experimentally, X161 is stationary at the intersection of the
caustic with the parabola axis farthest from the latter’s
vertex. Also shown is the Kiepert inparabola (magenta),
whose focus is X110 and directrix is the Euler line. Thus the
polar family simultaneously inscribes the original parabola
(gold) and the Kiepert (magenta). Finally, the figure depicts
the circular locus of Steiner point X ′99 of the polar family.

7
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3.2 Stationary points

The circumcenter of the tangential triangle appears as X26
on [16].

Proposition 13 Point X ′26 of T ′ is stationary at the focus F
of P .

Note X26 does not lie in general on the circumcircle of a
reference triangle. In our case it does since, as mentioned
above, the circumcircle of the polar contains the focus.

The Kiepert parabola of a triangle is an inscribed parabola
whose focus is labeled X110 on [16]. Its directrix is the Euler
line [24]. Referring to Figure 7:

Proposition 14 The focus X ′110 of the Kiepert parabola
(resp. the Prasolov point X ′68) of the polar family is sta-
tionary at the vertex of H farthest (resp. closest) to the
focus of P . Furthermore, X ′161 is stationary at the intersec-
tion of the incircle with the parabola axis farthest from the
parabola vertex, i.e., at [(1−2

√
2) f ,0].

Observation 1 Over the polar family, the vertex of its
Kiepert parabola sweeps a circle.

3.3 Linear loci galore

Referring to Figure 8:

Observation 2 Over the first 1000 triangle centers in [16],
the following triangle centers of T ′ sweep linear loci paral-
lel to D: X ′k,k =2, 3, 4, 5, 6, 20, 22, 23, 24, 25, 49, 51, 52,
54, 64, 66, 67, 69, 74, 113, 125, 140, 141, 143, 146, 154,
155, 156, 159, 182, 184, 185, 186, 193, 195, 206, 235, 265,
323, 343, 368, 370, 373, 376, 378, 381, 382, 389, 394, 399,
403, 427, 428, 468, 546, 547, 548, 549, 550, 567, 568, 569,
575, 576, 578, 597, 599, 631, 632, 858, 895, 973, 974.

3.4 A pencil of circular loci

Referring to Figure 7:

Proposition 15 The locus of the Steiner point X ′99 is a cir-
cle whose center O′99 lies on the axis of P of radius R′99
such that at its right endpoint it touches X ′110. Explicitly,

O′99 =
[
(6
√

2−7) f ,0
]
, R′99 = 2 f

√
17−12

√
2 ·

Referring to Figure 9:

Observation 3 Over the first 1000 triangle centers in [16],
the following triangle centers of T ′ sweep circular loci
with centers on the axis of P and passing through X ′110:
X ′k,k =99, 107, 112, 249, 476, 691, 827, 907, 925, 930, 933,
935.

Figure 8: Many triangle centers of the polar family sweep
lines parallel to the directrix. The following are shown: Xk,
k =2, 3, 4, 5, 6, 20, 22, 24, 25, 49, 51, 52, 54, 64, 66, 67,
69, 74.

Figure 9: Over the polar family we find that if a certain
triangle center sweeps a circular locus, said locus will be
an element of a parabolic pencil with X110 as their common
point (not labeled). In the figure the circular loci of Xk,
k =99, 107, 112, 249, 476, 691, 827, 907, 925, 930, 933,
935 are shown. Notice all lie on the dynamically-moving
circumcircle (dashed red) except for X249.

This gives credence to:

Conjecture 1 If the locus of X ′k is a circle with nonzero
radius, it is in the parabolic pencil with X110 as a common
point.

8
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4 Parabola-inscribed quadrilaterals

Referring to Figure 10, consider a Poncelet family Q of
quadrilaterals inscribed in a parabola P , and circumscribed
about a focus-centered circle C of radius r. As before,
let f denote the parabola’s focal distance, and V = [0,0],
F = [− f ,0], its vertex and focus, respectively.

Proposition 16 P and C will admit a Poncelet family of
convex quadrilaterals if, and only if, r/ f = 2

√√
5−2.

Proof. Referring to Figure 11, consider the symmetric Pon-
celet quadrilateral Pi = [xi,yi], i = 1, . . . ,4, inscribed in the
parabola y = x2/(4 f ), i.e., x = 2

√
f y. Clearly, y1 = f − r,

and y2 = f + r. Requiring that P1P2 be tangent to C yields
the quartic r2 + 4 f

√
f 2− r2 = 0. The claim is the one

positive root of this quartic. �

Figure 10: A Poncelet quadrilateral (green) is shown in-
scribed in a parabola P (gold) and circumscribed about a
focus-centered circle (brown). Over the family, (i) the inter-
section W of its diagonals (dashed green) is stationary; (ii)
the loci of vertex C0, perimeter C1, and area C2, centroids
sweep 3 distinct parabolas (blue) coaxial with P with foci
on F0, F1 and F2. Notice the vertex of C0 is F and that of C1
is F0. (iv) As predicted by Remark 1, C1 is collinear with F
and C2 (dashed black); (v) C0,C2,W are collinear (dashed
blue). Also shown is the polar quadrilateral Q′ (red) with
respect to P , inscribed in a hyperbola (dashed, red) cen-
tered at [ f ,0]. One observes that: (a) its diagonals (dashed
red) also intersect at W; (b) the loci of its vertex C′0 and
area C′2 centroids are lines (dashed orange) perpendicular
to the axis of P , (c) C′0,C

′
2,W are collinear (dashed red);

(d) the locus of the polar perimeter centroid C ′1 is algebraic
and of degree 10.

Note: more generally, Cayley’s conditions may be used to
include the non-convex case, see [8].

The next 3 propositions, first identified experimentally, were
then confirmed via CAS.

Proposition 17 Over Q , the two diagonals P1P3 and P2P4
intersect at a stationary point W = [(2−

√
5) f ,0].

Figure 11: Construction used to derive r/ f in for parabola-
inscribed convex quadrilaterals in Proposition 16.

4.1 The three centroids

Referring to Figure 10, let C0, C1, and C2 denote the vertex,
perimeter, and area centroids of the quadrilaterals in Q ,
respectively.

Proposition 18 Over the family, C0, C2, and W are
collinear.

Proposition 19 Over the Poncelet family, the loci of C0,C2
are parabolas coaxial with P , whose foci and vertices loca-
tions are listed in Table 1.

From Remark 1:

Corollary 3 The locus of C1 is a 3/2-scaled version of the
locus of C2 with F as the homothety center.

centroid (N=4) focal dist. vertex x/ f vtx. x/ f (num)
C0 f/4 −1 −1
C1 f/2 (

√
5−5)/2 −1.381966

C2 f/3
√

5/3−2 −1.25464

Table 1: Location of centroids C0,C1,C2 in the convex
N = 4 family.

9
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4.2 The polar quadrilateral

Referring to Figure 10, consider the polar quadrilateral
whose sides are the tangents to P at the vertices of the orig-
inal family. Let P′i , i = 1, . . . ,4 denote its vertices and C′0,
C′1, and C′2 denote its vertex, perimeter, and area centroids.

Proposition 20 The locus of the polar quadrilateral’s ver-
tices is the hyperbola H given by

H :
(x− f )2

4(
√

5−2) f 2
− y2

4 f 2 −1 = 0.

with center at [ f ,0] and foci [ f (1±2
√√

5−1),0].

Let W be defined as in Proposition 17. The next two proposi-
tions result from visual (and numerical) detection, followed
by verification by CAS.

Proposition 21 The two diagonals of the polar quadrilat-
eral intersect at W.

Proposition 22 Over the polar quadrilateral family, C′0,
C′2, and W are collinear.

Proposition 23 Over Q , the loci of C′0 and C′2 are lines
parallel to the parabola’s directrix and given by C′0 : x =
(3−
√

5) f/2, and C′2 : x = (4−
√

5) f/3.

Rather laborious CAS manipulation yields:

Proposition 24 Over Q , the locus of C′1 is one connected
component of an algebraic curve of degree ten, given by the
following equation:

C′1 : −
(

1457008
√

5+3257968
)

f x7y2 +
(

122156
√

5+273148
)

f 2x4y4

+
(

465164
√

5+1040132
)

f 2x6y2−
(

96506
√

5+215698
)

f 6x2y2

−
(

119256
√

5+266664
)

f 3x3y4 +
(

505052
√

5+1129268
)

f 5x3y2

+
(

8564
√

5+19204
)

f 7xy2−
(

881712
√

5+1971568
)

x10

+
(

43955
√

5+98289
)

f 4x2y4 +
(

24568
√

5+54936
)

f x5y4

−
(

7250
√

5+16210
)

f 5xy4−
(

1274930
√

5+2850838
)

f 4x4y2

+
(

1235568
√

5+2762832
)

f 3x5y2 +
(

4457696
√

5+9967712
)

f x9

−
(

7787152
√

5+17412608
)

f 2x8 +
(

5470456
√

5+12232344
)

f 3x7

−
(

1690535+755997
√

5
)

f 4x6−
(

812098
√

5+1815898
)

f 5x5

+
(

330322
√

5+738968
)

f 6x4 +
(

1002+448
√

5
)

f 6y4

−
(

228
√

5+672
)

f 8y2−
(

7300
√

5+16956
)

f 7x3

+
(

2750
√

5+7150
)

f 9x−
(

16145
√

5+36103
)

f 8x2

−
(

84196
√

5+188268
)

x6y4 +
(

544928
√

5+1218496
)

x8y2−726 f 10 = 0.

Furthermore, C′1 is bound by the following two
lines parallel to the directrix and approximately f/25
apart: x =

(
5+
√

2−
√

5
√

2−
√

5
)

f/2, and x =(√
5
√

2−
√

5−2
√

2+3
)

f/2.

5 Parabola-inscribed pentagons

Referring to Figure 12, consider a family of pentagons
inscribed in a parabola P of focal distance f , and circum-
scribed about a focus-centered circle C of radius r.

Figure 12: Parabola-inscribed pentagons (green), and
their polar polygon (red). The loci of vertex C0, perime-
ter C1, and area centroids C1 are parabolas (blue) coaxial
with P (gold). Over the polar family, C′0 and C′2 are straight
lines (dashed orange) perpendicular to the directrix (dashed
black). Though the locus of the perimeter centroid C′1 is
indistinguishable from a straight line, it is an algebraic
curve of degree likely much higher than 10 (since that is the
degree for C′1 on N = 4).

Proposition 25 The pair P ,C will admit a Poncelet family
of pentagons if, and only if, r/ f is the only positive root of
the following sextic polynomial (r/ f ≈ 0.995219):

x6 +12x5−28x4 +32x3 +112x2−64x−64 = 0.

Proof. Referring to Figure 13, without loss of generality,
let P be the unit parabola y = x2 with focus F = [0,1/4]

10
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and let C be a circle of radius r centered at F . Consider the
Poncelet pentagon Pi, i = 1, . . . ,5 with P4 at infinity, and
P1P2 horizontal and tangent to C at [0,1/4− r]. Compute
the next Poncelet vertex P3 = [x3,y3] as the intersection of
a tangent to C from P2 with P . By requiring that x3 = r, we
obtain the sextic in the claim. �

Figure 13: Construction used to derive r/ f in Proposition
25. Top (resp. bottom) shows the complete picture (resp. a
detailed view near the vertex)

Referring to Figure 12:

Conjecture 2 Over the parabola-inscribed pentagon fam-
ily, the loci of vertex, perimeter, and area centroids are
parabolas coaxial with P .

Conjecture 3 Over the family of polar polygons to
parabola-inscribed pentagons, the locus of vertex and area
vertices are lines perpendicular to the directrix while that
of the perimeter centroid is an algebraic curve of degree at
least four.

6 Parabola-inscribed hexagons and sum-
mary

6.1 Hexagons and summary

Referring to Figure 14, we can also consider a family of
parabola-inscribed hexagons.

Figure 14: Hexagons (green) inscribed in a parabola P .
As before, the loci of C0, C1, and C2 are parabolas (blue)
coaxial P . Over the polar family (red), the loci of C′0,C

′
2 are

lines perpendicular to the axis while that of C′1 is algebraic,
and though visually a straight line, its degree is likely much
higher than 10 (since that is the degree for C′1 on N = 4).

An analogous construction (based on symmetric configura-
tions) was used to obtain r/ f required for convex N = 6. A
summary of all r/ f thus obtained appears in Table 2.

N r/ f r/ f (num.) Cayley
3 2(

√
2−1) 0.828427 4

4 2
√√

5−2 0.971737 4
5 n/a 0.995219 8
6 n/a 0.999183 8

Table 2: Table of r/ f required for closure of convex N-
gons inscribed in a parabola, and circumscribed about a
focus-centered circle. Algebraic expressions (2nd column)
are only possible for N = 3,4. The last column shows the
number of possible solutions for r/ f if one were to include
cases where circle and parabola intersect (the Poncelet
polygon may be self-intersecting and/or non-convex). For
Cayley’s conditions in the general case, see [8].

7 Generalizing centroidal loci

Let R be a Poncelet family of N-gons inscribed to a
parabola P , and circumscribed about a focus-centered circle

11
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C . Experimental the evidence for the N = 3,4,5,6 cases,
we propose the following generalizations (reader contribu-
tions are encouraged):

Conjecture 4 Over R , for any N≥3, the loci of vertex,
perimeter, and area centroids are parabolas coaxial with
P .

Conjecture 5 Over R and for any N≥3, the loci of vertex
and area centroids of the polar polygons with respect to P
are straight lines parallel to the directrix of P .

Let B ′ be the conic-inscribed polar image of a generic
bicentric family of N-gons with respect to the bicentric
circumcircle (see Appendix B).

Recall that the locus of vertex and area centroids C0,C2 are
conics over any Poncelet family, while that of the perimeter
centroid C1 is not, in general, a conic [22]. A consequence
of Remark 1, analogously exploited in [10, Corollary 2], is
that:

Corollary 4 Over B ′, the locus of the perimeter centroid
is a conic.

Let P ′ be the conic to which B ′ is inscribed.

Conjecture 6 Over the polar polygons of B ′ with respect
to P ′, the locus of the perimeter centroid is never a conic.

8 A conserved quantity

As in Appendix B, let B denote a bicentric family of N-gons
inscribed to a circle C = (O,R), and circumscribed about
a second, nested circle C ′. Let di denote the perpendicular
distance from the bicentric circumcenter O to side PiPi+1.

Referring to Figure 15:

Lemma 1 Over B , the quantity ∑di is conserved.

The argument below was kindly provided by A. Akopyan
[1].

Proof. The above statement is equivalent to stating that
over B the sum of unit vectors from a point P in the direc-
tion perpendicular to bicentric sides is constant. In turn, the
latter is a corollary of the well-known fact that over B , the
centroid of the touchpoints of sidelines with C ′ is stationary.

�

Let θi, i = 1, . . . ,N, denote the angles interior to a polygon
B .

Figure 15: An N = 4 bicentric polygon is shown (blue).
Without loss of generality, in the case shown the circumcen-
ter O is interior to the incircle, i.e., the polar family (green)
is ellipse-inscribed. Also shown is the pedal polygon (pink)
with respect to a point P in the interior of the circumcir-
cle and the unit vectors (brown) along each perpendicular
dropped from P onto the sides.

Proposition 26 For all N, the porism of polygons polar to
B with respect to its circumcenter conserves ∑

N
i=1 sinθi/2=

(1/R)∑di.

Proof. The vertices of the tangential polygon are the poles
of each side of B with respect to the circumcircle. There-
fore, said vertices are at a distance Di = R2/di from the
O. Since sinθi/2 = R/Di = di/R, per Lemma 1, the claim
follows. �

Note that in general, θi is the directed angle Pi−1PiPi+1.
In the case when r < d, the tangential polygon will be in-
scribed in two branches of a hyperbola. There are only two
cases: Either (i) all vertices lie on a first proximal branch of
the hyperbola, or (ii) all but one vertex Pk will lie on said
branch, with Pk lying on the distal branch. In case (i), all
θi are positive whereas in (ii) all are positive except for θk.
Furthermore, in this case, the supplement of angles θk−1
and θk+1 need to be used in the sum. So the invariant sum
becomes

sin
θ1

2
+ . . .+ sin

π−θk−1

2
− sin

θk

2

+ sin
π−θk+1

2
+ . . .+ sin

θN

2
=

sin
θ1

2
+ . . .+ cos

θk−1

2
− sin

θk

2
+ cos

θk+1

2
+ . . .+ sin

θN

2
·
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Appendix A. Vertex parametrizations

A.1. Parabola-inscribed triangles

A 3-periodic orbit Pi = [xi,yi] = [−y2
i /(4 f ),yi] is such that

y2 =
2
(

1−
√

2
)
(4 f y1 +∆) f

8 f 2
√

2−12 f 2 + y2
1

,

y3 =
2
(√

2−1
)

f ∆

8 f 2
√

2−12 f 2 + y2
1
,

where ∆ =
√

16(8
√

2−11) f 4 +8 f 2y2
1 + y4

1.

A.2. Hyperbola-inscribed polar triangles

A 3-periodic orbit Qi = [q1,i,q2,i] is such that

Q1 =
(

1+
√

2
)
· (4 f y1 +∆)y1

2(2
√

2+3)y2
1−8 f 2

,

(
1+
√

2
)

y3
1−4

(
1+
√

2
)

f 2y1−2∆ f

2(2
√

2+3)y2
1−8 f 2

,
Q2 =

(
1+
√

2
)
· (4 f y1−∆)y1

2(2
√

2+3)y2
1−8 f 2

,

(
1+
√

2
)

y3
1−4

(
1+
√

2
)

f 2y1 +2∆ f

2(2
√

2+3)y2
1−8 f 2

,
Q3 =

(
1+
√

2
)
·

(
5−3

√
2
)(

(1+2
√

2)y2
1−28 f 2

)
f

7((3 +2
√

2)y2
1−4 f 2)

,− 8 f 2y1

(3 +2
√

2)y2
1−4 f 2

,

where ∆ =
√

y4
1 +8 f 2y2

1 +16(8
√

2−11) f 4.

A.3. Parabola-inscribed quadrilaterals

A 4-periodic orbit Pi = [xi,yi] = [− 1
4 f y2

i ,yi] is such that:

y2 =

(
2
√√

5−2 ∆1 +4 f y1

(
3−
√

5
))

f

4 f 2
√

5−8 f 2− y2
1

,

y3 =
4
(

2−
√

5
)

f 2

y1
,

y4 =−

(
2
√√

5−2 ∆1 +4 f y1

(√
5−3

))
f

4 f 2
√

5−8 f 2− y2
1

,

where ∆1 =

√
y4

1 +8 f 2y2
1 +16

(
9−4

√
5
)

f 4.

A.4. Hyperbola-inscribed polar quadrilaterals

A 4-periodic orbit Pi = [pi,qi] is such that:

p1 =

√√
5−2

(
∆1 +6 f y1

√
5
√√

5−2+14 f y1

√√
5−2

)
y1

4y2
1 +2y2

1
√

5−8 f 2

q1 =

(
2
√√

5+2 ∆1 f +4 f 2y1− y13
)(

4 f 2
√

5+8 f 2 + y2
1

)
32 f 4−32 f 2y2

1−2y4
1

p2 =
2
√√

5−2
(

∆1 +2
√

2(
√

5−1)y1

)((√
5−2

)
y2

1 +4 f 2
)

f 2

y1
(
16 f 4−16 f 2y2

1− y4
1
)

q2 =

√√
5+2

(
y1 ∆1 +2

√√
5+2 f y2

1−8
(√

5−2
)3/2

f 3
)
·(

(
√

5−2)y2
1 +4 f 2

)
f

p3 =
−2
√√

5−2
(

∆1−2
√

2
√√

5−1 f y1

)
y1
(
16 f 4−16 f 2y2

1− y4
1
) ·(

y2
1
√

5+4 f 2−2y2
1

)
f 2

q3 =

−
√√

5+2
(

y1∆1−2
√√

5+2 f y2
1 +8

(√
5−2

)3/2
f 3
)

y1
(
16 f 4−16 f 2y2

1− y4
1
) ·(

(
√

5−2)y2
1 +4 f 2

)
f

p4 =

√√
5−2

(
∆1−2

√
2(
√

5−1) f y1

)(
(
√

5−2)y2
1 +4 f 2

)
y1

y1
(
16 f 4−16 f 2y2

1− y4
1
)

q4 =

(
−2 f ∆1

√√
5−2+4 f 2y1− y3

1

)(
4 f 2
√

5+8 f 2 + y2
1

)
y1
(
16 f 4−16 f 2y2

1− y4
1
)

13
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Appendix B. Relation to the bicentric family

Referring to 16, the bicentric family B of N-gons is a fam-
ily of Poncelet N-gons inscribed in a circles C = (O,Rb),
and circumscribed about another circle C ′ = (O′,rb). Let
d = |O−O′|. Relations between d,R,rb are known for
many “low N” and are listed in [24, Poncelet’s porism].

Figure 16: The bicentric family is a family of Poncelet
polygons interscribed between two circles. Shown are the
N = 4 (left) and N = 5 (right) convex cases.

Definition 1 (Polar polygon) Given a polygon P, its polar
polygon P′ with respect to a conic C is bounded by the
tangents to C at the vertices of P .

Proposition 27 The polar family B ′ of B with respect to
C is an ellipse, parabola, or hyperbola-inscribed if d is
smaller, equal, or greater than R′, respectively (O is in-
terior, on the boundary, or exterior to C′, respectively).
Furthermore, one of the foci coincides with O′.

As shown in Figure 17, when the polar family is hyperbola-
inscribed, there are two layouts for its vertices: either (i) all
lie on the branch of the hyperbola closest to the incenter of
the family, or (ii) all but one lie on said branch, while the
remaining one lies on the “other” branch.

Figure 17: If the circumcenter O is exterior to the incircle
of a bicentric polygon (blue), the polar (i.e., tangential)
family will be hyperbola (gold) inscribed. Over the family
there are two configurations: (i) solid green: all vertices lie
on one branch of the hyperbola; (ii) dashed green: all but
one vertex lie on the branch proximal to the incenter, while
a lone one lies on the opposite branch.

Proposition 28 The parabola P which is the polar image
of B with d = rb, has focal distance f = R2

b/(2rb).

Proof. Let O = (0,0). Consider a polygon in B with a ver-
tical side P1P2 tangent to the incircle at (2rb,0). The vertex
V of P is the pole of said side which can be obtained as the
inversion of point (2rb,0) with respect to the circumcircle.
This yields the result. �
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Triads of Conics Associated with a Triangle

ABSTRACT

We revisit constructions based on triads of conics with foci
at pairs of vertices of a reference triangle. We find that
their 6 vertices lie on well-known conics, whose type we
analyze. We give conditions for these to be circles and/or
degenerate. In the latter case, we study the locus of their
center.

Key words: triangle, conic, Carnot, Soddy circles
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Trijade konika pridruženih trokutu

SAŽETAK

Podsjećamo na konstrukcije temeljene na trijadama konika
sa žarǐstima u parovima vrhova referetnog trokuta. Nalazi-
mo da njihovih 6 vrhova leži na dobro poznatim konikama
čiji tip analiziramo. Za ove konike dajemo uvjete da budu
kružnice i/ili degenerirane konike. U slučaju degeneriranih
konika proučavamo geometrijsko mjesto njihovog sredǐsta.

Ključne riječi: trokut, konika, Carnot, Soddyjeve kružnice

1 Introduction

Paraphrasing a passage in [13], “new tools of interactive
geometry enable the discovery of properties in a way math-
ematicians in the past could only have dreamed about”.
Aided by interactive simulation (mostly Mathematica and
GeoGebra), and inspired by a construction by Paul Yiu [17,

Sec. 12.4, p. 148], we tour curious dynamic phenomena
manifested by triads of ellipses (or hyperbolas) naturally
associated with a triangle. Namely, we attach their foci to
a pair of vertices and impose that the conic pass through
either (i) the remaining vertex, or (ii), some chosen point P.
We call these “V-” or “P”-conics, respectively, see Figure 1.

Figure 1: Left: A4ABC, and a V-triad of ellipses passing through a vertex and with foci on the remaining pair. Right: in
the P-triad case, ellipses still have foci on pairs of vertices but now pass through a given point P.
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Some of our main results include:

• The 6 vertices of V-ellipses always lie on a conic;
this conic is degenerate iff the reference triangle is a
right triangle.

• The conic passing through the 6 P-ellipse vertices is
degenerate iff P lies on the circumcircle.

• The locus of the center of the 6-point conic over the
degenerate family is a quartic in the V-ellipse case,
and the union of three arcs of ellipses in the P-ellipse
case; we derive expressions for them.

• We specify the regions such that various 6-point con-
ics are of a given type (hyperbola, ellipse, parabola,
or degenerate).

• We derive conditions such that various 6-point conics
are a circle.

• We derive conditions (and loci) under which the co-
vertices of conic triad lie on a conic.

Some of the above are done for the case of hyperbola triads
as well. Most of our results have been obtained through
experimentation with dynamic geometry software first, and
later confirmed geometrically and/or algebraically. See [6]
for details.

Some long, symbolic proofs are omitted, with some expres-
sions appearing in Section 6. Throughout the paper we will
be using Xk notation for triangle centers, after [8].

Related Work

We have been inspired by the idea of erecting identical geo-
metrical objects to the sides of a triangle, e.g., [3, 5, 10, 11].
Triads of “Artzt” parabolas, conceived in the XIX century,
have been revisited in [4, 9, 15]. In [13], new properties of
Artzt parabolas are detected via dynamic geometry software.
Properties of conic triads with a shared focus are studied in
[1]. A 6-point conic passing through the tangency point of
the excircles (which turns out to coincide with the vertices
of V-ellipses) is described in [2, 18]. A Construction of 3
“Soddy” hyperbolas (called here V-hyperbolas) with foci on
vertices appears in [17, Sec. 12.4, p. 148]. Properties of a
triad of circles tangent to the nine-point circle are studied
in [12].

Article organization

Properties of triads of V-ellipses, P-ellipses, V-hyperbolas,
and P-hyperbolas, are covered in Sections 2 to 5, respec-
tively. In last section we pose to the reader a few open
questions. The last section contains some long-form sym-
bolic expressions for a construction appearing in Section
2.

2 A triad of V-ellipses

Referring to Figure 1:

Definition 1 (V-ellipses) Given a triangle4ABC, a triad
of V-ellipses Ea,Eb,Ec have foci on (B,C), (C,A), (A,B)
and pass through A, B, and C, respectively.

Proposition 1 The V-ellipses Ea,Eb,Ec are centered at
the midpoints of 4ABC’s sides. Their vertices1 are the
(external) tangency points of the excircles with triangle’s
sidelines and lie on a conic, Y .

Proof. Let a,b,c be the sidelengths of 4ABC. Let
(Ia),(Ib),(Ic) the escribed circles and let A1, A2, B1, B2,
C1, C2 their (external) tangency points with the lines BC,
CA, AB, as shown in Figure 2. We shall prove that these
points are the intersection of the V-ellipses with their focal
axis BC, CA, AB, hence their vertices. Elementary proper-
ties of tangents from a point to a circle yield:

AC2 =AB1 = BA2 = BC1 =CA1 =CB2 = p,

BA1 =CA2 = p−a,

AB2 =CB1 = p−b,

AC1 =BC2 = p− c, (1)

where p = (a+b+ c)/2 is the semi-perimeter. Hence:

A1A2 = A1B+BC+CA2 =

= (p−a)+a+(p−a) = 2p−a = b+ c.

Since A1B = A2C, and since points A1, A2, B and C are
collinear, the former are precisely the two vertices of Ea.
Furthermore, the segments BC and A1A2 share their mid-
point, the center of Ea. The proof for Eb and Ec is similar.

In order to prove that their six vertices are on a conic, by
Carnot’s Theorem, it is enough to check that

AC1

BC1
· AC2

BC2
· BA1

CA1
· BA2

CA2
· CB1

AB1
· CB2

AB2
= 1. (2)

This claim is obtained by substituting (1) into (2). �

1These refer to the intersection of a conic with the focal axis.
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Remark 1 The fact that a conic passes through the six ex-
ternal tangency points with the excircles was discovered by
Paul Yiu [18]. In [8] its center is labeled X478.

It can be shown that the Yiu conic Y can never be a circle
except when4ABC is an equilateral.

Proposition 2 Each V-ellipse Ea,Eb,Ec is respectively
tangent at A,B,C to the sides of the excentral triangle.

Proof. Referring to Figure 2, since Ia, Ib, Ic are the centers
of the escribed circles, the lines IbIc, IcIa, IaIb are the ex-
ternal bisectors of ∠BAC, ∠ACB, and ∠BCA; thus AIa, BIb
CIc are altitudes in 4IaIbIc as well as (internal) bisectors
of4ABC. By the optic propriety of conics, lines IbIc, IcIa,
IaIb are also the tangents in A, B, C to the ellipses Ea, Eb,
Ec. �

Referring to Figure 2, let (A′,A′′), (B′,B′′), and (C′,C′′) de-
note the pairwise intersections between (Eb,Ec), (Ea,Ec),
and (Ea,Eb), respectively.

Figure 2: Properties of a V-ellipses Ea,Eb,Ec (red, green,
blue) with respect to a 4ABC (black). (i) Its vertices are
at the tangency points of the excircles (dashed gold) with
the sidelines; hence they lie on the Yiu conic (magenta)
[18]. (ii) Each ellipse is tangent at A,B,C to a side of the
excentral triangle 4IaIbIc. (iii) The 3 chords A′A′′, B′B′′,
and C′C′′ between the intersections of (Eb,Ec), (Ec,Ea),
(Ea,Eb) pass through Ia, Ib, Ic, and concur at X20.

Proposition 3 The lines through A′,A′′, B′,B′′, C′,C′′ pass
through the 3 excenters Ia, Ib, Ic, respectively, and concur at
the de Longchamps’ point X20.

