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M. Šimić Horvath, V. Volenec: On Diagonal Triangle of Non Cyclic Quadrangle in Isotropic Plane . . . . . . . . . . . . . 40
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their Properties

ABSTRACT

We compare loci types and invariants across Poncelet fam-
ilies interscribed in three distinct concentric Ellipse pairs:
(i) ellipse-incircle, (ii) circumcircle-inellipse, and (iii) ho-
mothetic. Their metric properties are mostly identical to
those of 3 well-studied families: elliptic billiard (confocal
pair), Chapple’s poristic triangles, and the Brocard porism.
We therefore organized them in three related groups.

Key words: invariant, elliptic billiard, locus

MSC2010: 51M04 51N20 51N35 68T20

Familije: Povezivanje Ponceletovih 3-periodika
po njihovim svojstvima

SAŽETAK

Uspored-ujemo tipove geometrijskih mjesta točaka i inva-
rijanti u Ponceletovim familijama upisanim u tri različita
para koncentričnih elipsi: (i) elipsa - upisana kružnica,
(ii) opisana kružnica - upisana elipsa i (iii) homotetične
elipse. Njihova metrička svojstva su uglavnom identična
svojstvima triju dobro proučavanih familija: eliptični bili-
jar (par sa zajedničkim fokusima), Chappleovi poristični
trokuti i Brocardov porizam. Zbog toga ih organiziramo u
tri povezane grupe.

Ključne riječi: invarijanta, eliptični bilijar, geometrijsko
mjesto točaka

1 Introduction

We have been studying loci and invariants of Poncelet
3-periodics in the confocal ellipse pair (elliptic billiard).
Classic invariants include Joachmisthal’s constant J (all
trajectory segments are tangent to a confocal caustic) and
perimeter L [26].
A few properties detected experimentally [21] and later
proved can be divided into two groups: (i) loci of triangle
centers (we use the Xk notation in [17]), and (ii) invariants.
In terms of loci, the following results have been proved: (i)
the locus of the incenter [9, 23], barycenter [25], circum-
center [7, 9], orthocenter [11] and many others are ellipses;
(ii) a special triangle center known as the Mittenpunkt X9 is
stationary [24].
For invariants we chiefly have (i) the sum of cosines [1, 2],
(ii) the product of outer polygon cosines, and (iii) outer-to-
3-periodic area ratio [4].

We continue our inquiry into loci and invariants by now
considering 3-periodic families three other non-confocal
though concentric ellipse pairs. Referring to Figure 1:

• Family I: outer ellipse and incircle, incenter X1 is
stationary.

• Family II: outer circumcircle and inellipse, circum-
center X3 is stationary

• Family III: an axis aligned pair of homothetic ellipses,
the barycenter X2 is stationary.

One goal is to identify properties of the above common with
previously-studied 3-periodic families, namely, (i) the con-
focal pair (elliptic billiard), (ii) Chapple’s porism [8] and
(iii) the so-called Brocard porism [3, 15]. A quick review
of their geometry appears in Section 2.

3



KoG•25–2021 R. Garcia, D. Reznik: Family Ties: Relating Poncelet 3-Periodics by their Properties

0. Confocal I. Incircle

II. Inellipse III. Homothetic

Figure 1: Poncelet 3-periodic families in the various concentric ellipse pairs studied in the article. Properties and loci
of the confocal pair (elliptic billiard) were studied in [21, 12, 11]. For each family the particular triangle center which is
stationary is indicated.

Main Results. Here are our main results:

• Family I

– It conserves the circumradius, the sum of
cosines, and the sum of sidelengths divided by
their product.

– Its sum of cosines is identical to that of the
confocal pair which is its affine image.

– The family is the image of Chapple’s poristic
family [19] under a variable rigid rotation.

– The poristic family is the image of the confo-
cal family under a variable similarity transform
[10]. Therefore family I retains several all scale-
free invariants identified for the elliptic billiard,
including the sum of cosines.

• Family II

– It conserves the cosine product and the sum of
squared sidelengths.

– Its product of cosines is identical to that of the
excentral triangles in the confocal pair which is
its affine image.

– In the elliptic billiard, the locus of the incen-
ter (resp. symmedian point) is an ellipse (resp.
quartic) [11]. Here the roles swap: the incenter
describes a quartic, and the symmedian is an
ellipse.

– The orthic triangles of this family are the im-
age of the poristic family under a variable rigid
rotation.

• Family III

– It conserves area, sum of sidelengths squared,
sum of cotangents (the latter implies that the
Brocard angle is invariant).

– Again in contradistinction with the elliptic bil-
liard, the locus of the incenter X1 is non-elliptic
while that of X6 is an ellipse.

– The locus of irrational triangle centers Xk,
k =13,14,15,16, i.e., the isodynamic and iso-
gonic points, are circles! In the billiard, they
are non-conic.

– As shown in [20], this family is the image of
Brocard porism triangles [3] under a variable
similarity transform.

4
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Thus, the following group Poncelet families is proposed
with mostly identical properties: (i) family I: confocal,
poristics; (ii) family II: confocal excentrals, poristic ex-
centrals; (iii) family III: Brocard porism. Table 1 shows
how loci types are shared and/or differ across families, and
Figure 10 gives a bird’s eye view of the kinship across these
families via various transformations.

Related Work. Romaskevich proved the locus of the incen-
ter X1 over the confocal family is an ellipse [23]. Schwartz
and Tabachnikov showed that the locus of barycenter and
area centers of Poncelet trajectories are ellipses though the
locus of the perimeter centroid in general isn’t a conic [25].
For N = 3, the former correspond to X2 and the latter to the
Spieker center X10. Garcia [9] and Fierobe [7] showed that
the locus of the circumcenter of 3-periodics in the elliptic
billiard are ellipses. Indeed, the loci of 29 out of the first
100 triangle centers listed in [17] are ellipses [11]. Tabach-
nikov and Tsukerman [27] and Chavez-Caliz [4] studied
properties and loci of the “circumcenters of mass” of Pon-
celet N-periodics. This is a generalizations of the classical
concept of circumcenter to generic polygons, based on tri-
angulations, etc.

The following invariants for N-periodics in the elliptic bil-
liard have been proved: (i) sum of cosines [1, 2], (ii) product
of cosines of the outer polygons [1, 2], and (iii) area ratios
and products of N-periodics and their polar polygons (ex-
central triangle for N=3); interestingly, these depend on the
parity of N [2, 4]. Result (i) also holds for the Poncelet fam-
ily interscribed between an ellipse and a concentric circle
[1, Corollary 6.4].

Article structure. We start by reviewing the confocal,
Chapple’s, and Brocard porisms in Section 2. We then
describe properties, invariants, and transformations of fam-
ilies I, II, and III in Sections 3, 4, and 5, respectively. We
summarize all results in Section 6. Highlights include (i) a
graph representing affine and/or similarity relations between
the various families (Figure 10), (ii) a table of conserved
quantities which we have found to continue to hold for
N > 3 (proof pending), and (iii) a table with links to videos
illustrating some phenomena herein.

2 Review of Classic Porisms and Proof
Method

Grave’s Theorem affirms that given a confocal pair (E ,E ′′),
the two tangents to E ′′ from a point P on E will be bisected

by the normal of E at P [18]. A consequence is that any
closed Poncelet polygon interscribed in such a pair, if re-
garded as the path of a moving particle bouncing elastically
against the boundary, will be N-periodic. For this reason,
this pair is termed the elliptic billiard; [26] is the semi-
nal work. It is conjectured as the only integrable planar
billiard [16]. One consequence, mentioned above, is that
it conserves perimeter L. An explicit parametrization for
3-periodic vertices appears in Appendix A.1.

Referring to Figure 2, poristic triangles are a one-parameter
Poncelet family with fixed incircle and circumcircle discov-
ered in 1746 by William Chapple. Recently, Odehnal [19]
has studied loci of its triangle centers. showing many of
them are either stationary, ellipses, or circles. Surprisingly,
the poristic family is the image of billiard 3-periodics under
a variable similarity transform [10], and these two families
share many properties and invariants.

Figure 2: The poristic triangle family (blue) [8] has a fixed
incircle (green) and circumcircle (purple). Let r,R denote
their radii. Its excentral triangles (green) are inscribed in
a circle of radius 2R centered on the Bevan point X40 and
circumscribe the MacBeath inconic (dashed orange) [28],
centered on X3 with foci at X1 and X40. A second configura-
tion is also shown (dashed blue and dashed green). Video

Referring to Figure 3, the Brocard porism [3] is a family of
triangles inscribed in a circle and circumscribed to a special
inellipse known as the “Brocard inellipse” [28, Brocard In-
ellipse]. Notably, the family’s Brocard points are stationary
and coincide with the foci of the inellipse. Also remarkable
is the fact that the Brocard angle ω is invariant [15]. In [20]
we showed this family is the image of family III triangles
under a variable similarity transform.

5
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Figure 3: The Brocard porism [3] is a 1d Poncelet fam-
ily of triangles (blue) inscribed in a circle (black, upper
half shown) and circumscribed about the Brocard inellipse
[28] centered on X39 and with foci at the stationary Bro-
card points Ω1 and Ω2 of the family. The Brocard angle is
invariant [15]. Video

A word about our proof method. We omit some proofs
below as they are obtained from a consistent method used
previously in [11]: (i) depart from symbolic expressions for
the vertices of an isosceles 3-periodic (see Appendix A); (ii)
obtain a symbolic expression for the invariant of interest;
(iii) simplify it assisted by a CAS, arriving at a “candidate”
symbolic expression for the invariant; (iv) verify the latter
holds for any (non-isosceles) N-periodic and/or Poncelet
pair aspect ratios and if it does, declare it as provably invari-
ant.

3 Family I: Outer Ellipse, Inner Circle

Here we study a Poncelet family inscribed in an ellipse
centered on O with semi-axes (a,b) and circumscribes a
concentric circle of radius r, Figure 4 (left). An explicit
parametrization is provided in Appendix A.2.

Cayley’s closure condition [6] assumes a simple form for
3-periodics in a concentric, axis-aligned pair of ellipses
[14]:

Proposition 1 For 3-periodics in an axis-aligned, concen-
tric ellipse pair:

a′

a
+

b′

b
= 1, (1)

where a > b > 0, a′ > 0, and b′ > 0.

Corollary 1 For family I 3-periodics, the radius r of the
fixed incircle is given by:

r =
ab

a+b
·

Proposition 2 In the family I 3-periodics the locus of the
barycenter X2 is an ellipse with axes a2 = a(a−b)/(3a+
3b) and b2 = b(a−b)/(3a+3b) centered on O = X1.

Theorem 1 Family I 3-periodics have invariant circumra-
dius R = (a+b)/2. Furthermore, the locus of the circum-
center X3 is a circle of radius d = R−b = a−R centered
on O = X1.

Proof. Consider the explicit expressions derived for 3-
periodic vertices in Appendix A.2. Let a first vertex
P1 = (x1,y1). From this, we obtain the center X3 of the
orbit’s circumcircle:

X3 =

[
−

x1 (a−b)
(
−x2

1 (a+b)2 +a2b(2a+b)
)

2a
((

a2−b2
)

x2
1 +a2b2

) ,

(a−b)
(

x2
1 (a+b)2−a2b2

)
y1

2b
(
a2x2

1 +b2
(
a2− x2

1
)) ]

,

and radius (a+b)/2. We also obtain that the locus of X3 is
a circle with center (0,0) and radius (a−b)/2. �

Proposition 3 Over family I 3-periodics the locus of the
orthocenter X4 is an ellipse of axes a4 = (a−b)b/(a+b)
and b4 = (a−b)a/(a+b) centered on O = X1.

Proposition 4 Over family I 3-periodics the locus of the
X5 triangle center is a circle of radius d = (a−b)2

4(a+b) centered
on O = X1.

Proposition 5 The power of O with respect to the circum-
circle is invariant and equal to −ab.

Proof. Direct, analogous to [12, Thm.3]. �

Proposition 6 Over family I 3-periodics, the locus of X6 is
a quartic given by the following implicit equation:(

b(b+2a)
(

a2+2ab+3b2
)

x2+a(a+2b)
(

3a2+2ab+b2
)

y2
)2

−a2b2 (a−b)2
(

b2 (b+2a)2 x2 +a2 (a+2b)2 y2
)
= 0

3.1 Connection with the poristic family

Below we show that family I 3-periodics is the image of the
poristic family [19] under a variable rigid rotation about X1.

Recall the poristic family of triangles with fixed, non-
concentric incircle and circumcircle with centers separated
by d =

√
R(R−2r) [8, 19]. Let I be a (moving) reference

frame centered on X1 with one axis oriented toward X3.
Referring to Figure 4 (right):

Theorem 2 With respect to I , family I 3-periodics are the
poristic triangle family (modulo a rigid rotation about X1).

6
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Figure 4: Family I 3-periodics (left) are identical (up to rotation) to the family of poristic triangles (right) [8], if the former
is observed with respect to a reference system where X1 and X3 are fixed. The fixed incircle (resp. circumcircle) are shown
purple (resp. blue). The original outer ellipse (black on both drawings) becomes the X1-centered circumellipse in the poristic
case. Over the family, this ellipse is known to rigidly rotate about X1 with axes R+d,R−d, where d = |X3−X1| [10]. Video

Proof. This stems from the fact that R, r, and d are constant.
�

As proved in [10, Thm.3]:

Observation 1 The X1-centered circumconic to the poris-
tic family is a rigidly-rotating ellipse with axes R+d and
R−d.

Since this circumellipse is identical (up to rotation) to the
outer ellipse of family I, then R+d = a which is coherent
with Proposition 1.
Furthermore, because poristic triangles are the image of
billiard 3-periodics under a (varying) affine transform [10,
Thm 4], it displays the same scale-free invariants.

Corollary 2 Family I 3-periodics conserve the sum of
cosines, product of half-sines, and all scale-free invariants.

3

∑
i=1

cosθi =
a2 +4ab+b2

(a+b)2 ,
3

∏
i=1

sin
θi

2
=

ab
2(a+b)2 · (2)

Note that invariant sum of cosines for family I N-periodics
was proved for all N in [1, Corollary 6.4]. In fact:

Theorem 3 Let (EI ,E ′′I ) be a confocal pair of ellipses
which is an affine image of a family I pair. Both families
have invariant and identical sums of cosines.

Proof. Let α,β and α′′,β′′ denote the semi-axes of EI and
E ′′I , respectively. For the pair to admit a 3-periodic family,
the latter are given by [9]:

α
′′ =

α(δ−β2)

α2−β2 , β
′′ =

β(α2−δ)

α2−β2 ·

Consider the following affine transformation:

T (x,y) =
(

β′′

α′′
x,y
)
.

This takes EI to an ellipse with semi-axes (a,b), a = α
β′′

α′′

and b = β and the caustic E ′′I to a concentric circle of radius
β′′.
In [12, Thm.1] the following expression was given for in-
variant r/R in the confocal pair:

r
R
=

2(δ−β2)(α2−δ)

(α2−β2)2 , δ =
√

α4−α2β2 +β4· (3)

Recall that for any triangle, ∑
3
i=1 cosθi = 1+ r/R [28, Cir-

cumradius, Eqn. 4]. Plugging a = α
β′′

α′′ and b = β into to
(2) yields (3) plus one. �

It turns out that the proof of [1, Corollary 6.4] implies that
for all N, the cosine sum for family I N-periodics is invari-
ant and identical to the one obtained with its confocal affine
image [1].
A known relation for triangles is that Rr = (s1s2s3)/(4s),
where s1,s2,s3 are sidelengths and s = (s1 + s2 + s3)/2 is
the semiperimeter. Since both R and r are conserved:

Corollary 3 The quantity (s1s2s3)/(4s) is conserved and
is equal to ab/2.

7
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4 Family II: Outer Circle, Inner Ellipse

This family is inscribed in a circle of radius R centered on
O and circumscribes a concentric ellipse with semi-axes
a,b; see Figure 5. An explicit parametrization appears in
Appendix A.3.
For the N = 3 case, (1) implies R = a+b. By definition X3
is stationary at O and R is the (invariant) circumradius. As
shown in Figure 5:

Proposition 7 Over family II 3-periodics, the loci of the
orthocenter X4 and nine-point center X5 are concentric cir-
cles centered on X3 = O, with radii 2d′ and d′ respectively,
where d′ = (a−b)/2 .

Proof. CAS-assisted algebraic simplification. �

Figure 5: Family II, the N = 3 case: The loci of both
orthocenter X4 (pink) and nine-point center X5 (olive green)
are concentric with the external circle (black), with radii
2d′ and d′, respectively. I.e., |X4−X5|= d′. In contradis-
tinction to the elliptic billiard, the locus of the incenter X1
(dashed brown) is non-elliptic while that of the symmedian
point X6 (dashed blue) is an ellipse. Video

Recall that in the confocal pair the locus of X1 (resp. X6) is
an ellipse (resp. a quartic) [11]; see Appendix C. Interest-
ingly:

Proposition 8 Over family II 3-periodics, the locus of the
symmedian point X6 (resp. the incenter X1) is an ellipse
(resp. the convex component of a quartic – note the other

component corresponds to the locus of the 3 excenters which
can be concave). These are given by:

locus of X6 :

x2

a2
6
+

y2

b2
6
= 1, a6 =

a2−b2

a+2b
, b6 =

a2−b2

2a+b
,

locus of X1 :(
x2 + y2)2−2 (a+3b)(a+b)x2−2 (a+b)(3a+b)y2

+
(
a2−b2)2

= 0.

Proof. CAS-assisted simplification. �

Let si denote the sidelengths of an N-periodic.

Theorem 4 Family II 3-periodics conserve
L2 = ∑

3
i=1 s2

i = 4(a+2b)(2a+b).

Proof. Direct, using the parametrization for vertices in
Appendix A.3. �

Note: the above is true for all N [1, Thm.8, corollary].

4.1 Family II and the poristic family

Below we show that the orthic triangles of Family II 3-
periodics are the image of the poristic family [19] under a
variable rigid rotation about X3.

Lemma 1 Family II 3-periodics conserve the product of
cosines, given by:

3

∏
i=1

cosθi =
ab

2(a+b)2 ·

Proof. CAS-assisted simplification. �

The orthic triangle has vertices at the feet of a triangle’s
altitudes [28]. Let Rh denote its circumradius. A known
property is that Rh = R/2 [28, Orthic Triangle, Eqn. 7].
Therefore, it is invariant over family II 3-periodics. Refer-
ring to Figure 6 (left):

Proposition 9 The inradius rh of family II orthic triangles
is invariant and given by rh = ab/(a+b).

Proof. rh = 2R∏
3
i=1 cosθi [28, Orthic Triangle, Eqn. 5].

Referring to Lemma 1 completes the proof. �

Let (EII ,E ′′II) denote the confocal pair which is an affine
image of a circle-inellipse concentric pair. Let α,β and
α′′,β′′ denote the semi-axes of EII , and E ′′II , respectively.

Theorem 5 The invariant product of cosines for family II
triangles is identical to the one obtained from excentral
triangles of 3-periodics in (EII ,E ′′II).

8
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Figure 6: Left: Family II 3-periodics (blue), and their orthic triangle (red). The latter’s inradius and circumradius are
invariant. The orthic triangle’s incircle and circumcircle (both dashed red) are centered on the 3-periodic’s orthocenter X4
and the nine-point center X5, respectively. Also shown is the rigidly-rotating MacBeath inellipse (dashed green), centered
on X5 with foci at X3 and X4. Right: Family II orthic triangles are identical (up to a variable rotation), to the poristic
triangles (red) [19]. Equivalently, the original family is that of poristic excentral triangles (blue), for which both incircle
and circumcircle (solid red) are stationary. Also stationary is the excentral MacBeath inellipse (green), i.e., it is the caustic
[10], with center X5 and foci X3, and X4, respectively. The original outer circle (black on both images) is also stationary on
the poristic case, however the inner ellipse in the Poncelet pair (purple) becomes a rigidly-rotating X3-centered excentral
inellipse (dashed purple), whose axes are R+d′ and R−d′. Video 1, Video 2

Proof. Excentrals in the confocal pair conserve the prod-
uct of cosines [12, Corollary 2]. Recall that for any triangle:

3

∏
i=1
|cosθ

′
i|=

r
4R

,

where θ′i are the angles of the excentral triangle. Plugging
a = α′′ and b = α

β
β′′ into (1) yields four times the above

identity when r/R is computed as in (3), completing the
proof. �

Lemma 2 Family II 3-periodics are always acute.

Proof. Since X3 is the common center and is internal to the
caustic, it will be interior to Family II 3-periodics, i.e., the
latter are acute. �

Let I ′ be a (moving) reference frame centered on X3 with
one axis oriented toward X5 (or X4 as these 3 are collinear).
Referring to Figure 4 (right):

Theorem 6 With respect to I ′, family II 3-periodics are the
excentral triangles to the poristic family (modulo a rigid
rotation about X3). Equivalently, family II orthics are iden-
tical (up to said variable rotation) to the poristic triangles.

Proof. X5 of a reference triangle is X3 of the orthic triangle
[17]. Since the family is always acute (Lemma 2), X4 of the
reference is X1 of the orthic triangle [5]. By Proposition 7,
d′ = |X5−X3| is invariant, i.e., the distance between X1 and
X3 of the orthic triangle is invariant. The claim follows
from noting X3,X5,X4 are collinear [28] and that the orthic
inradius and circumradius are invariant, Proposition 9. �

Recall from [10, Thm.2]:

Observation 2 The X3-centered inconic to the poristic ex-
central triangles is a rigidly-rotating ellipse with axes R+d′

and R−d′.

Which makes sense when one considers the rotating refer-
ence frame. Also recall from [10, Thm.1] that:

Observation 3 The MacBeath Inconic to the excentrals is
stationary with axes R and

√
R2−d′2.

Therefore its focal length is simply 2d′ = |X4−X3|. Further-
more, because poristic triangles are the image of billiard
3-periodics under a (varying) affine transform [10, Thm.4],
Family II 3-periodics will share all scale-free invariants
with billiard excentrals, such as product of cosines, ratio of
area to its orthic triangle, etc., see [22].

9
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5 Family III: Homothetic

This family is inscribed in an ellipse centered on O with
semi-axes (a,b) and circumscribes an homothetic, axis-
aligned, concentric ellipse with semi-axes (a′′,b′′); see
Figure 7. An explicit parametrization is provided in Ap-
pendix A.4.

Proposition 10 For family III 3-periodics, a′′ = a/2 and
b′′ = b/2, the barycenter X2 is stationary at O and the area
A is invariant and given by:

A =
3
√

3
4

ab·

Proof. Family III is the affine image of a family of equilat-
eral triangles interscribed within two concentric circles. The
inradius of such a family is half its circumradius. Amongst
triangle centers, the barycenter X2 is uniquely invariant
under affine transformations; it lies at the origin for an equi-
lateral. Affine transformations preserve area ratios. A is
the area of an equilateral triangle inscribed in a unit circle
scaled by the Jacobian ab. This completes the proof. �

A known result is that the cotangent of the Brocard angle
cotω of a triangle is equal to the sum of the cotangents
of its three internal angles [28, Brocard Angle, Eqn. 1].
Surprisingly, we have:

Proposition 11 Family III 3-periodics have invariant ω

given by:

cotω =
3

∑
i=1

cotθi =

√
3

2
a2 +b2

ab
·

Proof. Direct calculations using the explicit parametriza-
tion of vertices in Appendix A.4. �

A known relation is cotω = (∑3
i=1 s2

i )/(4A) [28, Brocard
Angle, Eqn. 2]. Therefore, we have:

Corollary 4 The sum of squared sidelengths s2
i is invariant

and given by:

3

∑
i=1

s2
i =

9
2
(
a2 +b2) ·

As mentioned above, in the confocal pair the loci of X1 (resp.
X6) is an ellipse (resp. a quartic) [11]; see Appendix C. In-
terestingly, we have:

Proposition 12 For family III, the locus of the incenter X1
(resp. symmedian point X6) is a quartic (resp. an ellipse).
These are given by:

locus of X1 :

16
(

a2y2 +b2x2
)(

a2x2 +b2y2
)
−8b2

(
a4 +5a2b2 +2b4

)
x2

−8a2
(

2a4 +5a2b2 +b4
)

y2 +a2b2
(

a2−b2
)2

= 0,

locus of X6 :

x2

a2
6
+

y2

b2
6
= 1, a6 =

a(a2−b2)

2(a2 +b2)
, b6 =

b(a2−b2)

2(a2 +b2)
.

Proof. CAS-assisted simplification. �

Figure 7: Family III (homothetic pair) 3-periodics (blue). Also shown are the Brocard points Ω1 and Ω2. Since both area
and sum of squared sidelengths are constant, so is the Brocard angle ω. Video

10
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5.1 Surprising Circular Loci

The two isodynamic points X13 and X14 as well as the two
isogonic points X15 and X16 have trilinear coordinates which
are irrational on the sidelengths of a triangle [17]. In the
elliptic billiard their loci are non-elliptic. Indeed, in the
elliptic billiard we haven’t yet found any triangle centers
with a conic locus whose trilinears are irrational. Referring
to Figure 8, for family III, this is a surprising fact:

Proposition 13 The loci of of Xk, k =13,14,15,16 are cir-
cles. Their radii are (a−b)/2, (a+b)/2, (a−b)2/z, and
(a+b)2/z, respectively, where z = 2(a+b).

Observation 4 Over all a/b, the radius of X16 is minimum
when a/b = 3.

5.2 Family III and the Brocard Porism

The Brocard porism [3] is a family of triangles inscribed in
a circle and circumscribed about a special inellipse known
as the “Brocard inellipse” [28, Brocard Inellipse]. Its foci
coincide with the stationary Brocard points of the family.
Furthermore, this family conserves the Brocard angle ω.
Referring to Figure 7, we showed that over the homothetic
family, the aspect ratio of the Brocard inellipse is invariant
[20]. This leads to the following result, reproduced from
[20, Theorem 3]:

Theorem 7 The 3-periodic family in a homothetic pair and
that of the Brocard porisms are images of one another under
a variable similarity transform.

As shown in [13], the locus of the center X39 of the Brocard
inellipse is an ellipse (it is stationary in the Brocard porism).

Figure 8: Circular loci of the first and second Fermat points X13 and X14 (red and green) as well as the first and second
isodynamic points X15 and X16 (purple and orange) for two aspect ratios of the homothetic pair: a/b = 3 (left) and a/b = 5
(right). The radius of the X16 locus is minimal at the first case. Video

Figure 9: Family III triangles (blue) are the image of Brocard porism triangles under a variable similarity transform [20].
This stems from the fact that the family’s Brocard inellipse (purple), centered on X39 and with foci on the Brocard points
Ω1,Ω2, has a fixed aspect ratio. Also shown is the elliptic locus of X39. Video
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6 Summary

Table 1 summarizes the types of loci (point, circle, ellipse,
etc.) for several triangle centers for all families mentioned
above. These are organized within three groups A, B, and
C with closely-related loci types. Exceptions are also indi-
cated though we still lack a theory for it.
The first row reveals that out of the 8 families considered
only in the confocal case is the locus of the incenter X1
an ellipse. Additionaly experimentation has suggested an
intriguing conjecture:

Conjecture 1 Given a pair of conics which admits a Pon-
celet 3-periodic family, only when such conics are confocal
will the locus of either the incenter X1 or the excenters be a
non-degenerate conic.

The plethora of circles in the poristic family had already
been shown in [19]. An above-than-expected frequency
of ellipses for the confocal pair was signalled in [11]. As
mentioned above, irrational centers Xk, k ∈ [13,16] sweep
out circles for the homothetic pair. X15 and X16 are known
to be stationary over the Brocard family [3], however the
locus of X13 and X14 are circles! Also noticeable is the fact

that (i) though in the confocal pair the locus of X1 and X6
is an ellipse and a quartic, respectively, in both family II
and family III said locus types are swapped. The reasons
remain mysterious.
It is well-known that there is a projective transformation
that takes any Poncelet family to the confocal pair, [6]. In
this case only projective properties are preserved. If one
restricts the set of possible transformations to either affine
ones or similarities (which include rigid transformations),
one can construct the two-clique graph of interrelations
shown in Figure 10.
As mentioned above, the confocal family is the affine image
of either family I or family II. In the first (resp. second) case
the caustic (resp. outer ellipse) is sent to a circle. Though
the affine group is non-conformal, we showed above that
both families conserve their sum of cosines (Theorem 3).
One way to see this is that there is an alternate, confor-
mal path which takes family I triangles to the confocal
ones, namely a rigid rotation (yielding poristic triangles),
followed by a variable similarity (yielding the confocal
family).

Group A Group B Group C

Conf. F.I Por.
Conf.
Exc F.II

Por.
Exc. F.III Broc.

X1 E P P X X X 4 X
X2 E E C E C P P C
X3 E C P E P P E P
X4 E E C E C P E C
X5 E C C E C P E C
X6 4 4 E P E C E P
X7 E E C X X X X X
X8 E E C X X X X X
X9 P E C X X X X X
X10 E E C X X X X X
X11 E′′ C′′ C′′ X X C5 X X
X12 E C C X X X X X
X13 X X X X X X C C
X14 X X X X X X C C
X15 X X X X X X C P
X16 X X X X X X C P
X99 X X C′ X C′ C′ E′ C′

X100 E′ E′ C′ X C′ C′ X C′

X110 X X C′ E′ C′ C′ X C′

Table 1: Types of loci for several triangle centers over several Poncelet triangle families, divided in 3 groups A,B,C with
closely-related metric phenomena: (i) confocal, fam. I, poristics; (ii) confocal excentral, fam. II, poristic excentral triangles;
(iii) fam. III and Brocard porism. Symbols P, C, E, and X indicate point, circle, ellipse, and non-elliptic (degree not yet
derived) loci, respectively. A number refers to the degree of the non-elliptic implicit, e.g., ’4’ for quartic. A singly (resp.
doubly) primed letter indicates a perfect match with the outer (resp. inner) conic in the pair. The symbol C5 refers to the
nine-point circle. The boldface entries indicate a discrepancy in the group (see text). Note: Xn for the confocal and poristic
excentral triangles refer to triangle centers of the family itself (not of their reference triangles).
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A similar argument is valid for family II triangles: there
is an affine path (non-conformal) to the confocal fam-
ily though both conserve the product of cosines (Theo-
rem 5). Notice an alternate conformal composition of ro-
tation (yielding poristic excentral triangles) and a variable
similarity (yielding confocal excentral triangles). All in this
path conserve the product of cosines.

Finally, family III and Brocard porism triangles form an
isolated clique. As mentioned in [20], these are variable
similarity images of one another but cannot be mappable to
the other families via similarities nor affinely.
Table 2 summarizes some properties of 3-periodics men-
tioned herein. The last column reveals that many of the
invariants continue to hold for N>3. Animations illustrat-
ing some focus-inversive phenomena are listed in Table 3.

Figure 10: Diagram of transformations that take one 3-periodic family into another. The families are specified in each box
while the transformations label the arrows. The second (resp. third) line in each box lists the stationary point(s) (resp. main
invariants) in the family.

fam. pair N=3
outer conic

N=3
inner conic

N=3
invariants

N>3

billiard ellipse (a,b) confocal caustic L,J,r/R,∑cos L,J,∑cos
I inner circle ellipse (a,b) circle r = ab

a+b R,r/R,∑cos ∑cos
II outer circle R = (a+b) ellipse (a,b) ∑s2

i ,∏cos ∑s2
i ,∏cos

III homothetic ellipse (a,b) ellipse (a/2,b/2) A,∑s2
i ,ω,∑cot A,∑s2

i ,∑cot

Table 2: Summary of properties across different concentric Poncelet families. The last column shows some invariants which
continue to hold for N>3.
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id family N Title youtu.be/...
01 all 3 Concentric Poncelet families 8hkeksAsx0E

02 por. 3 Chapple’s poristic family & excentral triangles DS4ryndDK6Qo

03 por. 3 Poristics are image of billiard 3-periodics NvjrX6XKSFw

04 I 3 Side-by-side w/ the poristic family ML AZoX736w

05 I 3,5 Circular loci of X3 & Steiner’s curvature centroid 601OfxuSDGc

06 I 3,5 Invariant ratio of sidelength product to sum 7Jg2nRkkUhQ

07 II 3 Family is image of poristic excentrals wUu2iMesv3U

08 II 3 Side-by-side w/the poristic family xM1SAZO9bDc

09 II 3,5 Circular locus of generalized orthocenter 3f6YBohQCFg

10 III 3 Stationary X2 and invariant Brocard angle 2fvGd8wioZY

11 III 3 Loci of Xk, k =13,14,15,16 are all circles! ZwTfwaJJitE

12 III 3 Family is image of Brocard porism h3GZz7pcJp0

13 I,II 5,6 Locus of generalized circum- and orthocenter ZfQEDujbirQ

14 I,II 5 Locus of generalized circumcenter RP18B827l5I

15 I,II 5 Generalized circumcenter (Steiner’s curv. centroid) RP18B827l5I

16 dual 3 The dual pair: stationary orthocenter fpd Zot5cKk

17 dual 3–8 Generalized stationary orthocenter ttKjzWeG5B8

18 dual 5,7 Generalized stationary orthocenter gNHiZvBhKF8

Table 3: Videos illustrating some phenomena mentioned herein. The last column is clickable and provides the YouTube
code.
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Appendix A. Explicit 3-Periodic Vertices

A.1. Pair 0: Confocal

Let (a,b) be the semi-axes of the external ellipse. Let Pi = (xi,yi)/qi, i = 1,2,3, denote the 3-periodic vertices, given by [9]:

q1 = 1,

x2 =−b4 ((a2 +b2)k1−a2)x3
1−2a4b2k2x2

1y1

+a4 ((a2−3b2)k1 +b2)x1 y2
1−2a6k2y3

1,

y2 = 2b6k2x3
1 +b4 ((b2−3a2)k1 +a2)x2

1y1

+2a2b4k2x1y2
1−a4 ((a2 +b2)k1−b2)y3

1,

q2 = b4 (a2− c2k1
)

x2
1 +a4 (b2 + c2k1

)
y2

1−2a2b2c2k2x1 y1,

x3 = b4 (a2−
(
b2 +a2))k1x3

1 +2a4b2k2x2
1y1

+a4 (k1
(
a2−3b2)+b2)x1 y2

1 +2a6k2y3
1,

y3 =−2b6k2x3
1 +b4 (a2 +

(
b2−3a2)k1

)
x1

2y1

−2a2b4k2x1y2
1 +a4 (b2−

(
b2 +a2)k1

)
y3

1,

q3 = b4 (a2− c2k1
)

x2
1 +a4 (b2 + c2k1

)
y2

1 +2a2b2c2k2 x1 y1,

where:

k1 =
d2

1δ2
1

d2
= cos2

α, k2 =
δ1d2

1
d2

√
d2−d4

1δ2
1 = sinαcosα,

c2 = a2−b2, d1 = (ab/c)2, d2 = b4x2
1 +a4y2

1,

δ =
√

a4 +b4−a2b2, δ1 =
√

2δ−a2−b2,

where α, though not used here, is the angle of segment P1P2 (and P1P3) with respect to the normal at P1.

A.2. Pair I: Incircle

3-periodics are given by P1(t) = (x1,y1) = (acos t,bsin t). Then, the Pi = (xi,yi), i = 2,3 are:

x2 =2a2b2 (−a2bx1 + k y1
)
/q2, y2 =−2ab3 (a2by1 + k x1

)
/q2,

x3 =−2a2b2 (a2bx1 + k y1
)
/q3, y3 = 2b3a

(
−a2by1 + k x1

)
/q3,

k =
√

a3 (a+2b)x2
1 +a2b(2a+b)y2

1,

q2 =2b2(a+b)((a2−b2)x2
1 +a2b2),

q3 =
(
b2a4− y2

1a4 +2a2b4 +a2b2x2
1−2x2

1b4)(a+b) ·

A.3. Pair II: Inellipse

3-periodics are given by P1(t) = (x1,y1) = R(cos t,sin t) with R = a+b. Then the Pi = (xi,yi), i = 2,3 are given by:

x2 =
(
−b2x1 + y1 sx

)
kx, y2 =−

(
y1 a2 + x1 sy

)
ky,

x3 =−
(
b2x1 + y1 sx

)
kx, y3 =

(
−y1 a2 + x1 sy

)
ky,

sx =
√

a3(a+2b)− (a2−b2)x2
1, sy =

√
(a2−b2)y2

1 +b3(2a+b),

kx =
a

(−a+b)x2
1 +a2 (a+b)

, ky =
b

(a−b)y2
1 +b2 (a+b)

·
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A.4. Pair III: Homothetic

3-periodics are given by P1(t) = (x1,y1) = (acos t,bsin t). Then Pi = (xi,yi), i = 2,3 are:

(x2,y2) =

(√
3 ay1−bx1

2b
,
−
√

3 bx1−ay1

2a

)
,

(x3,y3) =

(
−
√

3 ay1−bx1

2b
,

√
3 bx1−ay1

2a

)
·

Appendix B. Elliptic Loci
Below we list triangle centers amongst Xk, k = 1, . . . ,200 for each of the Poncelet pairs mentioned in this article, whose loci
are either ellipses or circles.
• 0. Confocal pair (stationary X9)

– Ellipses: 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 20, 21, 35, 36, 40, 46, 55, 56, 57, 63, 65, 72, 78, 79, 80, 84, 88, 90, 100,
104, 119, 140, 142, 144, 145, 149, 153, 162, 165, 190, 191, 200. Note: the first 29 in the list were proved in [11].

– Circles: n/a

• I. Incircle: (stationary X1)

– Ellipses: 2, 4, 7, 8, 9, 10, 20, 21, 63, 72, 78, 79, 84, 90, 100, 104, 140, 142, 144, 145, 149, 153, 191, 200.
– Circles: 3, 5, 11, 12, 35, 36, 40, 46, 55, 56, 57, 65, 80, 119, 165.

• II. Inellipse (w/ circumcircle): (stationary X3)

– Ellipses: 6, 49, 51, 52, 54, 64, 66, 67, 68, 69, 70, 113, 125, 141, 143, 146, 154, 155, 159, 161, 182, 184, 185,
193, 195.

– Circles: 2, 4, 5, 20, 22, 23, 24, 25, 26, 74, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
112, 140, 156, 186.

• III. Homothetic: (stationary X2)

– Ellipses: 3, 4, 5, 6, 17, 20, 32, 39, 62, 69, 76, 83, 98, 99, 114, 115, 140, 141, 147, 148, 182, 187, 190, 193, 194.
– Circles: 13, 14, 15, 16.

Semi-axes lengths for the elliptic loci of many triangle centers are available in [13].

Appendix C. Loci of Incenter and Symmedian in the Elliptic Billiard

Over 3-periodics in the elliptic billiard, the locus of the incenter X1 is an origin centered ellipse with axes a1, b1 given by [9]:

a1 =
δ−b2

a
, b1 =

a2−δ

b
·

Over the same family, the locus of X6 is a convex quartic given by [11, Theorem 2]:

locus X6 : c1x4 + c2y4 + c3x2y2 + c4x2 + c5y2 = 0,

where:

c1 =b4(5δ
2−4(a2−b2)δ−a2b2), c2 =a4(5δ

2 +4(a2−b2)δ−a2b2),

c3 =2a2b2(a2b2 +3δ
2), c4 =a2b4(3b4 +2(2a2−b2)δ−5δ

2),

c5 =a4b2(3a4 +2(2b2−a2)δ−5δ
2), δ =

√
a4−a2b2 +b4·

Note: this curve has an isolated point at the origin whose geometric meaning is not yet understood.

16



KoG•25–2021 R. Garcia, D. Reznik: Family Ties: Relating Poncelet 3-Periodics by their Properties

Appendix D. Table of Symbols

symbol meaning note
O center of concentric pair

a,b ellipse semi-axes
si,s sidelength and semiperimeter i = 1, . . .N
θi internal angle
L perimeter ∑i si
L2 sum of squared sidelengths ∑i s2

i
K Steiner’s Curvature Centroid ∑i wiPi/∑i wi

wi = sin(2θi)
r,R inradius, circumradius
d′ |X4−X5|

rh,Rh inradius, circumradius of ortic
ω Brocard angle tan(ω) = 4A/L2
X1 incenter
X2 barycenter
X3 circumcenter
X4 orthocenter
X5 center of 9-point circle

Table 4: Symbols used.
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ABSTRACT

We consider special semicircles, whose endpoints lie on
a circle, for a generalized arbelos called the arbelos with
overhang considered in [4] with division by zero.
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Polukružnice u arbelosima s produžecima i
dijeljenje s nulom

SAŽETAK

U radu proučavamo posebne polukružnice, one čije krajnje
točke leže na jednoj kružnici, u poopćenim arbelosima s
produžecima kao u [4] uz korǐstenje dijeljenja s nulom.

Ključne riječi: arbelosi, arbelosi s produžecima, Aida arbe-
losi, polukružnice s diranjem u krajnjim točkama, unutarnje
polukružnice, Arhimedove polukružnice, dijeljenje s nulom

1 Introduction

For a point O on the segment AB such that |AO| = 2a,
|BO|= 2b, let Ah (resp. Bh) be a point on the half line OA
(resp. OB) with initial point O such that |OAh|= 2(a+h)
(resp. |OBh| = 2(b+ h)) for a real number h satisfying
−min(a,b) < h. In [4] we have considered a generalized
arbelos consisting of the three semicircles α, β and γ of
diameters AhO, BhO and AB, respectively, constructed on
the same side of AB. The figure is denoted by (α,β,γ)h and
is called the arbelos with overhang h (see Figure 1). The

ordinary arbelos is obtained from (α,β,γ)h if h = 0, which
is denoted by (α,β,γ)0.

Figure 1: (α,β,γ)h, −min(a,b)< h < 0.

Let c = a+b. The circle touching α (resp. β) externally, γ

internally, and the axis from the side opposite to B (resp. A)
has radius

rA =
ab

c+h
.

The two circles are called the twin circles of Archimedes
of (α,β,γ)h. Circles of radius rA are called Archimedean
circles of (α,β,γ)h or said to be Archimedean with respect
to (α,β,γ)h.
In this article we consider special semicircles, which are
counterpart to the incircle and Archimedean circles of
(α,β,γ)h using division by zero. At the last part of this
paper we consider special case of (α,β,γ)h considered by
Aida [1]. We consider using a rectangular coordinate sys-
tem with origin O such that the farthest point on α have
coordinates (a+h,a+h) (see Figure 1). The radical axis
of α and β is called the axis.

2 Incircle and insemicircle

In this section we consider the incircle of (α,β,γ)h and an
inscribed semicircle in (α,β,γ)h. If a circle touches α and
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β externally and γ internally, we call the circle the incircle
of (α,β,γ)h (see Figure 2). If the endpoints of a semicircles
lie on a circle, we say that the semicircle touches the circle
at the endpoints. If a semicircle touches α and β, and γ

at the endpoints, we say that the semicircle is inscribed in
(α,β,γ)h. We have considered such a semicircle in [2] for
(α,β,γ)0. We use the next proposition.

Proposition 1 A semicircle of radius s touches a circle of
radius r at the endpoints if and only if d2 + s2 = r2, where
d is the distance between the centers of the semicircle and
the circle.

Let v =
√
(c+h)2−2ab+h2.

Theorem 1 The following statements hold.
(i) The incircle of (α,β,γ)h has radius

ic =
ab(c+2h)
(c+h)2−ab

. (1)

(ii) If a semicircle is inscribed in (α,β,γ)h, then it has ra-
dius

is =
−v2 +

√
8ab(c+2h)2 + v4

2(c+2h)
. (2)

Proof. We prove (ii). Let (x,y) and is be the coordi-
nates of the center and the radius of the semicircle in-
scribed in (α,β,γ)h. Then we get (x− (a+ h))2 + y2 =
((a+ h) + is)2, (x + (b+ h))2 + y2 = ((b+ h) + is)2 and
(x− (a−b))2 + y2 + i2s = c2 by Proposition 1. Eliminating
x and y from the three equations and solving the resulting
equation for is, we get (2). The part (i) is proved similarly.

�

Figure 2

The theorem shows that an inscribed semicircle in (α,β,γ)h
is determined uniquely. Hence we can call it the insemicir-
cle of (α,β,γ)h.
We consider a condition where a semicircle of radius is
touches γ. If one of the endpoints of a semicircle S1 lies

on a semicircle S2 and the other endpoints of S1 lies on the
reflection of S2 in its diameter, we still say that S1 touches
S2 at the endpoints. The circle of center of coordinates
((a+h)m,0) (resp. (−(b+h)n,0) and passing through O
is denoted by αm (resp. βn) for a real number m (resp. n)
(see Figure 3). For points P and Q on a semicircle δ, we
say that P, Q and the endpoints of δ lie counterclockwise
if P, Q and one of the endpoints of δ lie counterclockwise.
If a circle touches αm, βn and γ internally so that the points
of tangency of this circle and each of βm, αn and γ lie coun-
terclockwise, we say that the circle touches αm, βn and
γ appropriately. Also if a semicircle touches αm and βn,
and γ at the endpoints so that the points of tangency of the
semicircle and each of βn, αm, and the endpoints lie coun-
terclockwise, then we say that the semicircle touches αm,
βn and γ appropriately.

Theorem 2 If m 6= 0 and n 6= 0, the following three state-
ments are equivalent.
(i) A circle of radius ic touches αm, βn and γ appropriately.
(ii) A semicircle of radius is touches αm, βn and γ appropri-
ately.