Proof. It can be shown that the Ea is given by the following
implicit equation in barycentric coordinates [x,y,z]:

Ea : 4c(b+ c)xy− (a−b− c)(a+b+ c)y2 +

+ 4b(b+ c)xz+2(a2 +b2 +2bc+ c2)yz−
− (a−b− c)(a+b+ c)z2 = 0

Eb,Ec can be obtained cyclically on a,b,c. The
barycentrics for the vertices of Ea are A1 = [0,a+b+c,a−
b− c] and A2 = [0,a−b− c,a+b+ c]. Let S be twice the
area of 4ABC. The two real intersections A′,A′′ between
Eb,Ec are given by:

A′ =[(a−b− c)(a+b− c)(a−b+ c) ·

· (3a2 +2ab−b2 +2ac+2bc− c2)+

+4(−2a3−a2b−b3−a2c+b2c+bc2− c3)S,

(a−b− c)(a−b+ c)(a+b+ c) ·

· (a2−2ab−3b2 +2ac+2bc+ c2)+

+4(a3 +ab2 +2b3 +a2c−b2c−ac2− c3)S,

(a−b− c)(a+b− c)(a+b+ c) ·

· (a2 +2ab+b2−2ac+2bc−3c2)+

+4(a3 +a2b−ab2−b3 +ac2−bc2 + c3)S
]

and A′′ is obtained as above but with S→−S. The inter-
sections B′,B′′ and C′,C′′ are obtained cyclically. The line
A′A′′ is then given by:

− (b− c)(a+b+ c)2x− (a+b− c)2(a+ c)y+

+(a+b)(a−b+ c)2z = 0

It can be shown this line passes through excenter Ia. The
other lines can be obtained cyclically. It can also be shown
these meet at X20, whose first barycentric coordinate is
given by [8]: [−3a4 +2a2(b2 + c2)+(b2− c2)2], with the
other two obtained cyclically. �

Referring to Figure 3:

Proposition 4 When 4ABC is a right triangle, the V-
ellipses pass through the reflection of the orthocenter on
the circumcenter, the de Longchamps point X20.

Proof. Let C denote the right-angle vertex of4ABC, and C′

its reflection about the circumcenter X3. We shall prove that
each V-ellipse passes through C′. Due to central symme-
try, this is trivially true for Ec. Consider Ea: since its foci
are B,C and it passes through A, its major axis has length
|AC|+ |AB|. Since ACBC′ is a rectangle, |AC|= |BC′|, and
|BC| = |C′A|. Hence |C′B|+ |CC′| = |AC|+ |AB|, which
ensures that C′ ∈ Ea. Similarly C′ ∈ Eb. �

18



KoG•26–2022 R. Garcia, L. G. Gheorghe, P. Moses, D. Reznik: Triads of Conics Associated with a Triangle

Figure 3: If 4ABC is a right triangle, the Yiu conic Y
(magenta) is degenerate, and the V-ellipses intersect at X20.
Furthermore, over all C on a semicircle with AB as a di-
ameter, the locus of the center X478 of Y is an arc (solid
gold) of a quartic (dashed gold). The lines through A,B
perpendicular to AB (dotted gold) are tangent to the locus
at its endpoints A′, B′, and |AA′|= |BB′|= |AB|.

Degenerate six-point conic:

Still referring to Figure 3:

Proposition 5 Y is degenerate iff 4ABC is a right trian-
gle.

Proof. Let A1,A2,B1,B2,C1,C2 the intersection points of
the ellipses, with the lines BC, CA, AB, as in Figure 3. We
shall prove that A1,B1,C1 are collinear iff 4ABC is right-
angled. To do so, by Menelaus’ theorem, we need to check
that
A1C
A1B
· C1B
C1A
· B1A

B1C
= 1. (3)

Let x =CA1 = BA2, y = AB1 =CB2, z = AC1 = BC2.

Since the V− ellipses pass through one of triangle’s ver-
tices and have their foci into the other two, a + 2x =
b+ c, b+2y = a+ c, c+2z = a+b, hence

x = p−a, y = p−b, z = p− c,

where p = a+b+c
2 is the semi-perimeter. Substituting this

into (3), we obtain:

x
p
· p

z
· y

p
= 1

hence (p−a) · (p−b) = p · (p− c), which is equivalent to
c2 = a2+b2. The result follows by Pythagoras’ theorem. �

Assume, without loss of generality, that A = (1/2,0) and
B = (−1/2,0).

Proposition 6 Over C on the semicircle whose diameter is
AB, y > 0, the locus of the center of the degenerate Y is the
arc of a quartic given by:

4(x2 + y2)2−8y3− x2 +2y2 = 0, y > 1

The semicircle with y < 0 produces a locus which is sym-
metric about the x-axis.

Proof. The claim was obtained via manipulation and sim-
plification with a Computer Algebra System (CAS). �

Figure 4: With A,B fixed, the solid (resp. dashed) pur-
ple lines are the locus of C such that the Yiu conic Y is
a parabola (resp. degenerate). As indicated, in between
said boundaries, the conic is either an ellipse or a hyper-
bola. A particular 4ABC is shown with C interior to the
circumcircle, where Y is a hyperbola (magenta).

Referring to Figure 4:

Proposition 7 With A, B fixed, the Yiu conic Y of 4ABC
is (i) degenerate if C lies on the union of the circumcircle
with the two lines tangent to it at A and B; (ii) a parabola if
C lies on a curve whose barycentrics satisfy the following
degree-8 implicit equation:

a8 +b8 + c8−2(a4b4 +a4c4 +b4c4)+

+4abc(a5 +b5 + c5−a4b−ab4−a4c−ac4−
−bc4−b4c+a3bc+ab3c+abc3) = 0.

19



KoG•26–2022 R. Garcia, L. G. Gheorghe, P. Moses, D. Reznik: Triads of Conics Associated with a Triangle

Proof. The claim was obtained via manipulation and sim-
plification with a Computer Algebra System (CAS). �

What about the co-vertices?

It turns out that for A,B fixed, there is a locus of C such that
the 6 co-vertices of the V-ellipses lie on a conic. Without
loss of generality, let A = (−1,0), and B = (1,0). Referring
to Figure 5:

Proposition 8 The locus of C such that the 6 co-vertices of
Ea, Eb, and Ec lie on a conic is given by:(

x6− (2y2 +3)x4− (3y4−8y2−3)x2 +11y4−6y2−1
)

ρ1 ρ2+

+
(
−2x6− (22y2−6)x4− (14y4−36y2 +6)x2 +6y6 +22y4−

−14y2 +2
)
(ρ1 +ρ2)+

+2x
(

x6 +(3y2−3)x4 +(3y4−2y2 +3)x2 + y6−7y4− y2−1
)
·

· (ρ1−ρ2)+

+2(x2 + y2−1)
(

5x4 +2(y2−5)x2−3y4−14y2 +5
)
(x2−1) = 0

where ρ1 =
√

x2 + y2 +2x+1,
and ρ2 =

√
x2 + y2−2x+1.

Proof. Computer algebra system-based manipulation. �

Figure 5: A4ABC is shown, as well as its 3 P-ellipses (red,
green, blue) with co-vertices A+,A−, B+,B−, C+,C−. Also
shown is the locus of C (yellow) such that the co-vertices
lie on a conic. Notice that for the triangle shown, C does
lie on said locus. For illustration, a hyperbola is shown
(dashed magenta) which passes through 5 co-vertices but
misses B−.

Figure 6: Four choices for C on the locus (yellow) such that
the co-vertices A+,A−, B+,B−, and C+,C− of V-ellipses
(red, green, blue) of4ABC lie on a conic (dashed magenta).
In the top two cases (resp. bottom two), the co-vertices are
split 3x3 (resp. 5x1) on each branch of the conic.
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Notice that a full 8 branches of the locus converge on either
A or B. Also note that if one attempts to eliminate the square
roots in the implicit, one obtains a degree-36 polynomial.

Examples of the 6-point co-vertex conic for different loca-
tions of C on the above locus appear in Figure 6, suggesting
that (i) this conic is always a hyperbola, and that (ii) depend-
ing on the branch of the locus of C is on, co-vertices are
split as 3:3 or 5:1 along the two branches of the hyperbola.

3 A triad of P-ellipses

Referring to Figure 7:

Definition 2 (P-ellipses) A triad of P-ellipses E∗a ,E∗b ,E∗c
have foci on (B,C), (C,A), (A,B) and pass through a given
point P.

Consider a triad of P-ellipses as in Definition 2.

Theorem 1 The six vertices of a triad of P-ellipses lie on
a conic Y ∗.

Proof. Referring to Figure 7, let A1,A2 (resp. B1,B2, and
C1,C2) denote the vertices of E∗a (resp. E∗b and E∗c ). Note
that A1A2 shares its midpoint with BC, and so on cyclically.
Therefore: AC2 = BC1, BA2 = A1C, and CB1 = B2A. To fin-
ish the proof, we apply Carnot’s theorem as in Proposition
1. �

Let a,b,c denote the sidelengths of 4ABC. Let δa =
|PB|+ |PC|, δb = |PC|+ |PA|, δc = |PA|+ |PB|. Referring
to Figure 8 (left).

Figure 7: The six vertices A1, A2, B1, B2, C1, and C2 of
P-ellipses E∗a ,E∗b ,E∗c are on a conic Y ∗. For reference, the
circumcenter X3 of4ABC and the center O∗ of Y ∗ are also
shown.

Proposition 9 There is a unique point P∗ such that Y ∗ is
a circle given by:[
(a2−δ

2
a)(c

2−b2 +δ
2
b−δ

2
c)
]2
+[

(b2−δ
2
b)(a

2− c2 +δ
2
c−δ

2
a)
]2
+[

(c2−δ
2
c)(b

2−a2 +δ
2
a−δ

2
b)
]2

= 0

Furthermore, Y ∗ is concentric with the circumcircle of
4ABC.

Level curves of the above function for a particular trian-
gle are shown in Figure 8 (left). Interestingly, there is a
straightforward way to construct a triangle whose Y ∗ is a
circle.

Definition 3 (anticevian triangle) Given 4ABC and a
point Q, the Q-anticevian4A′B′C′ is such that4ABC is its
Q-cevian [16].

Referring to Figure 8 (right), a first “needle in a haystack”
find is:

Proposition 10 Given a reference triangle 4ABC, its X3
is the P∗ of its X3-anticevian4A′B′C′. Furthermore, (i) Y ∗
of the the latter is concentric with its circumcircle, and (ii)
its center lies on the X4X6 line of4ABC.

Proof. This needle-in-a-haystack phenomenon was discov-
ered experimentally and then verified using CAS. �

Barycentric coordinates for the circumcenter X ′3 of the X3-
anticevian appear in Section 6.

While it can be shown that given a generic4A′B′C′, there
is always a triangle4ABC which is the former’s X3-cevian
(map is invertible), we don’t yet have a geometric construc-
tion for the latter.

A degenerate 6-point conic:

As shown in Figure 9 (left), a simple condition renders Y ∗
degenerate, namely:

Proposition 11 If P is on the circumcircle of 4ABC, Y ∗
is degenerate (two straight lines).

Proof. Via CAS, it can be verified that the 3x3 discriminant
of the homogeneous equation for the conic vanishes. �

Referring to Figure 9 (left):

Proposition 12 Over P on the circumcircle, the locus of
the center O∗ of Y ∗ is the union of arcs of three distinct
ellipses La,Lb,Lc, all of which pass through the midpoints
of ABC. The endpoints of La are one vertex of V-ellipse
Eb and one of Ec, and so on cyclically for the endpoints of
Lb, Lc.
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Figure 8: Left: Given a triangle, there is a unique P∗ such that the 6-point conic (magenta) of a triad of P-ellipses is
a circle. The latter is concentric with the circumcircle (dashed black). Also shown are level curves of the functional in
Proposition 9: P∗ is its unique zero. Right: The vertices of a P-ellipse with foci on vertices of the X3-anticevian4A′B′C′

of4ABC, and passing through the latter’s X3 lie on a circle (magenta). The latter is concentric with the circumcircle of
4A′B′C (dashed black) at X ′3.

Figure 9: Left: If P lies on the circumcircle of4ABC, the Yiu conic Y ∗ (magenta) is degenerate. Over P on the circumcircle,
the locus (gold) of the center O∗ of the degenerate conic (magenta lines) is the union of three arcs of ellipse La,Lb,Lc. Right:
Over all P on the circumcircle of an equilateral4ABC, the locus of the center O∗ of the degenerate 6-pt conic (magenta) is
the union of 3 elliptic arcs (solid gold) centered on A,B,C, whose major axes are the altitudes of4ABC. The major (resp.
minor) semi-axes measure |AB|=

√
3/2 (resp. |AB|=

√
3/6).

Proof. Referring to Figure 10, that the endpoints of Lc are a
vertex A′′ of Ea and a vertex B′′ of Eb can be seen from the
fact that the limit of E∗a (resp. E∗b ) as P approaches A (resp.
B) is Ea (resp. Eb) and that the center O∗ of the degenerate
Y ∗ will approach the intersection of AA′′ and BC. The same
argument applies for the endpoints of La,Lb, cyclically. To
show that the locus of O∗ is the union of three elliptic arcs,
we (i) restrict P to a given “third” of the circumcircle, e.g.,
the arc between A and B. Then (ii) we obtain, via a CAS, a
(rather long) symbolic expression for the implicit function
f (x,y) representing the ellipse which passes through the
5 proposed points, namely, two vertices of V-ellipses and

the midpoints of the sides of 4ABC. We then (iii) obtain
a parametric expression for O∗ as a function of P and plug
it into f (x,y), and notice via a CAS, that this simplifies
to zero, independent of P. (iv) The same can be repeated
cyclically for the other 3 portions of the circumcircle. �

Referring to Figure 9 (right):

Corollary 1 Let4ABC be an equilateral of side 1. Over
P on the circumcircle, the locus of the center O∗ of the
degenerate Y ∗ is the union of arcs of three congruent el-
lipses with semi-axes a =

√
3/2 and b =

√
3/6, centered

on A,B,C.
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Figure 10: Definitions used in Proposition 12. The lo-
cus of O∗ is the union of three arcs of ellipse (solid gold)
La,Lb,Lc, each of which passes through the 3 midpoints
Am,Bm,Cm of 4ABC. The endpoints A′′,B′′ of Lc are ver-
tices of V-ellipses Ea and Eb (dashed red, green). The
major axes (dashed gold) of the three loci nearly concur,
though not exactly.

Let Ca and Cb denote the endpoints of the elliptic locus of
O∗, over P on the arc of the circumcircle below AB. Let C′

denote the locus’ top vertex. Referring to Figure 9 (right),
the following can be shown:

• Ca and Cb are the reflections of the midpoints of AC
and BC about C

• lines ACa and BCb are tangent to the locus. Let Cab
denote their intersection.

• C′ is the midpoint between C and Cab.

• Therefore, CaCb is the mid-base of 4ACabB, there-
fore the latter is 3 times the area of4ABC.

Regions of conic type:

It turns out the type of Y ∗ (ellipse, parabola, hyperbola,
degenerate) depends on the position of P. The case of an
equilateral4ABC is illustrated in Figure 11.

Remark 2 If4ABC is an equilateral, it can be shown that
the portions of the locus of P such that Y ∗ is: (i) degenerate
(deltoid interior to4ABC) are branches of 3 regular cubics;
(ii) a parabola: branches of a degree-20 polynomial on x,y.

Remark 3 If Y ∗ is a hyperbola it can never be a rectangu-
lar one.

Figure 11: For4ABC an equilateral, the figure illustrated
regions of P such that the Y ∗ conic is of a given type.

What about the co-vertices?

Figure 12: Given an equilateral (black), the locus for P
such that the 6 co-vertices of the 3 P-ellipses lie on a conic
is a degree-10 algebraic curve (gold) woven symmetrically
about the equilateral (there is an isolated point at the cen-
troid as well). The three P-ellipses (red, green, blue) are
shown for a specific choice of P on said locus. Also shown
are (i) the conic Y ∗ (solid magenta, center O∗) through
the major vertices, and (ii) the conic Y † (dashed magenta,
center O†) through the 6 co-vertices (highlighted by small
gold circles). Notice that if P is on the locus, O† lies on the
incircle of the equilateral.
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It turns out that for given4ABC, there is a 1d locus for P
such that the 6 co-vertices lie on a conic. As before, let Let
δa = |PB|+ |PC|, δb = |PC|+ |PA|, δc = |PA|+ |PB|.
Referring to Figure 12:

Proposition 13 If4ABC is an equilateral, the locus for P
such that the 6 co-vertices lie on a conic Y † is given by:

δ
2
aδ

2
b +δ

2
aδ

2
c +δ

2
bδ

2
c−8(δ

2
a + δ

2
b + δ

2
c)+48 = 0

Furthermore, the center O† of Y † lies on the incircle of the
equilateral.

Note: if one eliminates all square roots involved in comput-
ing δa,δb,δc, the above becomes a degree-10 equation on
x,y.

4 A triad of V-hyperbolas

Figure 13: A triad of V-hyperbolas Ha,Hb,Hc (red, green,
blue) is shown with foci on (B,C), (C,A), and (A,B) pass-
ing through A,B,C, respectively. Notice (i) their vertices
taken as triples A1B1C1 and A2B2C2 are the vertices of the
extouch (dashed brown) and intouch (solid brown) trian-
gles; (ii) these 6 points are known to lie on the Privalov
conic (magenta), whose center O is X5452 on [8]; (iii) the
3 hyperbolas pass through both the “isoperimeteric” and

“equal detour” points, i.e., X175 and X176, respectively. Note:
these coincide when the outer Soddy circle is external to
the three mutually tangent circles.

In this section we describe properties – some old, some
new – of a special triad of hyperbolas, described in [17, Sec.
12.4, p. 148] where they are called “Soddy” hyperbolas.
Referring to Figure 13:

Definition 4 (V-hyperbolas) Given a triangle 4ABC, a
triad of V-hyperbolas Ha,Hb,Hc have foci on (B,C), (C,A),
(A,B) and pass through A, B, and C, respectively.

Let A1,A2 be the vertices of Ha. Define B1,B2 and C1,C2
for Hb,Hc, respectively. Recall the extouch (resp. intouch)
triangle is where the 3 excircles (resp. incircle) touch a
triangle’s sides.

Remark 4 Let λa = |AB| − |AC|. In barycentric coordi-
nates for the vertices of Ha are given by: A1 = [0,a+λa,a−
λa], and A2 = [0,a−λa,a−λa], with the others computed
cyclically.

Corollary 2 4A1B1C1 (resp. 4A2B2C2) is the extouch
(resp. intouch) triangle of4ABC.

Recall that for any triangle, the intouch and extouch trian-
gles have the same area [16, extouch triangle]. Referring to
[8, X(5452)]:

Corollary 3 A1,A2,B1,B2,C1,C2 lie on the Privalov conic
centered on X5452, and whose barycentric coordinates x,y,z
satisfy:

k1k2k3(x2 + y2 + z2)+

+2 [k2(k4−2ab)xy+ k3(k4−2ac)xz− k1(k4−2bc)yz] = 0

where a,b,c are the sidelengths of4ABC, k1 = (a−b−c),
k2 = (a+b− c), k3 = (a−b+ c), and k4 = a2 +b2 + c2.

Remark 5 When 4ABC is isosceles, one of the V-
hyperbolas is degenerate, namely, a pair of coinciding lines
at the perpendicular bisector of the base. In this case, the
Privalov conic is tangent to the base at its midpoint.

Intersections between V-hyperbolas:

Referring to Figure 15, recall that given a triangle, one can
construct2 three “kissing” circles CA, CB, and CC centered
each on each vertex, and externally tangent to each other
[14].

The Apollonius’ problem for this triple has (as usual) eight
distinct solutions, two of which have the same tangency
type (tangent externally or internally to all three circles).

Definition 5 (Soddy circles of a triangle) The two solu-
tions for the Apollonius’ problem with the same tangency
type are the so-called “Soddy circles”. The inner Soddy
circle is the one whose center is inside the triangle and
whose interior does not intersect any of the three kissing
circles; the other one is the outer Soddy circle.

2These pass through the vertices of the intouch triangle.
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Note that the outer Soddy circle, always tangent to the 3
kissing circles, can either (i) contain them (see Figure 15),
(ii) be a line tangent to them, or (iii) be externally tangent
to them. For (ii) and (iii) see Figure 16.

The centers of Soddy circles correspond to a pair of triangle
centers found in [8] and derived in [7]. Namely:

Definition 6 (Isoperimetric point) The center of the
outer Soddy circle (X175 in [8]). Equivalently, the unique
point X such that:

|XB|+ |XC|± |BC|= |XC|+ |XA|± |CA|= |XA|+ |XB|± |AB|

where the positive (resp. negative) sign is chosen if the
outer Soddy circle contains (resp. is external to) the three
mutually tangent circles in Definition 5. As derived in [7],
containment corresponds to:

tan
A
2
+ tan

B
2
+ tan

C
2
< 2.

In [7] it is shown that if the sum of half-tangents is exactly 2,
then the outer Soddy circle degenerates to a line. Referring
to Figure 14, it can be shown that:

Figure 14: When A and B are fixed, the locus of C (red)
such that the outer Soddy circle degenerates to a line (ma-
genta) is given by the degree-6 implicit equation in Propo-
sition 14. This line is also tangent to the 3 circles (dashed
black) whose diameters are the sides of4ABC.

Proposition 14 Without loss of generality, let A = (−1,0),
B = (1,0), the locus of C such that the sum of half-tangents
of4ABC is 2 is given by the union of the following degree-6
polynomial and its reflection about the x-axis:

−4x6−4x4(2y2 +2y+1)−4x2(y4 + y3−4y−5)+

+4y5 +13y4 +20y3 +8y2−8y−12 = 0.

Definition 7 (Equal detour point) The center of the inner
Soddy circle (X176 in [8]), always internal to a triangle.
Also the unique point X in4ABC such that:

|XB|+ |XC|− |BC|= |XC|+ |XA|− |CA|= |XA|+ |XB|− |AB|.

Proposition 15 The three V-hyperbolas intersect at the
centers of the two Soddy circles, i.e., X175 and X176, re-
spectively.

Proof. Assume that a > c > b as in Figure 13. Then
ra < rc < rb. Ca and Cb are two circles centered at A and
B and of radii ra < rb, which are externally tangent at C2.
The locus of the centers of the circles that are externally tan-
gent to both Ca and Cb is the branch of the hyperbola with
foci on A and B, that passes through their tangency point
C2. The other branch contains the centers of the circles
that are internally tangent (i.e., contain both). The inter-
nal Soddy circle is externally tangent to the three circles
Ca, Cb, and Cc; hence its center is necessarily the intersec-
tion of the three branches of hyperbolas passing through
A2,B2,C2, the vertices of the intouch triangle. Since
ra < rc < rb, we may specify those branches as H +

a = {P :
|PB|− |PC|= rb− rc}, H +

b = {P : |PC|− |PA|= rc− ra},
and H +

c = {P : |PA|− |PB|= ra− rb}.

Thus, if a point P ∈ H +
a

⋂
H +

c then PA− PC = ra − rc

hence it is on H +
b as well. Since rc+ra = b and rb+ra = c,

P verifies the equal-detour definition of X176.

The points on the other branches contain centers of circles
that are internally tangent to the other two; therefore, if two
branches, say H −a and H −b have a common point P, then,
as above, P is also on the third branch and is the (unique)
center of an external Soddy circle, that contains Ca, Cb, and
Cc. In this case, P verifies the isoperimetric definition of
X175.

In contrast, if H −a and H −b do not intersect, then there will
be no “negative branch” intersection. In this case, the three
positive branches will intersect in two distinct points: the
centers of the inner and outer Soddy circles. Note that each
pair (Ha,Hb), (Hb,Hc), and (Hc,Ha) have one common
focus C, A, B respectively; hence they necessarily have four
(real) intersections. This guarantees the existence of both
detour and isoperimetric points. �
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Figure 15: A construction found in [17, Sec. 12.4, p. 148]:
3 mutually-tangent circles (red, green, blue) of4ABC touch
at the contact points of the incircle (dashed gray) with the
sides. In turn, these coincide with a vertex of each the 3
V-hyperbolas. Notice the latter intersect at the centers X176
and X175 of the inner (shaded purple), and outer (dashed
purple) Soddy circles, respectively.

Referring to Figure 17:

Proposition 16 The Ha V-hyperbola passes through the
intersections A′ and A′′ of V-ellipses Eb, and Ec. The same
holds for Hb,Hc, cyclically.

Proof. Referring to Figure 17, let A′′ denote an intersection
of Eb with Ec. Then:

|A′′A|+ |A′′B|= |CA|+ |CB|, |A′′A|+ |A′′C|= |BA|+ |BC|.

Subtracting, |A′′C|− |A′′B|= |BA|− |CA|, meaning that A′′

lies on the branch of hyperbola Ha not containing A. �

Still referring to Figure 17, let A1 and A2 denote the two
2-branch intersections between Hb and Hc, define B1,B2
and C1,C2 cyclically.

Proposition 17 The three lines A1A2, B1B2 and C1C2 con-
cur at the Nagel point X8 of4ABC.

Proof. Let a,b,c denote the sidelines. The barycentrics of
A1 are given by:

A1 : [ (L−2a)(3a2 +2ab−b2 +2ac−2bc− c2 +2(b− c)γ),

(L−2c)(3a−3b+ c)L+2(a2− c2−2b2 +ab−bc)γ,

(L−2b)(3a+b−3c)L−2(a2−b2−2c2 +ac+bc)γ ]

where L= a+b+c and γ= 3a2+2ab−b2+2ac−2bc−c2.
The barycentrics of A2 are obtained by replacing γ with −γ.
The barycentrics of points on A1A2 satisfy:

(−2a2 +ab+b2 +ac−2bc+ c2)x+

+(a− c)(L−2a)y+(a−b)(L−2a)z = 0

and cyclically for B1B2 and C1C2. It can be shown that the
3 lines pass through X8, whose barycentric coordinates are
[b+ c−a,a+ c−b,a+b− c], see [8]. �

Figure 16: Two cases of4ABC such that the external Soddy circle (dashed purple) is: (left) a straight line ( ∑ tan(θi) = 2),
and (right) does not contain the three kissing circles. Notice that in both cases the three V-hyperbolas (red, green and blue)
intersect at the center X176 of the inner Soddy circle (shaded purple), interior to the triangle. In the first case their second
intersection is at infinity (in the direction perpendicular to the Soddy line), while in the second case they intersect along the
same branches where their X176 intersection lies.
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Figure 17: Each V-hyperbola passes through the two
intersections between pairs of V-ellipses. As an example,
consider A′′, common to Ha, Eb, and Ec. Also shown is
the fact that the 3 segments A1A2, B1B2, and C1C2 connect-
ing opposing 2-branch intersections of the 3 V-hyperbolas
concur at X8.

Referring to Figure 18:

Remark 6 On side BC there lie the 2 vertices of Ea and
the 2 of Ha. Consider the degenerate cubic which is the
union of the sidelines of4ABC. It is a 15-point cubic since
it passes through (i) the three vertices of the triangle, (ii)
the 6 vertices of the V-ellipses, and (iii) the 6 vertices of the
V-hyperbolas.

Figure 18: Given a triangle (black), the union of the 3
sidelines (dashed black) can be regarded as a 15-point de-
generate cubic. It passes through (i) the triangle vertices,
(ii) the 6 points on the Yiu conic (magenta), and (iii) the
6 points on the Privalov conic (orange). Just for fun, also
shown are branches of the 14-point quartic (green) that
passes through the 12 points on the Yiu+Privalov as well
as their centers X478 and X5452, respectively.

Referring to Figure 14:

Proposition 18 When the external Soddy circle degener-
ates to a line, the three circles whose diameters are the
sides of4ABC are also tangent to it.

Proof. Let AT , BT be the tangency points of the degenerate
Soddy circle L (a line) with circles Ca,Cb, and let T be
the tangency point between the latter two. The perpendic-
ular dropped from T onto line AB meets L at M. Then,
owing to properties of tangents from a points to a circle,
|MT | = |MAT | = |MBT |. Since BT ,M,AT are collinear,
then ∠AT T BT = 90◦. On the other hand, since MT and
MAT are tangents from M to Ca, MA⊥ TAT and similarly,
MB ⊥ T BT . ∠AMB = 90◦. Hence, if O is the midpoint
of AB then OM = AO = OB. Finally, the quadrilateral
[ABBT AT ] is a trapezium (AAT , BBT are perpendicular to
L) and OM is its mid-base. Hence OM is also perpendicu-
lar to L at the midpoint M of AT BT . Therefore the circle of
diameter AB is tangent to L at M, and so on cyclically for
(Cb,Cc) and (Ca,Cc). �

5 A triad of P-hyperbolas

We now extend V-hyperbolas to a trio with respect to a point
P. Referring to Figure 19:

Definition 8 (P-hyperbolas) A triad of P-hyperbolas
H ∗a ,H ∗b ,H ∗c with respect to 4ABC have foci on (B,C),
(C,A), (A,B) and pass through a given point P.

Figure 19: Given a point P, (i) the triad of P-hyperbolas
H ∗a ,H ∗b ,H ∗c has a second common point P′; (ii) their ver-
tices A1,A2,B1,B2,C1,C2 lie on a conic P ∗ (magenta), not
necessarily an ellipse; (iii)4A1B1C1 has the same area as
4A2B2C2.

Still referring to Figure 19:
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Proposition 19 Besides P, the triad of P-hyperbolas meets
at a second real point P′.

Proof. Let H ∗+a , H ∗+b , H ∗+c denote the three branches
that pass through P. We need to prove that the other three
branches H ∗−a , H ∗−b , H ∗−c also meet at some point.