(iii) c+2h =
a+h

m
+

b+h
n

.

Proof. Assume that (i) and (x,y) are the coordinates
of the center of the circle in (i). Then we have (x−
m(a+h))2 + y2 = (m(a+h)+ ic)2, (x+n(b+h))2 + y2 =
(n(b+h)+ ic)2 and (x− (a−b))2 + y2 = (c− ic)2. Elimi-
nating x and y from the three equations with (1), we get (iii).
Conversely we assume (iii), and a circle of radius ic touches
αm, βn′ and γ appropriately for a real number n′. Then we
have a+b+2h = (a+h)/m+(b+h)/n′ just as we have
shown, i.e., n = n′. Hence βn = βn′ , i.e., (iii) implies (i).
Therefore (i) and (iii) are equivalent. The equivalence of
(ii) and (iii) is proved similarly. �

Figure 3: 1 < m and 0 < n < 1.

Theorem 2 does not consider the case in which αm or βn
coincides with the axis. We consider the case in the next
theorem (see Figure 4).

Theorem 3 The following statements hold.
(i) A circle of radius ic touches αm (m > 0) externally, γ
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internally and the axis if and only if

m = m0 =
a+h
c+2h

. (3)

(ii) A semicircle of radius is touches αm (m > 0) and the
axis, and γ at the endpoints if and only if (3) holds.
(iii) A circle of radius ic touches βn (n > 0) externally, γ

internally and the axis if and only if

n = n0 =
b+h
c+2h

. (4)

(iv) A semicircle of radius is touches βn (n > 0) and the
axis, and γ at the endpoints if and only if (4) holds.

Proof. We prove (i). Let (x,y) be the coordinates of
the center of the circle of radius ic in (i). Then we
have x = ic, (x−m(a+ h))2 + y2 = (m(a+ h)+ ic)2 and
(x− (a− b))2 + y2 = (a+ b− ic)2. Eliminating x and y
from the three equations with (1), and solving the resulting
equation for m, we get (3). Conversely, we assume that (3)
and a circle of radius ic touches αm′ (m′ > 0) externally, γ

internally and the axis for a real number m′. Then we have
m′ = m0 = m as just we have proved. Therefore αm′ = αm
and the converse is true. The rest of the theorem is proved
similarly. �

Figure 4

If m = m0, then (a + h)/m = c + 2h. Therefore if (b +
h)/nx = 0, and βnx coincides with the axis, then we can con-
sider that Theorem 2 is true in the case (m,n) = (m0,nx).
Similarly if n = n0 and (a+h)/mx = 0 and αmx coincides
with the axis, we can also consider that Theorem 2 holds in
the case (m,n) = (mx,n0). Therefore Theorems 2 and 3 can
be unified in this case. We consider about this in section 4.

Figure 5

Theorem 4 If A0O and B0O are the diameters of the circles
αm0 and βn0 , respectively, then the circles of diameters A0Ah
and B0Bh are Archimedean circles of the arbelos made by
α, β and the semicircle of diameter AhBh constructed on the
same side of AB as γ. Therefore the circle of diameter A0B0
is concentric to γ and touches the twin circles of Archimedes
of the arbelos.

Proof. Since the radius of the circle αm0 equals (a+h)m0 =
(a+ h)2/(c+ 2h) by (3), the circle of diameter A0Ah has
radius

(a+h)− (a+h)2

c+2h
=

(a+h)(b+h)
c+2h

,

which equals the radius of Archimedean circles of the arbe-
los made by α, β and the semicircle of diameter AhBh (see
Figure 5). Since the radius of the circle is symmetric in a
and b, the other circle also has the same radius. �

3 Archimedean semicircles

In this section we consider another kind of semicircles
touching γ at the endpoints.

Theorem 5 The semicircle touching α and the axis and γ

at the endpoints is congruent to the semicircle touching β

and the axis and γ at the endpoints. The common radius
equals

sA =
1
2
(
√

(c+2h)2 +8ab− c−2h). (5)

Proof. Let (s,y) be the coordinates of the center of the
semicircle touching α and the axis, and γ at the end-
points. Then s equals the radius of the semicircle, and
we have (s− (a−b))2 + y2 + s2 = c2 by Proposition 1 and
(s− (a+h))2 +y2 = ((a+h)+ s)2. Eliminating y from the
two equations and solving the resulting equation for s, we
have s = sA. Since s is symmetric in a and b, the other
semicircle also has the same radius. �
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Figure 6

The two congruent semicircles in Theorem 5 may be called
the twin semicircles of Archimedes (see Figure 6). A
semicircle of radius sA is called an Archimedean semi-
circle of (α,β,γ)h or said to be Archimedean with re-
spect to (α,β,γ)h. Let wk =

√
a2 + kab+b2. Theorem 5

shows that (α,β,γ)0 has Archimedean semicircles of radius
(w10− c)/2.

Theorem 6 Assume that (m,n) 6= (1,0),(0,1) and a semi-
circle touches αm, βn and γ appropriately. Then the semi-
circle is Archimedean with respect to (α,β,γ)h if and only
if

1
m
+

1
n
= 1. (6)

Proof. Assume that a semicircle of radius sA touches αm, βn
and γ appropriately and (x,y) are the coordinates of its cen-
ter. Then we get (x−m(a+h))2 + y2 = (m(a+h)+ sA)

2,
(x+n(b+h))2+y2 = (n(b+h)+sA)

2, and (x−(a−b))2+
y2+ sA

2 = c2. Eliminating x and y from the three equations,
we have (6). Conversely we assume (6) and assume that a
semicircle of radius sA touches αm, βn′ and γ appropriately.
Then we have 1/m+ 1/n′ = 1. Hence we get n = n′, i.e.,
βn = βn′ . Hence the converse holds. �

While we have obtained the next theorem in [4].

Theorem 7 If (m,n) 6= (1,0),(0,1) and a circle touches
αm, βn and γ appropriately, then the circle is Archimedean
with respect to (α,β,γ)h if and only if (6) holds.

By Theorems 6 and 7 we have the next theorem.

Theorem 8 If (m,n) 6= (1,0),(0,1), the following state-
ments are equivalent.
(i) The circle touching αm, βn, and γ appropriately is
Archimedean with respect to (α,β,γ)h.
(ii) The semicircle touching αm, βn, and γ appropriately is
Archimedean with respect to (α,β,γ)h.
(iii) (6) holds.

It is commonly considered that the circles α0 and β0 are
point circles and coincide with the origin O. This implies

that Theorem 8 is not true in the cases (m,n) = (1,0),(0,1).
Therefore Theorems 8 does not consider the case of the twin
circles of Archimedes and the case of the twin semicircles
of Archimedes. We consider the case in the next section.

4 Division by zero

In this section we show that we can consider that the cir-
cles α0 and β0 coincide with the axis using recently made
definition of division by zero [5].
For a field F we consider the following bijection ψ : F→ F :

ψ(a) =

{
a−1 if a 6= 0
0 if a = 0.

It is a custom to denote zψ(a) by z/a if a 6= 0, i.e., zψ(a) =
a/z for a 6= 0. Following to this, we write

z ·ψ(0) = z
0

f or ∀z ∈ F. (7)

Then we have

z ·ψ(a) = z
a

f or ∀a,z ∈ F. (8)

Especially we have

z
0
= z ·0 = 0 f or ∀z ∈ F. (9)

Notice that the concept of the reduction to common denom-
inator can not be used for z/0, i.e., we have the following
relation in general in the case b = 0 or d = 0:

a
b
+

c
d
6= ad +bc

bd
.

We consider the circle αm in the case m = 0. The circle αm
has an equation (x−m(a+h))2 + y2 = m2(a+h)2, or

−2m(a+h)x+(x2 + y2) = 0. (10)

This implies x2 + y2 = 0 if m = 0. Hence α0 coincides
with the origin in this case. On the other hand, (10) can be
written as

−2(a+h)x+
x2 + y2

m
= 0. (11)

Therefore we get −2(a+ h)x = 0, i.e., x = 0 if m = 0 by
(9), i.e., α0 coincides with the axis in this case. Now we
can consider that α0 is the origin or the axis, or the axis as
the union of them. Similarly β0 can be considered as the
origin or the axis.
We can now consider that α0 and β0 coincide with the axis.
Then Theorem 2 holds in the case (m,n) = (m0,0),(0,n0)
by (9). Also Theorem 8 holds in the case (m,n) =
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(1,0),(0,1). Our current mathematics avoids to consider
(9). But our above observation shows that (9) is useful.
Division by zero was founded by Saburou Saitoh in 2014.
He has been making a list of successful example applying
division by zero and its generalization called division by
zero calculus, and there are more than 1200 evidences. It
shows that a new world of mathematics can be opened if we
admit them. For an extensive reference of division by zero
and division by zero calculus including those evidences, see
[5].

5 Aida arbelos

Aida (1747-1817) considered a figure consisting of two
touching semicircles at their midpoints and the circle pass-
ing through the endpoints of the semicircles [1] (see Fig-
ure 7). He gave several notable properties of this figure,
which are summarized in [3]. We conclude this paper by
considering special circles and special semicircles for this
figure.

Figure 7: Aida’s figure.

Figure 8: Aida arbelos.

Aida’s figure is obtained from (α,β,γ)h, when h = rA [3],
or

h =
ab

c+h
. (12)

Because (12) is equivalent to

rA = h =
1
2
(w6− c), (13)

and (13) implies that the farthest points on α and β from AB
lie on γ, where recall wk =

√
a2 + kab+b2. In this case we

call (α,β,γ)h an Aida arbelos (see Figure 8). Replacing h
in the denominator of the right side of (12) by the right side
of (12) repeatedly, we get a continued fraction expansion
of rA for the Aida arbelos:

rA =
ab

c+h
=

ab

c+
ab

c+h

=
ab

c+
ab

c+
ab

c+
. . .

.

We assume h≥ 0. Let α and β be the semicircles of diame-
ters AO and BO, respectively, constructed on the same side
of AB as γ, i.e., α, β and γ form (α,β,γ)0. The incircle of
the curvilinear triangle made by α, α (resp. β, β) and the
radical axis of α (resp. β) and γ has radius (1/rA +1/h)−1

for (α,β,γ)h [4]. Therefore the radius equals rA/2 for the
Aida arbelos. The circles are denoted by green in Figure 9.
The circle touching α or β externally, γ externally and the
axis has radius ab/h for (α,β,γ)h [4]. Hence the radius
equals ab/rA = c+ rA for the Aida arbelos by (12). The
circles are denoted by magenta in Figure 9.

Figure 9: The green circles have radius rA/2.

Substituting (13) in (5), we get that the radius of
Archimedean semicircles of the Aida arbelos equals

sA =
1
2
(w14−w6).

Since ic = w6h/c for the Aida arbelos [3], we get that the
inradius of the Aida arbelos equals

ic =
w6(w6− c)

2c

by (13). Therefore we have

ic + rA =
2ab

c
.
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Hence the sum of ic and rA for the Aida arbelos equals
the diameter of the Archimedean circle of (α,β,γ)0. Let
u = (w4

6 +16a2b2)1/4.

Theorem 9 If the insemicircle of the Aida arbelos has cen-
ter of coordinates (xs,ys), we have

is =
u2− c2

2w6
, (14)

(xs,ys) =

(
(b−a)is

w6
,

4ab
√

4ab+u2

w2
6

)
. (15)

Proof. By (2) and (13), we get (14). Solving the equations
(xs− (a+h))2 + y2

s = ((a+h)+ is)2 and (xs +(b+h))2 +
y2

s = ((b+h)+ is)2 with (14), we get (15). �

The next theorem shows that the result for the insemicircle
of (α,β,γ)0 obtained in [2] also holds for the Aida arbelos
(see Figure 10).

Figure 10

Theorem 10 If the line joining the centers of γ and the
insemicircle of the Aida arbelos meets the axis in a point

V , then the circle of diameter OV is orthogonal to the in-
semicircle. Hence the circle passes through the points of
tangency of two of α, β and the insemicircle.

Proof. From (13) and (15), the circle of diameter OV has
radius

rv =
4ab
√

4ab+u2

w2
10 +u2

and the center of coordinates (0,yv) = (0,rv). Then we
have (xs−0)2 +(ys− yv)

2 = r2
v + i2s . �
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ABSTRACT

We study the locus C of all points in the plane whose pedal
points on the six sides of a complete quadrangle lie on a
conic. In the Euclidean plane, it turns out that C is an al-
gebraic curve of degree 7 and genus 5 and not of degree 12
as it could be expected. Septic curves occur rather seldom
in geometry which motivates a detailed study of this par-
ticular curve. We look at its singularities, focal points, and
those points on C whose pedal conics degenerate. Then,
we show that the septic curve occurs as the locus curve for
a more general question. Further, we describe those cases
where C degenerates or is of degree less than 7 depending
on the shape of the initial quadrilateral.

Key words: quadrilateral, complete quadrangle, pedal
point, conic, six conconic points, septic curve, Simson line,
Miquel point

MSC2010: 14H45 14P99 51F99 51N15

Rijetkost u geometriji: septika

SAŽETAK

U radu se proučava geometrijsko mjesto C točaka ravnine
čija nožǐsta na šest strana potpunog četverovrha leže na
jednoj konici. Pokazuje se da je u euklidskoj ravnini C
algebarska krivulja 7. reda i roda 5, a ne 12. reda kao
što bi se očekivalo. Septike se u geometriji rijetko po-
javljuju pa je ta činjenica potaknula detaljnije proučavanje
ove krivulje. Promatraju se njezini singulariteti, žarǐsta
i one točke krivulje C čije su nožǐsne konike raspadnute.
Zatim se pokazuje da se septika pojavljuje kao geometrij-
sko mjesto točaka u jednom općenitijem slučaju. Nadalje,
opisuju se oni slučajevi kad se C raspada ili kad je reda
manjeg od 7 u ovisnosti o obliku polaznog četverostrana.

Ključne riječi: četverostran, potpuni četverovrh, nožǐste,
konika, šest konkoničnih točaka, septika, Simsonov pravac,
Miquelova točka

1 Introduction

1.1 Septic curves and curves related to a quadrilateral

Algebraic curves of degree two, three, and four (conics,
cubics, and quartics) appear frequently in many geometri-
cal problems (see, e.g., [9, 11, 14, 15, 17, 18, 23]). This
is caused by the fact that many problems in geometry in-
volve distances between points or angles between lines and
a quadratic form is responsible for measuring distances
and angles in the Euclidean plane. Curves of odd degrees
proved useful in Computer Aided Geometric Design: Cu-
bic, quintic, and even septic curves (in plane and in space)
are well suited for solving interpolation tasks with tangent
or curvature continuity [6, 7, 13, 19, 21] and are also help-
ful in spaces of geometric objects, such as lines and spheres
[20].
Planar curves of odd degree may be the images of alge-
braic curves under certain Cremona transformations: Lin-
ear components of the image curve will split off if the ini-

tial curve passes through base points of the transformation
[4, 5, 8] as is the case with many but not all cubic curves
and most of the algebraic curves which are related to the
geometry of a triangle, see the list on B. GIBERT’s page
[10].

Figure 1: Triangle related septics: The curves Q001, Q008,
Q009 are labeled according to Gibert’s list [10].
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On GIBERT’s page [10], we find, among many other
curves, 12 septic curves related to the geometry of the tri-
angle. Three of these septics are shown in Figure 1. For
example, the Darboux septic Q001 is the locus of all 4th

pedal points of a point P on the circumconics of a triangle
∆ = ABC such that the circumconic’s normals at A, B, C
concur in P. This curve was derived and described in [12].
The septic Q008 is the isogonal image of a circular octic
which collects the perspectors of pedal and projection tri-
angles of a triangle ∆, while Q009 is related to orthologic
triangles.

However, the rational septic also related to a geometric
question about triangles found by É. LEMOINE (cf. [16])
does not show up in [10]. Compared to the huge amount
of special conics, cubics, and quartics related to many ge-
ometric questions, these 13 septics are a rather poor aggre-
gation. It seems that K. FLADT [8] may be right when he
stated that ”there could hardly be some curves of degree 7
that could be of interest and of geometrical relevance”, al-
though the space of septic plane curves is 35-dimensional
(including even degenerate ones) since the implicit equa-
tion of a septic involves 36 coefficients where only the ratio
matters.

Cubic curves related to triangles can be characterized by
geometric properties [9]. While no vertex of a triangle
is distinguished and the ordering of the vertices does not
matter, this is not the case with a quadruple of points, say
A, B, C, D. There are three different orderings of four
points (up to cyclic and reverse rearrangements), and so,
they define three different quadrilaterals. Asking for the
locus of all points P in the plane of the quadruple with
concyclic pedal points on four side lines of one particu-
lar quadrilateral defined on the point quadruple results in
a certain cubic. Since there are three different orderings,
the four points actually define three cubics one of which
passes through the quadrilateral’s respective Miquel point
(see [3] and cf. Figure 2).

It seems that asking for the locus C for only one ordering
of points may not deliver the complete picture.

In the following, we assume that we are given a pla-
nar quadrilateral Q = ABCD with vertices A, B, C, D,
no two of which may coincide and no three shall be
collinear. (Later, we shall discuss the case where three of
these points are collinear as the only acceptable degener-
ate case.) Clearly, these four points define six lines [A,B],
[A,C], [A,D], [B,C], [B,D], [C,D], i.e., the joins of all six
pairs out of the four points. The union of the four points
and the six lines is called a complete quadrangle.

Figure 2: The loci CABCD, CACDB, CADBC of points with four
concyclic pedal points on the sides of the three
quadrilaterals on four points A, B, C, D.

Figure 3: The characteristic property of the points on C :
The six pedal points P·· of the point X lie on a
single conic p.

Now, we raise the following question (cf. Figure 3): What
is the locus C of points X in the quadrilateral’s plane such
that the pedal points of X on the six lines of the complete
quadrilateral are conconic, i.e., they are located on a sin-
gle conic?
In order to answer this question, the remainder of this sec-
tion collects necessary notations and provides some basic
results. In Section 2, we shall derive the equation of C
for a generic quadrilateral and study C ’s algebraic proper-
ties. However, the equation of C is given in the Appendix
A in full length because of its complexity (2318 terms).
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A rather intricate computation will show that beside the
diagonal points and three Miquel points there are only 4
further real points on C that deliver singular pedal conics.
Subsequently, Section 3 will show that the curve C is the
locus curve for a more general formulation of the initial
problem. Then, Section 4 deals with those quadrilaterals
and complete quadrangles where the degree of the curve
C drops. In all these cases, C becomes a sextic either of
genus 1 or 3 and carries no real point off the real (isolated)
singularities. We also show that the degree of C is always
larger than 5.

1.2 Prerequisites, notations, and basic results

Although we are mostly dealing with Euclidean geome-
try, we shall describe points by homogeneous coordinates
whenever this is favorable. The Cartesian coordinates
(x,y) of a point X can easily made homogeneous by writing
X = 1 : x : y. On the contrary, from the homogeneous coor-
dinates x0 : x1 : x2 of a point, we can change to its Cartesian
coordinates by setting x = x1x−1

0 and y = x2x−1
0 , provided

that x0 6= 0. In this way, we have performed the projective
closure of the Euclidean plane and x0 = 0 is the equation
of the ideal line (line at infinity). On this line, we find the
absolute points of Euclidean geometry 0 : 1 :±i which are
henceforth denoted by I and J = I.
The condition on six points to lie on a single conic can be
written in form of a vanishing determinant of a 6× 6 ma-
trix whose rows (or columns likewise) are the quadratic
Veronese images of the six points in question see [11].
For a point X with homogeneous coordinates x0 : x1 : x2,
the quadratic Veronese image has the homogeneous coor-
dinates

v(x0,x1,x2) = x2
0 : x0x1 : x0x2 : x2

1 : x1x2 : x2
2. (1)

Each conic c in the plane has a homogeneous equation of
the form

2

∑
i, j=0

ai jxix j = 0

(with aik ∈ R not simultaneously vanishing). The conic
c is regular/singular if, and only if, the symmetric matrix
(ai j) ∈ R2×2 is regular/singular. Each point incident with
the conic corresponds to a hyperplane in the space P5 of
all Veronese images. Six linearly dependent hyperplanes
in P5 correspond to six conconic points, and hence, the
6× 6 matrix of the respective Veronese images is of rank
less than 6. A less algebraic and more geometric condition
on six points to lie on a conic is given by PAPPUS’s theo-
rem [11]. However, the algebraic formulation of PAPPUS’s
theorem is equivalent to (1).
Now, it is natural to conjecture that the locus C is a curve of
degree twelve: The computation/construction of the pedal
points of the normals from X to the sides of the complete

quadrangle is linear. Algebraically speaking, the coordi-
nates of the six pedal points can be expressed linearly in
terms of the coordinates of X .
Therefore, the entries of the 6× 6 matrix are quadratic in
the coordinates of the pedal points, and thus, quadratic in
the coordinates of X . Finally, the determinant of the 6×6
matrix is a polynomial of degree twelve which, set equal to
zero, is the equation of an algebraic curve of degree twelve.
Whatever the locus C may be, the following can be shown
without any computation:

Theorem 1 The vertices A, B, C, D and the diagonal
points P = [A,B]∩ [C,D], Q = [A,C]∩ [B,D], R = [A,D]∩
[B,C] are located on C .

Proof. If X coincides with one diagonal point, say P, then
the pedal points on [A,B] and [C,D] coincide and equal
P. So, there are only five different pedal points naturally
having a unique circumconic. The same holds true for the
other diagonal points.
If X equals a vertex of Q , say A, then even three pedal
points fall in one point, i.e., the pedal points of A on [A,B],
[A,C], and [A,D] (the three side lines through A). There-
fore, the four vertices of Q are located on C and are singu-
lar points on C . �

We shall also verify that A, B, C, and D are double points
on C by computation in Thm. 3.

Remark 1 The pedal conic of a vertex of Q , say A, is not
uniquely determined. It passes through the three pedal
points on [B,C], [C,D], [D,B], and A. These four points
will, in general, serve as the base points of a pencil of
pedal conics (cf. [11]).

2 The equation of C

2.1 The generic quadrilateral

In order to give an equation of C , we attach a Cartesian co-
ordinate system to the given quadrilateral. It means no loss
of generality, if we assume that the vertices of the quadri-
lateral are given by the homogenized Cartesian coordinates

A = 1 : 0 : 0, B = 1 : a : 0,
C = 1 : b : c, D = 1 : d : e.

We could simplify the coordinates of these four points a
little bit more by setting a = 1. Regarding the question we
are trying to answer, this is admissible, since it would only
scale the quadrilateral and the problem of conconic pedal
points is invariant under equiform transformations in gen-
eral. However, we do not set a = 1 in order to keep the co-
efficients of C homogeneous (polynomials in a,b,c,d,e).
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Later, some quadratic functions in terms of a,b,c,d,e shall
occur frequently and in order to simplify many expres-
sions, we label the squares of the six Euclidean lengths
between the given points by

l1 :=AB=a2,

l2 :=AC=b2 + c2,

l3 :=AD=d2 + e2,

l4 :=BC=(b−a)2+c2,

l5 :=BD=(d−a)2+e2,

l6 :=CD=(d−b)2+(e−c)2.

(2)

For the same reason, we denote the areas of the four sub-
triangles of Q by

FD :=area(ABC)= 1
2 ac,

FC :=area(ABD)= 1
2 ae,

FB :=area(ACD)= 1
2 (be−cd),

FA :=area(BCD)= 1
2 (ac−ae+be−cd),

(3)

where, for example, FA is the area of the triangle BCD (i.e.,
the area is labeled by the point that does not contribute).

Now, let X = (x,y) (or likewise 1 : x : y) be a point in the
plane of Q . It is elementary to compute the six pedal points
from X to the sides of the complete quadrilateral. Then, we
replace the Cartesian coordinates of X by homogeneous
coordinates according to x→ x1x−1

0 and y→ x2x−1
0 . For

example, the pedal point PAC on the side line [A,C] has the
homogeneous coordinates

PAC = l2x0 : b(bx1 + cx2) : c(bx1 + cx2).

Subsequently, we apply the Veronese mapping (1) and
compute the determinant of the 6×6 matrix

V := (v(PAB),v(PAC),v(PAD),

v(PBC),v(PBD),v(PCD)) .
(4)

This results in a homogeneous polynomial of degree 12
in the variable homogeneous coordinates x0 : x1 : x2 of X .
Surprisingly, detV factors and we have

detV =−28l−1
1 F2

A F2
B F2

C F2
D · x5

0 ·P7, (5)

where P7 =
7
∑

k=0
qkxk

0 is a degree 7 form in x0 : x1 : x2 with

q7 = q6 = 0,

q5 = 24l1l2FAFBFCFD(x2
1 + x2

2),

q4 = . . . , q3 = . . . ,

q2 = (. . .)(x2
1 + x2

2), q1 = (. . .)(x2
1 + x2

2)
2,

q0 = 4(al1)−1(4(FC−FD)(l1FB(FB−FC)·
·(FB+FD)+l2F2

C (FC−FB)−l3F2
D·

·(FB +FD))x1 +(l2
1F2

B (FB−FC−FD)−
−l2

2F2
C FD−2l2

3F3
D+l1l2FC((4FB−5FC)·

·(FB−FC)+(FB−FC)FD)+

+l1l3FD(4F2
B −4FBFC−F2

C+

+3FD(FB−FC +FD))+ l3l4F2
C FD+

+l2l3FCFD(FC+2FD)−l2l4F2
C (2FC−FD)−

−16FBFCFD((FB−FC)·
·(FC +FD)+F2

D))x2)(x2
1 + x2

2)
3.

(6)

The polynomial P7 is given in full length in the Appendix
A in term of inhomogeneous (Cartesian) coordinates.
Now, we have:

Theorem 2 The locus C of points X in the Euclidean
plane with conconic pedal points on the six lines of a com-
plete quadrangle is, in general, a tricyclic algebraic curve
of degree 7 with the equation P7 = 0 having one real point
at infinity.

We have added the phrase in general since we shall soon
see that for some special configurations of the four points
A, B, C, D the degree will drop.
Proof. By virtue of (5), we can see that the (in general)
non-degenerate factor of detV is a polynomial P7 of de-
gree 7. Obviously, the factor x5

0 splits off from detV , and
thus, the line at infinity is a component with multiplicity 5.
However, this component does not matter, since one cannot
draw normals from ideal points to proper lines. Therefore,
the affine part of C is only of degree 7. (An example is
shown in Figure 4.)
In the projective closure and the complex extension of the
Euclidean plane, the term q0 of degree 7 (given in (6))
consists of a linear factor corresponding to the one and
only real point at infinity and the term (x2

1 + x2
2)

3 = (x1 +
ix2)

3(x1 − ix2)
3 whose solutions are the absolute points

(circle points) of Euclidean geometry each with multiplic-
ity 3. �

Later, we shall have a look at all types of quadrilaterals
including those with symmetry. In some cases the degree
of the curve C will drop. For some special quadrilaterals,
the curve C will consist of a finite number of isolated real
points and complex branches without any real point.
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Figure 4: The septic locus C of points whose six pedal
points on the sides of a complete quadrilateral
Q = ABCD lie on a conic.

Remark 2 The equations of the cubics showing up in [3]
as the loci of points with four concyclic pedal points on
the four sides of a quadrilateral are also the irreducible
parts of polynomials of degree 8. The concyclicity of the
four pedal points is equivalent to the vanishing of the de-
terminant of the 4× 4 matrix whose rows (columns) are
Veronese images

(p2
1 + p2

2, p0 p1, p0 p2, p2
0)

(cf. [11, p. 241]) of the four homogenized pedal points.
Surprisingly, from this degree 8 polynomial the factor x5

0
(the ideal line) also splits off with multiplicity 5.

We can state and prove:

Theorem 3 The vertices of the quadrilateral Q = ABCD
are isolated double points on the septic C . The four ver-
tices are focal points of C . The curve C is of class 22 and
genus 5.

Proof. From (6), we see that q7 and q6 are equal to zero,
and therefore, A is a double point on C . The coefficient
q5 6= 0 (cf. (6)) tells us that the point A is a double point on
C . The linear factors of q5 are the equations of C ’s tangents
at the double point. Since

x2
1 + x2

2 = (x1 + ix2)(x1− ix2) = 0,

we see that the tangents at A are isotropic lines and A is an
isolated double point.
We recall VON STAUDT’s definition of focal points on al-
gebraic curves: A point F is a focal point of an algebraic
curve if the curve’s tangents at F are isotropic lines (cf.
[1, 5]). According to this, A is a focal point since the tan-
gents of the curve at A are isotropic lines.
The other vertices B, C, D are of the like kind. This can
be shown by applying translations to Q and to the septic
curve C such that each vertex of Q coincides with the ori-
gin of the coordinate system (three different translations).

This does not change the algebraic and geometric proper-
ties of C and the linear factors of q0 are the equations of the
tangents at the origin. In all three cases, q0 will turn out to
be a scalar multiple of x2

1 + x2
2 (since this quadratic form is

invariant under Euclidean transformations). Consequently,
all four vertices of C are isolated double points and focal
points of C .
There are no further singularities on C (different from A,
B, C, D, I, J). This can be shown either with a CAS (like
Maple) or by considering the following: At a singular point
of C at least three pedal points have to coincide which is
not possible for any other point (different from the already
known singularities).
With the Plücker formulae for planar algebraic curves (cf.
[2, 4, 5, 8, 14]), we find the genus g and the class m of C :

g = 1
2 (7−1) · (6−1)−1 ·4−3 ·2 = 5,

m = 7 · (7−1)−2 ·4−6 ·2 = 22

since there are 4 ordinary double points and 2 ordinary
triple points on C . �

Figure 5 shows that the curve C can have up to six real sep-
arated components as is to be expected for a curve of genus
5. These six components occur if one vertex lies close to
one side.

Figure 5: If one vertex (here D) comes close to one side
line (here [A,B]), then the curve C consists of 6
separated real components.

Remark 3 The well-known Plücker formulae (cf. [2, 4, 5,
8, 14, 23]) for the genus and class of a planar algebraic
curve have to be adapted if the degree d is larger than or
equal to 4 since curves of sufficiently high degree may have
singularities of multiplicity larger than 2. In the present
case with d = 7 and ordinary triple points, the formulae
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for the class m, the number w of inflection points, and the
genus g read

m = d(d−1)−2d−3s−6t,

w = 3d(d−2)−6d−8s−18t,

g = 1
2 (d−1)(d−2)−∑δi.

Herein, d, s, t, δi are the numbers of (ordinary) double
points, cusps (of the first kind), (ordinary) triple points,
and the δ-invariants of all singularities. The δ-invariant
can be computed with Maple’s function singularities

provided by the algcurves package.

It is rather technical to show that each (ordinary) triple
point has to be weighted with the factors 6 and 18 in the
class and inflection point formula.

This allows us to conjecture that

w = 3 ·7 · (7−2)−6 ·4−18 ·2 = 45.

is an upper bound for the number of real inflection points
on C .

2.2 Miquel points determine singular pedal conics

Figure 6: The Miquel point MRP lies on the septic C , for
its six pedals with respect to the lines of a com-
plete quadrilateral form a degenerate conic m =
sABR∪n.

Each quadrilateral Q = ABCD defines three Miquel points
each of which is common to four circles on two pairs of op-
posite vertices and the respective diagonal points of Q (cf.
[22]). We shall denote the Miquel points by MPQ, MQR,
MRP pointing to the diagonal points involved. It is well-
known that the Miquel points are located on the following
circles (cf. [22]):

MPQ ∈ kACP, kBDP, kABQ, kCDQ,
MQR ∈ kADQ, kBCQ, kACR, kBDR,
MRP ∈ kABR, kCDR, kADP, kBCP,

where kXY Z denotes the circle on the three (pairwise dif-
ferent) points X , Y , and Z. We are able to show that these
points play an outstanding role:

Theorem 4 The three Miquel points MPQ, MQR, MRP are
located on the septic C . The three pedal conics defined by
the six pedal points of each Miquel point are degenerate
and split into pairs of lines.

Proof. It is sufficient to show the validity of the above the-
orem for one particular Miquel point, say MRP. For the
remaining two the proof uses the same arguments for dif-
ferent subtriangles.

The Miquel point MRP is the common point of the circum-
circles kABR, kCDR, kADP, kBCP of the respective subtrian-
gles.

Since MRP ∈ kABR, the three pedal points of MRP’s normals
to [A,B], [B,R], [R,A] are collinear: They lie on the Simson
line of the triangle ABR. The triangles ABR and CDR share
two side lines: [A,R] = [D,R] and [B,R] = [C,R]. Thus, two
by two pedal points coincide: PMRP,[A,R] = PMRP,[D,R] and
PMRP,[B,R] = PMRP,[C,R]. So, the two triangles ABR and CDR
share the Simson line sABR = sCDR on which also the pedal
points PMRP,[A,B] and PMRP,[C,D] have to lie. This makes in
total four collinear pedal points.

The remaining two pedal points PMRP,[A,C] and PMRP,[B,D]

span a second line n. The union of sABR and n is the singu-
lar conic m. Since m is a (singular) conic, MRP has to lie
on C by the very definition. �

Figure 7 shows the three Miquel points of the complete
quadrangle Q together with the three singular pedal con-
ics. Each point and line displayed in Figure 7 can be con-
structed only with a ruler (linearly): Each Miquel point is
a common point of two circles sharing an already known
point. The singular pedal conics of the Miquel points are
Simson lines which require only linear constructions.

Figure 7: The three Miquel points and their singular pedal
conics.
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It is noteworthy that the triangle built by the centers of the
singular conics is perspective to the diagonal triangle PQR
of Q :

PQR∧=CQRCRPCPQ

(with CQR denoting the center of the singular pedal conic
of MQR. Further, the triangle formed by the three Miquel
points is also perspective to the diagonal triangle, i.e.,

PQR∧=MQRMRPMPQ.

Remark 4 Theorem 4 can also be verified by means of
computation. For that purpose, only the coordinates

MRP = 2(l1−l2+l3+l4−l5+l6) :
: a(l1− l2 +2l3− l5 + l6) :
: 4a(FC−FB),

MPQ = 2(l1 + l2− l3− l4 + l5 + l6) :
: a(l1 +2l2− l3− l4 + l6) :
: 4a(FB +FD),

MQR = 4a(l1− l2− l3− l4− l5 + l6) :
: l1(l1− l2− l3− l4− l5)+
+(l4−3l2)l3+
+(l2 + l4)l5−16FCFD :

: 8(l1(FC−FB)−FDl3− l4FC),

of the three Miquel points (with the abbreviations given in
(2) and (3)) have to be inserted into (5).

We are able to show that the Miquel points are not the only
points whose six pedal points lie on a singular conic:

Theorem 5 In the Euclidean plane of a generic quadrilat-
eral Q there exist, in general, 4 real points (different from
the Miquel point, the diagonal points, and the vertices of
Q ) whose pedal conics are singular.

Proof. Unfortunately, this proof requires some computa-
tion. We assume that W = 1 : ξ : η is a point on C , and thus,
its coordinates annihilate P7 from (5) and (6). By the very
definition of C , the six pedal points of W lie on a conic.
We can use (4) to determine the equation of the conic cCD
on the pedals PAB, PAC, PAD, PBC, PBD of W (note that PCD
is missing). The determinant of the coefficient matrix MCD
has to vanish in order to make cCD singular. Surprisingly,
detMCD splits into quadratic factors:

detMCD = ιA · ιB · kC · kD·
·kABR · kABQ · kBCQ · kADQ · kACR · kBDR.

Figure 8: The cycle L consists of 16 circles and 8 isotropic
lines. It intersects C in possible candidates of
points with degenerate pedal conics.

The factors in the latter product are the equations of some
circles and pairs of isotropic lines. For example, ιA =
ξ2+η2 is the equation of the pair of isotropic lines through
A, kA is the (equation of the) circumcircle kA of BCD, and
kABR is the (equation of the) circumcircle of ABR (with P,
Q, and R still being Q ’s diagonal points as defined in Thm.
1).

So far, it seems that the pedal point PCD does not play a
role. In order not to miss a single pedal point, we compute
the least common multiple L of all determinants detMkl
(with k 6= l and (k, l) ∈ {A,B,C,D}) and find

L = ιA · ιB · ιC · ιD︸ ︷︷ ︸
isotropic lines

through vertices

·kA · kB · kC · kD︸ ︷︷ ︸
circumcircles

of subtriangles

·

·kABR · kCDR · kADP · kBCP︸ ︷︷ ︸
circles through

the Miquel point MRP

·

·kACP · kBDP · kABQ · kCDQ︸ ︷︷ ︸
circles through

the Miquel point MPQ

·

·kADQ · kBCQ · kACR · kBDR︸ ︷︷ ︸
circles through

the Miquel point MQR

.

The points on C with degenerate conics through their pedal
points are found as the intersection of the curve C : P7 = 0
and the cycle L : L = 0 of degree 40. The cycle L consists
of 16 circles and the 8 isotropic lines passing through the
four vertices of Q , cf. Figure 8. According to BÉZOUT’s
theorem, we have to expect up to 280 common points of C
and L . As we shall see, many of them are not real and a
huge amount of them coincides with already known points.

In order to get rid of solutions that we already now and,
further, in order to simplify the computation we have to
discuss the intersection of the components of L with C .
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The four pairs of isotropic lines can be cut out immedi-
ately: The pair described by ιA = 0 intersects C in 14 points
6 of which coincide with A (since A is an ordinary double
point on ιA and C and both (isotropic) components of ιA
are tangents to C at A). Three intersection points each are
located at I and J (since they are ordinary triple points on
C (cf. Thm. 2) and regular points on ιA). The two remain-
ing points cannot be real since ιA does not contain any real
point different from A. The same arguments hold for the
other pairs. Therefore, we can cut out the cycle of degree
8 given by the equation ιA · ιB · ιC · ιD = 0.

The circumcircles can also be canceled: For example, the
circle kA (passing through B, C, D) intersects C at B, C,
D with multiplicity 2 at each point (since they are double
points on C , cf. Thm. 1 and Thm. 3). At both absolute
points I and J, the intersection multiplicity of kA and C
equals 3. Further, kA and C have a pair of complex conju-
gate proper points in common. These two points are never
real since the discriminant ∆A of the respective quadratic
equations is a full square with a minus ahead:

∆A =−4l−1
1 (l1FB + l3FD− l2FC)

2·
·(l1(l3− l2− l4 + l5)+ad(l2− l3 + l6)−4FBFC)2.

Hence, kA does not lead to new real points on C with sin-
gular pedal conics, as is the case with kB, kC, kD for the
same reasons. Therefore, the cycle kA · kB · kC · kD = 0 of
degree eight being the union of the circumcircles of the
four subtriangles can also be cut out.

Finally, we have to study the last three quadruples of cir-
cles passing through their respective Miquel point: At first,
we shall have a look at the four circles passing through
one particular Miquel point. For example the circles kABR,
kCDR, kADP, kBCP share only the points A, B, C, D, R, P,
MRP, I, and J with C (with multiplicities 4, 4, 4, 4, 2, 2, 4,
16, 16). Which is similarily true for the other quadruples
of circles passing through the Miquel points MPQ and MQR
and does not deliver new points.

Surprisingly, the following combinations of circles yield
real points on C

kACP∩ kBDR = {R1,R2},
kACR∩ kBDP = {R3,R4}

while all other combinations of circles lead to intersections
which are either already known or not on C , or, if on C , two
points which can never be real. �

Table 1 lists the intersection points of L and C with their
respective multiplicities, and thus, it summarizes the proof
of Thm. 5.

A B C D P Q R MPQ MQR MRP I J

24 24 24 24 4 4 4 4 4 4 60 60

R1 R2 R3 R4 compl. pts. ∑

2 2 2 2 32 280

Table 1: The common points of L and C algebraically
counted.

Remark 5 The cycle L is of degree 40 and it is the union
of 16 circles and 8 isotropic lines. It has four 11-fold points
at A, B, C, D; six 4-fold points at P, Q, R, MPQ, MQR, MRP;
and the absolute points I, J are 20-fold points. Further it
has 128 ordinary double points (among them R1, . . . , R4).

2.3 Degenerate quadrilaterals

Quadrilaterals may degenerate in many ways. Until now,
we have assumed that none of the four vertices falls into
a line spanned by two others, i.e., Q = ABCD is a proper
quadrilateral. If we exclude cases where two or more ver-
tices coincide, the only possible degenerate quadrilaterals
are those where one vertex, say C, lies on the side line
[A,B]. In any other case, we can relabel the points. In this
rather special case, we can state:

Theorem 6 Assume that all vertices of Q are pairwise dif-
ferent, but, for example, C ∈ [A,B]. Then, the septic curve
C becomes the septic cycle consisting of the line [A,B] and
the circumcircles of the three non-degenerate subtriangles
ABD, ACD, and BCD.

The line [A,B] serves as the degenerate circumcircle of the
improper triangle ABC.

Proof. If C lies on [A,B], then C = 1 : b : 0, i.e., c = 0.
Inserting this into P7, yields

P7 = (a−b)2b2 · x2 · (e(x2
1+x2

2)−bex0x1+

+(bd−d2−e2)x0x2)·
·(e(x2

1+x2
2)−aex0x1+(ad−d2−e2)x0x2)·
·(e(x2

1+x2
2)−(a+b)ex0x1+

+((a+d)(d−b)−e2)x0x2+abex2
0).

The linear factor is the equation of [A,B], the quadratic fac-
tors are the equations of the circumcircles kC, kB, kA of
ABD, ACD, BCD. �

The points on the septic cycle described in Theorem 6 de-
fine only degenerate conics: Let X be some point on the
circumcircle of ∆C = ABD. The pedal points PAB, PAD,
PBD of X on the sides of ∆C are collinear and lie on the
Simson line sABD. Since C ∈ [A,B], [A,B] = [A,C] = [B,C],
and thus, PAB = PAC = PBC. Therefore, the conic on the six
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pedals is the union of two lines, the Simson line sABD and
the line [PCD,PAB].

Here, we have only four different pedal points, and four
points always lie on at least one conic, indeed, they form
the basis of a pencil of conics.

3 A more general point of view

We have drawn the normals from some point X to the
lines of a complete quadrilateral and determined the pedal
points. However, these six pedal points are very special
points on the six normals through P.

Let again Pkl denote the pedal point of X on the line [k, l]
(with k 6= l and (k, l) ∈ {A,B,C,D}) and let further denote
Pω

kl the ideal point of the normal of [k, l] through X . Then,
we shall determine the points Pδ

kl on the normal such that
the crossratio of Pkl , Pω

kl , X , and Pδ

kl equals δ ∈ R\{0}.

Now, we can ask for the set C δ of all points X such that
the six points Pδ

kl lie on a single conic. We can show the
astonishing result:

Theorem 7 Let Q = ABCD be a quadrilateral in the pro-
jectively extended Euclidean plane. Then, define six per-
spective collineations κδ

kl whose axes are the six lines [k, l]
(k 6= l, k, l ∈ {A,B,C,D}) of the complete quadrangle de-
termined by Q , their centers Pδ

kl being the ideal points of
the normals of [k, l], and δ ∈ R \ {0} be their (common)
characteristic crossratio.

Then, the set C δ of all points X whose images Pδ

kl under the
six perspective collineations κδ

kl lie on a single conic form
the septic curve C described in Theorem 2 independent of
the choice of δ 6= 0.

Proof. With the Cartesian coordinates of X and Pkl and
the characteristic cross ratio δ ∈ R, the points Pδ

kl can be
written as a linear combination of X and and the respective
pedal point Pkl

Pδ

kl = (1−δ)X +δPkl

(where δ 6= 0, (k, l) ∈ {A,B,C,D}, and k 6= l) since Pω

kl is
a point at infinity. Again, the determinant of the matrix (4)
factors and equals

detV =−28l−1
1 F2

A F2
B F2

C F2
D ·δ

8 · x5
0 ·P7

with the same polynomial P7 of degree 7 as we know from
(5) and (6) which is independent of δ. Hence P7 = 0 is the
equation of C δ = C . �

Theorem 7 contains a very special case: If δ=−1, then the
collinear images of X are the reflections of X in the six side

lines of the complete quadrilateral. Obviously, these points
are conconic if X lies on the septic C . Figure 9 shows the
septic together with some point X ∈ C and the conics on
the six pedal points Pkl and the six reflections Rkl .

Figure 9: The conics p and r collect the pedal points and
reflections of P ∈ C . Here, the conic r is the im-
age of p under the central similarity with center
P and similarity factor 2.

It is clear that the conics corresponding to two different
characteristic cross ratios δ1,δ2 6= 0 are related by a cen-
tral similarity with center X and similarity factor δ1δ

−1
2 (or

its reciprocal).

4 Exceptional quadrilaterals, degree reduc-
tion

4.1 Special configurations

In the case of the locus curve described in [3], the cubic
may degenerate, i.e., it splits into lower degree parts, de-
pending on the shape of the quadrilateral. From Thm. 6,
we know that C becomes the union of three circles and a
straight line if three points out of {A,B,C,D} are collinear
(while still being pairwise different). This seems to be the
only case (as is indicated by a detailed study of the curve
C for all possible types of quadrilaterals – up to Euclidean
transformations).

Now, we shall ask under what circumstances the degree of
C is less than 7. We have the following:

Theorem 8 Let Q = ABCD be a proper quadrilateral
such that, for example, the point D is the orthocenter of
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ABC. The curve C associated with the complete quadran-
gle on Q is of degree 6 and genus 1, has 9 (isolated) double
points and no further singularities. It is of class 12 and has
no real branch.