First, let us show that two other branches H ∗−b and H ∗−c
must intersect. To prove it, we perform a polar dual with
respect to a circle centered at their common focus A, as
shown in Figure 20. The polar dual of each hyperbola will
be a circle, whose diameter is delimited by the inverses of
hyperbola vertices. By polarity, the intersection points of
the original hyperbolas are sent to the common tangents of
their reciprocal circles and vice-versa; since, by hypothesis,
H ∗b and H ∗c intersect at a point P, these reciprocal circles
admit (at least) one common tangent. Hence, they are either
externally tangent or secant. Therefore, these circles admit
at least two common tangents. One of these tangents is
precisely the polar of P; the other one, passing through the
same homothety center, is the polar of a point P′ which is
the intersection of the other two branches, H ∗−b and H ∗−c .
Similarly, branches H ∗−a and H ∗−c also intersect. Now, as
in Figure 19, if a point P′ ∈ H ∗−b

⋂
H ∗−c , then it satisfies

P′C−P′A=B1B2 and P′A−P′B=C1C2. Hence, by adding
these two relations, we obtain P′C−P′B = B1B2 +C1C2.
Nevertheless, by hypothesis P is the common point of three
branches: H ∗+a ,H ∗+b ,H ∗+c . Then three similar relations
can be written for P : PA−PC = B1B2, PB−PA = C1C2,
and PB− PC = A1A2. By adding the first two, we ob-
tain PB−PC = B1B2 +C1C2, hence B1B2 +C1C2 = A1A2.
The later relation ensures that P′C−P′B = A1A2, hence
P′ ∈H ∗−a finishing the proof. �

Proposition 20 The 6 vertices of the 3 P-hyperbolas lie on
a conic P ∗.

Proof. Referring to Figure 19, by definition, the center of
the P-hyperbola H ∗a is at the midpoint of BC, and so on
cyclically. Hence:

|A1C|= |A2B|= x, |B1A|= |B2C|= y, |BC1|= |AC2|= z.

(4)

We obtain the claim using Carnot’s theorem. �

Recall the classic result that for any triangle, the intouch
and extouch triangles have the same area (we saw this in
Colloraly 2 in the context of V-hyperbolas). The analogous
result for P-hyperbolas still holds:

Proposition 21 Let A1,A2 denote the vertices of H ∗a , and
B1,B2, C1,C2, those of H ∗b and Hc∗, respectively. Then
4A1B1C1 and4A2B2C2 have the same area.

Figure 20: Two P-hyperbolas (green, blue) sharing a fo-
cus at A are shown as well as their reciprocals (shaded
green and blue circles) with respect to an inversion circle
centered at A (dashed black). The branches closer (resp.
further) to A always intersect; their intersection points P
and P′ are the poles of the common external tangents to
their reciprocal circles. When these circles are disjoint (as
in the figure), the poles of the internal common tangents are
intersections between alternate branches.

Proof. This is again a consequence of (4). Specifically, let
~a =
−→
BC,~b =

−→
CA,~c =

−→
AB. Let α, β, and γ be such that:

−−→
BA1 = α~a,

−−→
CB1 = β~b,

−−→
AC1 = γ~c;

In order to prove that SA1B1C1 = SA2B2C2 , we simply show
that they represent the same fraction of S = SABC. In
fact, SA1B1C1 = S− [SA + SB + SC], where SA = SAB1C1 ,
SB = SBA1C1 , and SC = SCA1B1 . A direct computation yields:

SA = SAB1C1 =

=
1
2
‖−−→AB1 ×

−−→
AC1‖=

1
2
‖(1−β)~b× (γ~c)‖= γ(1−β)S.

Cyclically, SB = α(1−γ)S, and SC = β(1−α)S. Therefore:

SA1B1C1 = S−
[
SA +SB +SC

]
=

= S
[
1− γ(1−β)−α(1− γ)−β(1−α)

]
.

Similarly:

SA2B2C2 = S−
[
S′A +S′B +S′C]
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where S′A = SAB2C2 , S′B = SBA2C2 , S′C = SCA2B2 . Then:

S′A = SAB2C2 =

=
1
2
‖−−→AB2 ×

−−→
AC2‖=

1
2
‖β~b× ((1− γ)~c)‖= β(1− γ)

and cyclically for S′B, S′C. Thus, the area of SA2B2C2 can
be computed as SA1B1C1 , where α,β,γ are replaced at each
occurrence by (1−α), (1−β), (1− γ). Thus:

SA2B2C2 = S−
[
S′A +S′B +S′C

]
=

= S
[
1− (1− γ)β− (1−α)γ−α(1−β)

]
.

Referring to Figure 21:

Proposition 22 Given a 4ABC there is a unique pair of
distinct points P∗ and Q∗ such that the 6-point conic P ∗ is
a circle. These are a pair of common intersections of the
triad of P-hyperbolas. It can be shown their barycentrics
satisfy:[
(c2−λ

2
c)(−a2 +b2 +λ

2
a−λ

2
b)
]2

+[
(b2−λ

2
b)(−a2 + c2 +λ

2
a−λ

2
c)
]2

+[
(a2−λ

2
a)(−b2 + c2 +λ

2
b−λ

2
c)
]2

= 0

where λa = |PB| − |PC|, λb = |PC| − |PA|, and λc =
|PA|− |PB|.

Figure 21: Given4ABC, there is a pair P∗ and Q∗ such
that P ∗ (magenta) is a circle. Furthermore the latter is
concentric with the circumcircle (dashed black) of4ABC.

Definition 9 (reflection triangle) The reflections A′,B′,C′

of a point Q on the sides of 4ABC are the vertices of the
Q-reflection triangle.

Surprisingly, we can construct a triangle such that the ver-
tices of the 6 P-hyperbolas lie on a circle. In [8], center
X55 is the internal center of similitude of the incircle and
circumcircle.

Referring to Figure 22, experimental evidence supports the
following “needle in a haystack” phenomenon:

Conjecture 1 Let T ′ be the X55-reflection triangle of a ref-
erence triangle T . The 6 vertices of the P-hyperbolas of T ′

passing through X55-of-T lie on a circle, concentric with the
circumcircle of T ′ which coincides with X7-of-T

,

Figure 22: The vertices of P-hyperbolas H ∗a , H ∗b , and H ∗c
(red, green, blue) passing through X55 of4ABC, with foci
on pairs of vertices of the X55-reflection triangle4A′B′C′

(gold), lie on a circle (magenta), concentric with the cir-
cumcircle (dotted brown) of4A′B′C′, whose circumcenter
is the Gergonne point X7 of the reference. Note that said 3
hyperbolas meet at a second mystery point “???”.

Referring to Figure 23:

Proposition 23 The H ∗a P-hyperbola passes through the
non-P intersection A′ between P-ellipses E∗b , and E∗c . The
same holds for H ∗b ,H ∗c , cyclically.

Proof. Referring to Figure 23, let A′ ∈ E∗b ; then A′A+
A′C = PA + PC. If A′ is also contained in E∗c , then
A′A+A′B = PA+PB. Subtracting A′B−A′C = PB−PC,
i.e., both A′ and P lie on the same branch of ∈H ∗a . �

As before, let a,b,c be the sidelengths, and λa, λb, and λc
as above. As shown in Figure 24, the plane of a4ABC can
be split into zone where P ∗ is an ellipse, a hyperbola, or a
parabola. In particular:
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Figure 23: The 3 P-hyperbolas (solid red, green, blue) also
pass through the 3 non-P intersections A′,B′,C′ between
pairs of P-ellipses, e.g., H ∗a passes through the intersection
A′ of E∗b and E∗c . The triangle with vertices on A′,B′,C′ is
shown (purple).

Proposition 24 The conic P ∗ through the 6 vertices of the
P-hyperbolas is a parabola if:

(c2
λ

2
aλ

2
b)

2 +(b2
λ

2
aλ

2
c)

2 +(a2
λ

2
bλ

2
c)

2+

+µ(µ(−3+4(λ2
a/a2 +λ

2
b/b2 +λ

2
c/c2))+

+2λ
2
aλ

2
bλ

2
c(6−λ

2
a/a2−λ

2
b/b2−λ

2
c/c2)−

−6(c2
λ

2
aλ

2
b +b2

λ
2
aλ

2
c +a2

λ
2
bλ

2
c)) = 0

where µ = (abc)2. Furthermore, P ∗ is degenerate if P lies
on either (infinite extension) of the sidelines of the triangle.

6 Open Questions

• Figure 4: what is the locus of the focus of the Yiu
conic over C along the parabola locus?

• Figure 6: prove the 6-point co-vertex conic is always
a hyperbola and explain why there are two (3:3 and
5:1) distributions of co-vertices over the branches of
the conic.

• Figure 8 (left): Prove P∗ is unique.

• Figure 8 (right): given4A′B′C′ can one always find
an inscribed 4ABC such that the former is its X3-
anticevian triangle?

• Figure 11: how do the zones of 6-vertex conic type
deform as one moves C away from the equilateral
configuration? What is the locus of the center O∗ of
the degenrate conic over P on the 3 branches of the
inner deltoid? What is the locus of the focus of the
conic over the 6 arcs where the conic is a parabola?
Prove if a hyperbola, said conic can never be rectan-
gular.

• Figure 12: Prove that if P is on the locus, the center
O† of the co-vertex conic is on the incircle. What
does the locus of P look like if4ABC is not an equi-
lateral? Over P on said locus, what is the locus of
O†?

Figure 24: The 6-point conic P∗ (magenta) through the vertices of P-hyperbolas (red, green, blue) is an ellipse if P lies in
the yellow (resp.) purple region. It is degenerate if P is on any sideline (dashed black). In the left (resp. right) P is in the
yellow region (at the interface) and therefore P∗ (magenta) is an ellipse (resp. parabola).
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• prove Conjecture 1. Provide an expression for the
second triple intersection point of the 3 P-hyperbolas.

• Figure 18: What are interesting loci for C (with A,B
fixed) with respect to properties and/or degeneracies
of the 14-point quartic?

• Figure 19: describe the map P→ P′ and/or P→ O∗?
What is the image of a lattice under it?

• Figure 22: given 4A′B′C′ can one always find a
4ABC such that the former is its X55-reflection trian-
gle?
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Long Barycentric Equations

Here we provide barycentric equations and coordinates
(with respect to the reference 4ABC) of various associ-
ated objects. Let a,b,c be the reference’s sidelengths. Let
E†

a denote the ellipse with foci on B′C′, and through A of
the reference. Note: the long expression below were kept
verbatim so as to facilitate copy-paste.

A-ellipse:

The barycentrics [x,y,z] of E†
a satisfy:

8*b^4*c^4*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6*b^4-3*a^4*b^6+
3*a^2*b^8-b^10+3*a^4*b^4*c^2-6*a^2*b^6*c^2+3*b^8*c^2+a^6*c^4+
3*a^4*b^2*c^4+6*a^2*b^4*c^4-2*b^6*c^4-3*a^4*c^6-6*a^2*b^2*c^6-
2*b^4*c^6+3*a^2*c^8+3*b^2*c^8-c^10)*x^2+4*b^2*c^4*(a^2+b^2-
c^2)^2*(a^2-b^2+c^2)*(a^8*b^2-2*a^6*b^4+2*a^2*b^8-b^10-a^8*c^2-
2*a^6*b^2*c^2+10*a^4*b^4*c^2-10*a^2*b^6*c^2+3*b^8*c^2+4*a^6*c^4+
4*a^4*b^2*c^4+10*a^2*b^4*c^4-2*b^6*c^4-6*a^4*c^6-6*a^2*b^2*c^6-
2*b^4*c^6+4*a^2*c^8+3*b^2*c^8-c^10)*x*y+a^2*c^4*(a^2-b^2-c^2)*
(a^2+b^2-c^2)*(a^12-7*a^8*b^4+16*a^6*b^6-21*a^4*b^8+16*a^2*b^10-
5*b^12-6*a^10*c^2-4*a^8*b^2*c^2+12*a^6*b^4*c^2+24*a^4*b^6*c^2-
38*a^2*b^8*c^2+12*b^10*c^2+15*a^8*c^4+16*a^6*b^2*c^4+6*a^4*b^4*
c^4+32*a^2*b^6*c^4-5*b^8*c^4-20*a^6*c^6-24*a^4*b^2*c^6-20*a^2*
b^4*c^6-8*b^6*c^6+15*a^4*c^8+16*a^2*b^2*c^8+9*b^4*c^8-6*a^2*c^10-
4*b^2*c^10+c^12)*y^2-4*b^4*c^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)^2*(a^8
*b^2-4*a^6*b^4+6*a^4*b^6-4*a^2*b^8+b^10-a^8*c^2+2*a^6*b^2*c^2-
4*a^4*b^4*c^2+6*a^2*b^6*c^2-3*b^8*c^2+2*a^6*c^4-10*a^4*b^2*c^4-
10*a^2*b^4*c^4+2*b^6*c^4+10*a^2*b^2*c^6+2*b^4*c^6-2*a^2*c^8-
3*b^2*c^8+c^10)*x*z-2*a^2*b^2*c^2*(a^2-b^2-c^2)*(a^2+b^2-c^2)*
(a^2-b^2+c^2)*(a^10-3*a^8*b^2+2*a^6*b^4+2*a^4*b^6-3*a^2*b^8+
b^10-3*a^8*c^2+8*a^6*b^2*c^2-14*a^4*b^4*c^2+16*a^2*b^6*c^2-7*
b^8*c^2+2*a^6*c^4-14*a^4*b^2*c^4-26*a^2*b^4*c^4+6*b^6*c^4+2*a^4*
c^6+16*a^2*b^2*c^6+6*b^4*c^6-3*a^2*c^8-7*b^2*c^8+c^10)*y*z+a^2*
b^4*(a^2-b^2-c^2)*(a^2-b^2+c^2)*(a^12-6*a^10*b^2+15*a^8*b^4-
20*a^6*b^6+15*a^4*b^8-6*a^2*b^10+b^12-4*a^8*b^2*c^2+16*a^6*b^4*
c^2-24*a^4*b^6*c^2+16*a^2*b^8*c^2-4*b^10*c^2-7*a^8*c^4+12*a^6*
b^2*c^4+6*a^4*b^4*c^4-20*a^2*b^6*c^4+9*b^8*c^4+16*a^6*c^6+24*a^4*
b^2*c^6+32*a^2*b^4*c^6-8*b^6*c^6-21*a^4*c^8-38*a^2*b^2*c^8-5*b^4*
c^8+16*a^2*c^10+12*b^2*c^10-5*c^12)*z^2 = 0

Major vertices:

Let S be twice the area of the reference and:

rt = sqrt(a^6-3*a^2*b^4+2*b^6+6*a^2*b^2*c^2-2*b^4*c^2-
3*a^2*c^4-2*b^2*c^4+2*c^6))

The two major vertices of E†
a are given by:

[(a*(a^2-b^2-c^2)*((b^2-c^2)*(a^4*b^2-2*a^2*b^4+b^6+a^4*c^2
+4*a^2*b^2*c^2-b^4*c^2-2*a^2*c^4-b^2*c^4+c^6)+/-2*a^3*S*rt))/
(a*(a^4*b^2-2*a^2*b^4+b^6+a^4*c^2+4*a^2*b^2*c^2-b^4*c^2-
2*a^2*c^4-b^2*c^4+c^6)+/-2*(b^2-c^2)*S*rt),b^2*(-a^2+b^2-c^2),
-(c^2*(-a^2-b^2+c^2))]

P-ellipse 6-point circle

The center X ′3 of the 6-point circle of Proposition 10 lies
on the Van Aubel line (X4X6) of the reference. It can be
regarded as the circumcenter of the X3-anticevian and is
given by barycentrics [ f (a,b,c), f (b,c,a), f (c,a,b)] where
f (a,b,c) is given by:

(a^14-5*a^12*b^2+9*a^10*b^4-5*a^8*b^6-5*a^6*b^8+9*a^4*b^10-
5*a^2*b^12+b^14-5*a^12*c^2+10*a^10*b^2*c^2-13*a^8*b^4*c^2+
28*a^6*b^6*c^2-31*a^4*b^8*c^2+10*a^2*b^10*c^2+b^12*c^2+
9*a^10*c^4-13*a^8*b^2*c^4-30*a^6*b^4*c^4+22*a^4*b^6*c^4+
21*a^2*b^8*c^4-9*b^10*c^4-5*a^8*c^6+28*a^6*b^2*c^6+
22*a^4*b^4*c^6-52*a^2*b^6*c^6+7*b^8*c^6-5*a^6*c^8-
31*a^4*b^2*c^8+21*a^2*b^4*c^8+7*b^6*c^8+9*a^4*c^10+
10*a^2*b^2*c^10-9*b^4*c^10-5*a^2*c^12+b^2*c^12+c^14)*a^2

P-hyperbolas

Let La = |PB|− |PC|, Lb = |PC|− |PA|, and Lc = |PA|−
|PB|. Points on the H ∗a P-hyperbola satisfy:

(2*(b^2-c^2-La^2)*p*q+(a^2-La^2)*q^2-2*(b^2-c^2+La^2)*p*r-
2*(a^2+La^2)*q*r+(a^2-La^2)*r^2)*x^2-2*(b^2-c^2-La^2)*p^2*x*y-
(a^2-La^2)*p^2*y^2+2*(b^2-c^2+La^2)*p^2*x*z+2*(a^2+La^2)*p^2*y*z-
(a^2-La^2)*p^2*z^2 = 0

The conic P ∗ throught the vertices of the 3 P-hyperbolas is
given by:

x^2+y^2+z^2-(2*(a^2+La^2)*y*z)/(a^2-La^2)-(2*(b^2+Lb^2)*z*x)/
(b^2-Lb^2)-(2*(c^2+Lc^2)*x*y)/(c^2-Lc^2)=0

The first barycentric coordinate for its center X5452 is given
by:

(a^2*((-2*La^2)/(a^2-La^2)+(b^2+Lb^2)/(b^2-Lb^2)+(c^2+Lc^2)/
(c^2-Lc^2)))/(a^2-La^2)

With the other two computed cyclically.
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ABSTRACT

For each point P on a conic c, the involution of right an-
gles at P induces an elliptic involution on c whose center
F is called the Frégier point of P. Replacing the right an-
gles at P between assigned pairs of lines with an arbitrary
angle φ yields a projective mapping of lines in the pencil
about P, and thus, on c. The lines joining corresponding
points on c do no longer pass through a single point and
envelop a conic f which can be seen as the generaliza-
tion of the Frégier point and shall be called a generalized
Frégier conic. By varying the angle, we obtain a pencil
of generalized Frégier conics which is a pencil of the third
kind. We shall study the thus defined conics and discover,
among other objects, general Poncelet triangle families.

Key words: conic, angle, projective mapping, Frégier
point, Frégier conic, Poncelet porism, envelope

MSC2020: 51M04, 51N15, 14H50

Pramenovi Frégierovih konika

SAŽETAK

Za svaku točku P na konici c, involucija pravih kutova
u točki P inducira eliptičnu involuciju na konici c čije se
sredǐste F zove Frégierova točka od P. Zamjena pravih ku-
tova u točki P izmed-u označenih krakova s proizvoljnim ku-
tom φ vodi ka projektivnom preslikavanju u pramenu točke
P, a tako i na konici c. Pravci koji povezuju odgovarajuće
točke na konici c vǐse ne prolaze kroz jednu točku nego
omataju koniku f koja se vidi kao generalizacija Frégierove
točke i zvat će se generalizirana Frégierova konika. Mije-
njajući kut, dobivamo pramen generaliziranih Frégierovih
konika koji je pramen treće vrste. Proučavat ćemo tako
definirane konike i otkriti med-u ostalim i generalizirane
familije Ponceletovih trokuta.

Ključne riječi: konika, kut, projektivno preslikavanje,
Frégierova točka, Frégierova konika, Ponceletov porizam,
omotaljka

1 Introduction

1.1 Known results, contributions of the present paper

Figure 1: The Frégier point F is the center of the involu-
tion on c that is induced by the involution of right
angles at P.

FRÉGIER’s theorem in its original form says that the
chords of a conic c which are seen from a point P∈ c under
a right angle pass through one point F (cf. [1, 6, 7] and see
Fig. 1). The point F is usually called the Frégier point of
P.

If P moves along c, then F traces a conic f (see Fig. 2)
homothetic to c with similarity factor (a2− b2)/(a2 + b2)
(in the case of a non-circular ellipse, i.e., a 6= b) or (a2 +
b2)/(a2− b2) (in the case of a non-equilateral hyperbola,
i.e., a 6= b), where a and b are the semi-major and semi-
minor axes lengths. For a parabola c, the conic f is even
congruent to c. The conic f is sometimes called Frégier
conic (see [7, 14]). However, the Frégier conic f and c are
always of the same affine type.

According to [8, 13], a conic-shaped generalized offset to
a conic c with center (ellipse or hyperbola) can only be
found by applying a multiple of the cube root of the cur-
vature radius ρ at P on c’s normal at P in order to find the
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corresponding point P′ of the generalized offset. In [13] it
is shown that the distance function

k 3
√

ρ(t)

is unique up to a constant k∈R. The case of a parabola dif-
fers slightly, i.e., the distance function is no longer unique.
Surprising enough, until now it is obviously not recognized
what is illustrated in Fig. 2:

Figure 2: The Frégier conic f is a generalized offset of the
conic c.

Theorem 1 Frégier conics are conic-shaped generalized
offsets (in the sense of [8] and [13]).

Proof. We first recall that the Frégier point of a point P∈ c
lies on c’s normal at P. Let ρ denote the radius of curva-
ture of c at P and let l denote the distance between P and
its Frégier point, then it is elementary to verify that ρ and l
are bound to

8a4b4
ρ = (a2±b2)3l3,

where the plus stands for the ellipse and the minus for the
hyperbola. Hence, the offset distance equals a multiple of
the cube root of the curvature radius ρ in both cases. For
the parabola x2 = 2qy (q 6= 0) we find

8q2ρ = l3. �

FRÉGIER’s theorem can be considered a result of Eu-
clidean geometry, for it involves right angles, or a result
of projective geometry, since the Frégier point F of a point
P on a conic c is the center of the involution of right angles
in the pencil about P projected onto c, see [7].
Variants of FRÉGIER’s theorem in higher dimensions do
exist (see, e.g., [9, 17]). Further, connections to linear
2-parameter and 3-parameter families of conics are stud-
ied in [11]. FRÉGIER’s theorem is also studied in relation
to quadratic mappings recently in [17] and even earlier in
[15].

In [16], the authors define a Frégier involution using right
angles in Euclidean and non-Euclidean sense which gives
rise to a possible generalization of FRÉGIER’s theorem also
in higher dimensions, but completely different from the ap-
proach made in [9]. Conics in non-Euclidean planes with
singular Frégier conics are studied in [14]. Many relations
of the Frégier point and FRÉGIER’s theorem in Euclidean
geometry to various construction tasks in connections with
conics were disclosed, see [2, 3, 5, 12], to name just a few.
In this article, we replace the right angle which is usually
the main ingredient of FRÉGIER’s theorem by a different
Euclidean angle φ 6= 0, π

2 and study the chords cut out of c
by the legs of the rotating rigid angle (with vertex P on c).
Since the mapping that assigns to each line g the rotated
copy g′ with the fixed angle φ = <) g,g′ is a projectivity,
we first show that the chords of c that join pairs (Q,Q′)
of assigned points envelope a conic. This does not depend
on the affine type of c. These envelopes are then called
generalized Frégier conics.
Although, we have this rather general result, the equa-
tions of the generalized Frégier conics of the three different
affine types of base conics c have to be elaborated sepa-
rately. We will find that the generalized Frégier conics of a
point P ∈ c belong to a pencil of conics (of the third kind)
which also contains the initial conic c and the Frégier point
F as a limiting case. Further, the algebraic proofs of the re-
sults yield computational artifacts that allow for a geomet-
ric interpretation and give rise to general Poncelet porisms
as described in [4].
The remainder of this section is dedicated to the techni-
cal details we use in the computational proofs and in the
derivation of the equations of the generalized Frégier con-
ics. Section 2 provides some general results and it is shown
that the generalized Frégier conics form a pencil of the
third kind. The proofs in Section 2 use synthetic reasoning.
In Section 3, we shall derive the equations of the general-
ized Frégier conics. This enables us to show some more
results on the variety of generalized Frégier conics. Along
the way, we will discover some Poncelet families of trian-
gles. Although we have to treat the different affine types
of conics separately, we will lay down the computations in
detail only for the case of the ellipse. This is done in order
to make the presentation of results clear. In all other cases,
we just point out what the differences are.

1.2 General setup and technical preliminaries

In order to describe points, we use inhomogeneous Carte-
sian coordinates (x,y) in the Euclidean plane as well ho-
mogeneous coordinates x0 : x1 : x2. These are linked by
x = x1x−1

0 and y = x2x−1
0 , provided that x0 6= 0, i.e., the

point x0 : x1 : x2 is not a point at infinity, and thus, it al-
lows for a representation as (x,y). The points at infinity
(ideal points) lie on the line with the homogeneous equa-
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tion x0 = 0. Sometimes, we make use of the complex ex-
tension of the Euclidean plane. This leads to the finding
that all Euclidean circles pass through the absolute points
I and J = I of Euclidean geometry with homogeneous co-
ordinates

I = 0 : 1 : i and J = 0 : 1 :−i.

Conversely, any conic through I and J is a Euclidean cir-
cle. The tangents from any circle’s center M to the circle
are so-called isotropic lines, i.e., the joins [M, I] and [M,J]
with the absolute points. Any two concentric circles touch
each other at I and J, and thus, they span a pencil of conics
of the third kind.
We describe the three affine types of conics by their equa-
tions

E ,H :
x2

a2±
y2

b2 =1, P : x2−2qy=0, (1)

with respect to the standard frame assuming a 6= b, a,b ∈
R+, and q ∈ R\{0}. The computational proofs make use
of their rational parametrizations

e(t)=
(
a 1−t2

1+t2 ,b
2t

1+t2

)
, t ∈ R,

h(t)=
(
a 1+t2

1−t2 ,b
2t

1−t2

)
, t ∈ R\{−1,1},

p(t)=
(
2qt,2qt2

)
, t ∈ R.

(2)

At this point, we shall recall that for any conic there
exists a huge variety of equivalent rational parametriza-
tions. For example, the reparametrization t → a00+a01t

a10+a11t
turns (2) in to an equivalent parametrizations and describe
a projective mapping acting on the conic (provided that
a00a11− a10a01 6= 0). In the computations, we should see
that some geometric objects will then be described in a dif-
ferent way.
Later, we also need (Euclidean) rotation matrices. With the
substitution

cosξ =
1−x2

1+x2 and sinξ =
2x

1+x2 (3)

the rotation matrices R(φ) can be given with rational en-
tries as

R(φ)=

(
cosφ −sinφ

sinφ cosφ

)
=

 1−f 2

1+f 2
−2 f
1+f 2

2 f
1+f 2

1−f 2

1+f 2

 . (4)

In the following, we assume that φ 6= 0,±π

2 since we are
interested in generalized Frégier conics different from the
Frégier point. Further, f 6= 0,±1,±i since these values cor-
respond to φ 6= 0,±π

2 and ±i are the poles of the rational
equivalents of sine and cosine, i.e., the poles of the arct-
angent. We will not repeatedly and explicitly write these
assumptions any further.

2 Projective mappings on a conic

In this section, we shall have a closer look at projective
mappings acting on conics. This will lead to a general
and unifying result. In [7], we can find some results on
projective mappings on conics and how to treat projective
mappings on conics (especially involutive ones).

Figure 3: The perspectivity c → d can be extended to a
collineation c→ d.

Figure 4: The Frégier conic e of P∈ d of the circle d to the
angle φ is a concentric circle.
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However, we need the following (apparently new) result:

Theorem 2 Let c be a conic in a projective plane and P be
some point on c. Further, assume that γ : c→ c is the non-
involutive projective mapping acting on c induced by the
Euclidean rotation through a fixed angle φ 6= 0, π

2 ,π about
P. Then, the chords s = [X ,γ(X)] of c that join a each point
X ∈ c with its γ-image γ(X) ∈ c envelope a conic f .

Proof. We use a result from [7, p. 247]: The projective
mapping on a line or in a pencil of lines can be transferred
via a perspectivity onto a conic c, and vice versa. For that
purpose the center P of the perspectivity has to lie on the
conic c in order to guarantee for a one-to-one correspon-
dence (between line/pencil and conic). Thus, a projective
mapping on a conic c can be transferred to any other conic
d, for example, onto a circle d (of radius rd) that touches c
at P (as illustrated in Fig. 3).
Now, the rotation about P sends each line g through P to a
line g′ through P with <) g,g′ = φ. Consequently, the pro-
jective mapping on c is transferred to the projective map-
ping on d. From P ∈ c,d, each segment spanned by a point
Y and its image point Y ′ is seen under the constant angle φ,
and thus, it is seen from the center of d under the angle 2φ

(see Fig. 4). Therefore, the chords joining corresponding
points envelop a circle e concentric with d and of radius
rd cosφ.
The perspectivity from c→ d can be extended to a perspec-
tive collineation κ with center P that sends the envelope e
to a conic f , i.e., the generalized Frégier conic that touches
c′ chords of assigned points. �

We have excluded the case of involutive projectivities, be-
cause then the envelope of the chords is the center of the
involution on the conic (cf. [7, p. 251]).

Figure 5: Some generalized Frégier conics of P ∈ E (φ =
10◦, . . . ,80◦): For φ→ π

2 the conics shrink to the
Frégier point F of P.

With small modifications, Thm. 2 is valid for any projec-
tive mapping acting on c. The projective mapping c men-
tioned in Thm. 2 is elliptic. However, the above result is

true for elliptic, parabolic, and hyperbolic projectivities.
There is something more important that we can deduce
from Thm. 2:

Theorem 3 The generalized Frégier conics (for variable
φ) of a point P on a conic c form a pencil of conics of the
third kind.

Proof. We recall that the Frégier conics e of the circle d
which is a collinear image of the initial conic c form a pen-
cil of concentric circles. This pencil consist of all conics
that pass through the absolute points of Euclidean geome-
try sharing the isotropic tangents through the common cen-
ter, and therefore, they form a pencil of conics of the third
kind. The (perspective) collineation κ (defined in the proof
of Thm. 2) that sends d back to c maps all circles concen-
tric with d to the conics of a pencil of the third kind. �

It is clear that the initial conic c is also a member of the
pencil of generalized Frégier conics. Further, the Frégier
point F considered as the real intersection of a pair of com-
plex conjugate lines is also a (singular) member of the pen-
cil.
Fig. 5 shows some generalized Frégier conics of a point P
on an ellipse E . The smaller the angle φ, the shorter the
chords of assigned points are, and therefore, the general-
ized Frégier conics come closer to the ellipse E . If φ→ π

2 ,
then the conics shrink to the Frégier point F of P.