Proof. The contents of this theorem can be verified by set-
ting

A = 1 : 0 : 0, B = 1 : a : 0, C = 1 : b : c,

and since D has to be the orthocenter of ABC, we have

D = c : bc : b(a−b).

With (4), we find the (homogeneous) equation of C as

C : c2(x2
1 + x2

2)
3−

−2c((a+b)cx3
1 +3bcx1x2

2 +(ab−b2+c2)x3
2)·

·(x2
1 + x2

2 +abx2
0)x0 +(c2(a2 +4ab+b2)x4

1+
+6(a+b)bc2x2

1x2
2 ++4bc(ab−b2 + c2)x1x3

2+
+(a2b2−2ab3+4abc2+b4−b2c2+c4)x4

2)x
2
0+

+a2b2c2(x2
1 + x2

2)x
4
0 = 0

(7)

which is obviously of degree 6 and allows us to locate the
singularities (isolated double points) at the three diagonal
points of Q . (According to Thm. 3, the vertices of Q are
singular points on C in any case.) Although the leading
term in (7) is (x2

1 + y2
2)

3, the absolute points I and J are
only double points. (This can be shown at hand or the
ranks of the tensors of the partial derivatives of order 3
of (7) with respect to the three variables xi or using the
singularities command in Maple’s algcurves pack-
age.) Besides A, B, C, D, P, Q, R, I, J there are no further
singularities.

With the Plücker formulae (cf. [2, 4, 5, 8, 14]), we find

g = 1
2 (6−1) · (6−2)−9 ·1 = 1,

m = 6 · (6−1)−2 ·9 = 12

for the genus and the class of C . �

Symmetries of the initial quadrilateral may not necessarily
cause a reduction of the degree of C . However, if two di-
agonal points of Q move to the line at infinity, then their
join splits off from C . This yields to the following result:

Theorem 9 Let Q = ABCD be a parallelogram. The
curve C associated with the complete quadrangle on Q
is of degree 6 and genus 3, has 7 (isolated) double points,
is of class 16 and has no real branch.

Proof. We proceed in a similar way as in the proof of Thm.
8 with

A = 1 : 0 : 0, B = 1 : a : 0,
C = 1 : a+u : c, D = 1 : u : c.

It is not necessary to write down the rather lengthy equa-
tion of C . (The reader may convince her-/himself by using
a CAS that it is of degree 6.)

Now, the singularities are still the vertices of Q (according
to Thm. 3), the absolute points I, J are double points, and
the diagonal point Q = [A,B]∩ [C,D] is the seventh (iso-
lated) double point. Since there are no further singularities,
the genus equals 3 and the class equals 16. �

We shall make explicit the fact that Thm. 9 contains the
cases of rhombi, rectangles, and squares.

For trapezoids, in general, (no matter if they are symmet-
ric, cyclic, tangential, or bicentric, equipped with right an-
gles, or three equally long sides (as long as they are none
of the above) the degree of C equals 7.

Kites (different from rhombi), cyclic, tangential, and bi-
centric quadrilaterals (as long as they do not fall into one
of the above mentioned classes of quadrilaterals) always
defined a septic C as the locus of points with six conconic
pedal points on the complete quadrangle’s sides.

4.2 Degree less than 6?

Finally, we want to show that the degree of C cannot be less
than 6: Prior to Thm. 9, we have pointed out that a parallel-
ogram has two diagonal points on the line ω at infinity, and
thus, ω splits off from C once and degC = 6. In a classical
projective plane, the diagonal points of a quadrilateral are
never collinear. Therefore, the ideal line will never splits
off with multiplicity 3.

However, by virtue of (6), we see that the greatest com-
mon divisor of coefficients qi of P7 for i ∈ {0,1,2,5,6,7}
equals x2

1 + x2
2 = Ω. The degree of P7 would reduce about

2 if gcd(q3,q4) = Ω. In this case the resultant

r3 := res(q3,Ω,xi), r4 := res(q4,Ω,xi)

for any variable xi (i ∈ {0,1,2}) have to be equal to zero.
We build the resultants with respect to x1 (and would find
the same results if we would eliminate x2):

r3 = x8
2 · l2

2 l2
3 l4 l5 l6 · (l2

1 l4− l1l2l5−2l1l3l4+

+ l1l3l5 + l2
2 l5− l2l3l5 + l2

3 l4),

r4 = x6
2 · l1 l2

2 l2
3 l4 l5 l6 · (2aFB− el2 + cl3)2 .

By assumption, li 6= 0 for all i ∈ {1, . . . ,6}, hence r4 = 0
yields

a =
e l2− c l3

2FB
,

and after inserting into r3, we find

r4 = x8
2 · l4

2 l4
3 l6

6 F4
C F4

D F−8
B .
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None of the (squares of the) lengths li and none of the ar-
eas of the subtriangles are allowed to vanish, otherwise Q
would degenerate. Therefore, neither r3 nor r4 can vanish,
and thus, Ω is a common divisor of q3 and q4. Since there
are no other (non-constant) factors of q5, Ω cannot split off
from P7 and degC cannot be equal to 5.
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Appendix A. Equation of C
For the sake of completeness, we add the equation of C in terms of inhomogeneous coordinates.

C : (x2 +y2)3·
· (4c(c2FBl3−2c2FCl3 + c2FDl3− ceFBl3 + ceFBl5 + ceFCl3− e2FBl5+

+ e2FBl6−4F3
B +4F2

B FC−4F2
B FD)x+(c3l2l3 + c3l3l4−2c3l3l5−2c3l3l6+

+16c2eF2
B −16c2eFBFC−2c2el2l3 + c2el2

3 + c2el3l5−2c2el3l6−16ce2F2
B+

+16ce2FBFC−32aF3
B +16aF2

B FC−24aF2
B FD +24aFBFCFD−4cF2

B l2+
+4cF2

B l3−4cF2
B l4+12cF2

B l5+8cF2
B l6+8cFBFCl2−12cFBFCl3−12cFBFCl5+

+24cFBFDl3−12cF2
C l2−4cFCFDl3 +16cF2

Dl3 +8eF2
B l2)y)+

+2(x2 +y2)2·
·((c4l2l3− c4l2

3 − c4l3l6 +16c3eF2
B −16c3eFBFC− c3el2l3 + c3el2

3 −2c3el3l6−
−16c2e2F2

B +16c2e2FBFC−4c2F2
B l2−4c2F2

B l3 +8c2F2
B l5 +4c2F2

B l6+
+4c2FBFCl2+20c2FBFCl3−12c2FBFCl5−8c2FBFDl3−4c2F2

C l2−12c2F2
C l3+

+24c2FCFDl3−8c2F2
Dl3 +8ceF2

B l2 +12ceF2
B l3−8ceF2

B l6−12ceFBFCl3+
+8ceFBFCl5−32F3

B FD+16FBFCF2
D)x2+(2c3dl3l6−8c3eFBl5+8c2e2FBl5+

−8c2e2FBl6−96c2F2
B FC +64c2FBF2

C −32c2FBFCFD +10c2FBl2l3+
+4c2FBl2l5−2c2FBl2

3−10c2FBl3l4+6c2FBl3l5+4c2FBl3l6−8c2FCl2l3+2c2FCl2
3+

+12c2FCl3l4−6c2FCl3l5 +2c2FDl2l3 +4c2FDl2
3 −6c2FDl3l4 +32ceF3

B
−32ceFBF2

C −2ceFBl2
2 −6ceFBl2l3 +2ceFBl2l6−16F3

B l1−56F3
B l2+

+40F3
B l4 +8F2

B FCl1 +96F2
B FCl2−16F2

B FDl1−40F2
B FDl2−48F2

B FDl3+
+24F2

B FDl4−8FBF2
C l2 +32FBFCFDl2 +64FBFCFDl3−16FBF2

Dl2−
−24FBF2

Dl3−24F3
C l2+24F2

C FDl2)xy+(−c4l2l3+c4l2
3+c4l3l6−16c3eF2

B+
+16c3eFBFC+c3el2l3−c3el2

3+2c3el3l6+16c2e2F2
B−16c2e2FBFC+4c2F2

B l2+
+12c2F2

B l3−16c2F2
B l5−4c2F2

B l6−12c2FBFCl2−12c2FBFCl3+12c2FBFCl5+
+16c2FBFDl3+12c2F2

C l2+12c2F2
C l3−24c2FCFDl3−2c2l2l2

3−c2l2l3l4+2c2l3
3+

+c2l2l3l5+c2l2l3l6+c2l2
3 l4−c2l2

3 l5−c2l2
3 l6−8ceF2

B l2+4ceF2
B l3−4ceFBFCl3+

+2cel2
2 l3−2cel2l2

3−cel2l3l6+64F3
B FD−32F2

B FCFD+64F2
B F2

D−4F2
B l1l2+

+4F2
B l1l3−12F2

B l2l3+4F2
B l2l4+4F2

B l2l5−4F2
B l2l6−48FBFCF2

D+4FBFCl2
2+

+20FBFCl2l3+4FBFCl2l5+8FBFDl1l3−36FBFDl2l3+12FBFDl2
3−4FBFDl3l4−

−12F2
C l2l3+4F2

C l2l4−4F2
C l2l5−4FCFDl1l3+20FCFDl2l3+4FCFDl3l4+4F2

Dl1l3−
−12F2

Dl2l3+4F2
Dl2

3−4F2
Dl3l4)y2)+

+(x2 +y2)·
·((128c3FBF2

C−128c3F2
B FC+12c3FBl2l3−12c3FBl2

3−8c3FBl3l4+12c3FCl2
3+

+24c3FBl3l5−4c3FBl3l6+12c3FCl2l3−24c3FDl2
3+64c2eF3

B +64c2eF2
B FC−

−128c2eFBF2
C−12c2eFBl2l3−4c2eFBl3l5+4c2eFBl3l6−64aF3

B FD−32aF2
B F2

D+
+96aF2

B FCFD+32aFBFCF2
D−48cF3

B l2−96cF3
B l3+32cF3

B l4+48cF3
B l5+16cF3

B l6+
+80cF2

B FCl2+48cF2
B FCl3−48cF2

B FCl5−192cF2
B FDl3+48cFBF2

C l3−16cFBF2
C l5−

−32cFBFCFDl2+64cFBFCFDl3−112cFBF2
Dl3−48cF3

C l2+32cF2
C FDl2+16cF3

Dl3+
+48cF2

C FDl3−48cFCF2
Dl3)x3+(112c3F2

B l3−96c3F2
B l5−288c3FBFCl3−2c3l2

2 l3+
+64c3FBFCl5+96c3FBFDl3+7c3l2l2

3+7c3l2l3l5+2c3l2l3l6−5c3l3
3−14c3l2

3 l4+
+7c3l2

3 l5−48c2eF2
B l2−80c2eF2

B l3 +48c2eF2
B l5 +16c2eF2

B l6 +80c2eFBFCl3−
−64c2eFBFCl5 +4c2el2

2 l3−4c2el2l2
3 +2c2el2l3l6 +16aF3

B l1 +120aF3
B l2−

−88aF3
B l4−8aF2

B FCl1−272aF2
B FCl2−8aF2

B FDl1−24aF2
B FDl2−120aF2

B FDl3+
+104aFBF2

C l2 +112aFBFCFDl2 +32aFBFCFDl3−48aFBF2
Dl3 +24aF3

C l2−
−96aF2

C FDl2−72aF2
C FDl3+120aFCF2

Dl3+24aF3
Dl3−64cF4

B−192cF3
B FC+

+384cF3
B FD+192cF2

B F2
C +192cF2

B FCFD+384cF2
B F2

D+8cF2
B l2

2−68cF2
B l2l3+

+12cF2
B l2l5−8cF2

B l2l6+56cF2
B l3l4+64cFBF3

C−320cFBF2
C FD−320cFBFCF2

D+
−24cF2

C l2l3−140cFBFDl2l3−72cFBFDl2
3+44cFBFDl3l4−4cF2

C l2
2+36cF2

C l3l4−
+168cFBFCl2l3+36cF2

C l2l4+40cFCFDl2l3+32cFCFDl2
3− 72cFCFDl3l4−

28cF2
Dl2l3−16cF2

Dl2
3+8eF2

B l2
2)x

2y+(384c3F2
B FC−128c3FBF2

C−36c3FBl2l3+
+52c3FBl2

3 +24c3FBl3l4−40c3FBl3l5−4c3FBl3l6−20c3FCl2l3 +4c2dl2l2
3−
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−20c3FCl2
3 +40c3FDl2