3 Equations of Frégier conics

In this section, we compute the equations of the general-
ized Frégier conics. Unfortunately, we have to treat the
three different affine types of conics separately. However,
the generalized Frégier conics of all types of conics have
some properties in common and we can simplify the de-
scription by leaving some things aside. The computational
approach yields some results that could not be shown in a
purely synthetic way.

3.1 Frégier conics of ellipses

Let an ellipse E be given by the equation (1). It means no
restriction to assume that a > b holds. The generic point
P on the ellipse E can be described by means of a real
parameter T as P = e(T ) in (2).
The lines g in the pencil shall be determined by choosing
a second point Q ∈ E is given as e(U) with U 6= T in (2).
Hence, we obtain the equation of the chord g := [P,Q] of
E as

g : b(1−TU)x+a(T+U)y=b(1+TU). (5)

If we rotate the normal vector

n = (b(TU−1),−a(T +U))

36



KoG•26–2022 B. Odehnal: Pencils of Frégier Conics

through the angle φ ∈ (0, π

2 ) either clockwise or counter
clockwise, we obtain the normal vectors of those lines
g+,g− enclosing the angles ±φ with g. The rotation is
described by the multiplication of n with either of the ma-
trices R(φ) or R(−φ) from (4).
Now, the lines g+ and g− have the equations

g+ :(1+T 2)
(
(b(1− f 2)UT+2 f a(T+U)+b( f 2−1))x+

+(2TUb f +a( f 2−1)(T+U)−2 f b)y
)
+

+ab(1− f 2)(1+T 2)(1+TU)+

+2a2 f (T+U)(T 2−1)−4b2 f (1+TU)T =0,

and

g− :(1+T 2)
(
(b(1− f 2)UT−2 f a(T+U)+

+b f 2−b)x+(−2TUb f+a( f 2−1)(T+U)+

+2 f b)y
)
+ab(1− f 2)(1+T 2)(1+TU)−

−2a2 f (T+U)(1+T 2)+4b2 f (TU−1)T =0.

The chords’ endpoints Q+ = g+∩E and Q− = g−∩E are

Q+ =b2(a2( f 2−1)2+4b2 f 2)(1+T 2U2)+

+4ab f ( f 2−1)(a2−b2)(T +U)(1−TU)+

+a2(b2( f 2−1)2+4a2 f 2)(T 2+U2)+

+8 f 2(a2−b2)(a2+b2)TU :

:
(
ab(1−U)(1+T 2)(1− f 2)−(2b2(1+T 2)+

+2a2(T 2+U)+2(a2−b2)T (1+U)) f
)
·

·
(
ab(1+T 2)(1+U)( f 2−1)−(2b2(1−T 2)+

+2a2(T 2−U)−2(a2−b2)T (1−U)) f
)

:

:
(
abU(1+T 2)( f 2−1)−(2a2T 2+

+2(a2−b2)UT+2b2) f
)
·
(
ab(1+T 2)·

· ( f 2−1)+(2b2T 2U+2(a2−b2)T+2a2U) f
)

and Q− admits a similar representation.
Now, we can state and prove:

Theorem 4 The lines s+ := [Q,Q+] and s− := [Q,Q−] en-
velop the same ellipse FE .
The centers of all these ellipses trace an ellipse M homo-
thetic to E .

Proof. The parametrizations of Q+ and Q− enable us to
derive the equations of the lines s+ = [Q,Q+] and s− =
[Q,Q−]. The computation of the envelopes is now straight
forward: We eliminate U from the equations of s− and s+

and we can immediately see that both families of lines en-

velop the same curve with the equation

FE :b2(sφ
2cτ

2
ε

2−4a2b2)x2+

+a2((a2+b2)2−sτ
2sφ

2
ε

2)y2+

−2ab f 2sτcτ(1+cφ)
2
ε

2xy+ (6)

−2ab(a4−b4)sφ
2(bcτx−asτy)+

−a2b2(cφ(a2+b2)2−ε
2)) = 0,

where we changed back to the trigonometric representa-
tion. For the sake of simplicity, we have set

sφ := sinφ, cφ := cosφ,
sτ := sinτ, cτ := cosτ,

and ε2 := a2− b2 is the square of the linear excentricity
of the ellipse E . In order to show that the curves FE are
ellipses, we find their centers as

m(T ) =
f 2(a4−b4)

(a2 f 2 +b2)(b2 f 2 +a2)
e(−T )

(with e from (2)) which parametrizes the ellipse M men-
tioned above. Obviously, M is homothetic to E and its
semi-axes lengths are

major =
a f 2(a4−b4)

(a2 f 2 +b2)(b2 f 2 +a2)
,

minor =
b f 2(a4−b4)

(a2 f 2 +b2)(b2 f 2 +a2)
,

provided b<a. Their ratio equals a :b and they never van-
ish as long as a 6=b. �

Figure 6: Both chords s+, s− envelop the same conic FE .

The fact that the generalized Frégier conics of an ellipse
are always ellipses can also be deduced from the construc-
tion used in the proof of Thm. 2: For real rotation angles
φ, the envelopes of the chords are in the interior of the aux-
iliary circle d. The collineation d→ c with center P maps
these interior circles to conics in the interior of the ellipse c
(or E , respectively). Hence, the generalized Frégier conics
of an ellipse can only be ellipses.
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Only if we allow the rotation angle φ to be a pure imagi-
nary number, the radii of the envelopes of d’s chords can
become arbitrarily large:

rd cos(iφ) = rd coshφ≥ rd ,

and thus, there exist outer generalized Frégier conics of
any affine type but not corresponding to real angles.
The Frégier ellipses (6) constitute a pencil of conics of the
third kind (cf. Thm. 3). All conics in this pencil touch each
other in a pair of complex conjugate points

B1 =

(
a
(a2+b2)(1−T 2)+4abiT

(1+T 2)(a2−b2)
,2b

abi(1−T 2)−(a2+b2)T
(1+T 2)(a2−b2))

)
,

and B2 = B1. These points are the collinear images of the
absolute points of Euclidean geometry common to all cir-
cles concentric with the auxiliary circle d used in the proof
of Thms. 2 and 3. Since, the points B1 and B2 are each
others complex conjugates they span a real line

p : ε
2(b(1−T 2)x−2aTy) = ab(a2 +b2)(1+T 2) (7)

which is the polar line of the Frégier point

F =
a2−b2

a2 +b2

(
a(1−T 2)

1+T 2 ,
−2bT
1+T 2

)
. (8)

with pivot point P∈ c. The line p given by (7) is sometimes
called the Frégier line of P with respect to c (cf. [15]). The
Frégier line (with multiplicity two) is a singular conic in
the pencil of generalized Frégier conics.
The following can also be shown:

Theorem 5 For variable point P ∈ E , the Frégier ellipses
FE envelop two ellipses Ei, Ee which are homothetic to E .

Proof. The elimination of the parameter T from the equa-
tion (6) of FE and its derivative with respect to T yields

Eo :
x2

a2 +
y2

b2 =
(b2 f 2−a2)2

(b2 f 2 +a2)2 ,

Ei :
x2

a2 +
y2

b2 =
(a2 f 2−b2)2

(a2 f 2 +b2)2 .

Obviously, Eo and Ei are concentric with E , there axes are
parallel to those of E , and since the semi-axes lengths of
the latter ellipses are

ai = a
a2−b2 f 2

b2 f 2 +a2 , bi = b
a2−b2 f 2

b2 f 2 +a2

and

ao = a
a2 f 2−b2

a2 f 2 +b2 , bo = b
a2 f 2−b2

a2 f 2 +b2 .

The ratio of both pairs of semi-axes lengths equals a/b. �

The outer and inner envelope Eo and Ei coincide if f =±1
and become the ordinary Frégier conic being the trace (8)
of the Frégier points of E .
Fig. 7 shows the two ellipses Eo and Ei comprising the en-
velope of the Frégier ellipses of E .

Figure 7: The envelope of the generalized Frégier conics
of the ellipse E consists of an outer ellipse Eo
and an inner ellipse Ei.

The sketch of the computational proof of Thm. 4 hides a
detail: The resultant of the equation of s+ and its derivative
with respect to U turns out to be the product of a polyno-
mial of degree one (equation of a line r+) and a polynomial
of degree two (equation of FE ). This is also the case with
s− (yielding the equation of a line r− 6= r+ and the equation
of FE ). However, the two resultants share the quadratic
factor describing FE and differ in the linear parts. The
lines r+ and r− belong to the pencil about (−a,0) (the left
principal vertex of E which corresponds to the parameter
value T = ∞) and their equations are

r+,r− : b(ε2sτ sinφ±2abcφ)x+asinφ(ε2cτ+a2+b2)y+

+ab(ε2sτ sinφ±2abcφ) = 0.

Figure 8: The triangle built by r+, r−, r± already indicates
the existence of a poristic family of triangles in-
terscribed between E and the Frégier ellipses
FE and F ±E .
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From the computational point of view, the lines r+ and r−

do not have any further meaning. It is quite the opposite
from the geometric point of view as we shall see soon.
The vertex of the pencil depends on the parametrization (2)
and can be replaced with any other point on E (simply by
substituting any linear rational function for T ).
It is by no means surprising that the lines s± := [Q−,Q+]
also envelop a conic F ±E since <) g−g = <) gg+ =
1
2<) g−g+. Further, a computational proof of the latter fact
(comparable to that of Thm. 4) would also produce the
equation of a line r± which is tangent to the Frégier ellipse
F ±E .
At this point, we emphasize that the respective coefficient
matrices of the conics satisfy

F ±E = FE E−1FE ,

which identifies F ±E as the conjugate conic of E with re-
spect to FE in the sense of [10]. Also in that sense, the con-
ics E and FE span an exponential pencil of conics which
also contains F ±E . Because of the nestedness of E , FE ,
and F ±E , the exponential pencil has a point shaped limit
which equals the Frégier point F given by (8). This holds
in the like manner for the generalized Frégier conics of hy-
perbolae and parabolae.
There exists a triple (r+,r−,r±) of lines which are the sides
of a triangle interscribed between E , FE , and F ±E indepen-
dent of the choice of P ∈ E . This gives rise to the follow-
ing:

Theorem 6 The triangles bounded by the lines r+, r−, r±

form a one-parameter family of triangles interscribed be-
tween the conic E and the Frégier ellipses FE and F ±E .
The triangles form a Poncelet family.

Proof. We only have to show that the conics E , FE , and
F ±E belong to a linear pencil (cf. [7, p. 259]) in order to
meet the requirements of a general Poncelet porism (cf.
[4]).
This can either be done by referring to Thm. 3 according
to which the two Frégier conics to angles φ and 2φ belong
to a pencil of conics (of the third kind) or by means of
computation:
For that purpose, we homogenize the equations of E , FE ,
and F ±E , extract the coefficient matrices, and find that they
are linearly dependent since(

4(1− f 2)2 FE−F ±E
)
(1+ f 2)−1 =

= a4b4(3 f 2−1)( f 2−3)2(1+T 2)2 E ,
(9)

provided that f 6=±1. In the cases f =±
√

3,±1/
√

3, i.e.,
φ 6=±π

6 , the Frégier ellipses FE and F ±E coincide. �

We have shown that FE , F ±E , E belong to one pencil of
conics. This is a pencil of the third kind that contains the

two singular conics. The first of which is a line with mul-
tiplicity two:

ε
2(b(T 2−1)x+2aT y)=ab(a2+b2)(1+T 2).

The second one is a pair of complex conjugate lines con-
curring in the (real) Frégier point (8) with directions

x
y
=± ib

2a
(a2 +b2)(1−T 2)+4abiT
ab(T 2−1)− i(a2 +b2)T

.

This pair of complex conjugate lines is the image of the
isotropic lines through the center of d under the perspec-
tive collineation d→ c used in the proof of Thm. 2.

3.2 Frégier conics of hyperbolae

In analogy to the previous section, we assume that a hy-
perbola H is given by the middle equation of (1) with real
semi-axes a,b. The vertex of the rotating angle(s) is now
P = h(T ) with h from (2) where T ∈ R\{−1,1}.
Again, the point Q is obtained by assuming Q = h(U) with
T 6= U and the chords g := [P,Q] of H have an equation
similar to that of E in (5). Now, the chords’ normal vec-
tors are proportional to

n = (b(1+TU),−a(T +U)).

The normal vectors of the legs g+ and g− of the moving
angles attached to g are found by applying the linear map-
pings induced by the matrices R(φ) and R(−φ) from (4).
This allows us to write down the equations of g+ and g−,
compute the points Q+, Q−, and furthermore, to determine
the envelopes of the lines s+ := [Q,Q+], s− := [Q,Q−],
and s± := [Q−,Q+], and we find F +

H = F −H = FH with the
equation

FH :
(
(a2−b2 f 2)(a2 f 2−b2)(1+T 4)+

+2(a2b2(1+ f 2)2+ε
2 f 2)T 2)x2+

+
(
a2b2(1+ f 2)2(1+T 4)+

+2(2ε
2 f 2−a2b2(1+ f 2)2)T 2)y2+

+4a2bε
2 f 2T (1+T 2)xy+ (10)

−2ab2(a2−b2)ε f 2(1−T 4)x+

−4a2b(a2−b2)ε f 2T (1−T 2)y+

+a2b2(a2 f 2+b2) · (b2 f 2+a2)(1−T 2)2=0,

where ε2 = a2 + b2 is the square of the linear excentricity
of the hyperbola H .
Analogously to Thm. 4, we can formulate

Theorem 7 The lines s+ and s− envelop the same conic
FH , the generalized Frégier conic of the hyperbola H .
The generalized Frégier conics FH of a hyperbola H can
be conics of any affine type.
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Proof. Since the determinant of the quadratic term of (10)
equals

D12 := 4a4b4(1+ f 2)2(a2−b2 f 2)3 ·(a2 f 2−b2)3(1−T 2)4

and vanishes exactly if f = ± a
b ,±

b
a , the generalized

Frégier conics in these particular four cases coincide and
the equation of FH simplifies to

(a2 +b2)2(2bT x+a(1+T 2)y)2+

−2ab(1−T 2)(b(a4−b4)(1+T 2)x+

+2aT (a4−b4)y−ab(a4+b4)(1−T 2)) = 0.

The latter equation describes a parabola with ideal point

0 :−a(1+T 2) : 2bT

(for all four values of f ). For proper choices of f , D12
can be positive as well as negative, and therefore, the gen-
eralized Frégier conics FH of H can also be ellipses and
hyperbolae. Using the collineation applied in the proof of
Thm. 2, we can also argue that all affine types of conics
can show up here as generalized Frégier conics.
The Frégier conics of hyperbolae are regular since the de-
terminant of the homogeneous equation equals

D012 :=−8a10b10(1− f 2)2(1+ f 2)4(1−T 2)6

which vanishes only if f =±1 (right angle, Frégier point)
or if T =±1 (which can be avoided by reparametrizing H ).
�

Figure 9: Two triangles from the Poncelet family inter-
scribed between H , FH , and F ±H .

The one-parameter family of generalized Frégier conics of
a hyperbola shows a behaviour similar to that of an ellipse.
Comparable to Thm. 5, we can show:

Theorem 8 For variable point P ∈ H , the generalized
Frégier conics FH envelop two hyperbolae Hi, Ho which
are homothetic to H .

Proof. We eliminate the parameter T from the equa-
tion (10) of the generalized Frégier conics FH and of the
derivatives of (10) with respect to T . This elimination
yields besides the equations ay∓ bx = 0 of H ’s asymp-
totes, the hyperbola H , and a further hyperbola H ′ that
does not contribute to the envelope.
The two components of the envelope are two hyperbolae

Hi :
x2

a2 −
y2

b2 =
(b2 f 2 +a2)2

(b2 f 2−a2)2 ,

Ho :
x2

a2 −
y2

b2 =
(a2 f 2 +b2)2

(a2 f 2−b2)2 .

It is obvious that Hi and Ho are homothetic to H . Their
semi-axes are

ao = a
b2 f 2 +a2

a2−b2 f 2 , bo = b
b2 f 2 +a2

a2−b2 f 2

and

ai = a
a2 f 2 +b2

a2 f 2−b2 , bi = b
a2 f 2 +b2

a2 f 2−b2

(provided that f 6=± a
b ,±

b
a ) and the axes ratio equals a/b.

�

It is a rather simple task to show that the centers of the
generalized Frégier conics move on a hyperbola M homo-
thetic to H with semi-axes

principal =
a f 2(a4+b4)

(a2−b2 f 2)(a2 f 2−b2)
,

auxiliary =
b f 2(a4+b4)

(a2−b2 f 2)(a2 f 2−b2)
,

provided that f 6=± a
b ,±

b
a .

In the previous section, we have seen that the computa-
tion of the generalized Frégier conics as the envelopes
of chords of a conic produced straight lines as some by-
product. These lines depend on the parametrization of the
initial conic, but nevertheless, they allow us to conclude
that there exist general Poncelet families of triangles inter-
scribed between H and the generalized Frégier conics FH
and F ±H .
Therefore, and without repeating the similar computations,
and in analogy to Thm. 6, we can state:

Theorem 9 The hyperbola H and the pair of generalized
Frégier conics FH and F ±H admit an interscribed one-
parameter family of triangles, i.e., a one-parameter family
of billiards with two caustics.

According to Thm. 3 and because of

F ±H −4(1− f 2)3FH =

= (3 f 2−1)( f 2−3)(1+ f 2)2(1−T 2)2a4b4H

the conics H , FH , and F ±H belong to a pencil of conics.
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Figure 10: Frégier conics of a hyperbola can be ellipses. In
any case, the Frégier conics of a hyperbola H
envelop two hyperbolae Hi and He (homothetic
to H ) and with their centers on a further homo-
thetic hyperbola M .

3.3 Frégier conics of parabolae

Finally, we assume that the parabola P is given by the third
equation in (1). Now, we let P = p(T ) and Q = p(U) with
T,U ∈ R and T 6=U be two points on P spanning the line
g=[P,Q] rotating about P through φ. With (4) applied to
the normal vector

n = (T +U,−1),

we find the line g+ with the equation

g+ :((T+U)( f 2−1)+2 f )x+(2(T+U) f− f 2+1)y =

= 2pT (U( f 2−1)+2 f T (T+U)+2 f ) (11)

and the line g− admits a similar representation. The lines
g+ and g− intersect P in the points Q+,Q− 6= P where

Q+=2p
(

U( f 2−1)−2 f (T+U)T−2 f
2 f (T+U)+ f 2−1

,

(2 f (T+U)T+U(1− f 2)+2 f )2

(2 f (T+U)+ f 2−1)2

)
.

(12)

The point Q− admits a similar coordinate representation.
This yields the equations of the chords s− := [Q,Q−],
s+ := [Q,Q−], and s± := [Q−,Q+], where

s+ : 2( f (T 2−U2)+U(1− f 2)+ f )x+

+(2 f (T+U)+ f 2−1)y =

= 2pU(2 f (T+U)T+U(1− f 2)+2 f ), (13)

and the equations of the other chords s− and s± can be
given in a similar form.
We compute their envelopes and find again that the Frégier
conics F −P =F +

P =: FP are identic. An equation of the
parabola’s generalized Frégier conics can be given as

FP : (4T 2 f 2+(1+ f 2)2)x2 +4 f 2T xy+ f 2y2+

+8q f 2T (1+T 2)x−2q( f 4−2T 2 f 2+1)y+

+4q2 f 2(1+T 2)2 = 0. (14)

Now, we can state (comparable to Thm. 4 and Thm. 7):

Theorem 10 The chords s+ and s− cut out of a parabola
P by congruent angles centered at a point P ∈ P envelope
the same conic FP with the equation (14).
The generalized Frégier conics FP of a parabola P are
ellipses if φ ∈ R.

Proof. The chords’ envelope is already given in (14).
Since the determinant of the homogeneous equation of FP
equals

D012 =−8q2(1− f 2)2(1+ f 2)4,

it never vanishes (for, by assumption q 6= 0, f 6= 0,±1,±i).
Hence, the generalized Frégier conics of the parabola are
always regular. The determinant of the quadratic term in
the inhomogeneous equation (14) of FP equals

D12 = 4 f 2(1+ f 2)2

and is always positive (provided f 6= 0,±i, which is ex-
cluded from the very beginning). Hence, (14) describes
ellipses independent of the choice of f and T (since p 6= 0,
f 6=±1,±i). In order to verify the second part of the theo-
rem, just discuss the quadratic part of (14). �

The centers of the ellipses (14) showing up as general-
ized Frégier conics are located on a parabola with the
parametrization

(−2qT, f−2q(2T 2 f 2 + f 4 +1))

and the equation

Pc : x2−2qy =−2 f−2q2(1+ f 4).

Obviously, this parabola is congruent to P . This parabola
is also shown in Fig. 11.
Like in the case with the ellipse E , the elimination process
delivers two lines r+ and r−, which are parallel and tangent
to F and have the equations

r+,r− : 2 f pT ∓ p(1− f 2)+ f x = 0. (15)

The parallelity of r+ and r− depends on the parametriza-
tion (2) of P since t = ∞ in the third equation of (2) yields
the point 0 : 0 : 1 = r+ ∩ r−. A suitable linear rational
reparametrization of the parabola (2) can move the point
r+∩ r− to any other point on P .
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The double angle Frégier conic F ±P has the equation

F ±P : (16 f 2(1− f 2)2T 2+(1+ f 2)4)x2+

+16 f 2(1− f 2)2T xy+4 f 2(1− f 2)2y2+

+32p f 2(1− f 2)2T (1+T 2)x+

+(16p f 2(1− f 2)2T 2− (16)

−2p( f 8−4 f 6]+22 f 4−4 f 2+1))y+

+16p2 f 2(1− f 2)2(1+T 2)2 = 0.

which is regular as long as f 6= ±1±
√

2 and consists of
the given parabola P and the line

2pT 2 +2T x+y = 0

if f = ±1. The additional line that comes along with the
equation (16) of F ±P has the equation

r± : 2 f 2(2T x+y) = p((1− f 2)2−4 f 2T 2). (17)

The three conics P , FP , and F ±P belong to the same pencil
since the respective equations (1), (14), and (16) satisfy

(3 f 2−1)(3− f 2)(1+ f 2)2P = 4(1− f 2)2FP +F ±P . (18)

The comparison of (9) and (18) shows that the latter does
neither contain the parameter q nor the curve parameter T ,
while (9) depends on the semi-axes of E and on the point
P.

Figure 11: The generalized Frégier conics of a parabola P
envelop two parabolae Pi and Po which are con-
gruent to P .

Comparable to Thms. 5 and 8, we can show what is illus-
trated in Fig. 11:

Theorem 11 For variable point P ∈ P , the generalized
Frégier conics FP of a parabola (1) envelop a pair of con-
gruent parabolas with the equations

Po : x2 +4 f−2q2 = 2qy,
Pi : x2 +4 f 2q2 = 2qy

which are also congruent to P .

Proof. The computation of these two envelopes is straight
forward. Since their quadratic part is a multiple of x2−2qy
(as is the case with P ), they are congruent to each other and
P as well. �

Because of the existence of one interscribed triangle
bounded by the lines (15) and (17) between the conics P ,
FP , and F ±P (which belong to a pencil according to Thm.
3 and because of (18)), we have (cf. Thm. 6 and Thm. 9):

Theorem 12 The conics P , FP , and F ±P allow for a one-
parameter family of interscribed triangles.

Figure 12: Frégier conics FP , F ±P related to a parabola P.

Fig. 12 illustrates that among the triangles in the Poncelet
family described in Thm. 12 there are degenerate triangles
with one vertex at infinity. It is more than one degenerate
triangle since each vertex of the triangle can reach one of
the positions of r+∩P or r−∩P .

4 Concluding remarks

The generalized Frégier conics can be seen as a blow-up of
the ordinary Frégier point just by replacing the right angle
between assigned pairs of lines in the projective mapping
at some point P on a conic c. This blow-up “enlarges”
or blows up the ordinary Frégier conic (the trace of the
Frégier point if its pivot P ∈ c is moving along c) to the
two envelopes Eo, Ei (Ho, Ho or Po, Pi). Of course, there
are other ways to generalize or adapt Frégier’s theorem.
We shall postpone this to a future article.
The Poncelet families (one-parameter families of triangles
interscribed in between some conics from a pencil) were
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found just occasionally since the lines bounding these tri-
angles are by-products in the computation. The initial
parametrizations (2) lead to just one initial triangle in the
family. Any other (projectively equivalent) parametriza-
tion of the conics would have resulted in another triangle.
However, one is enough since it was possible to show that
the involved triple of conics (E ,FE ,F ±E ) (and also those
related to the hyperbola and the parabola) belong to the
same pencil.
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A Triple of Projective Billiards

ABSTRACT

A projective billiard is a polygon in the real projective plane
with a circumconic and an inconic. Similar to the classical
billiards in conics, the intersection points between the ex-
tended sides of a projective billiard are located on a family
of conics which form the associated Poncelet grid. We ex-
tend the projective billiard by the inner and outer billiard
and disclose various relations between the associated grids
and the diagonals, in particular other triples of projective
billiards.

Key words: ellipse, billiard, caustic, Poncelet grid, billiard
motion

MSC2020: 51N35

Trojka projektivnih biljara

SAŽETAK

Projektivni biljar je poligon u realnoj projektivnoj ravnini
koji ima upisanu i opisanu koniku. Poput klasičnih bilja-
ra u konikama, sjecǐsta produljenih stranica projektivnog
biljara se nalaze na familiji konika koje tvore pridruženu
Ponceletovu mrežu. Proširujemo projektivni biljar unutar-
njim i vanjskim biljarom i otkrivamo mnoštvo veza izmedu
pridruženih mreža i dijagonala, posebice drugih trojki pro-
jektivnih biljara.

Ključne riječi: elipsa, biljar, kaustika, Ponceletova mreža,
biljarsko kretanje

1 Introduction

A billiard is the trajectory of a mass point in a domain
called billiard table with ideal physical reflections in the
boundary. Already for two centuries, billiards in ellipses
(see Figures 1, 2, 8) and their projectively equivalent coun-
terparts have attracted the attention of mathematicians, be-
ginning with J.-V. Poncelet [4] and C.G.J. Jacobi [3] and
continued, e.g., by S. Tabachnikov, who addresses in his
book [10] a wide variety of themes around this topic. Com-
puter animations carried out recently by D. Reznik [5]
stimulated a new vivid interest on these well studied ob-
jects.

We focus on projective generalizations called projective
billiards. This term stands for planar polygons P1P2P3 . . .

with a circumconic e and an inconic c called caustic. Not
all projective billiards are projectively equivalent to Eu-
clidean billiards (see, e.g., Figure 9), and not in all cases
exist periodical polygons between the conics e and c .
However, in all cases the intersection points between ex-
tended sides define a family of conics which form the as-

sociated Poncelet grid. The goal of this paper is to demon-
strate that in a quite natural way any given projective bil-
liard defines two more projective billiards with associated
Poncelet grids. It will be demonstrated that not only the
conics of these grids, but also configurations of related
lines deserve our interest.

It needs to be pointed out, that the computation of the bil-
liards’ vertices can only be carried out either iteratively or
with the help of Jacobian elliptic functions (see, e.g., [8]).
Therefore, it is not straightforward to obtain results on ver-
tices and their respective j-th followers for any given inte-
ger j > 1. Often such assertions are equivalent to identities
in terms of elliptic functions (see, e.g., [9, Section 5]).

Structure of the article. In Section 2 we introduce the
three Poncelet grids associated respectively with a projec-
tive billiard and its inner and outer polygons. Section 3 is
devoted to the conics e( j), c( j), and r( j) of the three grids.
In Section 4 we recall results on the envelopes of diagonals
and determine the points of contact. Finally in Section 5,
we study the configuration of the l-th diagonals of the pro-
jective billiards inscribed respectively in e( j), c( j), and r( j).
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2 A triple of Poncelet grids

Figure 1: Periodic billiard P1P2 . . .P5 inscribed in the
ellipse e along with the polygon Q1Q2 . . .Q5 of contact
points with an ellipse c as caustic, the polygon F1F2 . . .F5
of contact points with q , and the polygon R1R2 · · · ∈ r
which is polar to P1P2 . . .P5 w.r.t. e .

Let P1P2P3 . . . be a polygon with circumconic e and in-
conic c in the real projective plane. Then there exists an
associated Poncelet grid. We follow the notation in [7]
and denote intersection points between extended sides1 for
i, j = 1,2, . . . as

S( j)
i :=

{
[Pi−k−1,Pi−k]∩ [Pi+k,Pi+k+1] for j = 2k, and
[Pi−k,Pi−k+1]∩ [Pi+k,Pi+k+1] for j = 2k−1 .

(1)

For fixed j, the points S( j)
1 ,S( j)

2 , . . . are located on a conic
e( j) which belongs to the dual pencil (range, in brief)
spanned by e and c . This is due to a result of M. Chasles
in 1843 (note, e.g., [7, Theorem 3.5]).

If the polygon P1P2 . . . is N-periodic, then we can con-
fine to 1 ≤ j ≤ [N−3

2 ], since for even N the locus e( j) with
j = N−2

2 is a line which has the same pole with respect
to (w.r.t., for short) e and c . Under the billiard motion of
P1P2 . . . , i.e., the variation of the vertices along the circum-
conic e while c remains fixed, each conic e( j) of the Pon-
celet grid remains fixed as well (note [7, Theorem 3.6]).2

In the classical case of a Euclidean billiard P1P2 . . . in a
conic e , the conics e( j) are confocal with e and the caustic
c (Figure 2). If for a given ellipse e the caustic c is an el-
lipse, then the billiard is called elliptic and the conics e and

c intersect in two pairs of complex conjugate points. Oth-
erwise we obtain a hyperbolic billiard with a hyperbola as
caustic (Figures 6 and 7). Then the two conics share four
real points.