3 −2c2dl2
2 l3−2c2dl3

3 −2c2dl2l3l6 +2c2dl2
3 l6 +64c2eF3

B−
−192c2eF2

B FC+128c2eFBF2
C−8c2eFBl2

3+16c2eFBl2
2−4c2eFBl2l3 +32aF2

B l2
2−

−16c2eFBl2l6−4c2eFBl3l5+4c2eFBl3l6+192aF3
B FD−32aF2

B FCFD+8aF2
B l2l6−

−32aF2
B F2

D +40aF2
B l1l2−24aF2

B l1l3−8aF2
B l2l3−32aF2

B l2l4 +8aFBFDl2
2−

−32aF2
B l2l5 +32aFBFCF2

D−16aFBFCl1l2−72aFBFCl2
2 −40aFBFCl2l3+

+8aFBFCl2l5+32aFBFDl2l3 +16aFBFDl2
3 +24aF2

C l2
2 −8aF2

C l2l4 +8aF2
C l2l5−

−8aFBFDl3l4 +48aF2
C l2l3 +8aFCFDl1l3−104aFCFDl2l3−32aFCFDl2

3−
−8aFCFDl3l4−8aF2

Dl1l3+16aF2
Dl2l3+48aF2

Dl2
3−16cF3

B l5+16cF3
B l6+8aF2

Dl3l4+
+144cF3

B l2−32cF3
B l3−96cF3

B l4−240cF2
B FCl2−16cF2

B FCl3 +16cF2
B FCl5+

+192cF2
B FDl3−192cFBF2

C l2+48cFBF2
C l3−16cFBF2

C l5−4cFBl2
2 l3−4cFBl2

2 l5+
+224cFBFCFDl2−64cFBFCFDl3+80cFBF2

Dl3−32cFBl2l2
3−4cFBl2l3l6−4cFBl2

3 l4+
+4cFBl2l3l4+32cFBl2l3l5+144cF3

C l2−160cF2
C FDl2−144cF2

C FDl3+144cFCF2
Dl3+

+44cFCl2
2 l3+12cFCl2l2

3−16cFCl2l3l4+16cFCl2
3 l4+4cFDl3

3−16cFDl2
3 l4−4eFBl3

2+
+16cF3

Dl3−12cFDl2
2 l3−48cFDl2l2

3+16cFDl2l3l4+12eFBl2
2 l3+4eFBl2

2 l6)xy2+
(32c3F2

B l5−16c3F2
B l3+32c3FBFCl3−32c3FBFDl3+2c3l2

2 l3−c3l2l2
3−c3l2l3l5+

+16c2eF2
B l2−2c3l2l3l6−c3l3

3+2c3l2
3 l4−c3l2

3 l5−16c2eF2
B l3−16c2eF2

B l5−16aF3
B l1−

+16c2eF2
B l6 +16c2eFBFCl3−4c2el2

2 l3 +4c2el2l2
3 −2c2el2l3l6−40aF3

B l2+
+40aF3

B l4−8aF2
B FCl1+112aF2

B FCl2−8aF2
B FDl1+8aF2

B FDl2+8aF2
B FDl3+

−24aFBF2
C l2 +16aFBFCFDl2−64aFBFCFDl3 +16aFBF2

Dl3−2aFBl2
1 l2+

+2aFBl2
1 l3 +2aFBl1l2

2 −12aFBl1l2l3 +2aFBl1l2l5−2aFBl1l2
3 −2aFBl1l3l4−

−2aFBl3
2 +12aFBl2

2 l3−2aFBl2
2 l5 +2aFBl2

2 l6−10aFBl2l2
3 −88cFBFCl2l3+

+8aFBl2l3l4−8aFBl2l3l5−8aFBl2l3l6 +2aFBl2
3 l4−8aF3

C l2 +32aF2
C FDl2+

+24aF2
C FDl3−40aFCF2

Dl3 +2aFCl1l2
2 +4aFCl1l2l3−2aFCl2

2 l3−2aFCl2
2 l5+

+8aFCl2l2
3 −12aFCl2l3l4 +8aFCl2l3l5−8aF3

Dl3−8aFDl1l2l3 +2aFDl1l2
3−

−4aFDl2l2
3+8aFDl2l3l4−2aFDl3

3−2aFDl2
3 l4−64cF4

B +64cF3
B FC−128cF3

B FD−
−64cF2

B F2
C −320cF2

B FCFD−128cF2
B F2

D−8cF2
B l2

2 +12cF2
B l2l3−4cF2

B l2l5+
+8cF2

B l2l6−8cF2
B l3l4+64cFBF3

C +192cFBF2
C FD−64cFBFCF2

D+16cFBFCl2
2−

+36cFBFDl2l3+8cFBFDl2
3−20cFBFDl3l4−20cF2

C l2
2+24cF2

C l2l3−12cF2
C l2l4−

−12cF2
C l3l4+8cFCFDl2l3−32cFCFDl2

3+24cFCFDl3l4+ 4cF2
Dl2l3−cl3

2 l3+
+16cF2

Dl2
3+7cl2

2 l2
3+cl2

2 l3l4+3cl2
2 l3l5−6cl2l3

3−8cl2l2
3 l4+3cl2l2

3 l5+4cl2l2
3 l6+

+ cl3
3 l4−8eF2

B l2
2 −2el3

2 l3 +2el2
2 l2

3 +4el2
2 l3l6)y3)+

+(128c2F2
B F2

C −256c2F3
B FC +128c2F2

B FCFD +16c2F2
B l2l3 +8c2F2

B l2
3−

−16c2F2
B l3l4−8c2F2

B l3l5 +128c2FBF3
C −128c2FBF2

C FD +8c2FBFCl2l3−
−16c2FBFCl2

3+16c2FBFCl3l5−8c2FBFDl2l3−8c2FBFDl2
3+8c2FBFDl3l4+

+48c2F2
C l2l3−24c2FCFDl2l3−24c2FCFDl2

3+8ceF2
B l2l3−64F4

B l1−64F4
B l2−

+64F4
B l4+64F3

B FCl1+128F3
B FCl2−32F3

B FDl1+32F3
B FDl2+96F3

B FDl3+
−32F3

B FDl4 +32F2
B FCFDl1−128F2

B FCFDl2−96F2
B FCFDl3 +96F2

B F2
Dl3+

−64FBF3
C l2+64FBF2

C FDl2−32FBF2
C FDl3+32FBFCF2

Dl2−128FBFCF2
Dl3−

+32FBF3
Dl3 +32F3

C FDl2−32F2
C F2

Dl2−32F2
C F2

Dl3 +32FCF3
Dl3)x4+

+(64c2F3
B l3−64c2F3

B l5+128c2F2
B FCl2+64c2F2

B FCl3+64c2F2
B FDl3−8c2FDl3

3−
−192c2FBF2

C l2−128c2FBF2
C l3+64c2FBF2

C l5+512c2FBFCFDl3+8c2FBl2l3l4−
−8c2FBl2

2 l3+8c2FBl2l2
3−8c2FBl2l3l5+64c2F3

C l2−64c2FCF2
Dl3+8c2FCl2

2 l3+
+24c2FCl2l2

3−16c2FCl2l3l4−16c2FCl2
3 l4−24c2FDl2l2

3+32c2FDl2
3 l4−32F3

B l1l2+
+256F4

B FD+256F3
B F2

D−32F3
B l2

1+32F3
B l2

2−32F3
B l2l4−256F2

B F2
C FD+32F2

B FCl1l2+
−96F2

B FCl2
2 +160F2

B FDl1l3 +160F2
B FDl2l3−128F2

B FDl3l4−768FBF2
C F2

D+
+128FBF2

C l1l2 +96FBF2
C l2

2 −32FBFCFDl1l2−32FBFCFDl1l3−64F3
C l1l2−

−384FBFCFDl2l3 +64FBF2
Dl1l3 +64FBF2

Dl2l3−32FBF2
Dl2

3 +32F2
C FDl1l2+

+32F2
C FDl1l3−64F3

C l2
2+64F3

C l2l4+64F2
C FDl2l3−32F2

C FDl2l4−32F2
C FDl3l4−

+96FCF2
Dl2l3 +32FCF2

Dl2
3 −128F3

Dl2
3)x

3y+

+(256c2F2
B F2

C−256c2F3
B FC−1024c2F2

B FCFD−48c2F2
B l2l3+64c2F2

B l2l5−
−16c2F2

B l3l4+80c2FBFCl2l3−16c2FBFCl2
3 +16c2FBFCl3l5−16c2FBFDl2

3−
−64c2FBFDl3l4−96c2F2

C l2l3+48c2FCFDl2l3+48c2FCFDl2
3+2c2l2

2 l2
3−2c2l2l3

3−
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−4c2l2
2 l3l5 +4c2l2l2

3 l4 +4c2l2l2
3 l5−4c2l3

3 l4 +16ceF2
B l2l3−2cel3

2 l3 +2cel2
2 l2

3+
+2cel2

2 l3l6−64F4
B l1−64F4

B l2+64F4
B l4+64F3

B FCl1+128F3
B FCl2+16F2

B l2
1 l2−

−320F3
B FDl1−512F3

B FDl2+64F3
B FDl3+256F3

B FDl4+64F2
B FCFDl1−24F2

Dl1l2l3+
+768F2

B FCFDl2−64F2
B FCFDl3−256F2

B F2
Dl2+64F2

B F2
Dl3−16F2

C l1l2
2−32F2

C l1l2l3+
+16F2

B l2
1 l3+16F2

B l1l2
2+24F2

B l2
2 l3−16F2

B l2
2 l5−16F2

B l2l3l4+32F2
Dl2l2

3 +8F2
Dl3

3−
−64FBF3

C l2−64FBF2
C FDl2−64FBF2

C FDl3 +64FBFCF2
Dl2 +16FBFCl2

1 l2−
−48FBFCl1l2

2 +8FBFCl1l2l3−16FBFCl1l2l5−72FBFCl2
2 l3 +16FBFCl2

2 l5+
+320FBF3

Dl3−16FBFDl2
1 l3 +8FBFDl1l2l3 +16FBFDl1l3l4 +64FBFDl2

2 l3+
+8FBFDl2l2

3 −16FBFDl2
3 l4−192F3

C FDl2 +192F2
C F2

Dl2 +192F2
C F2

Dl3+
+16F2

C l3
2 +56F2

C l2
2 l3−24F2

C l2
2 l4 +16F2

C l2
2 l5 +8F2

C l2l3l4−192FCF3
Dl3+

+88FCFDl1l2l3 +24FCFDl1l2
3 −80FCFDl2

2 l3−48FCFDl2l2
3 −24FCFDl2

3 l4
+8FCFDl2l3l4−40F2

Dl1l2
3 +16F2

Dl2
2 l3 +16F2

Dl2
3 l4)x2y2+

(64c2F3
B l3−64c2F3

B l5−128c2F2
B FCl2+64c2F2

B FCl3+64c2F2
B FDl3+64c2FBF2

C l2
−128c2FBF2

C l3+64c2FBF2
C l5+8c2FBl2

2 l3−8c2FBl2l2
3−8c2FBl2l3l4+8c2FBl2l3l5+

+64c2F3
C l2−64c2FCF2

Dl3+8c2FCl2
2 l3−8c2FCl2l2

3−8c2FDl2l2
3+8c2FDl3

3+2cdl3
2 l3−

−4cdl2
2 l2

3−2cdl2
2 l3l6+2cdl2l3

3−2cdl2l2
3 l6−8ceFBl2

2 l3+8ceFBl2l2
3+256F4

B FD−64F3
Dl2

3+
+256F3

B F2
D+32F3

B l2
1−32F3

B l1l2−32F3
B l2

2+32F3
B l2l4−256F2

B F2
C FD−128FBF2

C l1l2+
+32F2

B FCl1l2+96F2
B FCl2

2+32F2
B FDl1l3−32F2

B FDl2l3+256FBF2
C F2

D−32FBF2
C l2

2+
+32FBFCFDl1l2+32FBFCFDl1l3−64FBF2

Dl1l3+32FBF2
Dl2

3−8FBl2
1 l2

2+16FBl2
1 l2l3+

+8FBl2
1 l2

3−16FBl1l2
2 l3+8FBl1l2

2 l5−8FBl1l2l2
3+4FBl1l2l3l4−4FBl1l2l3l5−4FDl1l2

3 l4−
−8FBl1l2

3 l4+4FBl3
2 l3−4FBl2

2 l2
3−4FBl2

2 l3l5−4FBl2
2 l3l6+4FBl2l2

3 l4−12FDl2l3
3+

+64F3
C l1l2−64F3

C l2l4−32F2
C FDl1l2−32F2

C FDl1l3+64F2
C FDl2

2−64F2
C FDl2l3+

+32F2
C FDl2l4+32F2

C FDl3l4−32FCF2
Dl2l3+96FCF2

Dl2
3+4FCl2

1 l2
2−12FCl2

1 l2l3+
+4FCl1l3

2+8FCl1l2
2 l3−4FCl1l2

2 l5−8FCl1l2l2
3 +16FCl1l2l3l4−4FCl1l2l3l5−

−4FCl3
2 l5+16FDl2l2

3 l4+12FCl2
2 l2

3−12FCl2
2 l3l4−4FDl3

3 l4+16FCl2
2 l3l5−12FCl2l2

3 l4+
+4FDl2

1 l2l3+4FDl2
1 l2

3−20FDl1l2
2 l3+12FDl1l2l2

3−4FDl1l2l3l4+4FDl1l3
3)xy3+

+(128c2F2
B F2

C−128c2F2
B FCFD−8c2F2

B l2
3+8c2F2

B l3l5−128c2FBF3
C+128c2FBF2

C FD+
+8c2FBFCl2l3+8c2FBFDl2l3−8c2FBFDl2

3−8c2FBFDl3l4−16c2F2
C l2l3+8c2FCFDl2l3+

+3l1l2
2 l2

3+8c2FCFDl2
3−2c2l2

2 l2
3+2c2l2l3

3+8ceF2
B l2l3+2cel3

2 l3−2cel2
2 l2

3−2cel2
2 l3l6−

−32F3
B FDl1−32F3

B FDl2−32F3
B FDl3+32F3

B FDl4+32F2
B FCFDl1+128F2

B FCFDl2+
+32F2

B FCFDl3−32F2
B F2

Dl3+16F2
B l1l2l3+8F2

B l2
2 l3−128FBF2

C FDl2−32FBF2
C FDl3+

+32FBFCF2
Dl2+128FBFCF2

Dl3−24FBFCl1l2l3−8FBFCl2
2 l3+32FBF3

Dl3+8FBFDl1l2l3+
+16FBFDl1l2

3+8FBFDl2l2
3+32F3

C FDl2−32F2
C F2

Dl2−32F2
C F2

Dl3+16F2
C l1l2l3−l2

2 l3
3−

−8F2
C l2

2 l3+3l2
2 l2

3 l4+8F2
C l2

2 l4−8F2
C l2l3l4+32FCF3

Dl3−8FCFDl1l2l3−8FCFDl1l2
3−

−16FCFDl2l2
3+3l2

2 l2
3 l5−8FCFDl2l3l4+8FCFDl2

3 l4+8F2
Dl1l2l3+8F2

Dl1l2
3−16F2

Dl2l2
3+

+8F2
Dl3

3+l3
1 l2l3−2l2

1 l2
2 l3−2l2

1 l2l2
3−l2

1 l2l3l4−l2
1 l2l3l5+l1l3

2 l3−l1l2
2 l3l4−l2l3

3 l4−l2l2
3 l4l5+

+2l1l2
2 l3l5+l1l2l3

3+2l1l2l2
3 l4−l1l2l2

3 l5+l1l2l3l4l5−l3
2 l2

3−l3
2 l3l5−l2

2 l3l4l5−2l2
2 l2

3 l6)y4+

+(32aF4
B l2−32aF4

B l4−64aF3
B FCl2−32aF3

B FDl3+32aF2
B F2

C l2+32aF2
B FCFDl2+

+32aF2
B FCFDl3−32aFBF2

C FDl2+32aFBFCF2
Dl3+256cF3

B FCFD−256cF2
B F2

C FD−
−32cF2

B FCl2l3−16cF2
B FDl2l3+16cF2

B FDl3l4+16cFBF2
C l2l3−32cFBFCFDl2l3+

+16cFBF2
Dl2

3+16cF3
C l2l3−32cF2

C FDl2l3+16cFCF2
Dl2l3)x3+

+(8aF3
B l1l2−16aF3

B l2
2+16aF3

B l2l4−8aF2
B FCl1l2+48aF2

B FCl2
2−8aF2

B FDl1l3−
−56aFBF2

C l2
2+24aF3

C l2
2−48aFBFCFDl2l3−8aFBF2

Dl2l3+32aFBF2
Dl2

3+24aF3
Dl2

3+
+24aF2

C FDl2l3−48aFCF2
Dl2l3−24aFCF2

Dl2
3−64cF2

B F2
C l2−128cF2

B FCFDl2−
−64cF2

B FCFDl3+64cFBF3
C l2+128cFBF2

C FDl2+64cFBF2
C FDl3−64cFBFCF2

Dl3+
+8cF2

Dl3
3+8cFBFDl2

2 l3−8cFBFDl2l3l4+16cF2
C l2

2 l3−24cF2
C l2l3l4−4cFCFDl2

2 l3−
−20cFCFDl2l2

3 +12cFCFDl2l3l4 +12cFCFDl2
3 l4)x2y+

+(32aF4
B l2−32aF4

B l4−64aF3
B FCl2−32aF3

B FDl3+32aF2
B F2

C l2+32aF2
B FCFDl2+

+32aF2
B FCFDl3−8aF2

B l1l2
2+8aF2

B l1l2l3−8aF2
B l2

2 l3+8aF2
B l2

2 l5+8aF2
B l2l3l4−

−32aFBF2
C FDl2+32aFBFCF2

Dl3+16aFBFCl1l2
2−8aFBFCl1l2l3+24aFBFCl2

2 l3−
−16aFBFCl2

2 l5−8aFBFDl1l2l3−16aFBFDl1l2
3−8aFBFDl2

2 l3−8aFBFDl2l2
3+
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+16aFBFDl2
3 l4−8aF2

C l1l2
2+8aF2

C l1l2l3−24aF2
C l2

2 l3+8aF2
C l2

2 l5−8aF2
C l2l3l4+

+8aFCFDl1l2l3+24aFCFDl2
2 l3+32aFCFDl2l2

3−8aFCFDl2l3l4−8aF2
Dl1l2

3−
−24aF2

Dl2l2
3−8aF2

Dl3
3+8aF2

Dl2
3 l4+256cF3

B FCFD−256cF2
B F2

C FD−32cF2
B FCl2l3−

−16cF2
B FDl2l3+16cF2

B FDl3l4+64cFBF2
C l2

2+16cFBF2
C l2l3−96cFBFCFDl2l3+

+16cFBF2
Dl2

3+4cFBl2
2 l2

3−4cFBl2
2 l3l5−64cF3

C l2
2+16cF3

C l2l3+96cF2
C FDl2l3+

+16cFCF2
Dl2l3−64cFCF2

Dl2
3−4cFCl3

2 l3−4cFCl2
2 l2

3+4cFCl2
2 l3l4−4cFCl2l2

3 l4+
+8cFDl2

2 l2
3−4cFDl2l2

3 l4+4cFDl3
3 l4)xy2+

+(8aF3
B l1l2+16aF3

B l2
2−16aF3

B l2l4−8aF2
B FCl1l2−48aF2

B FCl2
2−8aF2

B FDl1l3+
+16aFBFCFDl2l3−8aFBF2

Dl2l3−32aFBF2
Dl2

3+4aFBl1l2l2
3−2aFBl1l2l3l4+

+2aFBl1l2l3l5−2aFBl3
2 l3+2aFBl2

2 l2
3−2aFBl2

2 l3l5+2aFBl2
2 l3l6+2aFBl2l2

3 l4−
−8aF3

C l2
2−8aF2

C FDl2l3+16aFCF2
Dl2l3+8aFCF2

Dl2
3−2aFCl1l2l2

3+2aFCl3
2 l3−

−4aFCl2
2 l2

3+2aFCl2
2 l3l4−2aFCl2

2 l3l5+2aFCl2l2
3 l4−8aF3

Dl2
3+2aFDl1l2l2

3+
+2aFDl2l3

3−2aFDl2l2
3 l4−64cF2

B F2
C l2+128cF2

B FCFDl2−64cF2
B FCFDl3−

+64cFBF2
C FDl3−64cFBFCF2

Dl3+16cFBFCl2
2 l3−8cFBFDl2

2 l3−8cF2
Dl3

3+
+8cF2

C l2l3l4−4cFCFDl2
2 l3+12cFCFDl2l2

3−4cFCFDl2l3l4−4cFCFDl2
3 l4+

−128cFBF2
C FDl2+8cFBFDl2l3l4+64cFBF3

C l2+40aFBF2
C l2

2+
+cl3

2 l2
3+cl2

2 l3
3+cl2

2 l2
3 l4−2cl2

2 l2
3 l5+cl2l3

3 l4)y3+

+32l2l3FBFCFD(FB−FC +FD)(x2 +y2) = 0
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On Diagonal Triangle of Non Cyclic Quadrangle
in Isotropic Plane

ABSTRACT

Geometry of the non cyclic quadrangle in the isotropic
plane was introduced in [2] and [6]. Herein, its diagonal
triangle is studied and some nice properties of it are given.

Key words: isotropic plane, non cyclic quadrangle, diag-
onal triangle

MSC2010: 51N25

Dijagonalni trokut netetivnog četvreovrha u
izotropnoj ravnini

SAŽETAK

Geometrija netetivnog četverovrha u izotropnoj ravnini

uvedena je u člancima [2] and [6]. Ovdje se proučava

dijagonalni trokut i daju se neka njegova lijepa svojstva.

Ključne riječi: izotropna ravnina, netetivni četverovrh,

dijagonalni trokut

1 Introduction

The isotropic plane is a real projective metric plane where
metric is induced by figure consisting of an absolute point
Ω and an absolute line ω incident to it. If T = (x0 : x1 : x2)
denotes any point in the plane presented in homogeneous
coordinates then usually a projective coordinate system
where Ω=(0 : 1 : 0) and the line ω with the equation x2 = 0
is chosen.
Isotropic points are the points incident with the absolute
line ω and the isotropic lines are the lines passing through
the absolute point Ω.
Metric quantities and all the notions related to the geome-
try of the isotropic plane can be found in [5] and [4]. Now,
we recall few facts that will be used further on wherein we
assume that x =

x0

x2
and y =

x1

x2
.

Two lines are parallel if they have the same isotropic point,
and two points are parallel if they are incident with the
same isotropic line.
For two non parallel points T1 = (x1,y1) and T2 = (x2,y2),
a distance between them is defined as d(T1,T2) := x2− x1.
In the case of parallel points T1 = (x,y1) and T2 = (x,y2), a

span is defined by s(T1,T2) := y2− y1. Both quantities are
directed.
Two non isotropic lines p1 and p2 in the isotropic plane
can be given by y = kix+ li, ki, li ∈ R, i = 1,2, labelled
by pi = (ki, li), i = 1,2 in line coordinates. There-
fore, the angle formed by p1 and p2 is defined by ϕ =
∠(p1, p2) := k2 − k1, being directed as well. Any two
points T1 = (x1,y1) and T2 = (x2,y2) have the midpoint

M =

(
1
2
(x1 + x2),

1
2
(y1 + y2)

)
and any two lines with the

equations y = kix+ li (i = 1,2) have the bisector with the

equation y =
1
2
(k1 + k2)x+

1
2
(l1 + l2).

A triangle in the isotropic plane is called allowable if none
of its sides is isotropic (see [3]).
The classification of conics in the isotropic plane can be
found in [1] and [4]. To recall, the circle in the isotropic
plane is the conic touching the absolute line ω at the ab-
solute point Ω. The equation of such a circle is given by
y = ux2 + vx+w, u 6= 0, u,v,w ∈ R.
As the principle of duality is valid in the projective plane,
it is preserved in the isotropic plane as well.
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2 Non cyclic quadrangle in isotropic plane

We consider a complete quadrangle ABCD in the isotropic
plane. The points A,B,C,D are the vertices of the quadran-
gle, and lines AB,AC,AD,BC,BD,CD stand for the sides of
the quadrangle ABCD. The pairs of sides AB,CD; AC,BD
and AD,BC are called the opposite sides. There is ex-
actly one conic incident to five points A,B,C,D and Ω. If
that conic touches the absolute line ω at the point Ω, the
conic is a circle and the considered quadrangle ABCD is
the cyclic quadrangle. In the case, when the conic inter-
sects the line ω at the point Ω and residually at the point
Γ (different from Ω), then the conic is a special hyperbola
circumscribed to the quadrangle ABCD. In this case, the
quadrangle ABCD is called a non cyclic quadrangle. More
on the geometry of such quadrangle is given in [2] and
[6]. Let us denote the circumscribed special hyperbola by
H . Tangents to H at points Ω and Γ are the asymptotes
of this special hyperbola, δ is the isotropic one and γ is a
non-isotropic line. The intersection point S of lines δ and
γ is the center of hyperbola H . Without loss of general-
ity affine coordinate system can be chosen in a way: S is
the origin, and γ and δ stand for the coordinate axes. Al-
though the right angle does not have any geometric sense in
the isotropic plane, in the Euclidean model of the isotropic
plane the coordinate system is presented as the rectangular
one. Hence, due to [2] the following is valid:

Theorem 1 Any non cyclic quadrangle ABCD, by the ap-
propriate choice of an affine coordinate system, has the
vertices given with

A =

(
a,

1
a

)
,B =

(
b,

1
b

)
,C =

(
c,

1
c

)
,D =

(
d,

1
d

)
, (1)

sides of the form

AB . . .y =− 1
ab

x+
a+b

ab
,

AC . . .y =− 1
ac

x+
a+ c

ac
,

AD . . .y =− 1
ad

x+
a+d

ad
,

BC . . .y =− 1
bc

x+
b+ c

bc
,

BD . . .y =− 1
bd

x+
b+d

bd
,

CD . . .y =− 1
cd

x+
c+d

cd
,

(2)

and the circumscribed special hyperbola with the equation

xy = 1. (3)

For such quadrangle ABCD from Theorem 1 it is said to be
in standard position or it is a standard quadrangle. Due to
Theorem 1 every non cyclic quadrangle can be represented
in the standard position. So, it is sufficient to prove the
properties for the standard quadrangle.
The following symmetric functions of numbers a,b,c,d
will be of great benefit:

s = a+b+ c+d,
q = ab+ac+ad +bc+bd + cd,
r = abc+abd +acd +bcd,
p = abcd.

(4)

The study so far ([2]) has shown several facts:
Euler circle of the triangle ABC (see [3]) is given by

ED . . .abcy =−2x2 +(a+b+ c)x. (5)

Because of symmetry on a,b,c,d circles EA, EB, EC are
easy to obtain.
Due to Theorem 2 in [2] Euler circles are intersected in one
point O = (0,0), Euler center of the non cyclic quadrangle
ABCD.
In [2], the forms of circumscribed circles and inscribed
circles of triangles BCD,ACD,ABD,ABC are obtained as
well. On the example of the triangle ABC, its circum-
scribed circle is

Od . . .abcy = x2− (a+b+ c)x+bc+ ca+ab, (6)

and its inscribed circle is given by

Ud . . .4abcy = x2−2(a+b+ c)x+(a+b+ c)2. (7)

For the triangle ABC, the radical axis of OD and ED is an
orthic of that triangle,

Hd . . .3abcy =−(a+b+ c)x+2(bc+ ca+ab). (8)

Theorem 2 The median of the quadrilateral formed by the
orthics of triangles BCD,CDA,DAB,ABC of the standard
quadrangle has the equation

H . . .y =− s
3r

x+
r

3p
. (9)

The principle of duality is preserved in the isotropic plane
and due to [2] the medial point and the focal line of the non
cyclic quadrangle are obtained as well:

Theorem 3 Bisectors of the pairs of opposite sides of the
non cyclic quadrangle are passing through the one point

N =

(
0,

r
2p

)
. (10)

The point N from Theorem 3 is called a medial point of the
standard quadrangle.
The common tangent of the inscribed circles Ud ,Uc,Ud
and Ua of the triangles ABC,ABD,ACD,BCD is a focal
line of the quadrangle ABCD with equation

M . . .y = 0. (11)
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3 On diagonal triangle of standard non
cyclic quadrangle

In this chapter we study diagonal triangle of the stan-
dard non cyclic quadrangle in the isotropic plane. The
vertices of such diagonal triangle are intersection points
of the opposite sides of quadrangle TAB,CD = AB ∩
CD, TAC,BD = AC ∩ BD te TAD,BC = AD ∩ BC. The
joint lines of these points are sides of diagonal trian-
gle: TAB,CD = TAC,BDTAD,BC, TAC,BD = TAB,CDTAD,BC and
TAD,BC = TAB,CDTAC,BD.
The following theorems give the forms of vertices and
sides of the diagonal triangle.

Theorem 4 The vertices of the diagonal triangle of the
standard quadrangle ABCD are given by

TAB,CD =

(
ab(c+d)− cd(a+b)

ab− cd
,

a+b− c−d
ab− cd

)
,

TAC,BD =

(
ac(b+d)−bd(a+ c)

ac−bd
,

a+ c−b−d
ac−bd

)
,

TAD,BC =

(
ad(b+ c)−bc(a+d)

ad−bc
,

a+d−b− c
ad−bc

)
.

(12)

Proof. Following equalities

ab(a+b− c−d) = (a+b)(ab−cd)+ cd(a+b)−ab(c+d),

cd(a+b− c−d) = (c+d)(ab−cd)+ cd(a+b)−ab(c+d)

prove that TAB,CD is the intersection point of the sides AB
and CD. �

Theorem 5 The diagonal triangle of the standard quad-
rangle ABCD has the sides

TAB,CD . . . [cd(a+b)−ab(c+d)]y = (a+b− c−d)x−
−2(ab− cd),

TAC,BD . . . [bd(a+ c)−ac(b+d)]y = (a+ c−b−d)x−
−2(ac−bd),

TAD,BC . . . [bc(a+d)−ad(b+ c)]y = (a+d−b− c)x−
−2(ad−bc). (13)

Proof. According to

(a−b+ c−d)[cd(a+b)−ab(c+d)] =
−2(ab− cd)(ac−bd)
+(a+b− c−d)[ac(b+d)−bd(a+ c)],

and

(a−b− c+d)[cd(a+b)−ab(c+d)] =
−2(ab− cd)(ad−bc)
+(a+b− c−d)[ad(b+ c)−bc(a+d)]

points TAC,BD and TAD,BC are incident to the side TAB,CD. �

Theorem 6 The circle KD circumscribed to the diagonal
triangle has the equation

KD . . . [ab(c+d)− cd(a+b)][ac(b+d)−bd(a+ c)]·
·[bc(a+d)−ad(b+ c)]y = 2(ab−cd)(ac−bd)(ad−bc)x2

+{a2b2c2(a+b+ c)+a2b2d2(a+b+d)
+a2c2d2(a+ c+d)+b2c2d2(b+ c+d)−2p[ab(a+b)
+ac(a+ c)+ad(a+d)+bc(b+ c)+bd(b+d)
+cd(c+d)]+3pr]}x

(14)

The proof of the Theorem 6 is very similar to one in Theo-
rem 5.

Corollary 1 The circumscribed circle KD is incident to
Euler’s center of the standard quadrangle.

Figure 1 presents the non cyclic quadrangle with its diago-
nal triangle and illustrates Corollary 1 as well.

TAB,CD TAC,BD

TAD,BC

A

B

C

D
O

KD

x

y

Figure 1: Non cyclic quadrangle with its diagonal trian-
gle

42
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Theorem 7 If we join the points parallel to the ver-
tices A,B,C,D and incident to the sides of the diagonal
triangle TAB,CD, TAC,BD, TAB,CD to the diagonal points
TAB,CD, TAC,BD, TAD,BC of the standard quadrangle ABCD,
then they form four lines in a group AB,BA, CD,DC;
AC,BD,CA,DB; AD,BC,CB,DA. If A ,B,C ,D are tan-
gents to the special hyperbola circumscribed to the stan-
dard quadrangle at points A,B,C,D then the quadraples
of lines A ,BA, CA,DA; B,AB,CB,DB; C ,AC,BC,DC;
D,AD,BD,CD are incident to four points parallel to the
medial point.

Proof. The point

AB =

(
a,

a(a+b− c−d)−2(ab− cd)
cd(a+b)−ab(c+d)

)
.

is obviously parallel to A and incident to TAB,CD from (13).
The line AB is of the form

y =− ab−b2 +bc+bd−2cd
b(abc+abd−acd−bcd)

x+
2
b

and it is joint line of the points AB and TAB,CD because of

a(a+b− c−d)−2(ab− cd)
cd(a+b)−ab(c+d)

=

−a
ab−b2 +bc+bd−2cd

b(abc+abd−acd−bcd)
+

2
b
,

a+b− c−d
ab− cd

=−ab−b2 +bc+bd−2cd
b(ab− cd)

+
2
b
.

Analogously, lines CB i DB

CB . . .y =−
bc−b2 +ab+bd−2ad

b(abc+bcd−acd−abd)
x+

2
b
,

DB . . .y =−
bd−b2 +bc+ab−2ac

b(bcd +abd−acd−abc)
x+

2
b
.

obviously pass through the point KB =

(
0,

2
b

)
parallel

to the medial point N =

(
0,

r
2p

)
. The line B given by

y =− 1
b2 x+

2
b

is incident to the point KB as well. �

Theorem 8 The circle that touches the focal line and the
side AB at the point A has the common tangents to the cir-
cle Ua consisting of the focal line and the line that passes
through the diagonal point TAB,CD. There are twelwe such
lines where each four of them pass through each diagonal
points TAB,CD,TAC,BD,TAD,BC.

Proof. The circle Ua similar to (7)

4bcdy = x2−2(b+ c+d)x+(b+ c+d)2,

and a circle

4ab2y = x2−2(a+2b)x+a2 +4ab+b2 (15)

have the common tangents, the focal line and the line with
equation

y =
c+d−a−b
b(ab− cd)

x+ (16)

+
(a+b− c−d)(ab2 +abc+abd−acd−2bcd)

b(ab− cd)2 .

Indeed, the equalities

4bcd
(a+b− c−d)(ab2 +abc+abd−acd−2bcd)

b(ab− cd)2 +

+4bcd
(−a−b+ c+d)x

b(ab− cd)
=x2−2(b+c+d)x+(b+ c+d)2,

i.e.(
x− ab2 +abc+abd−2acd−3bcd + c2d + cd2

ab− cd

)2

= 0

and

x2−2(a+2b)x+a2 +4ab+4b2 =

= 4ab2
(
(−a−b+ c+d)x

b(ab− cd)

+
(a+b− c−d)(ab2 +abc+abd−acd−2bcd)

b(ab− cd)2

)
,

respectively,(
x− −a2b+2bc+2abd−acd−2bcd

ab− cd

)2

= 0

show that the line (16) touches the circle Ua and the circle
(15) as well.
Furthermore, out of

a+b− c−d
ab− cd

=

=
(a+b− c−d)(ab2 +abc+abd−acd−2bcd)

b(ab− cd)2

+
(−a−b+ c+d)[ab(c+d)− cd(a+b)]

b(ab− cd)2

it follows that the diagonal point TAB,CD is incident to the
line (16).
It is easy to prove that the line AB touches the circle (15)
exactly at the point A. �

43
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Theorem 9 The intersection points of the bisectors of the
angles of the diagonal triangle of the standard quadrangle
ABCD are incident to its circumscribed special hyperbola.

Proof. It is easy to show that the bisector at the vertex
TAB,CD from (12) of the lines TAC,BD and TAD,BC given in
(13) is of the form

SAB,CD . . .y =
{

a+ c−b−d
2[bd(a+ c)−ac(b+d)]

+
a+d−b− c

2[bc(a+d)−ad(b+ c)]

}
x

+
ab(a+b)(c−d)2− cd(c+d)(a−b)2

a2b2(c−d)2− c2d2(a−b)2 .

Analogously, there are two more bisectors

SAC,BD . . .y =
{

a+b− c−d
2[cd(a+b)−ab(c+d)]

+
a+d−b− c

2[bc(a+d)−ad(b+ c)]

}
x

+
ac(a+ c)(b−d)2−bd(b+d)(a− c)2

a2c2(b−d)2−b2d2(a− c)2 ,

SAD,BC . . .y =
{

a+ c−b−d
2[bd(a+ c)−ab(c+d)]

+
a+b− c−d

2[cd(a+b)−ab(c+d)]

}
x

+
ad(a+d)(b− c)2−bc(b+ c)(a−d)2

a2d2(b− c)2−b2c2(a−d)2 .

The point of intersection SAD,BC = SAB,CD∩SAC,BD is

SAD,BC =

(
ad(b+ c)−bc(a+d)

ad−bc
,

ad−bc
ad(b+ c)−bc(a+d)

)
.

For example, the equality

ad−bc
ad(b+ c)−bc(a+d)

=

{
a+b− c−d

2[cd(a+b)−ab(c+d)]
+

+
a+d−b− c

2[bc(a+d)−ad(b+ c)]

}
ad(b+ c)−bc(a+d)

ad−bc
+

+
ac(a+ c)(b−d)2−bd(b+d)(a− c)2

a2c2(b−d)2−b2d2(a− c)2

proves that SAD,BC is incident to the bisector SAC,BD.
Because of symmetry a,b,c,d there are two more similar

intersections

SAC,BD =

(
ac(b+d)−bd(a+ c)

ac−bd
,

ac−bd
ac(b+d)−bd(a+ c)

)
,

SAB,CD =

(
ab(c+d)− cd(a+b)

ab− cd
,

ab− cd
ab(c+d)− cd(a+b)

)
.

Obviously, they all lie on the special hyperbola xy = 1. �

All Theorems 7-9 have no analogous in Euclidean plane.
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Kačićeva 26, HR-10000 Zagreb, Croatia

Vladimir Volenec
orcid.org/0000-0001-7418-8972
e-mail: volenec@math.hr

Faculty of Science, University of Zagreb
Bijenička cesta 30, HR-10000 Zagreb, Croatia

44



KoG•25–2021 M. Stavrić, A. Whilsche, G. Weiss: Polyhedrons the Faces of which are Special Quadric Patches

https://doi.org/10.31896/k.25.5
Original scientific paper
Accepted 18. 11. 2021.

MILENA STAVRIĆ
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ABSTRACT

We seize an idea of Oswald Giering (see [1] and [2]), who
replaced pairs of faces of a polyhedron by patches of hy-
perbolic paraboloids and link up edge-quadrilaterals of a
polyhedron with the pencil of quadrics determined by that
quadrilateral. Obviously only ruled quadrics can occur.
There is a simple criterion for the existence of a ruled hy-
perboloid of revolution through an arbitrarily given quadri-
lateral. Especially, if a (not planar) quadrilateral allows
one symmetry, there exist two such hyperboloids of revo-
lution through it, and if the quadrilateral happens to be
equilateral, the pencil of quadrics through it contains even
three hyperboloids of revolution with pairwise orthogonal
axes. To mention an example, for right double pyramids,
as for example the octahedron, the axes of the hyper-
boloids of revolution are, on one hand, located in the plane
of the regular guiding polygon, and on the other, they are
parallel to the symmetry axis of the double pyramid.

Not only for platonic solids, but for all polyhedrons, where
one can define edge-quadrilaterals, their pairs of face-
triangles can be replaced by quadric patches, and by this
one could generate roofing of architectural relevance. Es-
pecially patches of hyperbolic paraboloids or, as we present
here, patches of hyperboloids of revolution deliver versions
of such roofing, which are also practically simple to realize.

Key words: polyhedron, quadric, hyperboloid of revolu-
tion, Bézier patch

MSC2010: 51Mxx, (51M20, 51M30), 51N05, 51N20,
15Axx

Poliedri čije su strane dijelovi posebnih kvadrika

SAŽETAK

Preuzimamo ideju Oswalda Gieringa (vidi [1] i [2]), koji

je par strana poliedra zamijenio dijelom hiperboličnog

paraboloida i povezao bridni četverostran poliedra s pra-

menom kvadrika odred-enim tim četverostranom. Očito se

samo pravčaste kvadrike mogu pojaviti. Postoji jednosta-

van nužan uvjet postojanja pravčastog rotacijskog hiper-

boloida kroz dani četverostran. Posebno, ako (prostorni)

četverostran ima jednu ravninu simetrije, onda postoje dva

rotacijska hiperboloida kroz njega, a ako je četverostran

jednakostraničan, onda pramen kvadrika kroz njega sadrži

čak tri rotacijska hiperboloida s med-usobno okomitim osi-

ma. Na primjer, kod pravilne dvostruke piramide, kao što

je oktaedar, osi rotacijskih hiperboloida su, s jedne strane,

u ravnini pravilnog mnogokuta (osnovke), a s druge strane,

su usporedne s osi simetrije dvostruke piramide.

Parove strana (trokute) ne samo Platonovih tijela, već svih

poliedara kod kojih se mogu definirati bridni četverostrani,

moguće je zamijeniti dijelovima kvadrika, i na taj način

proizvesti krovǐsta od arhitektonskog značaja. Posebno

zanimljiva krovǐsta mogu nastati primjenom dijelova hiper-

boličnih paraboloida, ili kao što je ovdje prikazano, rotacij-

skih hiperboloida koje je jednostavno i realizirati u praksi.

Ključne riječi: poliedar, kvadrika, rotacijski hiperboloid,

Bézierova zakrpa

Excerpt of what we aim to present in the fol-
lowing chapters

Chapter 1 deals with the regular octahedron p as a stan-
dard example and replace pairs of triangles by quadric

patches. Here we can already show the principle of how
to proceed. Among the pencil of quadrics through an edge
quadrilateral of p we look for the hyperbolic paraboloid
(“HP-surface”) and for hyperboloids of revolution (“R-
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hyperboloids”). It turns out that descriptive geometric
methods highly support an analytic treatment of the prob-
lem.

In Chapter 2 we deal with a criterion for quadrilaterals,
which are generators of an R-hyperboloid. For a quadrilat-
eral fulfilling the criterion we give a construction of the
axis and the skirt circle of an R-hyperboloid through it
as well as analytic descriptions of the R-hyperboloid by
its equation and as a tensor-product patch (“TP-patch”).
Additionally, we also ask for the set of R-hyperboloids
through two skew given lines. This set is, to some extent,
a 3D-generalisation of a (planar) elliptic pencil of circles.

The third chapter concerns polyhedrons p, the faces of
which are n-gons (n > 3). By adding pyramids of a cer-
tain height h to these faces one can interpret the origi-
nal polyhedron p as the limit of the set of polyhedrons
p(h) for h→ 0. This gives a more “natural” set of edge-
quadrilaterals than that proposed by Giering [1] and [2]
for the cube. We apply this way of splitting an n-gon-
face into triangles for e.g. a box shaped polyhedron. Fi-
nally we show images of some Johnson polyhedrons with
R-hyperboloid patches as faces.

Concluding we note that Giering’s idea to replace pairs
of planar faces by HP-surfaces works for any polyhedron,
while R-hyperboloids exist only for edge-quadrilaterals
fulfilling the criterion mentioned in Chapter 2. Anyway,
by choosing a certain quadric out of the pencil of quadrics
through an edge-quadrilateral and describe it as a TP-patch
one wins an additional design parameter, what works for
all polyhedrons independent from the criterion. This could
be of relevance for architectural design, too.

1 The regular octahedron and its
R-hyperboloid faces

We connect a Cartesian frame with the regular octahe-
dron p= {A,B,C,D,E,F} such that its midpoint becomes
the origin O and one of its diagonals becomes the z-axis.
The x- and y-axes are parallel to edges BC and AB (Fig-
ure 1). We consider the (equilateral) edge-quadrilateral
H = {A,B,E,F} and the pencil Q of quadrics Φ(t)
through it. Setting the edge length AB =

√
2 we obtain

the vertex coordinates A = (
√

2
2 ,
√

2
2 ,0), B = (

√
2

2 ,−
√

2
2 ,0),

E = (0,0,1), F = (0,0,−1).

Figure 1: The octahedron p, its edge-quadrilateral H =
{A,B,E,F}, and the normals n . . . , which are
common for all quadrics of the pencil Q through
H . The lines a1, a2, a3 (dashed red) represent
the axes of three R-hyperboloids through H .

The pencil Q is spanned by the pairs of face planes Φ1 =
(AEF)∪(BEF) and Φ2 =(ABE)∪(ABF), such that a gen-
eral ruled quadric Φ(t) can be written as

Φ(t) = (1− t)Φ1 + tΦ2. (1)

By the equations of Φ1, Φ2

Φ1 . . .(x+ y)(x− y) = 0,

Φ2 . . .(z+(
√

2.x−1))(z− (
√

2.x−1)) = 0, (2)

follows

Φ(t) . . .(1− t)(x2−y2)+ t(z2−2x2−2
√

2.x−1) = 0. (3)

We see immediately that for t = 1
2 one gets the R-

hyperboloid ΦR1

ΦR1 . . .(x−
√

2)2 + y2− z2 = 1, (4)

and for t = 1
4 the R-hyperboloid ΦR2

ΦR2 . . .(x+
√

2)2 + z2−3y2 = 3. (5)

For t = 1
3 we obtain the hyperbolic paraboloid ΦP

ΦP . . .2y2− z2−2
√

2.x+1 = 0. (6)

These results (4), (5), and (6) verify what one already
knows because of geometric properties of the pencil Q:

(a) The quadrics Φ(t) have the same symmetries as
the quadrilateral H . In our special case of H be-
ing equilateral, the planes xy and xz are symmetry
planes. Therefore, the x-axis is a common axis of
Φ(t). If Φ(t) is a hyperboloid with three axes, a sec-
ond axis is parallel to EF , while the third one is par-
allel to AB.
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(b) The diagonals of an arbitrarily given quadrilateral H
are reciprocal polar lines for all quadrics Φ(t).

(c) The quadrics Φ(t) through H have the surface nor-
mals nA, nB, nE , nF at the vertices A, B, E, F in
common. For an R-hyperboloid ΦRi all surface nor-
mals meet the rotation axis ai. Therefore, ai must
of course intersect these special normals nA, nB, nE ,
nF . In the general case, when H has no symmetries,
the normals nA, nB, nE , nF are pairwise skew, and
we expect (in algebraic sense) two lines li, which
meet these four lines. Such a line li is an axis of
an R-hyperboloid, if and only if it includes the same
angle with each of the four edges of H .

Finally, we visualise the octahedron p with its edge-
quadrilateral H and the three R-hyperboloids ΦR1, ΦR2,
ΦR3 though H in Figure 2, 3 and 4:

Figure 2: R-hyperboloid ΦR1 through an edge-
quadrilateral of an octahedron

Figure 3: R-hyperboloid ΦR2 through an edge-
quadrilateral of an octahedron

Figure 4: R-hyperboloid ΦR3 through an edge-
quadrilateral of an octahedron

2 A criterion for quadrilaterals, which are
generators of an R-hyperboloid

An arbitrarily given quadrilateral H consists of two pairs
of skew generators (e1,e2), ( f1, f2) of different reguli of
the quadrics through H . We look for properties of H , such
that there exists an R-hyperboloid ΦR among the pencil of
quadrics through H , (we continue the numbering of prop-
erties of Chapter 1):

(d) Generators of an R-hyperboloid ΦR include a fixed
angle with its axis a and they are equidistant from a.

Figure 5: One symmetry plane of two intersecting genera-
tors of an R-hyperboloid ΦR contains the axis a
of ΦR.

If we had a quadrilateral of generators on an R-hyperboloid
ΦR, then its normal projection in direction of the axis a of
ΦR yields a planar quadrilateral subscribed to the image of
the circle of the gorge g. Because of property (d) yields,
the lengths of the quadrilateral’s edges are distorted by the
same factor such that relations deduced for the lengths of
edge images also hold for the situation in space.
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KoG•25–2021 M. Stavrić, A. Whilsche, G. Weiss: Polyhedrons the Faces of which are Special Quadric Patches

There can occur different cases of such a normal projec-
tion, see Figures 6 and 7.

Figure 6: Normal projection of a quadrilateral H =
(ABCD) contained on an R-hyperboloid ΦR; di-
rection of projection parallel to the axis a of ΦR

For example, for the case shown in Figure 6, left, by adding
segment lengths we obtain (see also [4])

A′B′+C′D′ = A′C′+B′D′ ⇐⇒ |e1|+ |e2|= | f1|+ | f2|.
(7.1)

For the case shown in Figure 6, right, because of
P′A′ = R′A′, S′D′ = Q′D′ and
A′B′+P′A′−S′D′−D′B′ = 0 and
C′D′−Q′D′−C′A′+R′A′ = 0,
one derives

|e1|− |e2|= | f1|− | f2|. (7.2)

In the left case in Figure 6 the R-hyperboloid does fill the
interior of the quadrilateral, and therefore it is not suited
for a TP-representation, because a TP-patch is contained
in the interior of the convex hull of H . (An f-generator
passing to an inner point of segment e1 cannot meet seg-
ment e2 in an inner point, see Figure 6, left.)
A similar calculation shows that the cases shown in Figure
7 both lead to

|e1|− |e2|= | f2|− | f1|. (7.3)

Figure 7: Additional cases of images of H

Therewith we can formulate a criterion for the existence
of an R-hyperboloid ΦR through a given quadrilateral
(ABCD), (c.f. [4]):

Criterion 1 The pencil of quadrics through a quadrilat-
eral H = (ABCD) contains an R-hyperboloid ΦR, if and
only if at least one of the three conditions (7.1), (7.2), (7.3)
holds.

We complete this section by the following

Theorem 1 If H is symmetric with respect to a symme-
try plane through CB, then (7.1) and (7.2) are automati-
cally fulfilled and there are two R-hyperboloids ΦR1, ΦR2
through H . If H is equilateral, all three conditions (7.1),
(7.2), (7.3) are fulfilled and there are three R-hyperboloids
ΦR1, ΦR2, ΦR3 through H , and the R-hyperboloids have
pairwise orthogonal axes.

The case with three R-hyperboloids occurs as shown with
the example in Chapter 1.
In the following we identify the points of the quadrilateral
H = (A,B,C,D) with their coordinate vectors, such that
~e1 = B−A, ~e2 = D−C, ~f1 = A−C, ~f2 = D−B. There-
with the edge vectors are oriented such that the following
closure condition (8) is fulfilled

~e1 +~f2−~e2−~f1 = 0. (8)

We will also omit vector arrows, but keep in mind the ori-
entation of the edges of H . As (7.1) does not suit for a
TP-patch representation of the R-hyperboloid, we can fo-
cus on the conditions (7.2) and (7.3), where we assume that
at least one of them is fulfilled.

3 Further conditions for R-hyperboloids
through a given quadrilateral

Two generators e and f of an R-hyperboloid Φ intersect-
ing in P ∈ Φ are symmetric with respect to the plane
spanned by the axis a of Φ and by P (see Figure 5).
This property can be used for finding a condition, that
the pencil Q of hyperboloids through a given quadrilat-
eral H = (e1,e2, f1, f2) contains an R-hyperboloid: Four
of the symmetry planes of (ei, f j) must belong to a pen-
cil of planes. If so, then they will intersect in the axis a
of an R-hyperboloid. In each vertex of H there exist two
symmetry planes σi

X spanned by the normal ei× f j and the
symmetry lines si

X in the planes ei∨ f j, see Figure 8.
From Figure 8 we read off that of all possible combina-
tions of symmetry planes there are only 1

2

(4
2

)
= 3, which

make sense: a) {σ1
A,σ

1
B,σ

1
C,σ

1
D}, b) {σ2

A,σ
2
B,σ

2
C,σ

2
D}, and

c) {σ2
A,σ

1
B,σ

1
C,σ

2
D}. This suits again to the maximally

three R-hyperboloids in the pencil Q. (Here and in the
following we use the labelling in Figure 8.)
The normal vector of σ1

A resp. σ2
A is

s2
A =

e1

‖e1‖
+

f1

‖ f1‖
resp. s1

A =
e1

‖e1‖
− f1

‖ f1‖
, (9)

and, similarly, also for the other symmetry planes, σ1
X has

normal vector s2
X , while s1

X is normal to σ2
X .
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Figure 8: A quadrilateral H and the symmetry planes of
its pairs of consecutive edges.

In case of a) we demand that {s2
A,s

2
B,s

2
C,s

2
D} necessarily

are parallel to a plane. This means that

det(s2
A,s

2
B,s

2
C) = 0 ∧ det(s2

A,s
2
B,s

2
D) = 0. (10)

By replacing s2
X by ei

‖ei‖ ±
f j
‖ f j‖ in (10) we obtain the same

condition (11) for both equations:

‖e1‖.det(e2, f1, f2)−‖e2‖.det(e1, f1, f2) =

= ‖ f1‖.det(e1,e2, f2)−‖ f2‖.det(e1,e2, f1). (11)

This means that, if one of the necessary conditions (10) is
fulfilled, then the other is fulfilled, too. When we substi-
tute the closure condition (8) e2 = e1+ f2− f1 into (11) we
get det(e1, f1, f2)(‖e1‖−‖ f2‖−‖e2‖+ ‖ f1‖) = 0, which
is equivalent to (7.3).
In case of b), if we proceed in the same manner for the two
conditions (s1

A,s
1
B,s

1
C) = 0 , (s1

A,s
1
B,s

1
D) = 0, and we obtain

the equation

‖e1‖.det(e2, f1, f2)+‖e2‖.det(e1, f1, f2) =

= ‖ f1‖.det(e1,e2, f2)−‖ f2‖.det(e1,e2, f1), (12)

which turns out to be equivalent to (7.1).
For case c) the conditions read as (s1

A,s
2
B,s

2
C) = 0 and

(s1
A,s

2
B,s

1
D) = 0. The resulting single condition now be-

comes

‖e1‖.det(e2, f1, f2)+‖e2‖.det(e1, f1, f2) =

=−‖ f1‖.det(e1,e2, f2)−‖ f2‖.det(e1,e2, f1), (13)

which is equivalent to (7.2). We collect these statements as

Theorem 2 Four symmetry planes of consecutive edges of
a quadrilateral H intersect in a common line a, if and
only if at least one of the conditions (11), (12), (13) is ful-
filled. These conditions are equivalent to the conditions
(7.3), (7.1) and (7.2) respectively. Therefore, such a com-
mon line a is the axis of an R-hyperboloid Φ through H .

4 Bézier representation of quadrics through
a given quadrilateral

We consider the quadrangle H again and want to calculate
the generators of a hyperboloid Φ(p) through it aiming at a
Bézier-patch representation of Φ(p), see Figure 9. We use
the fact that the f -generators intersect two e-generators of
a ruled quadric “with equal cross-ratios”. This means that

CR(U,E,A,B) =CR(U ′,E ′,C,D). (14)

The generator e1 = AB is parameterised by A=̂0, B=̂1 and
the midpoint E=̂ 1

2 of segment [AB] and similarly for gen-
erator e2 = CD. A third “ f -generator” passing through
E ∈ e1 intersects e2 in a point E ′=̂( 1

2 )
′ =: p+ 1

2 . Obvi-
ously, for p = 0 one gets the paraboloid Φ(0) ∈Q.

Figure 9: The fixed f -generators f1, f2 of H together with
a third f -generator define a hyperboloid Φ(p) ∈
Q.