2.1 The outer polygon

The tangents tP1 , tP2 , . . . to the circumconic e at the vertices
P1,P2, . . . of a projective billiard define a polygon R1R2 . . .
called outer polygon in [5]. This polygon is polar to
P1P2 . . . w.r.t. e and therefore inscribed in a conic r which
is polar to c w.r.t. e (Figure 1). Similar to (1), the vertices
R( j)

i of the associated Poncelet grid are points of intersec-
tion between tangents to e and denoted for j = 1,2, . . . as
given below:

R( j)
i :=

{
tPi−k ∩ tPi+k+1 for j = 2k, and
tPi−k ∩ tPi+k for j = 2k−1,

=

{
[Ri−k−1,Ri−k]∩ [Ri+k,Ri+k+1] for j = 2k, and
[Ri−k−1,Ri−k]∩ [Ri+k−1,Pi+k] for j = 2k−1,

(2)

hence k =
[

j+1
2

]
(note Figure 2).

Figure 2: Periodic billiard P1P2 . . .P8 in the ellipse e with
the net of tangent lines to e at the vertices.

2.2 The inner polygon

Beside the Poncelet grids associated with the pairs of con-
ics (e,c) and (r,e), there is a third Poncelet grid. This time
we focus on the polygon of contact points Q1,Q2, . . . of the
sides of P1P2 . . . with the caustic c . The polygon Q1Q2 . . .

1Note that XY denotes the segment bounded by the points X and Y , while [X ,Y ] denotes the connecting line.
2Beside the conics e( j), j = 1,2, . . . , the Poncelet grid contains a second family of conics. In the case of classical billiards with ellipses e, c and e( j),

the remaining conics are confocal hyperbolas (see, e.g., [7, Figures 5 or 6]) which vary under the billiard motion. However, here we focus only on e( j).
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is called inner polygon in [5]. The vertices of the associ-
ated Poncelet grid are defined as

Q( j)
i :=

{
[Qi−k−1,Qi−k]∩ [Qi+k,Qi+k+1] for j = 2k,
[Qi−k−1,Qi−k]∩ [Qi+k−1,Qi+k] for j = 2k−1

(3)

(note Figure 4).

The extended sides of the polygon Q1Q2 . . . envelop a
conic q which is polar to e w.r.t. c . The line [Qi−1,Qi] con-
tacts q at the c-pole Fi of the tangent tPi to e at Pi . There-
fore, in the case of a Euclidean billiard it is the point of
intersection between the chord [Qi−1,Qi] and the normal
to e at Pi (Figure 1). The latter is the locus of poles of the
tangent tPi w.r.t. the conics of the confocal family.

Lemma 1 Referring to the previous notation, the circum-
conic r of the polygon R1R2 . . . with sides tangent to e at Pi
is polar to c w.r.t. e . The inconic q of the polygon Q1Q2 . . .
with circumconic c is polar to e w.r.t. c . In the billiard
case (Figure 1), RiQi is orthogonal to c at Qi , and FiPi is
orthogonal to e at Pi .

Lemma 1 reveals that also the conics q and r are invariant
under the billiard motion along e . Clearly, if the original
projective billiard P1P2 . . . is periodic, then Q1Q2 . . . and
R1R2 . . . are periodic, too.

A polygon with circumconic e and inconic c can be pe-
riodic even when the two conics share two real and two
complex conjugate points. An example is depicted in Fig-
ures 5 and 9 with the two conics as circles. Such poly-
gons P1P2 . . . are called bicentric. They were first treated
in 1828 by Jacobi [3] in the case where c lies in the inte-
rior of e . In [6] various invariants of bicentric polygons are
proved for the case that the circles e and c are either nested
or disjoint.

3 More projective billiards in the three Pon-
celet grids

In the case of Euclidean billiards P1P2 . . . in the plane or
on the sphere (see [7, Fig. 7]), the tangents to e at Pi and
those to e( j) at S( j)

i are angle bisectors of extended sides of
P1P2 . . . . Therefore, the net of extended sides of P1P2 . . .

is circular with the points R( j)
i as centers of incircles of

quadrilaterals (Figure 2). This result dates back to [1] in
2018. Below we present a generalization.

Theorem 1 Given a projective billiard P1P2 . . . , then for
each j = 1,2, . . . the vertex R( j)

i of the Poncelet grid associ-
ated with the outer polygon R1R2 . . . is located on the tan-
gents to e( j) at S( j)

i and S( j)
i+1. The points R( j)

1 ,R( j)
2 , . . . be-

long to a conic r( j) which is contained in the range spanned

by e and r . The polar conic of r( j) w.r.t. e( j) is the envelope
of the extended sides of the polygon S( j)

1 S( j)
2 . . . .

Figure 3: N-periodic billiard with N = 8. In the proof of
Theorem 1 we focus on the quadrilateral formed by the
tangents from S(2)1 and S(2)8 to the caustic c .

Figure 4: The contact points of the sides of the polygon
S( j)

i S( j)
i+1 . . . with their envelope c( j) are the vertices Q( j)

i of
the Poncelet grid associated with Q1Q2 . . . . In other words,
the projective billiard S( j)

i S( j)
i+1 . . . has Q( j)

1 Q( j)
2 . . . as its in-

ner billiard.

Proof. According to (1), the extended sides [Pi,Pi+1] and
[Pi+ j+1,Pi+ j+2] through S( j)

i+k for k =
[

j+1
2

]
and [Pi−1,Pi]

and [Pi+ j,Pi+ j+1] through S( j)
i+k−1 form a quadrilateral with

Pi,Pi+ j+1 ∈ e and S( j)
i+k−1,S

( j)
i+k ∈ e( j) as pairs of opposite

vertices (see the case j = 2, N = 8 and i = 7 in Figure 3).
All four sides are tangents of the caustic c, while the con-
ics and e, e( j) and c belong to a range. According to the
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mentioned result by Chasles and its extension in [7, The-
orem 3.5]), the tangents to e at Pi and Pi+ j+1 and the tan-
gents to e( j) at S( j)

i+k−1 and S( j)
i+k are concurrent. By (2), their

meeting point is R( j)
i+k−1 (see Figure 2). After increasing all

subscripts by 1, we obtain the analogue result for R( j)
i+k.

The Poncelet grid associated with R1R2 . . . contains conics
r( j) passing through the vertices R( j)

1 ,R( j)
2 , . . . . All conics

r( j) belong to the range spanned by e and r and are motion
invariant, too. Since the polar line of R( j)

i ∈ r( j) w.r.t. e( j)

is the line [S( j)
i ,S( j)

i+1], the polar conic c( j) of r( j) w.r.t. e( j)

envelops the polygon S( j)
1 S( j)

2 . . . . �

Theorem 2 Referring to the previous notation, the sides
of the polygon S( j)

1 S( j)
2 . . . contact the enveloping conic c( j)

at the vertices Q( j)
1 ,Q( j)

2 , . . . . Hence, the envelope c( j) co-
incides with the conic of the Poncelet grid associated with
Q1Q2 . . . (Figure 4).

Proof. We replace the polygon P1P2 . . . inscribed in e and
circumscribed to c by the polygon R1R2 . . . inscribed in
r and circumscribed to e . Then by virtue of Theorem 1,
the side [R( j)

i ,R( j)
i+1] contacts the envelope e( j) at the point

S( j)
i . This implies for our original polygon P1P2 . . . that
[S( j)

i ,S( j)
i+1] contacts the envelope c( j) at the vertex Q( j)

i
of the Poncelet grid associated with the j-th diagonals of
Q1Q2 . . . . �

Figure 5: Periodic projective billiard P1P2 . . .P6 in the bi-
centric case with the hyperbolas e(1) (red), r(1) (green),
c(1) (blue), and the ellipse r (green).

Figure 6: A periodic hyperbolic billiard P1P2 . . .P10 along
with the polygons S(1)1 S(1)2 . . .S(1)10 (red), Q(1)

1 Q(1)
2 . . .Q(1)

10

(blue), R(1)
1 R(1)

2 . . .R(1)
10 (green), and the respective circum-

conics e(1), c(1) and r(1).

Figure 7: Twofold pose of a periodic hyperbolic billiard
P1P2 . . .P10 with c(1), e(1), and r(1).

Corollary 1 Let P1P2 . . . be a projective billiard with
R1R2 . . . and Q1Q2 . . . as respective outer and inner poly-
gon. Then for fixed j ∈ {1,2, . . .}, the vertices S( j)

1 ,S( j)
2 , . . .

on the conic e( j) of the Poncelet grid associated with
P1P2 . . . form another projective billiard with the poly-
gons R( j)

1 R( j)
2 . . . as outer billiard with circumconic r( j) and
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Q( j)
1 Q( j)

2 . . . as inner billiard with the inconic c( j), which is
polar to r( j) w.r.t. e( j).

The Figures 5–7 illustrate that the triples (c( j),e( j),r( j))
can look quite different in comparison with (c(1),e(1),r(1))
or (c(2),e(2),r(2)) in Figure 4.

As shown at the hyperbolic billiard in Figure 6, the conic
r(1) passes through the intersection points of the hyper-
bola e(1) with e . This follows from particular poses with
a twofold covered billiard (see Figure 7): When P1 ∈ e is
specified at an intersection point3 with the caustic c , then
P2 coincides with P10 as well as with S(1)1 and R(1)

1 . There
is a general statement in the background:

Theorem 3 Referring to the previous notation, for each
j = 1,2, . . . the conics r( j), e( j) and e belong to a pencil.
The same is true for the three conics e( j), c( j) and c (Figure
5).

Proof. We argue with help of the complex extension of the
real projective plane. Whenever the point R( j)

i+k = tPi ∩ tPi+ j

for k = [ j+1
2 ] is located on e , then follows R( j)

i+k = Pi = Pi+ j

and consequently S j+k = [Pi−1,Pi]∩ [Pi+ j,Pi+ j+1] = R( j)
i+k.

This means that each point of intersection between e and
r( j) belongs also to e( j). Therefore, if e and r( j) share four
mutually different points, then e( j) belongs to the pencil
spanned by r( j) and e .

The remaining cases with intersection points of higher or-
der between r( j) and e can be seen respectively as a limit
where some of the four intersection points tend to coin-
cidence. It cannot happen that in the limit the symmetric
coefficient matrices of the three conics become linearly in-
dependent when everywhere else in the neighborhood they
are linearly dependent.

The second statement follows just by replacing the triple
(r( j),e( j),e) by (e( j),c( j),c). �

4 Diagonals

In view of the envelopes of the j-th diagonals [Pi,Pi+ j+1] of
our polygon P1P2P3 . . . , we recall from [9] a result which
was first stated in 1822 by V.-P. Poncelet [4] and reproved
in 1828 by C.G.J. Jacobi for the case of nested circles e and
c . Moreover, we recall from [9] how to find the envelop-
ing points. However, the proofs of the Theorems 1 and 2 in
[9] cover only the cases of elliptic and hyperbolic billiards,
where affine scalings are available between involved con-
ics. The following theorem addresses the general case.

Theorem 4 Let P1P2P3 . . . be a polygon inscribed in the
conic e and circumscribed to the conic c with contact
points Q1,Q2,Q3, . . . . Then for fixed j = 1,2, . . . , the enve-
lope of the j-diagonals [Pi,Pi+ j+1] is a conic he| j included
in the pencil spanned by e and c , provided that in the
particular case of N-periodic billiards with even N holds
j ≤ [N−3

2 ].
The diagonal [Pi,Pi+ j+1] contacts he| j at the intersec-
tion with the adjacent j-th diagonals [Qi−1,Qi+ j] and
[Qi,Qi+ j+1] of the inner billiard Q1Q2Q3 . . . (Figures 8 or
9).

Proof. (i) According to (1), the extended sides [Pi,Pi+1]

and [Pi+ j+1,Pi+ j+2] intersect at the point S( j)
i+k+1, k := [ j

2 ],
on the conic e( j), which belongs to the range spanned by
e and c . The restriction on j in the periodic case as men-
tioned in Theorem 4 excludes the case where e( j) is a line.

The polarity in the caustic c transforms this into the follow-
ing statement: The connecting lines [Qi,Qi+ j+1] envelop a
conic hc| j which belongs to the pencil spanned by c and
the polar conic q of e w.r.t. c (Figures 1 and 8). In order
to obtain the first part of our statement, it is sufficient to
replace the polygon Q1Q2Q3 . . . inscribed in c and circum-
scribed to q by the original polygon P1P2P3 . . . with the
circumconic e and the inconic c .

Figure 8: Envelopes he|1, hc|1 and hr|1 of the diagonals of
the periodic elliptic billiard P1P2 . . .P5 and of its inner and
outer polygons Q1Q2 . . . and R1R2 . . . . Triples of these di-
agonals together with that of F1F2 . . . meet at 15 points in
the interior of P1P2 . . . .

3Twofold covered poses of projective billiards arise when one vertex is specified either as a point of intersection between the circumconic e and the
inconic c or as the contact point with a common tangent between e and c (note the gray pose in Figure 5).
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Figure 9: In the bicentric case with circumcircle e and in-
tersecting incircle c (blue) the envelope of the first diag-
onals (green solid) of the periodic polygon P1P2 . . .P6 is
the circle he|1 (green) with contact points T1,T2, . . . . The
hyperbola e(1) (pink) and the diameter e(2) belong to the
associated Poncelet grid.

(ii) The point of contact between [Qi,Qi+ j+1] and the en-
velope hc| j is the c-pole of the tangent to e( j) at S( j)

i+k+1 . By

virtue of Theorem 1, this tangent passes through R( j)
i+k and

R( j)
i+k+1 . Hence, the requested point of contact is the meet-

ing point of the polar lines of S( j)
i+k+1, R( j)

i+k and R( j)
i+k+1 w.r.t.

c .

The c-polar line of S( j)
i+k+1 is the diagonal [Qi,Qi+ j+1].

Since by (2) the point R( j)
i+k is the intersection of the tan-

gents to e at Pi and Pi+ j+1, the c-polar of R( j)
i+k connects

the contact points Fi and Fi+ j+1 of respective sides of the
polygon Q1Q2 . . . with its envelope q . After increasing all
subscripts by 1, we obtain [Fi+1,Fi+ j+2] as the c-polar of
R( j)

i+k+1.

In order to prove the second claim, it is sufficient to replace
the polygon Q1Q2 . . . with the inconic q by the polygon
P1P2 . . . with the inconic c and the contact point Fi+1 of the
side [Qi,Qi+1] by the contact point Qi of the side [Pi,Pi+1].

�

In Figure 8, the particular case j = 1 is depicted along
with the configuration of the j-th diagonals of R1R2 . . . ,
P1P2 . . . , Q1Q2 . . . , and F1F2 . . . with triples of concurrent
lines. The depicted enveloping conics hr|1, he|1 and hc|1
of the j-th diagonals of R1R2 . . . , P1P2 . . . and Q1Q2 . . . in
Figure 8 reveal that we obtain a sequence of triples of con-
ics like (r,e,c). This reminds on sequences of billiards as
presented in [2].

Corollary 2 Let P1P2 . . . be a projective billiard with
R1R2 . . . and Q1Q2 . . . as outer and inner polygon, while

F1,F2, . . . are the contact points of the inner polygon with
its inconic q . Then the j-th diagonals of Q1Q2 . . . are the
sides of another projective billiard, where the j-th diago-
nals of P1P2 . . . are the sides of the outer polygon and that
of F1F2 . . . sides of the inner polygon (Figure 8).

For later use we record a consequence of the Theorems 2
and 4:

Lemma 2 Referring to the previous notation, the conic
he| j is polar to c( j) w.r.t. the caustic c . The enveloping

point of [S( j)
i ,S( j)

i+1] is the c-pole{
Q( j)

i of d := [Pi−k,Pi+k+1] for j = 2k, and

Q( j)
i+1 of d := [Pi−k+1,Pi+k+1] for j = 2k−1 .

The line d is a j-th diagonal of P1P2P3 . . . and a diagonal
of the quadrilateral consisting of the tangents drawn from
S( j)

i and S( j)
i+1 to the caustic c .

The composition of the polarities in c and e is a collinear
transformation κ . It takes Qi to Ri and by (3) and (2) Q( j)

i

to R( j)
i for all i . Moreover, it sends c to r and c( j) via he| j to

r( j) and the envelope of the j-th diagonals of Q1Q2 . . . to
the envelope of j-th diagonals of R1R2 . . . (Figure 8). Lines
with equal poles w.r.t. e and c remain fixed under κ as for
example the axes of symmetry of e in the case of classical
billiards.

5 Configurations of lines related to the Pon-
celet grids

The term ‘Poncelet grid’ usually stands for a configuration
of conics, which are confocal in the particular case of Eu-
clidean billiards. Below we demonstrate that a Poncelet
grid is also combined with a configuration of lines.

The following theorem deals with the l-th diagonals of the
polygon S( j)

1 S( j)
2 . . . inscribed in the conic e( j) of the Pon-

celet grid associated with P1P2 . . . and circumscribed to the
conic c( j). Note that in the case l = j we obtain extensions
of the sides of the original billiard P1P2 . . . .

Theorem 5 The l-th diagonal [S( j)
i ,S( j)

i+l+1] of the polygon

S( j)
1 S( j)

2 . . . inscribed in e( j) contains three meeting points
of at least five l-th diagonals of other polygons of the three
involved grids (Figure 10):
(i) The contact point with the envelope of the l-th diagonals
of S( j)

1 S( j)
2 . . . is common to [Q( j)

i−1,Q
( j)
i+l ], [Q

( j)
i ,Q( j)

i+l+1] as
well as for j = 2k to [Qi−k−1,Qi−k+l ] and [Qi+k,Qi+k+l+1]
and for j = 2k−1 to [Qi−k,Qi−k+l+1] and [Qi+k,Qi+k+l+1].
(ii) The intersection point with the preceding diagonal
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[S( j)
i−1,S

( j)
i+l ] belongs also to [R( j)

i−1,R
( j)
i+l ], as well as for even j

to [Pi−k−1,Pi−k+l ] and [Pi+k,Pi+k+l+1] and in the odd case
to [Pi−k−1,Pi−k+l ] and [Pi+k−1,Pi+k+l ]. A similar result
holds for the follower [S( j)

i+1,S
( j)
i+l+2].

Proof. (i) The first statement is a direct consequence of
Theorem 4, applied to the projective billiard S( j)

1 S( j)
2 . . .

with the circumconic e( j) and the inconic c( j).

In order to prove the second statement of (i), we ap-
ply Lemma 2 to the polygon S( j)

i S( j)
i+l+1S( j)

i+2(l+1) · · · ∈ e( j),

which is formed by l-th diagonals of S( j)
1 S( j)

2 . . . , but also
by diagonals of a certain type in the polygon (or the
union of polygons) with the caustic c and the side lines
[S( j)

i ,S( j)
i+ j+1]. Hence, the contact point of [S( j)

i ,S( j)
i+l+1] with

the envelope of the l-th diagonals is the c-pole of a diago-
nal in the quadrilateral formed by the tangents drawn from
S( j)

i and S( j)
i+l+1 to c . According to (1), these tangents con-

tact c respectively{
for j = 2k at Qi−k−1, Qi+k and Qi−k+l , Qi+k+l+1 ,

for j = 2k−1 at Qi−k, Qi+k and Qi−k+l+1, Qi+k+l+1 .

Due to the rules of the polarity w.r.t. c , the requested pole
is the intersection of the connections of respective contact

points, i.e., [Qi−k−1,Qi−k+l ]∩ [Qi+k,Qi+k+l+1] for even j
and [Qi−k,Qi−k+l+1]∩ [Qi+k,Qi+k+l+1] for odd j .

(ii) From Theorem 4 applied to r( j) and e( j) follows that
the contact point of [R( j)

i−1,R
( j)
i+l ] with the envelope of the

l-th diagonals of R( j)
1 R( j)

2 . . . is common to [S( j)
i−1,S

( j)
i+l ] and

[S( j)
i ,S( j)

i+l+1].

In order to prove the second statement, we replace in
Lemma 2 the pair of conics (c, e( j)) by (e, r( j)) and apply
this result to the polygons R( j)

i R( j)
i+l+1R( j)

i+2(l+1) . . . formed

by l-th diagonals of R( j)
1 R( j)

2 . . . . Hence, the contact point
of [R( j)

i−1,R
( j)
i+l ] with the envelope of these l-th diagonals is

the e-pole of a diagonal d in the quadrilateral formed by
the tangents drawn from R( j)

i−1 and R( j)
i+l to e . According to

(2), the requested diagonal d of the quadrilateral connects
the points

tPi−k−1 ∩ tPi−k+l and
{

tPi+k ∩ tPi+k+l+1 for j = 2k,
tPi+k−1 ∩ tPi+k+l for j = 2k−1,

The e-pole of d is the intersection of the connections of re-
spective contact points with e, which confirms the claim.

�

Figure 10: Each l-th diagonal [S( j)
i ,S( j)

i+l+1] of the projective billiard S( j)
1 S( j)

2 . . . in e( j) contains three meeting points with
at least four other l-th diagonals of involved polygons (Theorem 5). Here the case j = 2 and l = 1 of a periodic elliptic
billiard P1P2 . . .P9 is depicted; note the diagonal S(2)1 S(2)3 (red).
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János Bolyai’s Angle Trisection Revisited

ABSTRACT

J. Bolyai proposed an elegant recipe for the angle trisec-
tion via the intersection of the arcs of the unit circle with
that of an equilateral hyperbola c. It seems worthwhile to
investigate the geometric background of this recipe and
use it as the basic idea for finding the nth part of a given
angle. In this paper, we shall apply this idea for the trivial
case n = 4, and for 5. Following Bolyai in the case 5, one
has to intersect the unit circle with cubic curve c. There,
and in the cases n ≥ 5, we find only numerical solutions,
which shows the limitation of Bolyai’s method. Therefore,
we propose another construction based on epicycloids in-
scribed to the unit circle. By this method is even possible
to construct the ( n

m )th part of a given angle.

Key words: angle trisection, angle n-section, equilateral
hyperbola, cubic, epicycloid
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Ponovno razmatranje trisekcije kuta metodom
Jánosa Bolyaija

SAŽETAK

J. Bolyai je predložio elegantnu metodu za trisekciju kuta
odred-ivanjem sjecǐsta lukova jedinične kružnice s lukovima
jednakostranične hiperbole c. Vrijedno je istražiti geometrij-
sku pozadinu ovog postupka te ga koristiti kao temeljnu
ideju za pronalaženje n-tog dijela zadanog kuta. U ovom
radu primijenit ćemo navedenu ideju u trivijalnom slučaju
n = 4, te za n = 5. Slijedeći Bolyaija, u slučaju n = 5 je-
diničnu kružnicu treba presjeći kubnom krivuljom c. U tom
slučaju, kao i u slučajevima n≥ 5, nalazimo samo numerička
rješenja, što pokazuje ograničenost Bolyaijeve metode.
Stoga predlažemo i drugu konstrukciju, ovaj put utemeljenu
na epicikloidi upisanoj jediničnoj kružnici. Ovom metodom
moguće je čak konstruirati n

m -ti dio zadanog kuta.

Ključne riječi: trisekcija kuta, n-sekcija kuta, jednakos-
tranična hiperbola, kubna krivulja, epicikloida

1 Angle trisection according to János Bolyai

P. Staeckel mentions in his book [3] about the geometric
investigations of Wolfgang and Johann Bolyai on page 234
that “J. Bolyai delt with the angle trisection, as can be found
on a slip of paper dating back to the early days of him”. We
present this passage from Staeckel’s book in Figure 1a, b:

Figure 1a: Reproduction of the text concerning the angle-
trisection of [3, p.234].

A translation of the text in Figure 1a would read as follows:

The trisection of an angle
Halve the angle adb (Fig. 24) [to be divided into three
parts] by ec; make now de = 1

2 dc, (make) the (normal)

x e f = 1
3 ca and draw f l ‖ec; draw now a hyperbola

through point d and with asymptotes f l and f e; where it
intersects the arc ab, the arc ak becomes 1

3 ab.

Figure 1b: Reproduction of Fig. 24 of [3, p.234] concerning
the angle-trisection.
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Figure “Fig. 24” does not exactly correspond with the“text”,
so there are misprints, as indicated by red rectangles. In
“Fig. 24” point b, the centre of arc ab, should be labelled as
“d”, and in the text the term e f = 1

3 ca should be replaced
by e f = 1

2 ca.

Besides the mentioned recipe there is no further explanation
or justification for it. János Bolyai (∗1802,†1860) was fa-
miliar with some Projective Geometry and the properties of
conics. Therefore, one can suppose that, among geometers
and mathematicians of his time, these subjects were gener-
ally known and a detailed explanation of the recipe could
have been omitted. Nowadays, as mathematicians more or
less disregard Classical Geometry, analytical treatment of
Bolyai’s construction can prove that the recipe is correct,
but such proof does not show, why it is correct and how it
was invented. The following chapter presents one possible
idea, that J. Bolyai could have had in mind as a basis for his
recipe.

2 Presumable geometric background of
János Bolyai’s angle trisection

We start with the unit circle u in the Eucliden plane, which,
as “Gauss plane”, also models the affine line of complex
numbers C. Let an angle ∠AOB, with O the center of u
and A,B ∈ u, have the measure ]AOB = 3α, and we use
halve line OA as “real axis” in the Gauss plane. Then
the complex number z := cosα+ i.sinα describes point B,
and the cubic roots of z become 3

√
zp := cos( 3α

3 + p. 2π

3 )+

i.sin( 3α

3 + p. 2π

3 ), p = 0,1,2. These three complex num-
bers describe points P0,P1,P2 ∈ u forming an equilateral
triangle and solving the demanded trisection of ∠AOB. Hav-
ing the idea to intersect c with an algebraic curve through
P0,P1,P2 one could use a conic for this purpose. There exist
a two-parameter set of conics through P0,P1,P2, and we can
choose one, which is somehow connected with the givens.
For example, choosing orthogonal asymptote-directions in
addition to P0,P1,P2 selects equilateral hyperbolae h in that
set. Equilateral hyperbolae have the well-known nice prop-
erty, that with any three points P0,P1,P2 of such a hyperbola
h the orthocentre O of triangle P0,P1,P2 is also a point of
h, see e.g. [2, p. 54]. This theorem seems to be stated first
by Charles Brianchon (∗1783,†1864) and Jean Poncelet
(∗1788,†1867), which were contemporaries of J. Bolyai.
So, he could have been familiar with this theorem. Within
the pencil of equilateral hyperbolae h we take that one hav-
ing line OA as one of the asymptote-directions, see Figure
2. Therewith h is described by

xy−ax−by = 0. (1)

Figure 2: Equilateral hyperbolae h through vertices of an
equilateral triangle and its center O.

Because of cos3α = 4(cosα)3 − 3cosα and −sin3α =
4(sinα)3− 3sinα, what we abbreviate by V := 4x3− 3x,
resp. −W := 4y3− 3y, (x := cosα,y := sinα,V 2 +W 2 =
1,x2 + y2 = 1), it follows that the intersection of h with the
unit circle u must fulfil the conditions

(4x3−3x−V )(x−S) = 0∧(4y3−3y+W )(y−T ) = 0. (2)

Thereby the additional fourth intersection point Q has the
coordinates (S,T ) with S2 +T 2 = 1. We express y resp. x
in (1) by y = ax

x−b resp. x = by
y−a and put these expressions

into the equation of the unit circle u receiving the fourth
order equations

y4−2ay3− y2(a2 +b2−1)+2ay−b2 = 0

x4−2bx3− x2(a2 +b2−1)+2by−a2 = 0). (3)

Comparing coefficients of (3) with those of (2) delivers

T = 2b,W = 2b,S = 2a,V =−2a, (4)

such that h has midpoint M = (− 1
2 cos3α, 1

2 sin3α). The
fourth intersection point has the coordinates (S,T ) =
(−cos3α,sin3α) and is therefore diameter endpoint op-
posite to O. From the polar form of (1), and specialising
with the coordinates of the origin O = (0,0), it follows for
the tangent tO of h in O that

tO . . .by =−ax . . .y = x tan3α, (5)

such that tO has exactly the slope of the given angle, which
is trisected by h.
We collect and visualise the mentioned properties of h in
Figure 3. In connection with angle trisection we shall call
this special equilateral hyperbola h the “Bolyai-hyperbola”.
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Figure 3: Angle trisection as the intersection of the unit
circle u with the “Bolyai-hyperbola” h.

A consequence of the properties of the Bolyai-hyperbola h
follows

Theorem 1 ([2, p.55]) A circle c with its midpoint at an
arbitrary point P of an equilateral hyperbola h and passing
through the opposite point Q of P on h intersects h, besides
in Q, in vertices of an equilateral triangle.

It is not quite clear, who discovered the property of equi-
lateral hyperbolae mentioned in Theorem 1. For example,
it seems to be known already to H. Brocard in [1], but
nowadays it cannot be considered as “widely known”.

3 The n−section of an angle based on
Bolyai’s method

We follow the idea of J. Bolyai, when looking for the nth

part of a given angle α. As in chapter 2 we start with the
nth root of a complex unit number z := cosα+ i.sinα de-
scribing a point B at the unit circle u. The nth roots of z
become

n
√

zp :=cos(
α

n
+ p.

2π

n
)+ i.sin(

α

n
+ p.

2π

n
), (6)

p = 0,1, . . . ,n−1.

These n complex numbers describe points P0,P1, . . . ,Pn−1 ∈
u forming a regular n−gon. If n is the product of primes and
their powers, it is obvious that one proceeds consecutively.
For example, let n = n1 ·n2·. . . ·n j (with n1 ≥ n2 ≥. . .≥ n j),
then the first stage delivers an n1−gon with vertices Pi, the
next stage delivers n2−gons to each angle defined by Pi. In
total one receives an n1n2−gon with vertices Pi, j, and so on
until we finally get an n1n2 . . .n j−gon with vertices Pi, j,...,k.

Even so it is trivial, we shall deal with “halving an angle”
as a first example. According to (6) there will be two so-
lutions P1,P2, which are opposite points of the unit circle
u. Following J. Bolyai we need an algebraic curve, which
intersects u in the two points P1,P2. As a suitable curve of

minimal degree we can take a line g, which passes through
the centre O of u, see Figure 4. Given an angle 2α we put

g . . .y.cosα = xsinα,

cos2α = 2cos2
α−1 =: V, (7)

sin2α = 2sinαcosα =: W.

Therefore, as u . . .x2+y2 = 1, the intersection points g∩u=
{P1,P2} with

P1 =

(
+

√
1
2
(1+V ),+

√
1
2
(1−W )

)
=: (V1,W1)

P2 =

(
−
√

1
2
(1+V ),−

√
1
2
(1−W )

)
=: (−V1,−W1)

(8)

and the solution angles are α1 = ∠AOP1, α2 = ∠AOP2,
(with A = (1,0)).

Figure 4: Angle bisection as intersections of the unit circle
u with the “Bolyai-line” g.

If n = 4 = 2 ·2, we can continue applying the halving pro-
cedure for the angles α1,α2. But we could also try a direct
approach, too. We know already that the four solution
points Pj must form a square inscribed to u. As a simple
curve c, which intersects u in these points, we still can use
a conic. The square of points Pj defines a pencil of con-
centric and coaxial conics. Along the lines of case n = 3,
we can choose a “clever” conic within that pencil, namely,
the degenerate one forming the diagonals of the square, see
Figure 5.
Thus c is the product of the equations of two orthogonal
lines:

c . . .(y− kx)
(

y+
1
k

x
)
= 0, k ∈ R. (9)

From (6) we get

cos4α = 8cos4
α−8cos2

α+1 =: V

sin4α = 4sinαcosα(2cos2
α−1) =: W, (10)
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Figure 5: Angle quadri-section as the intersection of the
unit circle u with the degenerate “Bolyai-conic”
c. The intermediate angle bisection and the pen-
cil of conics through the solution points Pi, j is
shown, too.

and we immediately can see that sin4α = 2sin2αcos2α,
cos4α= cos2 2α−sin22α. Even so it could be calculated in
a much shorter way, we want to show the general principle
with this example. Rewriting (9) and (10) we get

c . . .x2 +Kxy− y2 = 0, (K := (k2−1)/k),

V = 8x4−8x2 +1

W = 4xy(2x2−1)

u . . .x2 + y2 = 1. (11)

From these four equations we calculate K resp. k:
From K =−(2x2−1)/x

√
1− x2 follows

K2 =
4x4−4x2 + 1

2 +
1
2

x2− x4− 1
8 +

1
8

=
4(V +1)

1−V
, K1,2 =±2

√
1+V
1−V

,

whereof we finally get four values for the slopes k. By con-
sidering the third equation of (11) we combine the correct
sine-values y j to the four cosine-values xi, such that the
points Pi = (xi,yi) indeed will form a square.
We see that in the case of n = 4 the calculation of the al-
gebraic problem is reducible and leads to consecutively
extracting two roots. This means that the essential proce-
dure concerns prime numbers n, as already noticed at the
beginning of this chapter.

4 Finding the fifth of a given angle with
Bolyai’s method

As a non-trivial example, we now shall deal with the case
n = 5. Here we expect a regular pentagon as the solution
inscribed to the unit circle u. As five points already de-
fine a single conic, in our case the circle u, a low-degree
curve through this pentagon surely must be at least a cubic c.
There occurs an additional intersection point Q= (S,T )∈ u,

which, for special cases of the given angle 5α, might co-
incide with a point Pi. The set of planar cubic curves is
9-dimensional. This means that cubics through a pentagon
still form a four-dimensional set and the first task would be
to find a “clever” specimen within this set for our intersec-
tion purpose.

4.1 Cubics through the origin

Let B = (cos5α,sin5α) = (V,W ), and let, as a first try, c
pass through the origin O. Let one ideal point U of c be
the that of the y−axis. This means that c has an asymptote
parallel to y. The consequences are some simplifications of
the general equation of c:

x3 +bx2y+ cxy2 + ex2 + f xy+gy2 +hx+ jy = 0. (12)

Because of

cos5α = 16cos5
α−20cos3

α+5cosα,

sin5α = 16sin5
α−20sin3

α+5sinα, (13)

and by putting cosα := x, sinα =: y, (x2 +y2 = 1, which is
the equation of u), we finally must compare (12) with

(16x5−20x3 +5x−V )(x−S) = 0

(16y5−20y3 +5y−W )(x−T ) = 0. (14)

We can eliminate y in (12) by replacing y2 in (12) by 1−x2,
by separating the terms, where y occurs linearly, from the
others, and finally squaring the resulting equation:

y(bx2 + f x+ j) =

=−x3− cx(1− x2)−g(1− x2)− ex2−hx =

= x3(c−1)+ x2(g− e)− x(c+h)−g. (15)

By squaring, and again replacing y2 by 1−x2, we receive an
equation of degree 6 in x. Thereby we abbreviate c−1 =: C,
g− e =: E, c+h =: H. The left side of (15) becomes

(1− x2)(b2x4 +2b f x3 +( f 2 +2b j)x2 +2 f jx+ j2) =

=−b2x6−2b f x5 +(b2−2b j− f 2)x4 +2 f (b− j)x3+

+( f 2 +2b j− j2)x2 +2 f jx+ j2.

The right side of (15) becomes

C2x6 +2CEx5 +(E2−2CH)x4− (2EH +2Cg)x3+

+(H2−2Eg)x2 +2Hgx+g2.

Both sides together deliver the equation

(b2 +C2)x6 +2(CE +b f )x5+

+(E2−2CH−b2 +2b j+ f 2)x4−
− (2EH +2Cg−2b f +2 f j)x3+

+(H2−2Eg− f 2−2b j+ j2)x2+

+2(Hg− f j)x+(g2− j2) = 0, (16)
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KoG•26–2022 H. Dirnböck, G. Weiss: Janos Bolyai’s Angle Trisection Revisited

and now we can compare (16) with

16x6−16Sx5−20x4 +20Sx3 +5x2− (5S+V )x+V S = 0.
(17)

The same way we eliminate x in (12) and square the follow-
ing equation:

x(y2(1+ c)+ f y+h) = by3 + y2(e−g)− y(b+ j)− e.

Abbreviating g− e =: E, b+ j =: J we get

(b2 +C2)y6 +2(C f −bE)y5+

+(−C2 +E2 +2hC+ f 2)y4+

+(2EJ−2be− fC+ f h)y3+

+(2eE−2Ch+ J2− f 2 +h2)y2+

+2(eJ− f h)y+(e2−h2) = 0 (18)

and can compare it with

16y6−16Ty5−20y4+20Ty3+5y2−(5T +W )y+WT = 0.
(19)

We collect the coefficients of equations (16) to (19) in the
Table 1.
The 14 equations are not independent, the equations (0)-(6)
resp. (0’)-(6’) alone allows us to express the coefficients
b, . . . , j of the cubic c as functions of V,W and S,T .
We see that the conditions of type (0). . . (6’) are quadratic
equations in the unknowns b,c,e, f ,g,h, j,S,T and the
givens V,W . They can be interpreted as hyperquadrics Q(2)

j

in an 11-dimensional affine space A11, whereby Q(2)
0 and

Q(2)
1 are the hypercylinders with equations V 2 +W 2 = 1

resp. S2 +T 2 = 1.
When we use V,W (V ) as parameters, we finally will get a
curve as intersection Q(2)

j ∩ ·· · ∩Q(2)
k , which represents a

one-parameter set of cubics c. Obviously, to a fixed param-
eter pair V0,W (V0) there will be, in the algebraic sense, up
to 32 solutions of cubics c(V0). Figure 6 (left) shows an ex-
ample of one solution of the cubics c belonging to the given
angle 5α = 98◦. To each given angle 5α the calculations
must be performed individually.
A similar calculation is performed for cubics having the
ideal point of the y−axis as inflection point. Figure 6
(right) shows an example of this kind calculated to an angle
5α = 60◦.

Equ. No. Degr. Coeff. (16) Coef. (17) Equ. No. Degr. Coeff. (18) Coef. (19)

(6) x6 b2 +(1− c2) 16 (6’) y6 b2 +(c−1)2 16

(5) x5 2((1− c)(e−g)+b f ) −16S (5’) y5 2((c−1) f −b(g− e)) −16T

(4) x4 (e−g)2 +2(1− c)(c+h) −20 (4’) y4 −(c−1)2 +(g− e)2 −20
−b2 +2b j+ f 2 +2(c−1)(h+1)

−2b(b+ j)+ f 2

(3) x3 2(e−g)(c+h) 20S (3’) y3 2(g− e)(b+ j) 20T
+2(1− c)g−2b f +2 f j −2be−2 f (c−1)

+ f (h+1)

(2) x2 2(c+h)2 +2g(e−g) 5 (2’) y2 2e(g− e) 5
− f 2−2b j+ j2 2(h+1)(c+1)

+(b+ j)2− f 2

+(h+1)2

(1) x1 2((c+h)g− f j) −5S−V (1’) y1 2(e(b+ j)− f (h+1)) −5T −W

(0) x0 g2− j2 V S (0’) y0 e2−h2 WT

Table 1: Coefficients of (16) - (19) for the comparing procedure
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Figure 6: Numerically gained solutions of “quinti-sectioning” the given angle ∠AOB = 5α.

4.2 Cubics with three given ideal points

One of the key-conditions of Bolyai’s recipe is that all the
“Bolyai hyperbolas” have the same ideal points and there-
fore are similar. In a new approach we focus at cubics c(V )
with the same triplet of ideal points. Note that the ideal
points of c(V ) must be different from those of the unit cir-
cle. Let us try with three real ideal points U1 = (0,1,0)R,
U2 = (0,0,1)R, U3 = (0,−1,1)R, (here we use homoge-
neous coordinates (x0,x1,x2)R instead of affine coordinates
(1,x,y) =: (x,y)). The equation of the general cubic c
through these ideal points Ui becomes

x2y+ xy2 + ex2 + f xy+gy2 +hx+ jy+ k = 0. (20)

The tangents ai at Ui, i.e. the asymptotes of c, are

a1 . . .y =−e, a2 . . .x =−g, a3 . . .y =−x+ e− f +g.

(21)

When we demand that U3 shall be an inflection point of c,
i.e. a3 is an inflection asymptote, the coefficients e, . . . ,k
fulfil the conditions

e2−g2− e f + f g+h− j = 0 . . .Q(2)
a3 , (22)

g(e− f )2 +2(e− f )g2 +g2 +(e− f +g) j+ k = 0 . . .Q(3)
a3 .

We shall compare (20) with (17) based on the condition
x2 + y2 = 1. From (20) follows

(x2 + f x+ j) = x3− x2(e−g)− x(1+h)− (g+ k). (23)

We abbreviate e−g=: G, h+1=: H, g+k =: K and square
(23), we finally receive

2x6 +2( f −G)x5 +(G2−2H−1+ f 2 +2 j)x4+

+2(GH−K− f + f j)x3 +(H2 +2GK− f 2 + j2−2 j)x2+

+(2HK−2 f j)x+(K2− j2) = 0. (24)

Similarly, we shall compare (19) with (20) based on condi-
tion x2+y2 = 1. From (20) follows now−x(y2+ f y+h) =

(1−y2)y+e(1−y2)+gy2+ jy+k and when we abbreviate
again e−g =: G, j+1 =: J, e+ k =: E, we get

x(y2 + f y+h) = y3 +Gy2− Jy−E, (25)

and by squaring this it becomes

2y6 +2( f −G)y5 +(G2−2J−1+ f 2 +2h)y4+

+2(GJ−E− f + f h)y3 +(J2−2EG− f 2 +h2−2h)y2+

+2(EJ− f h)y+(E2−h2) = 0. (26)

By putting “(4)=(4’)” and “(2)=(2’)” we get h = j and g = e
such that (20) simplifies to

x2y+ xy2 + ex2 + f xy+ ey2 +hx+hy+ k = 0,

but again, we only get numerical solutions, (see Figure 7),
as we must intersect hyperquadrics (and hyperplanes) in an
11-dimensional affine space. None of the results are such
that there exists a one-parameter set of similar cubics. This
allows at least to

Conjecture 1 There is no irreducible cubic carrying a one-
parameter set of regular pentagons.

Figure 7: Numerically gained solutions of “quinti-
sectioning” the given angle ∠AOB = 5α = 105◦

with help of a cubic with three real asymptotes.
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Equ. No. Degr. Coeff. (24) Coef. (17) Equ. No. Degr. Coeff. (26) Coef. (19)

(6) x6 2 16 (6’) y6 2 16

(5) x5 2( f −G) −16S (5’) y5 2( f −G) −16T

(4) x4 G2−2H−1+ f 2 +2 j −20 (4’) y4 G2−2J−1+ f 2 +2h −20

(3) x3 2(GH−K− f + f j) 20S (3’) y3 2(GJ−E− f + f h) 20T

(2) x2 H2 +2GK− f 2 −5 (2’) y2 2(J2−2EG− f 2 −5
+ j2−2 j +h2−2h)

(1) x1 2(HK− f j) −5S−V (1’) y1 2(EJ− f h) −5T −W

(0) x0 K2− j2 SV (0’) y0 E2−h2 TW

Table 2: Coefficients of (24), (26) for the comparing procedure with (17), (19)

4.3 Reducible cubics through regular pentagons

We try now with a conic c, which should pass through four
points of the regular solution pentagon, and a line l through
its fifth point. Thereby c and l shall have the ideal point
(0,0,1)R of the y−axis in common. Here we will get, in
general, five solutions, as there are five possibilities for I
(and for c). But here, too, the explicit calculation turns
out to become lengthy and results in numerical gained so-
lutions, see Figure 8 showing solutions with a reducible
cubic splitting into a hyperbola c and a line l parallel to the
y−axis.
We note that within the pencil of conics P2, . . . ,P5 there
is a special hyperbola c passing through the origin O. It
is symmetric to OP1, its asymptotes include 120◦, and its
midpoint’s M distance from the origin is one-third of the
radius of (unit) circle u, (see Figure 9 showing c in the

standard position 5α = 0). We used it already in Figure 8,
but now we will add line OA as the linear component l of
the reducible cubic c in standard position and rotate this
cubic c according to the given angle 5α.
Hyperbola c and line l in standard position have the equa-
tions

c . . .3x2 +2x− y2 = 0, l . . .y = 0. (27)

We rotate by angle ϕ, and we abbreviate sinϕ =: s, cosϕ =:
t to get the formulas shorter and better readable. We know
already that ϕ must turn out to become the solution angle α.
The rotated version of (27) reads as

c . . .(3t2− s2)x2 +8stxy− (2s2− t2)y2 +2tx+2sy = 0,
l . . .sx− ty = 0. (28)

Figure 8: Numerically gained solutions of “quinti-sectioning” the given angle ∠AOB = 5α with help of a reducible cubic
with a line component l parallel y.
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Equ. x6 x5 x4 x3 x2. x1 x0

(17) 16 −16U −20 +20U +5 −(5U +V ) +UV

“(29)2” 16 16t . . . . . . . . . . . . −t2(16t4−20t2 +5t)

Table 3: Comparison of the coefficients of the squared equation (29) with those of (17)

Figure 9: Hyperbola c through O,P2, . . . ,P5 in standard po-
sition.

With 3t2− s2 = 4t2−1 and 3s2− t2 = 4s2−1 we find the
equation of the reducible cubic c as

s(4t2−1)x3 +3t(4s2−1)x2y−3s(4t2−1)xy2−
− t(4s2−1)y3 +2stx2 +2(1−2t2)xy−2sty2 = 0. (29)

Following the procedure used in the former chapters, we
again put y2 = 1− x2 and separate terms containing y from
those containing only xk, k = 0, . . . ,3. By squaring this
equation, we finally receive an equation of 6th degree in the
variable x and with coefficients being functions of s and t,
which are the only unknowns. Therefore, it is enough to
consider the coefficients of x6, x5, and x0 for connecting s, t
with the given cosine V of polynomial (17), see table 3.
From the coefficients of x6 follows that the proportionality
factor of the two equations (17) and “(29)2” is 1. From x5

we get U = −t, as expected, and from x0 we receive the
polynomial (13). Therefore, we end up with a tautology: To
get the rotation angle we have to solve the original equation
(13) cos5α = 16cos5 α−20cos3 α+5cosα.
All the presented attempts to get sort of a standard cubic to
solve the 5-section of an angle failed.
Result: The n−section (n ≥ 5) of an angle nα based on
Bolyai’s method to intersect the unit circle with an algebraic
curve c of suitable degree leads to calculating the coeffi-
cients of an equation of c individually to each given angle
nα.

Remark 1 Angle trisection, as one of the classical cubic
problems, is only graphically solved via intersecting the
unit circle with Bolyai’s equilateral hyperbola. An exact
solution should solve an equation of the third degree, too. In
the following chapter, we present a possibility for a graphic
solution using well-known properties of epicycloids.

5 p−sectioning an angle using epicycloids

A generally applicable graphical solution of p−sectioning
(p ∈Q) a given angle can be based on epicycloids, see e.g.
[4, p.156] and [5]. Due to a theorem of F.E. Eckhardt (c.f.
[4]) the line connecting the points B and P1, which move
along the unit circle u with speed pα resp. α envelops an
epicycloid e with the parameter representation

e . . .
(

x
y

)
=

1
p+1

(
pcosα+ cos(pα)

psinα+ sin(pα)

)
. (30)

Such a cycloid admits two kinematic generations with cir-
cles m and m′ rolling on a fixed circle f . The radii r f , rm, r′m
of fixed circle f and moving circles m and m′ are therewith

r f =
1− p
1+ p

, rm =
p

1+ p
, r′m =

1
1+ p

. (31)

The following Figures 10, 11 and 12 show examples of
such graphical angle p-sections. Thereby some additional
properties of cycloids become obvious:
In both cases shown in Figure 10, the angle bisection and tri-
section, we notice that, besides of two orthogonal tangents
t1, t2, resp. three tangents t1, t2, t3 (inclosing 120◦ angles) in-
tersect the (unit) circle u in the solution points P1, P2, resp.
P1, P2, P3. There occurs an additional tangent t with no
meaning for the bisection problem. Figure 11 shows these
properties, too. In all cases the touching points E j of t j with
the epicycloids e are the intersection points of the moving
circle m′ (center M′ ∈ OB) with t j. The intersection of m′

with the additional tangent t is not a point of epicycloid e.
The segments [E jM′] are parallel to the solution segments
[OPj]. The circle u is an “orthoptic locus” of the cardioid
e (Figure 10 (left)) and, as a consequence of the “angle at
circumference theorem”, u is a “multi-isoptic locus” of the
epicycloids e (Figure 10 (right) and Figure 11). The points
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E j form a regular n−gon inscribed to e and m′, such that
this n−gon moves along e, when B moves along the circle
u. (By the way, this well-known property of epitrochoids
has the “Wankel-motor” as a technical application, see e.g.
[6].) Figure 12 shows examples of p−sectioning an angle
for the cases p = 2

5 and p = 3
5 . Here we find in fact the

same properties as described above.
For p = 2

5 it follows from (31) that r f =
3
7 , rm = 2

7 , r′m = 5
7 ,

and for p = 3
5 we get that r f =

1
4 , rm = 3

8 , r′m = 5
8 . The cy-

cloids e have threefold resp. twofold symmetry, and again,
a regular pentagon can move in e.

We collect these results in

Theorem 2 Let ϕ = ∠AOB be the main value of a given
angle, (A, B points of the (unit) circle u), and let e be the
p−epicycloid with fixed circle f (radius 1−p

1+p ) concentric
with u and A as vertex. Then one can construct the pth

part(s) (p ∈Q) of ϕ by drawing the tangents t j from B to e
and intersect them with u. The intersection points Pj form-
ing a regular polygon define the solution angles ∠AOPj.
The circumcircle u of e is a multi-isoptic locus for the epicy-
cloid e.

Figure 10: Angle bisection and trisection with help of a cardioid resp. a nephroid.

Figure 11: Angle 4-section and 5-section with help of epicycloids.
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Figure 12: The 2
5 and 3

5 of an angle with help of epicycloids.

6 Conclusion

In this paper, we tried to “explain” Bolyai’s classical method
of angle trisection and extend it to n− resp. p−sectioning
an angle, (n ∈ N, p ∈ Q). While the trisection uses an
equilateral hyperbola in standard position, the 5−section
must use cubics (or curves of higher degree), which have
to be calculated individually to each given angle 5α. An
equilateral hyperbola c allows a “similarity-motion” of an
equilateral triangle, such that its vertices move along c. We
could not find a cubic c allowing a similarity- motion to
a regular pentagon, such that its vertices move along c.

Therefore, this extension of Bolyai’s method has no prac-
tical application and is finally adapted to replacing c with
epicycloids e in the standard position. For p ∈ Q these
epicycloids e are closed, and they admit a congruence mo-
tion of regular p−stars, such that their vertices move along
e, a well-known property, which is basic for Wankel motors.
Obviously, because of the theorem of the angle at circum-
ference, the circumcircle u of e is a “multi-isoptic locus”
for e. Finally, one might add that this “epicycloid-method”
also works for p ∈ R, but in such cases, one should restrict
the construction to the main value P1 ∈ u.
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ABSTRACT

A complete quadrilateral in the Euclidean plane is studied.
The geometry of such quadrilateral is almost as rich as the
geometry of a triangle, so there are lot of associated points,
lines and conics. Hereby, the study was performed in the
rectangular coordinates, symmetrically on all four sides
of the quadrilateral with four parameters a,b,c,d. In this
paper we will study the properties of some points, lines and
circles associated to the quadrilateral. All these properties
are well known, but here they are all proved by the same
method. During this process, still some new results have
appeared.

Key words: Euclidean plane, complete quadrilateral,
parabola

MSC2020: 51N20

Potpuni četverostran u pravokutnim koordi-
natama

SAŽETAK

U radu proučavamo potpuni četverostran u euklidskoj
ravnini. Poput trokuta i potpuni četverostran ima mnogo
zanimljivih svojstava te pridruženih točaka, pravaca i konika.
Ovdje je proučavanje provedeno korǐstenjem pravokutnih
koordinata, simetrično po sve četiri stranice četverostrana
s četiri parametra a,b,c,d. Proučavamo svojstva točaka,
pravaca i kružnica pridruženih četverostranu. Gotovo sve
tvrdnje prikazane u ovom radu su dobro poznate, ali su se
ipak ponegdje usput pojavili i neki novi rezultati.

Ključne riječi: euklidska ravnina, potpuni četverostran,
parabola

1 Motivation

The focus of this paper is the geometry of a complete quadri-
lateral in the Euclidean plane. Such a geometry is almost as
rich as the geometry of a triangle, so there are lot of associ-
ated points, lines and conics. The facts given in the paper
are well known, but the idea of the paper is to prove them
all by the same method. Hence, the study is performed in
the rectangular coordinates, symmetrically on all four sides
of the quadrilateral with four parameters a,b,c,d. During
this process, still some new results have appeared.
We mention only the literature where the facts and the state-
ments are presented for the first time.
Previously known statements are included in the text and
given in italic while the new results are given in the form of
theorem.

2 Introduction

A complete quadrilateral, or just a quadrilateral ABCD
is a set of four lines A , B , C , D in the Euclidean plane,
where none of two lines are parallel and no three of which
are concurrent. Lines A , B , C , D are sides of that quadri-
lateral, and intersections of the pairs of lines are its vertices.
Pairs of vertices TAB = A ∩B , TCD = C ∩D; TAC = A ∩C ,
TBD = B ∩D; TAD = A ∩D, TBC = B ∩C are pairs of op-
posite vertices, and their connecting lines U = TABTCD,
V = TACTBD, W = TADTBC are diagonals of that quadri-
lateral. Intersection points U = V ∩W , V = W ∩U,
W = U ∩V are diagonal points and a triangle formed by
diagonal points and diagonals is a diagonal triangle of a
quadrilateral. Only one parabola P can be inscribed to
the quadrilateral ABCD and let it touches the sides of the
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KoG•26–2022 V. Volenec, E. Jurkin, M. Šimić Horvath: A Complete Quadrilateral in Rectangular Coordinates

quadrilateral at the points A, B, C, D. An axis and a ver-
tex tangent of that parabola is taken as x-axis and y-axis
of the coordinate system. Then, taking any metrical unit
for length the equation of that parabola is y2 = 2px. That
parabola has the point (

p
2
,0) as a focus and the line x =− p

2
as the directrix. Without loss of generality, we can take the
metrical unit for length in a way that p = 2 is valid. The
size of some object is not important, but only its shape and
mutually position to the similarity. The diagonal triangle is
autopolar with respect to the parabola P , i.e. lines U,V ,W
are polars of points U,V,W with respect to parabola.
Hence, we can take that inscribed parabola P of the quadri-
lateral ABCD has the equation

P . . .y2 = 4x, (1)

so its focus is point S = (1,0), the directrix H is x = −1.
The polarity with respect to the parabola P maps any point
T0 = (x0,y0) to the line T0 with the equation y0y = 2x+2x0,
the polar line of the point T0. For the contact points of the
parabola P with the sides of the quadrilateral the following
points are taken

A = (a2,2a),B = (b2,2b),C = (c2,2c),D = (d2,2d). (2)

The tangent lines of the parabola at the points A,B,C,D are
lines A , B , C , D with equations

A . . .ay = x+a2, B . . .by = x+b2,

C . . .cy = x+ c2, D . . .dy = x+d2, (3)

because on the example of the polar line for the point A
we get the equation 2ay = 2x+2a2. For the vertices of the
quadrilateral ABCD we get the following forms

TAB = (ab,a+b),TAC = (ac,a+ c),TAD = (ad,a+d),

TCD = (cd,c+d),TBD = (bd,b+d),TBC = (bc,b+ c).
(4)

The diagonals are

U = TABTCD . . .(cd−ab)y

= (c+d−a−b)x+(a+b)cd−ab(c+d),

V = TACTBD . . .(bd−ac)y

= (b+d−a− c)x+(a+ c)bd−ac(b+d),

W = TADTBC . . .(bc−ad)y

= (b+ c−a−d)x+(a+d)bc−ad(b+ c), (5)

and diagonal points

U =

(
(a+b)cd−ab(c+d)

c+d−a−b
,2

cd−ab
c+d−a−b

)
,

V =

(
(a+ c)bd−ac(b+d)

b+d−a− c
,2

bd−ac
b+d−a− c

)
,

W =

(
(a+d)bc−ad(b+ c)

b+ c−a−d
,2

bc−ad
b+ c−a−d

)
.

(6)

U
V

W

A

B

C

D

TAB

TAC

TAD

TBC

TBD

TCD

B AC

D

U

V  

W  

x

y

Figure 1: A complete quadrilateral ABCD

There is a complete quadrilateral ABCD on Figure 1.
Let denote basic symmetric functions of the parameters
a,b,c,d by s,q,r and p, so that

s = a+b+ c+d, q = ab+ac+ad +bc+bd + cd,

r = abc+abd +acd +bcd, p = abcd

are valid.

We will often use and labels α = a2 + 1, β = b2 + 1,
γ = c2 +1, δ = d2 +1.

3 On a complete quadrilateral

Hereby, we will give many well known results on a com-
plete quadrilateral ABCD, as well as few new results.
Connecting line AB from (2) is the line with the equation
2x− (a+b)y+2ab = 0 that is fullfilled by coordinates of
the point U from (6). Similarly computation is valid for
others connecting lines of the points A, B, C and D. Hence,
a complete quadrangle ABCD has the same diagonal trian-
gle UVW as the quadrilateral ABCD , see [43].
The midpoints of pairs of points TAB,TCD; TAC,TBD;
TAD,TBC from (4) are following points

U0 =
(1

2
(ab+ cd),

1
2

s
)
, V0 =

(1
2
(ac+bd),

1
2

s
)
,

W0 =
(1

2
(ad +bc),

1
2

s
)

(7)
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and obviously they lie on the line N with the equation

N . . .y =
1
2

s. (8)

There are lots of names for this line, here we will call it a
median of the quadrilateral ABCD. It was mentioned for
the first time in [9], an its existence was proved in [16]. Out
of formulas (7) the following formulas for directed lengths
follow

V0W0 =
1
2
(a−b)(d− c), W0U0 =

1
2
(a− c)(b−d),

U0V0 =
1
2
(a−d)(c−b). (9)

The centroid of six points from (4) and the centroid of four
points from (2) are points

T = (
1
6

q,
1
2

s), T ′ = (
1
4
(s2−2q),

1
2

s) (10)

that are incident with N .

In [33] the following statement is proved:
Areas of two triangles whose bases are two diagonals of the
quadrilateral, and common vertex is any of two additional
vertices of that quadrilateral, are related as segments on
the median of the quadrilateral from the midpoints of these
two vertices to the midpoints of two diagonals mentioned
before.
That means that areas of triangles TABTACTBD and
TABTADTBC, as well as areas of triangles TCDTACTBD and
TCDTADTBC are related as directed lengths U0V0 and U0W0,
and there are two more such examples. Areas of trian-
gles TABTACTBD and TABTADTBC are 1

2 (a−b)(a−d)(b− c)
and 1

2 (a− b)(a− c)(b− d), and areas of TCDTACTBD and
TCDTADTBC are 1

2 (c− d)(a− d)(b− c) and 1
2 (c− d)(a−

c)(b−d) while directed lengths U0V0 and U0W0 according

to (9) are equal
1
2
(a−d)(c−b) and

1
2
(a− c)(d−b). So,

all three mentioned ratios are equal to
(a−d)(b− c)
(a− c)(b−d)

, that

is actually the cross ratio (abdc). In another two examples
two cross ratios are (acbd) and (adcb).
In the quadrilateral ABCD we can observe three quadran-
gles TACTADTBDTBC, TABTADTCDTBC, and TABTACTCDTBD,
one of them is convex, one concave, and one crossed. Cen-
troids of these quadrangles are points

Tu =
(1

4
(ac+ad +bc+bd),

1
2

s
)
,

Tv =
(1

4
(ab+ad +bc+ cd),

1
2

s
)
,

Tw =
(1

4
(ab+ac+bd + cd),

1
2

s
)

incident with the median N . For the directed lengths on
that line we have the equalities

TvTw =
1
4
(a−b)(c−d),

TwTu =
1
4
(a− c)(d−b),

TuTv =
1
4
(a−d)(b− c),

so because of the equality (9) we get V0W0 = −2TvTw,
W0U0 = −2TwTu, U0V0 = −2TuTv that is a result given in
[32].
If for oriented lengths equalities TABTAD = uTABTAC,
TABTBC = vTABTBD are valid, then easily we get equali-

ties
b−d
b− c

= u,
a− c
a−d

= v. If the number w is such that

U0W0 = wU0V0 is fulfilled, then because of (9)

w =
(a− c)(d−b)
(a−d)(c−b)

= uv

follows. This is result from [38].
Let the points B1 and C1 be points on lines B and C so
that for the directed lengths the equalities TABB1 = TBCTBD,
TACC1 = TBCTCD are valid. Then out of (4) we get points
B1 and C1 of the form

B1 = (ab+bd−bc,a+b− c+d),

C1 = (ac+ cd−bc,a−b+ c+d).

The line B1C1 has the equation 2x− (a+d)y+(a+d)2−
(a+ d)(b+ c)+ 2bc = 0, and its intersections A1 and D1
with lines A and D with equations (3) are points having
ordinates

1
d−a

[d2 +2ad−a2− (a+d)(b+ c)+2bc],

1
a−d

[a2 +2ad−d2− (a+d)(b+ c)+2bc],

so the midpoint of these points A1 and D1 has an ordinate
a+d, the midpoint of B1 and C1 has the same ordinate as
well. Because of that directed lengths A1B1 and C1D1 are
equal. This statement we find in [35]. We see that: the
common midpoint of the line segments A1D1 and B1C1 is
incident with the diameter of the parabola P through the
point TAD. There are five more analogous statements where
we find common midpoints of the pairs of line segments on
diameters of parabola P through other five vertices of the
quadrilateral ABCD .
The median N with the equation y = 1

2 (a+b+c+d) inter-
sects the line A with the equation ay = x+a2 in the point
A ∩N = ( 1

2 (ab+ ac+ ad− a2), 1
2 (a+ b+ c+ d)), and a

midpoint of that point and point TBC = (bc,b+ c) is the
point(

1
4
(ab+ac+ad−a2 +2bc),

1
4
(a+3b+3c+d)

)
.
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This midpoint is incident with the line

2x− (a+b+ c−d)y+
1
4
(3a2 +3b2 +3c2−d2 +2ab+

+2ac+2bc−2ad−2bd−2cd) = 0.

Midpoints of the pairs B ∩N ,TAC and C ∩N ,TAB are in-
cident with it as well. Hence, that line is a median of
the quadrilateral ABCN . Its intersection with the line N
is the point ( 1

2 (4q− s2), 1
2 s) that is incident with medians

of quadrilaterals ABDN , ACDN , BCDN . It is point
QL−P23 in [43].
Points symmetric to intersections of the given line with
sides of given triangle with respect to the midpoints of
these lines are incident with one line that are said to be
reciprocal to given line with respect to given triangle.
Let us determine the line D ′ reciprocal to the line D with
respect to trilateral ABC . A point on the line A sym-
metric to the point TAD with respect to the midpoints TAB
and TAC is of the form (ab+ ac− ad,a+ b+ c− d). Out
of symmetry on a,b,c of the ordinate of that point we
conclude that the same ordinate is achieved in a similar
procedure with lines B and C . So, the equation of D ′ is
y = a+ b+ c− d and it is parallel to the median N of
the quadrilateral ABCD. This statement is coming from
both [17] and [31]. Analogously, lines A ′,B ′,C ′ reciprocal
to lines A , B , C with respect to trilaterals BCD, ACD,
ABD have equations y =−a+b+c+d, y = a−b+c+d,
y = a+ b− c+ d. Adding up these four equations, we
find 4y = 2(a+b+ c+d), i.e. the equation y = 1

2 s of the
median N . Hence, the median of the quadrilateral ABCD
is so-called centroid line of the lines A ′,B ′,C ′,D ′.

TAB

TAC

TAD

TBC

TBD

TCD

P 

P 

aP 

P 

P 

d

c

b

A B
C 

D

x

y

Figure 2: Parabolas circumscribed to trilaterals

Lines D and D ′ are reciprocal with respect to trilateral
ABC and that relationship is symmetric on that two lines,
so as the line D ′ is parallel to the median of the quadrilat-
eral ABCD , then and the line D is parallel to the median
of the quadrilateral ABCD ′. Similar is valid for the other
sides of the quadrilateral ABCD and their reciprocal lines
A ′, B ′, C ′. This statement is found in [39].
In [12] it is stated:
Parabolas inscribed to trilaterals formed by three sides of
the quadrilateral with axes parallel to the axis of parabola
inscribed to that quadrilateral arises from this inscribed
parabola by using translations.
The statement is not quite correct.
Namely, parabola Pd with equation

y2− (a+b+ c)y = x−ab−ac−bc

is incident with points TAB,TAC,TBC, i. e. it is circumscribed
to the trilateral ABC , and it has an axis parallel to the axis
of P , but its parameter is equal to the quarter of the param-
eter of P . See Figure 2. Hence the following theorem is
valid:

Theorem 1 The parabolas Pa, Pb, Pc, Pd inscribed to tri-
laterals BCD, ACD, ABD, ABC arise from each other
by translations. The parameter of these parabolas is equal
to the quarter of the parameter of P .

For example, substituting

x→ x+
1
4
(c−d)(2a+2b− c−d),

y→ y+
1
2
(c−d)

the equation of Pd turns into y2− (a+b+d)y = x−ab−
ad−bd that is the equation of Pc.
A parabola with an equation 12x = 9y2−6sy+4q passes
through the centroid Gd = ( 1

3 (ab+ac+bc), 2
3 (a+b+ c))

of the trilateral ABC , and then through centroids of other
three trilaterals of the quadrilateral ABCD. A vertex of
this parabola is the point ( 1

12 (4q− s2), 1
3 s), and its axis has

the equation y = 1
3 s, so the distance from the focus S of

the quadrilateral ABCD to its median is equal to three
halves of the distance from this focus to this parabola. This
statement is from [5] and [6].

The parabola P inscribed to the quadrilateral ABCD is
circumscribed to the quadrangle ABCD. However, there is
one more parabola circumscribed to that quadrangle. It is
parabola with the equation

x2− 1
2

sxy+
1

16
s2y2 +(q− 1

4
s2)x− 1

2
ry+ p = 0,

because for example for the point A = (a2,2a) we get equal-
ity a4−a3s+a2q−ar+ p = 0. The square part of previous
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equation is 1
16 (4x− sy)2, so it follows that the axis of this

parabola has the slope 4
s . The slope of connecting line of

the focus S = (1,0) and the intersection point Q = (−1, 1
2 s)

of the median and the directrix is equal to −s
4 . It proves

that the axis of studied parabola is perpendicular to the
connecting line SQ, see [43].

U
V

W

UbVc
Wd

Ua

Vd

Wc

Ud

Va

Wb

UcVb

P  

A B C 

D

A 

B

C 

N   

D

1

1

1

1

x

y

Figure 3: Lines A1, B1, C1, D1 are parallel to the median
N

A line through the point U from (6), parallel to the line B
has the equation

(c+d−a−b)(x−by) = 2ab2 +acd−abc−abd−bcd

and intersects the line U from (5) in the point Ub with
coordinates

x =
1

c+d−a−b
(abc+abd +acd−bcd−2a2b),

y = 2a.

Analogously, a line parallel to the line C and incident with
V intersects a line V in the point Vc with coordinates

x =
1

b+d−a− c
(abc+abd +acd−bcd−2a2c),

y = 2a,

and the line parallel to the line D and incident with W
intersects a line W in the point Wd with coordinates

x =
1

b+ c−a−d
(abc+abd +acd−bcd−2a2d),

y = 2a.

The points Ub,Vc,Wd are incident with one line A1 with the
equation y = 2a. Analogously, sets of three similar points
Ua,Vd ,Wc; Ud ,Va,Wb; Uc,Vb,Wa are incident with lines B1,
C1, D1, respectively, and lines A1, B1, C1, D1 are parallel
(see Figure 3). This is statement from [26]. During this
process, the new result has appeared:

Theorem 2 All four lines A1, B1, C1, D1 are parallel to
the median N of the quadrilateral ABCD , and the median
is their centroid line.

Altitudes from the vertices TBC,TAC,TAB in the triangle
TBCTACTAB have equations y = −ax + b + c + abc, y =
−bx + a + c + abc, y = −cx + a + b + abc and they are
intersected in the point Hd = (−1,a+b+ c+abc) that is
orthocenter of that triangle, i. e. of the trilateral ABC .
Similarly, orthocenters of trilaterals ABD, ACD, BCD
are points

Hc = (−1,a+b+d +abd),

Hb = (−1,a+ c+d +acd),

Ha = (−1,b+ c+d +bcd).

All four orthocenters lie on the line H with the equation

H . . .x =−1, (11)

which is the directrix of the inscribed parabola P of the
quadrilateral ABCD and they have the centroid Gh =
(−1, 1

4 (3s+ r)). The statement that these four orthocen-
ters are incident with one line is given in [37] without proof.
The proof is given in [23]. In the literature, the line H
has many names, herein we will call it a directrix of the
quadrilateral ABCD . The intersection point of the median
and the directrix of the quadrilateral ABCD is the point

Q = (−1,
1
2

s) (12)

which is called QL−P7 Newton-Steiner point in [43]. The
midpoint of this point and the focus S = (1,0) is the point
(0, 1

4 s) that is in [43] denoted by QL−P19.
The line through Ha = (−1,b+c+d+bcd), parallel to the
line A has the equation x−ay+1+ab+ac+ad+abcd =
0 and goes through the point (−1− ab− abcd,c + d)
where the line Hb, parallel to B passes as well. The
line through Ha, perpendicular to A has the equation
ax+ y =−a+b+ c+d +bcd and goes through the point
(−2− cd,a+ b+ c+ d + acd + bcd), through which the
line perpendicular to B through the point Hb passes as well.
The connecting line of two obtained points has the equation

(a+b)x+(1−ab)y+a+b− c−d +a2b+ab2+

+abc+abd +a2bcd +ab2cd = 0

and passes through the point (−2− abcd,a+ b+ c+ d).
Five analogous lines are incident with that point as well.
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Hence, quadrilaterals, that are formed by the lines that
passes through points Ha, Hb, Hc, Hd , parallel to lines
A ,B,C ,D, and perpendicular to these lines, are perspec-
tive. A centre of the perspectivity is the point (−p−2,s),
which in [43] is called QL−P21 adjunct orthocenter ho-
mothetic center, although this is not homothecy. The point
(−1−ab−abcd,c+d) and the point TAB =(ab,a+b) have
for the midpoint the point ( 1

2 (1+abcd), 1
2 (a+b+ c+d)),

and similar is valid for five more pairs of corresponding
points. It means that the quadrilateral, formed by parallels
to A ,B,C ,D through the points Ha, Hb, Hc, Hd is symmet-
ric to the quadrilateral ABCD with respect to the point
(− 1

2 (1+ p), 1
2 s) that is in [43] called QL−P20 orthocenter

homothetic center. It is obviously incident with the median
N .

In the quadrilateral TABTBCTBDTAD perpendiculars from
points TAC and TBC to the line D pass through orthocen-
ters Ha and Hb of trilaterals BCD and ACD, hence the
perpendicular from the midpoint of the side TACTBC to the
opposite side TBDTAD passes through the midpoint of Ha
and Hb. In the same way, the perpendiculars from TBD and
TAD to the line D pass through the orthocenters Ha and Hb
and because of that the perpendicular from the midpoint
of TBDTAD to the opposite side TACTBC passes through the
midpoint of Ha and Hb. So, for the pair of opposite sides
TACTBC, TBDTAD perpendiculars from the midpoint of the
each of them to the opposite side are intersected in one
point on the directrix, which is the midpoint of Ha and Hb.
In the same way it is shown that for the pair of opposite
sides TACTAD, TBDTBC perpendiculars from the midpoint of
the each of them to the opposite side are intersected in one
point on the directrix, which is the midpoint of Hc and Hd .
Analogously it is valid for the quadrangles TABTADTCDTBC
and TABTACTCDTBD, so we get four more times per two lines,
that are intersected in midpoints of pairs of orthocenters
Ha,Hc and Hb,Hd , and Ha,Hd and Hb,Hc.
The distance of the focus S of the quadrilateral ABCD to
its median N and to its directrix H are equal to 1

2 s and
1, so their ratio is 1

2 s = 1
2 (a+b+ c+d). However, for ex-

ample the line A has an equality cot∠(N ,A) = a, so that
the ratio we have mentioned is equal to 1

2 [cot∠(N ,A)+
cot∠(N ,B) + cot∠(N ,C ) + cot∠(N ,D)] that is state-
ment found in [27].

If L is line having equation y = mx+n, then the perpendic-
ular from TAB to that line has the equation x+my = ab+
am+bm, and the intersection point of that two lines has the
coordinates x= 1

η
(am+bm−mn+ab),y= 1

η
(am2+bm2+

abm+n), where η = m2 +1. The perpendicular from that
intersection point to line C has the equation η(cx+ y) =
acm+bcm− cmn+abc+am2 +bm2 +abm+n. It can be
checked that this line passes through the point with coordi-

nates

x =− 1
η
(m2 +mn), (13)

y =
1
η
[(a+b+ c)m2 +(ab+ac+bc)m+abc+n].

The perpendiculars to lines A and B from pedals of perpen-
diculars from points TBC and TAC to the line L are incident
with the point (13).
Because of that this point is an orthopole of the line L
with respect to the trilateral ABC . Similarly, the same is
valid for the trilaterals BCD, ACD, ABD. Hence, all
four orthopoles are incident with the line having equation
x=− 1

η
(m2+mn) that is perpendicular to the median of the

quadrilateral ABCD. This statement is from [21]. If for
the line L the line D is taken, then m = 1

d ,n = d,η = 1
δ
·d2

are valid, so for the orthopole of the line D with respect to
the trilateral ABC we get the point

Od =
(
−1,

1
δ
[a+b+c+(ab+ac+bc)d+abcd2 +d3]

)
,

(14)

that is incident with the directrix of the quadrilateral
ABCD as well as the analogous orthopoles of lines A ,B,C
with respect to the trilaterals BCD, ACD, ABD. This
statement is coming from [18]. The same statement can
be found in [28], but herein the author observes on these
orthopoles as radical centers of pedal circles on the lines
A ,B,C ,D with respect to trilaterals BCD, ACD, ABD,
ABC , what is in accordance with so-called Lemoyne’s the-
orem (see [18]).
In the previous proof it was assumed that m 6= 0. Let the
line L be parallel with the median and with the equation
y = n. The pedal point of the perpendicular from the point
TAB to that line is the point (ab,n), and perpendicular from
that point to the line C has the equation cx+ y = abc+n.
This perpendicular, and two more analogous perpendiculars,
are incident with the point (0,abc+n) that is an orthopole
of L with respect to the trilateral ABC . This orthopole and
orthoploes of the line L with respect to trilaterals BCD,
ACD , ABD are incident with the y-axis, the vertex tangent
of the parabola P .
Let us study any line L parallel to the directrix with the
equation x = l. The pedal point of the perpendicular
from TAB to that line is the point (l,a+ b), and the per-
pendicular from that point to the line C has the equation
cx+y = cl+a+b and obviously it passes through the point
(l−1,a+b+c), that is orthopole of the line L with respect
to the trilateral ABC . As well as other three orthopoles
of L with respect to the trilateral ABD , ACD , BCD , it is
incident to the line with the equation x = l−1, parallel to
the median of ABCD and the line L . Particularly, there
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are orthopoles of the vertex tangent of the parabola P with
respect to trilateras ABC , ABD, ACD, BCD on the di-
rectrix. These statements are in [43] but they are atributed
to S. Kirikami.
The line L ′, where orthopoles of the given line L with re-
spect to the trilaterals BCD , ACD , ABD , ABC are lying,
is called an orthopolar line of the line L with respect to the
quadrilateral ABCD .

Earlier, we found out that the line L with the equation
y = mx+ n has the orthopolar L ′ with the equation x =
− 1

η
(m2 + mn), that line L with the equation y = n has

the orthopolar L ′ with the equation x = 0, and the line
L with the equation x = l has the orthopolar L ′ with the
equation x = l − 1. The tangent at the point (m2,−2m)
at parabola P has the equation x + my + m2 = 0 and it
is perpendicular to the given line L with the equation
y = mx+n. These two lines has the intersection with the
abscissa x = − 1

η
(m2 +mn), that lies on the line L ′. The

tangent line of the parabola P at the point (t2,2t) has the
equation ty = x+ t2, i.e. m = 1

t , n = t. Because of that
the orthopolar of that tangent has the equation x =−1, and
that is directrix H . So, the orthopolar of any tangent of the
parabola P is the directrix H . If the line L passes through
the focus S, then it has the equation y = m(x−1), and for it
n =−m is valid and orthopolar L ′ has the equation x = 0
and that is vertex tangent Y of the parabola P .
Let P ′′ be parabola, with the same focus S = (1,0) and
the same axis as parabola P . If its directrix has the
equation x = t, then that parabola P ′′ has the equation
(x− 1)2 + y2 = (x− t)2, that after simplifying, reaches
the form y2 = 2(1− t)x+ t2−1. The intersections of this
parabola and parabola P with equation y2 = 4x are the
points (x′,y′) = ( 1

2 (t−1),±
√

2(t−1)), where t > 1. Tan-
gents at these points to both parabolas have the slopes 2

y′ and
1−t
y′ , whose product is equal to −1, because y′2 = 2(t−1).

That is the reason why those two parabolas are orthogonal
which is special case of very well known fact that con-
focal conics are orthogonal. Let (x′′,y′′) be any point of
parabola P ′′. Tangent at this point to this parabola has
the equation yy′ = (1− t)(x+ x′′)+ t2−1, so because of it
m = 1−t

y′′ ,n = 1− ty′′(x′′− t−1) are valid and we get

y′′2(m2 +mn) = (1− t)2(x′′− t),

y′′2(m2 +1) = (1− t)2 + y′′2

= (1− t)2 +2(1− t)x′′+ t2−1
= 2(1− t)(x′′− t),

where we use the equality y′′2 = 2(1− t)x′′+ t2− 1, be-
cause the point (x′′,y′′) is incident with parabola P ′′. Be-
cause of this − 1

η
(m2 +mn) = 1

2 (t − 1) is valid, so each
tangent line of parabola P has the same orthopolar with the

equation x = 1
2 (t−1) that passes through the intersections

( 1
2 (t−1),±

√
2(t−1)) of parabolas P and P ′′. Hence, all

lines with the same orthopolar L perpendicular to median
N are tangents to parabola P ′′ which has the same focus
and the same axis as parabola P and it is orthogonal to it
at the intersection points with the line L ′. These statements
found in [43] are attributed to T. Q. Hung. The line L ′ with
the equation x = 1

2 (t−1) is the bisector of directrices of P
and P ′ that have equations x =−1 and x = t.
The circle Sd through the points TBC,TAC,TAB from (4), i.e.
the circumscribed circle to the trilateral ABC , has the equa-
tion

x2 + y2− (ab+ac+bc+1)x− (a+b+ c−abc)y+
+ab+ac+bc = 0, (15)

the center

Sd =
(1

2
(ab+ac+bc+1),

1
2
(a+b+ c−abc)

)
, (16)

and the radius ρd given by 4ρd
2 = (ab+ ac+ bc− 1)2 +

(a+b+ c−abc)2, that is actually the formula

4ρd
2 = (a2 +1)(b2 +1)(c2 +1). (17)

The circles Sa,Sb,Sc circumscribed to trilaterals BCD,
ACD , ABD , respectively, have the similar equations. The
circle (15) passes through the point

S = (1,0), (18)

that is focus of inscribed parabola P of the quadrilateral
ABCD, here we will call it a focus of this quadrilateral,
although there are different names in the literature. W. Wal-
lace has the fact that four mentioned circles are incident
with one point in [34].
The point P20 = (− 1

2 (p+ 1), 1
2 s) is the midpoint of the

focus S = (1,0) and the point P21 = (−p− 2,s), and the
point P19 = (0, 1

4 s) is the midpoint of the point S and the
point Q from (12), because of that lines P20P19 and P21Q
are parallel (see [43]).
The line through the point TBC parallel to A has the equa-
tion x− ay = bc− ab− ac, and a connecting line AS of
the points A = (a2,2a) and S = (1,0) has the equation
2ax+(1−a2)y = 2a. Those lines are intersected in( 1

α
(a3b+a3c−a2bc+2a2−ab−ac+bc),

1
α
(2a−2abc+2a2b+2a2c)

)
that lies on the circle Sd with the equation (15). Hence, the
parallel line to the line A through the point TBC intersects
the circle Sd residually (except at the point TBC) at the point
on the line AS, and then by analogy, the other two intersec-
tion points of the circles Sb and Sc with lines through the
points TCD and TBD parallel to the line A are incident with
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KoG•26–2022 V. Volenec, E. Jurkin, M. Šimić Horvath: A Complete Quadrilateral in Rectangular Coordinates

that line too. Similarly, we have three points each on lines
BS, CS and DS. This is statement from [7] and [8].

The line A with the equation x−ay+a2 = 0 intersects the
y-axis with the equation x = 0 at the point (0,a), and line
through this point has generally the equation mx−y+a = 0.
The bisector of this line and the axis y-axis has the equa-
tion 1√

η
(mx− y+ a)± x = 0, where η = m2 + 1, i.e. the

equation (m±√η)x− y+a = 0 holds. This bisector is the
same as the line A under the condition a(m±

√
m2 +1) = 1,

out of which m = 1
2a (1− a2). That’s the reason why the

line symmetric to the y-axis with respect to the line A has
the equation (a2− 1)x+ 2ay = 2a2. The line symmetric
to the y-axis with respect to the line B has the equation
(b2− 1)x+ 2by = 2b2, and these two lines have the inter-
section ( 2ab

ab+1 ,
a+b
ab+1 ). This intersection point lies on the line

with the equation (a+b)x+(1−ab)y = a+b, where the
points S = (1,0) and TAB = (ab,a+b) lie as well. Hence,
the line STAB passes through the intersection of lines, that
are symmetrical to the lines A and B with respect to the
y-axis, a vertex tangent of parabola P . Similar statement
is valid for the lines STAC,STAD,STBC,STBD,STCD. These
statements are in [43] attributed to S. Kirikami.
The perpendicular from the point S=(0,1) to the line A has
the equation ax+ y = a, the parallel line Hab with directrix
H through the point TCD has the equation x = cd, and the
intersection point of these lines is the point (cd,a− acd),
that lies on the circle Sb with the equation x2 + y2− (ac+
ad+cd+1)x−(a+c+d−acd)y+ac+ad+cd = 0, anal-
ogous to the one in (15). Similar to this, the perpendicular
from the point S to the line B intersects the line Hab in the
point (cd,b−bcd) that lies on the circle Sb. There are five
more analogous lines Hac,Had ,Hbc,Hbd ,Hcd with similar
properties. This is the statement in [31].
The circle Ed with the equation

2x2 +2y2− (ab+ac+bc−1)x− (3a+3b+3c+abc)y+

+(a+b+ c)(a+b+ c+abc) = 0

passes through the midpoint ( 1
2 a(b+ c), 1

2 (2a+b+ c)) of
the points TAB and TAC. Because of symmetry on a,b,c
it is Euler’s circle of the triangle TABTACTBC, i. e. the
trilateral ABC . It intersects the y-axis i.e. the vertex tan-
gent of parabola P , in the points Yd = (0,a+ b+ c) and
Y ′d = (0, 1

2 (a+b+ c+abc)). The circle with the equation

2x2 +2y2− (ab+ac−bc+1)x− (3a+b+ c+abc)y+

+a(a+b+ c+abc) = 0

passes through the midpoint of TAB and TAC, but it is in-
cident with the midpoint ( 1

2 (ab+ 1), 1
2 (a+ b)) of points

S and TAB as well, so because of symmetry on b and c it
is Euler’s circle of the triangle STABTAC. It intersects the
y-axis in the points (0,a) and Y ′d = (0, 1

2 (a+b+ c+abc)).

Because of symmetry on a,b,c it follows that the point
Y ′d lies on Euler’s circles of the triangle STABTBC and the
triangle STACTBC, that intersects the y-axis residually at
the point (0,b) and (0,c), respectively. The point S′d =

(ab+ ac+ bc,a+ b+ c− abc) is symmetric to the point
S=(1,0) with respect to the point Sd from (16). The normal
from that point to the line A with the equation x−ay =−a2

has the equation ax+ y = a2b+ a2c+ a+ b+ c and inter-
sects the line A at the point (ab+ac,a+b+ c). The sym-
metry of the ordinate of this point on a,b,c means that the
line with the equation y = a+b+ c is Wallace’s line of the
point S′d diametrically opposite to the focus S on the circle
Sd , with respect to the triangle TABTACTBC, i. e. the trilateral
ABC . That line passes through the point Yd = (0,a+b+c)
and parallel to the median of the quadrilateral ABCD. To
summarize: The Wallace’s line of the point S′d diametrically
opposite to the focus S on the circle Sd , passes through
an intersection point of the Euler’s circle Ed of trilateral
ABC and the vertex tangent of parabola P . It is parallel
to the median N of the quadrilateral ABCD. Analogous
statements are valid for Euler’s circles of trilaterals ABD,
ACD, BCD. Here we proved the statements taken from
[?].
Let us the equations of Sd and Sc add after multiplying them
by parameters u and v where u+v = 1. We get the equation
of the circle

x2 + y2− [ab+(a+b)t +1]x− [a+b+(1−ab)t]y+

+ab+(a+b)t = 0,

where t = uc+ vd. It is easy to see that this circle passes
through the points (at,a+ t) and (bt,b+ t) that are reached
as the linear combinations uTAC + vTAD and uTBC + vTBD.
Hence, the statement from [20] is valid: every circle through
the focus S and the vertex TAB intersects lines A and B at
the points that divide the segments TACTAD, TBCTBD in the
same ratios.
The line connecting Sd from (16) with the point TAB from
(4) has a slope c−a−b−abc

ac+bc−ab+1 and it is parallel to the line D that
has slope 1

d under the condition ab+cd− (a+b)(c+d) =
1+abcd, then because of symmetry on pairs of parameters
a,b and c,d the following statements follow: if SdTAB is
parallel to D then ScTAB is parallel to C , SaTCD is parallel
to A , and SbTCD is parallel to B . This statement is in [22].
Analogously, the following statement is valid:

Theorem 3 If SdTAB is perpendicular to D , the statements
that ScTAB is perpendicular to C , SaTCD is perpendicular to
A , and SbTCD is perpendicular to B follow. The statement
is valid for the other two possibilities of pairs on a,b,c,d.
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The circle with the equation

x2 + y2− 1
2
(3+ab+ac+ad +bc+bd + cd−abcd)x−

− 1
2
(a+b+ c+d−abc−abd−acd−bcd)y+

+
1
2
(1+ab+ac+ad +bc+bd + cd−abcd) = 0

passes through the point Sd from (16), and because of sym-
metry on a,b,c,d it passes through Sb,Sc,Sd . For the first
time, this statement is found in [29]. That circle is usually
called Miquel’s circle, but here we will call it the central cir-
cle of the quadrilateral ABCD . Its equation can be written
as

M . . .x2+y2− 1
2
(3+q− p)x+

1
2
(r−s)y− 1

2
(1+q− p)= 0.

(19)

Obviously, it follows that it is incident with the focus S
from (18). Its center is the point

M = (
1
4
(3+q− p),

1
4
(s− r)) (20)

that we will call a central point of the ABCD, and its ra-
dius ρ is given by formula 16ρ2 = (1−q+ p)2 +(s− r)2.
However, because (a2 +1)(b2 +1)(c2 +1)(d2 +1) = (1−
q+ p)2 +(s− r)2 is valid, there is following formula

16ρ
2 = (a2 +1)(b2 +1)(c2 +1)(d2 +1). (21)

The line x+dx = d2 is symmetric line to the line D with
respect to the axis X of parabola P . The line parallel to
this line and passing through Sd from (16) has the equation
x+dy = 1

2 (1+q− p) and intersects the axis X in the point
( 1

2 (1+q− p),0) which is because of symmetry on a,b,c,d
incident with the lines that pass through Sa,Sb,Sc and that
are parallel to the lines symmetric to A ,B,C with respect to
the axis X . This point is incident with the central circle M
from (19). This result is attributed to R. Bouvaist in [40].
Bisectors of the segments TACTBC and TADTBD have the
equations

cx+ y =
1
2
(ac+bc)c+

1
2
(a+b+2c),

dx+ y =
1
2
(ad +bd)d +

1
2
(a+b+2d)

and the intersection point

T ′AB =
(1

2
(a+b)(c+d)+1,

1
2
(a+b)(1− cd)

)
,

that is incident with the circle (19). The bisectors of the
segments T ′ACT ′AD and T ′BCT ′BD are intersected in the point

T ′CD =
(1

2
(a+b)(c+d)+1,

1
2
(c+d)(1−ab)

)
,

on the same circle. The line T ′ABT ′CD with the equation
x = 1

2 (a+b)(c+d)+1 is parallel to the directrix H . Sim-
ilarly, we get two more lines T ′ACT ′BD and T ′ADT ′BC parallel
to H . A line parallel to the median through the point T ′AB
has the equation y = 1

2 (a+ b)(1− cd), and a connecting
line of the point TAB with the focus S has the equation
(a+b)x+(1−ab)y = a+b, and the intersection point of
these lines is the point

T ′′AB =
(1

2
(1+ab+ cd−abcd),

1
2
(a+b)(1− cd)

)
.

The midpoint of the points T ′′AB and T ′CD is the central
point M of the quadrilateral, so the point T ′′AB is diamet-
rically opposite to the point T ′CD on the central circle M .
Similarly, there are five more diameters T ′′ACT ′BD,T

′′
ADT ′BC,

T ′′BCT ′AD,T
′′

BDT ′AC,T
′′

CDT ′AB of the circle M . These results are
found in [31].
The line parallel to the line D through the point TAB =
(ab,a+b) has the equation x−dy = ab−ad−bd, a con-
necting line of the points S = (1,0) and TCD = (cd,c+d)
has the equation (c+d)x+(1− cd)y = c+d, and an inter-
section point of these two lines is the point with coordinates

x =
1
δ
(cd−1)(ad +bd−ab)+ cd +d2,

y =
1
δ
(c+d)(1−ab+ad +bd).

It is easy to check that this point is incident to the circle
Sd with equation (15). Similarly, it is valid for two more
points on the circle Sd so the statement, [13], that parallels
to D through the vertices of the trilateral ABC intersect a
circumscribed circle of the trilateral at the points, whose
connecting lines to opposite vertices of the quadrilateral
ABCD are incident with the focus of this quadrilateral
holds. Similarly, it is valid for all other trilaterals of the
quadrilateral.
If two lines L and L ′ have slopes m

n and m′
n′ , then for the

oriented angle ∠(L ,L ′) the following formula is valid

tan∠(L ,L ′) =
m′n−mn′

mm′+nn′
. (22)

Lines STAB and STAC have slopes a+b
ab−1 and c+d

cd−1 . If k = k
1

is the slope of the line T , then according to (22) we get

tan∠(STAB,T ) =
k(ab−1)−a−b
ab−1+ k(a+b)

,

tan∠(T ,STCD) =
k(cd−1)− c−d
cd−1+ k(c+d)

.

The line T is the bisector of the lines STAB and STCD under
the condition

k(ab−1)−a−b
ab−1+ k(a+b)

+
k(cd−1)− c−d
cd−1+ k(c+d)

= 0,
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that by simplifying is of the form

(r− s)k2 +2(p−q+1)k+ s− r = 0. (23)

Symmetry on a,b,c,d means that the line T is then the
bisector of lines STAC,STBD and STAD,STBC as well. If k1
and k2 are slopes of the bisectors T1 and T2 of mentioned
three pairs of lines, we have equalities

k1 + k2 = 2
p−q+1

s− r
, k1k2 =−1.

The line with the equation y = k(x−1) is incident with the
point S and its another intersection Td with the circle Sd
from (15) has coordinates

x =
1
κ
[k2 +(a+b+ c−abc)k+ab+ac+bc],

y =
1
κ
[(a+b+ c−abc)k2 +(ab+ac+bc−1)k],

where κ = k2 + 1. If that line is one bisector of T1 and
T2, then in previous mentioned formulas it should be taken
k = k1, k = k2, respectively. For other intersections Td,1 and
Td,2 of lines T1 and T2 with the circle Sd we get

κ1κ2(x2− x1) = (k1
2 +1)[k2

2 +(a+b+ c−abc)k2+

+ab+ac+bc]− (k2
2 +1)[k1

2 +(a+b+ c−abc)k1+

+ab+ac+bc] = (k1− k2)[(a+b+ c−abc)k1k2+

+(ab+ac+bc−1)(k1 + k2)− (a+b+ c−abc)] =

= (k1− k2)[2
p−q+1

s− r
(ab+ac+bc−1)−

−2(a+b+ c−abc)],

κ1κ2(y2− y1) = (k1
2 +1)[(a+b+ c−abc)k2

2+

+(ab+ac+bc−1)k2]− (k2
2 +1)[(a+b+ c−

−abc)k1
2 +(ab+ac+bc−1)k1] = (k1− k2)[ab+

+ac+bc−1)k1k2− (a+b+ c−abc)(k1 + k2)−
− (ab+ac+bc−1)] = (k1− k2)[−2(ab+ac+bc−

−1)−2
p−q+1

s− r
(a+b+ c−abc).

so the line Td,1Td,2 has the slope

−(ab+ac+bc−1)(s− r)− (a+b+ c−abc)(p−q+1)
(ab+ac+bc−1)(p−q+1)− (a+b+ c−abc)(s− r)

,

that is equal to −d, because of

− (ab+ac+bc−1)(s− r)− (a+b+ c−abc)(p−q+1)+
+d(ab+ac+bc−1)(p−q+1)−
−d(a+b+ c−abc)(s− r) = 0.

That means that this line is perpendicular to the line D,
and because of lines T1 and T2, it is diameter of the circle
Sd . Similarly, it is valid for the intersections of T1 and T2
with circles Sa, Sb, Sc. We proved the statement from [40]
saying:
Diameters of the circles Sa,Sb,Sc,Sd perpendicular to the
lines A ,B,C ,D , respectively, intersects these circles in two
points each, one of points lies on one bisector, and the
other one on the other bisector of pairs of lines STAB,STCD;
STAC,STBD and STAD,STBC.
Lines T1 and T2 are so- called Steiner’s axes of the quadri-
lateral ABCD . Because of (23) they have equation

y =
1

r− s
[−(p−q+1)±

√
(p−q+1)2 +(r− s)2](x−1).

The line SM has the slope r−s
p−q+1 , and bisectors of pairs of

lines STAB,STCD; STAC,STBD and STAD,STBC have the slope
k under the condition (23). For the tangent of an angle of
that bisector to the line SM, and according to (22), we get
r−s−k(p−q+1)
k(r−s)+p−q+1 , that is equal to k because of (23). That is the
tangent of an angle of the axis X to this bisector. It means
that the line SM and the axis of parabola P are symmetric
with respect to the mentioned bisector, and that is statement
from [13].
Bisectors of the sides A and B have the equations

1√
α
(x−ay+a2)± 1√

β
(x−by+b2) = 0,

and pairs of these two lines has the equation β(x− ay+
a2)2−α(x− by+ b2)2 = 0. We find the abscissae of in-
tersections of this degenerated conics with the median
y = 1

2 s. If we put y = 1
2 s in the previous equation then

coefficients next to x2 and x are β−α = −(a2− b2) and
β(2a2−as)−α(2b2−bs) = 2(a2−b2)+(ab−1)s(a−b),
respectively, so for solutions of this equation we have equal-
ity (x1 + x2) =

1
a+b (2a+ 2b− s− abs). Because of that

the midpoint PAB of these two intersections has the form
( 1

2(a+b) (a+b−c−d+abs), 1
2 s) and it is easy to check that

is collinear to the points S = (1,0) and TAB = (ab,a+b).
Similarly, it is valid for five more lines analogous to the
line TABPAB through the focus S. This statement can be
found in [25]. That pair of bisectors of A and B inter-
sects the axis of inscribed parabola with equation y = 0 in
the points whose abscissae are solutions of the equation
β(x+a2)2−α(x+b2)2 = 0, for them we get x1 + x2 = 2,
so these points are symmetric with respect to the focus
S = (1,0). That is result of [25] as well. In that paper
it is proved that the focus and point at infinity of the me-
dian are isogonal with respect to each of four trilaterals of
the quadrilateral ABCD. For proof of this statement it is
enough to prove that for example the line STAB and parallel
to the median N through the point TAB are lines isogonal
with respect to A and B , i. e. the angle of lines N and A
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is equal to the angle of lines B and STAB. It easily follows
from the fact that these lines have slopes equal to 0 = 0

1 and
1
a , and 1

b and a+b
ab−1 , so both of these angles have the tangent

angle equal to 1
a due to (22). However, [7] has already had

this statement.
The point Md = ( 1

2 (ab+ac+bc+1), 1
2 d(1−ab−ac−bc))

is incident with the central circle (19) and with the line hav-
ing equation dx+ y−d = 0, that passes through the focus
S = (1,0) and it is perpendicular to the line D. Because
points Md and Sd from (15) have the same abscissa, then the
line MdSd is parallel to the directrix H of the quadrilateral
ABCD , the same is valid for analogous lines MaSa, MbSb,
McSc. This is result in [1].
The perpendiculars from the points TAB and TAC to the
lines B and C has equations bx+ y = ab2 + a+ b, cx+
y = ac2 + a + c, and the intersection point is the point
(ab+ac+1,a−abc). That point is incident with the circle
S ′a with equation

x2 + y2− (ab+ac+ad−abcd +2)x−
− (a−abc−abd−acd)y+ab+ac+ad−abcd +1 = 0.

The intersection points of perpendiculars from points TAB
and TAD to the lines B and D as well as from points TAC
and TAD to lines C and D are incident with S ′a. The circle
S′a obviously is incident to the focus S = (1,0). The center
of that circle is the point

S′a =
(1

2
(ab+ac+ad−abcd+2),

1
2
(a−abc−abd−acd)

)
.
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Figure 4: Points S′a,S
′
b,S
′
c,S
′
d are incident to the central cir-

cle M

The midpoint of S′a and Sa from formula analogous to the
formula (15) is the point M from (20), the center of the
central circle, so the point S′a together with the point Sa
is incident with that circle. Analogously, there are three
more points on the central circle. The statement that there
are circles S ′a,S ′b,S ′c,S ′d incident to the central circle can be
found in [43] and it is attributed to A. Hatzipolakis. Hereby,
we have found out (see Figure 4) :

Theorem 4 The line segments SaS′a,SbS′b,ScS′c,SdS′d are di-
ameters of the central circle M .

Let us study now the quadrilateral ABCD ′ where D ′ is the
reciprocal line to the line D with respect to the trilateral
ABC . The intersection point of the line D ′ and the line A
is the point (ab+ac−ad,a+b+ c−d), and for the lines
D ′ and B is the point (ab+bc−bd,a+b+ c−d). Two of
these points and the point TAB = (ab,a+b) are incident to
the circle

x2 + y2− (2ab+ac+bc−ad−bd)x− (2a+2b+ c−d−
−abc+abd)y+a2b2 +(a+b)(a+b+ c−d) = 0

with the center ( 1
2 (2ab+ ac+ bc− ad− bd), 1

2 (2a+ 2b+
c− d− abc+ abd)). This center is incident to the circle
with equation

2x2 +2y2− (3ab+3ac+3bc−ad−bd− cd +1+
+abcd)x− (3a+3b+3c−d−3abdc+abd +acd+

+bcd)y+a2b2c2 +a2b2 +a2c2 +b2c2 +abcd)+

+a2 +b2 + c2 +3ad +3bd +3cd−ad−bd− cd = 0,

and a center

S′′d =
(1

4
(3ab+3ac+3bc−ad−bd− cd +1+abcd),

1
4
(3a+3b+3c−d−3abc+abd +acd +bcd)

)
.

Out of symmetry on a,b,c,d it follows that this circle is
the central circle of the quadrilateral ABCD ′, so it passes
through the point Sd . However, the midpoint of S′′d and
the point M from (20) is the point Sd from (16). Because
of that the central circles of quadrilaterals ABCD and
ABCD ′ tangent each other in the point Sd and they are
congruent. Similarly, it is valid for the following pairs of
quadrilaterals ABCD and ABC ′D; ABCD and AB ′CD;
and ABCD and A ′BCD. Hence, all five quadrilater-
als ABCD, A ′BCD, AB ′CD, ABC ′D, ABCD ′ have
the congruent central circles and the central circle of the
quadrilateral ABCD tangents other four circles in circum-
centers of trilaterals BCD, ACD, ABD, ABC . These
statements come from [2]. If this circles have the radius ρ,
then there is the circle of the radius 3ρ that is concentric
to the central circle of the quadrilateral ABCD , that other
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four circles touch inside. The statement is found in [41].
The line A with the equation (3) intersects the directrix H
with the equation x =−1 at the point A′ = (−1, 1

a (a
2−1)).

The connecting line of this point to the focus S = (1,0)
has the equation (a2− 1)x+ 2ay = a2− 1. The altitude
from the vertex TBC in the trilateral ABC has the equation
ax+ y = b+ c+ abc, the intersection point of these two
lines is the point

ND,A =
( 1

α
(1−a2 +2ab+2ac+2a2bc),

1
α
(b−a+a3 +abc−a2b−a2c−a3bc)

)
for which we can check that it is incident to circumscribed
circle Sd of this trilateral with equation (15). Analogously,
the line SA′ intersects the altitudes to the side A in trilater-
als ABD and ACD in the points NC,A and NB,A, that are
incident with the circumscribed circle of these trilaterals,
respectively. Analogously, it is valid and for the lines SB′,
SC′, SD′, where B′, C′, D′ are intersection points of the
directrix H with the sides B,C ,D. These statements are
from [10].
The pedal F of the normal from the focus S to the directrix
of the quadrilateral ABCD has coordinates (−1,0), and
point S′ that is diametrically opposite to the focus S = (1,0)
with respect to the central circle M has coordinates

S′ =
(

1+q− p
2

,
s− r

2

)
.

Lines FTAB and S′TCD have equations

(a+b)x− (ab+1)y+a+b = 0,
(c+d−a−b+ r)x+(1+q− p−2cd)y =

= cd(c+d−a−b+ r)+(c+d)(1+q− p−2cd),

respectively, and they are intersected in the point with coor-
dinates

x =

(a+b)
[
c2 +d2 + c2d2 +2cd +2p+ cd p−1+ab(c2 +d2−1)

]
(c+d)(a2b2 +a2 +b2 +4ab+1)

−

− (c+d)(a2 +b2−a2b2−1)
(c+d)(a2b2 +a2 +b2 +4ab+1),

y =

(a+b)
[
(a+b)(c2d2 + c2 +d2 +2cd−1)+2(c+d)(ab+1)

]
(c+d)(a2b2 +a2 +b2 +4ab+1)

.

It can be checked that these coordinates fullfil the equation

(c+d)(x2 + y2−1)− (c2d2 + c2 +d2 +2cd−1)y = 0

of the circle SFTCD. Analogously, we can prove the rest of
five statements.

Hence, the statement given in [19] is proved: Let F be
the pedal of the normal from the focus S to directrix of
the quadrilateral ABCD . Lines FTAB, FTAC, FTAD, FTBC,
FTBD and FTCD intersect the circles SFTCD, SFTBD, SFTBC,
SFTAD, SFTAC and SFTAB (except in F) in the points whose
connecting lines with the points TCD, TBD, TBC, TAD, TAC
and TAB, respectively, pass through one point S′. This point
S′ is diametrically opposite to the focus S on the central
circle.
The line through points TBC from (4) and Sd from (16) has
the equation

(abc−a+b+ c)x+(ab+ac−bc+1)y =

= ab2c2 +ab2 +ac2 +abc+b+ c.

Similarly, the line TBDSc has the equation

(abd−a+b+ c)x+(ab+ad−bd +1)y =

= ab2d2 +ab2 +ad2 +abd +b+d (24)

and for the intersection of these two lines we get the point
with coordinates

SA =(
1
α
[a(abc+abd +acd−bcd +b+ c+d)+1],

a
α
(−abcd +ab+ac+ad−bc−bd− cd +1)). (25)

Because of symmetry of these coordinates on b,c,d it fol-
lows that the line TCDSb is incident to this point.
The central circle M with the equation (19) and circum-
scribed circle Sa of the trilateral BCD with equation
x2 + y2− (bc+ bd + cd + 1)x− (b+ c+ d− bcd)y+ bc+
bd + cd = 0, analogous to the (15), have radical axis with
the equation

(1+ab+ac+ad−bc−bd− cd−abcd)x+

+(a−b− c−d−abc−abd−acd +bcd)y+

+bc+bd + cd−ab−ac−ad−1+abcd = 0.

The point SA from (25) is incident to this line, and as this
point is incident to the circle M , it is incident to the cir-
cle Sa as well. Similarly, it is valid for points SB,SC,SD.
Hence, points SA,SB,SC,SD are actually another intersec-
tion points of the circle M with circumscribed circle of
trilaterals BCD, ACD, ABD, ABC . A statement found
in [24]: lines TBCSd ,TBDSc,TCDSb are intersected in one
point SA and there are three analogous points SB,SC,SD,
and these four points are incident with central circle. On
the other hand, in [30] it is proved that these points are
incident to corresponding circles Sa,Sb,Sc,Sd . However,
all these statements are found in [11] even earlier.
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The line SSA has a slope

−ap+a(ab+ac+ad−bc−bd− cd)+a
a(abc+abd +acd−bcd)+a(b+ c+d−a)

=

− p−ab−ac−ad +bc+bd + cd−1
abc+abd +acd−bcd +b+ c+d−a

.

On the other hand, the connecting line of the point M from
(20) and Sa from the formula analogous to the formula (15)
has a slope

2(b+ c+d−bcd)− (s− r)
2(bc+bd + cd +1)− (3+q+ p)

=

b+ c+d−a+abc+abd +acd−bcd
bc+bd + cd−ab−ac−ad + p−1

,

so these two lines are perpendicular. The line MSa has the
equation

2(b+ c+d−a+abc+abd +acd−bcd)x+

+2(1−abcd +ab+ac+ad−bc−bd− cd)y =

= bcd p+a(b2c2 +b2d2 + c2d2)+

+a(b+ c+d)2−2bcd−a+2(b+ c+d).

The midpoint of the point S = (1,0) and the point SA from
(25) has coordinates

x =
1

2α
[a(abc+abd +acd−bcd)+a(a+b+ c+d)+2],

y =
1

2α
[−a2bcd +a(ab+ac+ad−bc−bd− cd)+a].

It is easy to check that this point is incident with the line
MSa. Hence, points S and SA are symmetric with respect
to the diameter MSa of the central circle, and the point S is
incident with that circle, so because of that the point SA is
incident to that circle as we have already proved it. In the
same way, pairs of points S,SB; S,SC; S,SD are symmetric
with respect to lines MSb,MSc,MSd , respectively.
The perpendicular line from the point

SD =
(1

δ
[d(abd +acd +bcd−abc+a+b+ c)+1],

d
δ
(−abcd +ad +bd + cd−ab−ac−bc+1)

)
analogous to the point SA from (25) to the line A has the
equation

δ(ax+ y) = ad(abd +acd +bcd−abc+a+b+ c)+a+

+d(−abcd +ad +bd + cd−ab−ac−bc+1)

and it intersects the line A with the equation δ(x− ay) =
−a2d2−a2 in the point with the coordinates

x =
1

αδ
(a3bd2 +a3cd2−a3bcd +a3d +abd2)+

+
1

αδ
(acd2−abcd +ad)

y =
1

αδ
(a2bd2 +a2cd2−a2bcd +a3d2 +a2d +ad2)+

+
1

αδ
(bd2 + cd2 +a3−bcd +a+d).

This point is incident to the line PD with the equation

δ(x−dy) = (ab+ac+bc−ad−bd− cd)d2−abcd−d2.

The symmetry of this equation on a,b,c means that on this
line there are pedals of the perpendicular lines from the
point SD to the lines B and C , so PD is Wallace’s line of SD

with respect to the trilateral ABC . We see that this line is
parallel to the line D , as well as Wallace’s lines PA,PB,PC

of the points SA,SB,SC with respect to trilaterals BCD,
ACD, ABD parallel to the lines A , B , C , respectively.
This result is found in [15] and [14].
The line STCD has the equation (c+d)x+(1−cd)y = c+d.
It is incident with the point

SCD =
(1

2
(1+ab+ cd−abcd),

1
2
(c+d)(1−ab)

)
(26)

that is incident with the circle M from (19). Because of
that SCD is another intersection (one is S) of this circle with
the line STCD. The circle SCD with the equation

x2 + y2− (1+ab+ cd−abcd)x− (c+d)(1−ab)y+

+ cd(1+ab−abcd)−ab(c+d)2 = 0 (27)

has the center SCD and the radius ρCD given by ρCD
2 =

(ab+1)2(c2 +1)(d2 +1). It can be checked that this circle
passes through TCD = (cd,c+d) and through the point SA

from (25), and because of symmetry on a and b it is incident
with SB. Hence, the circle SCD with the center SCD passes
through the points TCD,SA,SB.
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Figure 5: An illustration of Theorem 5 on the example of
the line SADSBC

Therefore, if SAB,SAC,SAD,SBC,SBD,SCD are another
intersections of the circle M (one is S) with lines
STAB,STAC,STAD,STBC,STBD,STCD, then there are
circles SAB,SAC,SAD,SBC,SBD,SCD with the centers
SAB,SAC,SAD,SBC,SBD,SCD, that passes through the triples
of points TAB,SC,SD; TAC,SB,SD; TAD,SB,SC; TBC,SA,SD;
TBD,SA,SC; TCD,SA,SB, respectively. The point SAB has
the same abscissa as the point SCD in (26), so the line
SABSCD has the equation x = 1

2 (1+ab+ cd−abcd) and it
is perpendicular to the median of the quadrilateral ABCD .
Hence, our new result is:

Theorem 5 If SAB,SAC,SAD,SBC,SBD,SCD are another in-
tersections of the circle M (one is S) with lines
STAB,STAC,STAD,STBC,STBD,STCD then lines SABSCD,
SACSBD and SADSBC are perpendicular to the median of
the quadrilateral ABCD .

Let us find another intersection (except TCD) of the line C
and the circle SCD. Putting x = cy− c2 in the equation (27),
simplifying and dropping off the factor c2 +1, we get ordi-
nate from the equation y2− (2c+d−abc)y+(c+d)(c−
abd) = 0. The solution y = c+d corresponds to the point
TCD, and another solution y = c−abd gives x =−abcd, i.e.
another intersection is the point TCE = (−p,c−abd). The
circle SCD is incident with it as well as circles SAC and SBC
because of symmetry on a,b,d. This point is incident with
the line E with the equation x = −p which is perpendic-
ular to the median N of the quadrilateral ABCD. This

line intersects A , B , D in the points TAE = (−p,a−bcd),
TBE = (−p,b−acd), TDE = (−p,d−abc), which triplets
of circles SAB, SAC, SAD; SAB, SBC, SBD; SAD, SBD, SCD,
respectively, are incident with. Let us study a quadrilateral
ABCE . The circle SAB is incident with TAB,TAE ,TBE , so
it is circumscribed circle to the trilateral ABE . Similarly,
the circles SAC and SBC are circumscribed circles to the
trilaterals ACE and BCE . We know from earlier that Sd is
the circumscribed circle to ABC . All of these four circles
are incident to the point SD so it is the focus of the quadri-
lateral ABCE . The centers of these circles are incident
with the central circle M , then this circle is the central
circle of this quadrilateral as well. Similarly, quadrilaterals
ABDE , ACDE , BCDE have focuses SC,SB,SA, and the
central circle is the circle M as well. These statements are
found in [36].
Hereby, we give the new result. Points TAB = (ab,a +
b) and TCE = (−p,c− abd) have the midpoint ( 1

2 (ab−
abcd), 1

2 (a+b+ c−abd) that is incident with the line Nd

with the equation y+dx = 1
2 (a+b+ c−abcd2). Because

of symmetry on a,b,c this line is incident with midpoints of
pairs of points TAC,TBE and TBC,TAE , so Nd is the median
of the quadrilateral ABCE . It is perpendicular to the line
D . Similarly, it is valid for medians Na, Nb, Nc. So:

Theorem 6 Medians Na, Nb, Nc,Nd of the quadrilater-
als BCDE , ACDE , ABDE ,ABCE are perpendicular
to A ,B,C ,D and intersect median N in one point

N =
(
− 1

2
(p+1),

1
2

s
)
. (28)

For Theorem 6 see Figure 6.

TAB

TAC

TAD

TBC

TBD

TCD

TCE

TBE

TAE

TDE

N

N  

P  
A  B  E  C  

N 
d

N 
a

N c
N 

b

S 
CD

S 
AB

S 
BC

S 
AD

S 
AC

D  

x

y

Figure 6: Medians Na, Nb, Nc, Nd , and N are intersected
in the point N
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The line TBDSc has the equation (24) and it is easy to
check that is incident to SA from (25), and similarly, lines
TBCSd and TCDSb pass through the point SA. The point
TCE = (−abcd,c−abd) and the point

SAC =
(1

2
(1+ac+bd−abcd),

1
2
(a+ c)(1−bd)

)
(29)

that we achieve out of the formula (26) by a substitu-
tion a↔ d, are incident with the line with the equation
(c− a)x+ (1+ ac)y = c− abd + ac2− abc2d, that is in-
cident with the point SA. The lines TBESAB and TDESAD
are incident with SA as well. Hence, the points Sd , Sc, Sb,
SAB, SAC, SAD are another intersections of the central cir-
cle M and connecting lines of the focus SA and vertices
TBC,TBD,TCD,TBE ,TCE ,TDE of the quadrilateral BCDE .
The point Sd from (16) is analogous to the point

Sc =
(1

2
(ab+ad +bd +1),

1
2
(a+b+d−abd)

)
. (30)

It is easy to see that the connecting line ScSAC have a
slope equal to 1

a , so that line is parallel to the line A ,
i.e. it is perpendicular to the median Na of the quadri-
lateral BCDE . The same is valid for the lines SbSAB and
SdSAD. Analogous properties are valid for the quadrilater-
als ACDE , ABDE and ABCE . The perpendicular line
from the point TAE = (−p,a− bcd) to the line B has the
equation bx+ y−a+bcd +ab2cd = 0, and a perpendicu-
lar line from the point TBE to the line A has the equation
ax+ y− b+ acd + a2bcd = 0. These two lines are inter-
sected in the point Hab = (−abcd− cd−1,a+b) which is
the orthocenter of the trilateral ABE . Hence, it is incident
with directricies Hc and Hd of ABDE and ABCE that are
perpendicular to the medians of these quadrilaterals and
parallel to the lines C and D, respectively. However, the
midpoint of the point TCD = (cd,c+d) and the point Hab is
the point N from (28). Because of that lines Hc and Hd are
symmetric to the lines C and D with respect to the point N.
Analogously, lines Ha and Hb are symmetric to the lines A
and B with respect to the point N. The directrix H of the
quadrilateral ABCD with the equation x =−1 and the line
E with the equation x =−p are symmetric with respect to
the point N. It means that the pentagonals ABCDE and
HaHbHcHdH are symmetric with respect to the point N.
The orthocenter Ha = (−1,b+c+d+bcd) of the trilateral
BCD and the intersection point TAE = (−p,a− bcd) of
lines A and E have the midpoint N from (28). Similarly,
it is valid for the pairs of points Hb,TBE ; Hc,TCE ; Hd ,TDE .
We have already proved that the orthocenter Hab of the tri-
lateral ABE and the point TCD have the same midpoint N.
There is a statement from [3] and [4]:
To every quadrilateral the fifth line can be joined so that
there is a point, which is common midpoint of ten segments
with one endpoint in an intersection point of any two lines

of these five and the another endpoint in the orthocenter of
the triangle formed by the rest three lines.
The line A intersects the directrix H in the point A′ =
(−1, 1

a (a
2 − 1)), and the midpoint of this point and the

point TBC = (bc,b+c) is the point ( 1
2 (bc−1), 1

2a (a
2+ab+

ac−1). This midpoint is incident with the line N ′
d with

the equation

x+abcy =
1
2
[abc(a+b+ c)−1]. (31)

Symmetry of this equation on a,b,c means that two more
analogous midpoint are incident with the line N ′

d , so that
line is the median of the quadrilateral ABCH . It is inci-
dent with the point N from (28), and because of symmetry
on a,b,c,d, medians of quadrilaterals ABDH , ACDH ,
BCDH are incident with that point N as well. This point
is incident to the median N of the quadrilateral ABCD.
The fact that these five medians are intersected in one point
can be found in [42]. However, we see that this point is the
same point as the point N from (28), so we give the new
result:

Theorem 7 All medians of even nine quadrilaterals
ABCD, ABCE , ABDE , ACDE , BCDE , ABCH ,
ABDH , ACDH , BCDH are intersected in the point N.

See Figure 7.
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Figure 7: Medians of quadrilaterals ABCD, ABCE ,
ABDE , ACDE , BCDE , ABCH , ABDH ,
ACDH , BCDH are intersected in the point N

There are many more claims that are not presented in this
paper and we plan to deal with them in the next paper.
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KoG•26–2022 V. Volenec, E. Jurkin, M. Šimić Horvath: A Complete Quadrilateral in Rectangular Coordinates

References

[1] BLANCHARD, R., Question 3755, Mathesis 65
(1956), 503., solutions par R. Goormaghtigh et R.
Deaux, 67 (1958), 377–379.

[2] BLANCHARD, R., Note, Mathesis 55 (1945), 119.

[3] BRICARD, R., Question 2433, Nouv. Ann. Math. (4)
19 (1919), 472. without a solution

[4] BOUVAIST, R., Sur une configuration de cinq droites,
Mathesis 56 (1947), 33–35.

[5] CLAWSON, J.W., 509. Points, lines and circles
connected with the complete quadrilateral, Math.
Gaz. 9(129) (1917), 85–88, https://doi.org/10.
2307/3603503

[6] CLAWSON, J.W., Problem 2898, Amer. Math.
Monthly 28(5) (1921), 228., https://doi.org/

10.2307/2973761, solution by the proposer, 29(5)
(1922), 230–231, https://doi.org/10.2307/

2299751

[7] CLAWSON, J.W., The complete quadrilateral, Ann.
of Math. 20(4) (1919), 232–261, https://doi.org/
10.2307/1967118

[8] CLAWSON, J.W., Problem 2921, Amer. Math.
Monthly 28(10) (1921), 392., https://doi.org/

10.1080/00029890.1921.11986070, solution by
A. Pelletier, 30(6) (1923), 339, https://doi.org/
10.2307/2300286

[9] CONNOR, J.T., Ladies’ Diary, 1795.

[10] CUNNINGHAM, A., On the circle perpend-feet pencil
and orthocentrical axis of a complete quadrilateral,
Mess. Math. 21 (1891-92), 188–191.

[11] DAVIES, T.S., Question 555, Math. Repository (2) 6
(1835), 229–234.

[12] DEAUX, R., Note, Mathesis 61 (1952), 14–16.

[13] DEAUX, R., Involution de Möbius et point de Miquel,
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marija.simic@arhitekt.hr
Faculty of Architecture
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