Putting u′= u+s
qu+r according to (14), then with u= 0 7→ u′=

0, u = 1 7→ u′ = 1, u = 1
2 7→ u′ = 1

2 + p we obtain s = 0,
r = 1−q and finally

u′ =
u

qu+ r
with q(p) =

4p
1+2p

, r(p) =
1−2p
1+2p

. (15)

Another convenient representation of condition (14) then
is

t ′ :=
u′

1−u′
=

u(1−2p)
(1−u)(1+2p)

=: t
1
r
. (16)
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Therewith follows for a Bézier-patch representation for
Φ(p)

X(u,v) = (1− v)((1−u)A+uB)+ v((1−u′)C+u′D),

(u,u′,v ∈ [0,1]), (17)

with v the parameter on generator f (u) = vU +(1− v)U ′.
(As before, we use the same symbols for points and their
coordinate vectors.)
The form parameter p = 0 in (15) describes the unique
paraboloid Φ(0) ∈ Q. The parameter values p = ± 1

2 de-
scribe the singular quadrics, namely the pairs of planes in
the pencil Q. We are now interested in the parameter value
p for an R-hyperboloid in the quadric pencil Q through H ,
which is assumed to fulfil one of the conditions (7.2), (7.3).
Because of the cross-ratio condition (14) it is enough to
demand that one further generator, say f ( 1

2 ), together with
1
2 e1, ( 1

2 + p)e2 and f1 fulfils (7.2) or (7.3). For the vector
f ( 1

2 ) follows

f ( 1
2 ) = f1 +( 1

2 + p)e2− 1
2 e1, (18)

its squared norm is therefore

f 2( 1
2 ) = f 2

1 +( 1
2 + p)2e2

2 +
1
4 e2

1 +2( 1
2 + p)(e2 f1)

−( 1
2 + p)(e1e2)− (e1 f1). (19)

The R-hyperboloid conditions (7.2), (7.3) for f ( 1
2 ) are

∓‖ f ( 1
2 )‖=

1
2‖e1‖− ( 1

2 + p)‖e2‖∓‖e1‖‖ f1‖. (20)

and we square (20) receiving

f 2( 1
2 ) =

1
4 e2

1 +( 1
2 + p)2e2

2 + f 2
1 ±2( 1

2 + p)‖e2‖‖ f1‖
−( 1

2 + p)‖e1‖‖e2‖∓‖e1‖‖ f1‖. (21)

Now we compare (19) and (21) and get a linear equation in
p. (In fact, there occur two such equations because of the
different signs.)

(e1 f1)±‖e1‖‖ f1‖= ( 1
2 + p)[(−‖e1‖‖e2‖+(e1e2))
+2(±‖e2‖‖ f1‖− (e2 f1))]. (22)

Here we see that (22) involves the angles between consec-
utive edges of H , too:

(
1
2
+ p) =

‖e1‖‖ f1‖(cos^e1 f1±1)
‖e1‖‖e2‖(cos^e1e2−1)+2‖e2‖‖ f1‖(±1− cos^e2 f1)

. (23)

We put ^e1 f1 =: α, ^ f1e2 =: γ, ^e1e2 =: ε; then, because
of 1−cosξ= 2sin2

ξ/2 and 1+cosξ= 2cos2 ξ/2 equation
(23) can be written as

p1 =
‖e1‖‖ f1‖cos2 α/2

2‖e2‖‖ f1‖sin2
γ/2−‖e1‖‖e2‖sin2

ε/2
− 1

2
(24.1)

p2 =
‖e1‖‖ f1‖sin2

α/2
2‖e2‖‖ f1‖cos2 γ/2+‖e1‖‖e2‖sin2

ε/2
− 1

2
(24.2)

Now we can state

Theorem 3 An R-hyperboloid Φ(p) through a quadrilat-
eral H , which fulfils the conditions (7.2) resp. (7.3) allows
the tensor-product representation (17), whereby the form
parameter p takes the value p1 (24.1) resp. p2 (24.2).

In the following chapter we will apply these results to some
polyhedrons. As the chosen starting polyhedrons have reg-
ular faces, edge quadrilaterals are symmetric. This facili-
tates the calculation of the parameters p1 and p2.

5 Examples of polyhedrons with patches of
R-hyperboloids as faces

If the start polyhedron has n-gons as faces (n > 3), see
Figure 10 and 11, we split such a face into triangles. It is
also possible to add pyramids to such a face to obtain an
additional form parameter by the pyramid’s height.

Figure 10: The principle, how one can proceed in case of
non-triangular faces of a polyhedron, shown at
a regular dodecahedron

Figure 11: The dodecahedron’s faces are completely re-
placed by paraboloid patches.
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Because the pentagonal faces are tangential to the five
patches connected at the midpoint of the face, the 12 mid-
points must be interpreted as additional vertices, such that
the object has got 32 vertices and 30 quadric patches. Al-
most the same object emerges by adding pyramids to the
pentagonal faces of a dodecahedron, such that it gets 60
isosceles triangles as faces, see Figure 12. This object is
a Catalan polyhedron and is called pentakis-dodecahedron
or kisdodecahedron. Again pairs of triangles are replaced
by quadric patches.

Figure 12: The dodecahedron’s faces are completely re-
placed by paraboloid patches.

Choosing the height of the pyramids added to the faces
of a dodecahedron suitably one can get a Kepler star. We
show the principle of replacing two adjacent triangles by
R-hyperboloid patches through equilateral edge quadrilat-
eral in Figure 13.

Figure 13: A Kepler star with an R-hyperboloid patch
through an equilateral edge quadrilateral

The next object, an elongated pentagonal cupola, might
have at least some architectural relevance by its “windows”
formed by R-hyperboloids, Figure 15. The used edge
quadrilaterals are equilateral. In this case we refrained
from the patch representation according Theorem 3 and
applied condition (7.1) as well as geometric properties de-
rived from the octahedron in Chapter 1.

Figure 14: A Kepler star completely covered with R-
hyperboloid patches

Figure 15: R-hyperboloids through equilateral edge quad-
rangles forming “windows” into an elongated
pentagonal cupola

6 Pencils of R-hyperboloids and final re-
marks

The previous chapters were concerned with R-
hyperboloids through a given quadrilateral of generators
H = (e1e2 f1 f2) and we derived conditions for the exis-
tence of an R-hyperboloid through H . Another approach
could be to consider the pencil of R-hyperboloids through
the skew generators e1, e2 and the second pencil through
f1 and f2. The axes of such a pencil of R-hyperboloids
are generators of the symmetry paraboloid Ψ(e) of e1 and
e2 resp. Ψ( f ) of f1 and f2, c.f. [3]. The two pencils
have an R-hyperboloid in common, if and only if Ψ(e) and
Ψ( f ) have a common generator a, which acts as axis of
the common R-hyperboloid. Obviously the conditions for
that must be again (7.1), (7.2) and (7.3).
In [3] the symmetry paraboloid of two skew lines e1 and
e2 is considered as the set of points, which are equidistant
from these lines. When interpreting it as set of axes of
R-hyperboloids through these lines one takes a line geo-
metric viewpoint. (For line geometry c.f. e.g. [5]). The
place of action is the projectively enclosed Euclidean 3-
space. Indeed, it seems worthwhile to look at pencils
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of R-hyperboloids that way. They can be seen as 3D-
generalisations of pencils of circles. The skew (and real)
proper lines e1 and e2 span a hyperbolic linear congruence
of lines meeting both, e1 and e2. If e1 and e2 coincide in the
way that the line congruence becomes parabolic, we might
ask again for the then parabolic pencil of R-hyperboloids
in this congruence of lines. If e1 and e2 are skew and imag-
inary, they are axes of an elliptic linear congruence. Here
pops up a case, where all R-hyperboloids are coaxial, such
that the symmetry paraboloid Ψ(e) degenerates into a sin-
gle line.
There are many other ways to replace the planar faces of
a polyhedron by patches of curved surfaces. One could
e.g. blow up a balloon in the materialised edge frame
of a closed polyhedron. Such structures are almost om-
nipresent in our environment. Pairs of faces replaced by
minimal surfaces, a topic of differential geometry, will, in
the most cases differ not essentially from quadric patches.
This might justify the use of patches of paraboloids or R-
hyperboloids instead for architectural purposes.
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Generalized Regularity and the Symmetry of
Branches of “Botanological” Networks

ABSTRACT

We derive the generalized regularity of convex quadrilater-
als in R2, which gives a new evolutionary class of convex
quadrilaterals that we call generalized regular quadrilat-
erals in R2. The property of generalized regularity states
that the Simpson line defined by the two Steiner points
passes through the corresponding Fermat-Torricelli point
of the same convex quadrilateral. We prove that a class
of generalized regular convex quadrilaterals consists of
convex quadrilaterals, such that their two opposite sides
are parallel. We solve the problem of vertical evolution
of a “botanological” thumb (a two way communication
weighted network) w.r to a boundary rectangle in R2 hav-
ing two roots,two branches and without having a main
branch, by applying the property of generalized regularity
of weighted rectangles. We show that the two branches
have equal weights and the two roots have equal weights, if
the thumb inherits a symmetry w.r to the midperpendicular
line of the two opposite sides of the rectangle, which is
perpendicular to the ground (equal branches and equal
roots). The geometric, rotational and dynamic plasticity of
weighted networks for boundary generalized regular tetra-
hedra and weighted regular tetrahedra lead to the creation
of “botanological” thumbs and “botanological” networks
(with a main branch) having symmetrical branches.

Key words: Fermat-Torricelli problem, Fermat-Torricelli
point, Steiner tree, Steiner points, generalized regular
quadrilaterals, generalized regularity, “thumb”

MSC2010: 51N20, 51M20, 51E10, 52A15

Generalizirana regularnost i simetrija
“botanologičnih” mreža

SAŽETAK

Izvodimo generaliziranu regularnost konveksnih četverokuta
u R2 koja daje novu evolucijsku klasu konveksnih
četverokuta koju mi nazivamo generalizirani regularni
četverokuti u R2. Svojstvo generalizirane regularnosti kaže
da Simpsonov pravac definiran s dvije Steinerove točke
prolazi odgovarajućom Fermat-Torricellijevom točkom tog
istog četverokuta. Dokazujemo da se klasa generaliziranih
regularnih konveksnih četverokuta sastoji od konveksnih
četverokuta takvih da su njihove dvije nasuprotne stran-
ice paralelne. Rješavamo problem vertikalne evolucije
“botanologičnog palca” (težinska mreža, u oba smjera)
s obzirom na granični pravokutnik u R2 koji ima dva kori-
jena, dvije grane, bez da ima glavnu granu, primjenjujući
svojstvo generalizirane regularnosti težinskih pravokutnika.
Pokazujemo da dvije grane imaju jednake težine kao i dva
korijena ako “palac” nasljed-uje simetriju s obzirom na polu-
okomit pravac dvaju nasuprotnih stranica pravokutnika koji
je okomit na tlo (jednake grane i jednaki korijeni). Ge-
ometrijski, rotacijski i dinamični plasticitet težinskih mreža
za granični generalizirani regularni tetraedar i težinski regu-
larni tetraedar vodi ka stvaranju “botanologičnih palčeva”
i “botanologičnih” mreža (s glavnom granom) koja ima
simetrične grane.

Ključne riječi: Fermat-Torricellijev problem, Fermat-
Torricellijeva točka, Steinerovo stablo, Steinerove točke,
generalizirani regularni četverokuti, generalizirana regu-
larnost, “palac”

1 Introduction

Let A1,A2, ...,An be the vertices of a polygon A1A2A3...An
in a cyclic order.

An affinely regular polygon in R2 is derived by applying
an affine transformation to a regular polygon ([1]). Coxeter
introduced the affine regularity of polygons and proved the
following result ([2], [3]):
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A1A2A3...An is affinely regular if and only if there is m≥ 0,
such that−−−−−→
Ai−1Ai+2 = m

−−−−→
AiAi+1, for i = 1,2, ...,n.

Triangles are affine regular and parallelograms are affine
regular quadrilaterals in R2.
Gerber connected the affine regularity with the Euclidean
regularity of n− gons in [4], (see also [2] and [3])) and
proved the result: If you construct regular n− gons out-
wardly (or inwardly) on the sides of any affine regular
n− gon, then their centers form the vertices of a regular
n−gon. The case n = 4 was proved by Thebault, who gave
the first generalization of Napoleon’s regularity for the case
n = 3 (Napoleon’s theorem) ([2, p. 185]).
We start by giving the definitions of a weighted Fermat-
Torricelli tree and weighted Steiner tree for a boundary
quadrilateral, in order to derive a new regularity of quadri-
laterals which is different from Coxeter’s, Gerber’s and
Thebault’s approach. The new regularity of quadrilater-
als is achieved by the construction of isosceles triangles
outwardly on the parallel sides of a rectangle or a trapezoid.
Let A1A2A3A4 be a convex quadrilateral in R2. We de-
note by Ai(xi,yi) the vertices of A1A2A3A4, by Bi a pos-
itive real number (weight) which corresponds to Ai, by
O12(x012,y012), by O34(x034,y034) two points in R2 with
given weights B12 in O12 and B34 in O34, by d(X ,Y ) the
Euclidean distance ‖XY‖, for X ,Y ∈ R2.
The weighted Steiner problem for A1A2A3A4 in R2 states
that:

Problem 1 Find Oi(x0i,y0i), for i = {12,34}, such that

f (O12,O34) = B1d(O12,A1)+B2d(O12,A2)+

+B3d(O34,A3)+B4d(O34,A4)+

+
B12 +B34

2
d(O12,O34)→ min. (1)

For B1 = B2 = B3 = B4, the solution of the (unweighted)
Steiner problem is called a Steiner tree. Gilbert and Pol-
lack introduce the Steiner tree topologies for A1A2A3A4, in
their classical study ([5]). They mention three topologies
of solutions w.r to the boundary A1A2A3A4 :
1. If we set one point (node) F (Fermat-Torricelli point)
different from Ai, the solution is called a Fermat-Torricelli
tree. The Fermat-Torricelli point F has four connections
{FA1,FA2,FA3,FA4}. This is a special case of the un-
weighted Steiner problem, by setting B12 = 0 or B34 = 0.
2. If we set two points (nodes) O12 and O34 (Steiner
points) and B12 + B34 = 2, such that the objective func-
tion (40) is minimized, then we derive a solution which
is called a full Steiner tree. The Steiner points O12 and
O34 have three connections {A1O12,A2O12,O12O34} and
{A3O34,A4O34,O12O34}, respectively.
3. If we set one point (node) Steiner point O12 and
O34 ≡ A3orA4, such that the objective function (40) is min-
imized, then we derive a degenerate Steiner tree.

It is well known that the Steiner point with three connec-
tions possesses the equiangular property 360o

3 . The angle
formed by the Steiner point as a vertex and two connec-
tions is 120o, for the unweighted case and by assuming
that B12 +B34 = 2 ([5]). The same property holds for the
Fermat-Torricelli point for a boundary triangle, which coin-
cides with the Steiner point. The Fermat-Torricelli tree of
a convex quadrilateral consists of the two diagonals A1A3
and A2A4, which meet at the intersection point F (Fermat-
Torricelli point) for the unweighted case.
Rubinstein, Thomas and Weng studied in [8] the un-
weighted Steiner problem for tetrahedra in R3. They suc-
ceeded in locating the Simpson line, which passes through
the two Steiner points O12 and O34 in R3. The vertex A12 of
the equilateral4A12A1A2, which lies on the opposite side
of A1A2 to O12 is referred to as the e-point of A1A2. The
vertex A34 of the equilateral4A34A4A3, which lies on the
opposite side of A3A4 to O34 is referred to as the e-point
of A3A4. The Simpson line passes through the e-points of
A1A2 and A3A4, respectively, and

d(A12,A34) =

d(O12,A1)+d(O12,A2)+d(O34,A3)+d(O34,A4) = L.

The Melzak Circle is a circle C(O1,r12), which passes
through A1, A2, A12 and intersects the Simpson line at O12.
Similarly, the Melzak Circle C(O2,r34) passes through A3,
A4, A34 and intersects the Simpson line at O34. The Melzak
construction via the method of e-points is established in [7].
Furthermore, Rubinstein, Thomas and Weng gave explicit
formulas for computing Steiner trees for four points in R2,
for all possible cases, in which the lines defined by A1A2
and A3A4 either intersect or are parallel ([8, Chapter 3,
Cases (1), (2)]). We set ϕ ≡ ∠( ~A1A2, ~A3A4). For ϕ = 0,
(A1A2 and A3A4 are parallel), we refer to this solution as the
Steiner zero solution. The Steiner zero solution depends on
the distance h between the two parallel lines, the midpoints
of A1A2 and A3A4, respectively and the radius of Melzak
circles r12 and r34 ([8, Chapter 3, Expicit formulas Case (2),
page 65]).
Ivanov and Tuzhilin introduced the concept of the weighted
Simpson line and they found the relation of the length of
the weighted network with the length of a Simpson line ([6,
Theorem 1]) which gives

B12 +B34

2
L =

B1d(O12,A1)+B2d(O12,A2)+B3d(O34,A3)+B4d(O34,A4).

We note that A12 and A34 are not the e-points for the
weighted case.
In this paper, we introduce the generalized (weighted) regu-
larity of convex quadrilaterals and tetrahedra, which gives
a new evolutionary class of convex quadrilaterals and tetra-
hedra in R3.
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The property of generalized regularity states that the
Simpson line defined by the two Steiner points O12 and
O34 passes through the corresponding Fermat-Torricelli
point of the same convex quadrilateral. The property of
weighted regularity for weighted rectangles states that the
weighted Simpson line defined by the two weighted Steiner
points passes through the corresponding weighted Fermat-
Torricelli point of the same rectangle.
The main results are:
1. The property of generalized regularity possess a class
of convex quadrilaterals (generalized regular quadrilater-
als), which corresponds to the Steiner zero solution and it
consists of quadrilaterals having two of their opposite sides
parallel (Theorem 1).
2. Let A1A2A3A4 be a rectangle in R2 and A1F, A2F be the
two roots of the corresponding weighted Fermat-Torricelli
tree (thumb), the weighted Fermat-Torricelli point F is lo-
cated on the ground and A3F, A4F are two branches of the
weighted Fermat-Torricelli tree (thumb).
If the weighted Simpson line A12A34 is perpendicular to the
ground and A1A2A3A4 is a generalized regular quadrilateral,
we prove that B2

1 +B2
3 = B2

2 +B2
4 (Theorem 2).

3. Two branches have equal weights and the two roots have
equal weights, if the thumb inherits a symmetry w.r to the
midperpendicular line of the two opposite sides of the rect-
angle, which is perpendicular to the ground (equal branches
and equal roots, Proposition 3).
4. The dynamic Plasticity of weighted network with two
roots and two growing branches states that:
Given the weighted Fermat-Torricelli point A0i that has got
a subconscious B̄0i to be an interior point of the tetrahedron
A1iA2iA3iA4i with the vertices lie on four prescribed rays
that meet at A0i the positive real weights B̄ ji depends on the
five given values of α102i, α103i, α104i, α203i, α204i and B̄0i
(Theorem 3).
5. We assume that the common perpendicular line of each
tetrahedron A1iA2iA3iA4i passes through the common mid-
points m12 and m34 of A1iA2i and A4iA3i, respectively and
m12m34 >> A1iA2i. We prove the following theorem for a
botanological thumb (without a main branch) (Theorem 4):
If A0i lies on the common perpendicular segment m12m34,
then B̄1i = B̄2i and B̄3i = B̄4i.

6. We prove the following theorem for a “botanological”
network (with a main branch) (Theorem 4):
If A0i lies on the common perpendicular segment m12m34,
then B̄1i = B̄2i and B̄3i = B̄4i.

The dynamic plasticity (Theorem 3), geometric plasticity
(Lemma 2) and rotational plasticity (Proposition 4) of gen-
eralized regular tetrahedra (Definition 7) and generalized
weighted regular tetrahedra (Definition 8) develops a sym-
metry for the weights for a “botanological” thumb (Theo-
rem 4, Evolutionary scheme) or a botanological network in
R3 (Theorem 10, Evolutionary scheme).

2 The property of generalized regularity of
convex quadrilaterals in R2

Let A1A2A3A4 be a convex quadrilateral in R2, such that
B1 = B2 = B3 = B4 = 1 and B12 +B34 = 2. We recall that
a weight Bi corresponds to the vertex Ai, for i = 1,2,3,4,
a weight B12 ≡ 1 corresponds to the Steiner point O12 and
B34 ≡ 1 corresponds to the Steiner point O34. The Fermat-
Torricelli point F is the intersection of the two diagonals of
A1A3 and A2A4. We denote by L the Simpson line, which
passes through the e-points A12, A34 and O12, O34 and by
T12, T34 the intersection points of the common angle bisec-
tor of the vertical angles A1FA2 and A3FA4 and the line
segments A1A2 and A3A4, respectively.

Definition 1 (Generalized regularity) A generalized reg-
ular quadrilateral is a convex quadrilateral in R2, such that
the Simpson line L passes through the Fermat-Torricelli
point F.

Definition 2 (Weighted regularity) A weighted regular
quadrilateral is a convex quadrilateral in R2, such that
the weighted Simpson line L passes through the weighted
Fermat-Torricelli point F.

Without loss of generality, we assume that:
Ai = A1(xi,yi), for i = 1,2,3,4, F = (xF ,yF), A34 =
A34(x34,y34) and A12 = A12(x12,y12), such that:
y4 > y3 > y2 > y1, x1 < x4 < x3 < x2.

Theorem 1 The property of generalized regularity possess
a class of convex quadrilaterals (generalized regular quadri-
laterals), which corresponds to the Steiner zero solution
and it consists of quadrilaterals having two of their opposite
sides parallel.

Proof. The intersection of the two diagonals A1A3, A2A4 is
the unweighted Fermat-Torricelli point F = (xF ,yF), where

xF =

x1(y3−y1)
x3−x1

− x2(y4−y2)
x4−x2

− y1 + y2
y3−y1
x3−x1

− y4−y2
x4−x2

(2)

and

yF =

(y3− y1)

(
x1(y3−y1)

x3−x1
− x2(y4−y2)

x4−x2
−y1+y2

y3−y1
x3−x1

− y4−y2
x4−x2

− x1

)
x3− x1

+ y1. (3)

We shall express the coordinates of the e-point A34 =
A34(x34,y34 x34 and y34 w.r. to x3,y3,x4,y4 (see Fig 1).
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Figure 1: Generalized regularity of quadrilaterals

The relation A34A3 = A3A4 yields:

(x34− x3)
2 +(y34(x3,y3,x4,y4,x34)− y3)

2 =

(x3− x4)
2 +(y3− y4)

2. (4)

The midperpendicular line which is defined by A34 =
A34(x34,y34) and the midpoint M34 = ( x3+x4

2 , y3+y4
2 ) yields:

(y34(x3,y3,x4,y4,x34) =

(x4− x3)
((

x34− x3+x4
2

))
y3− y4

+
1
2
(y3 + y4) . (5)

By replacing (5) in (4), we derive a second order degree
polynomial w.r. to x34 and taking into account x34 >

x3+x4
2 ,

we obtain:

x34 =
x3y2

3 + x3y2
4−2x3y3y4 +

√
3M+ x4y2

3
2(x3− x4)2 +(y3− y4)2 +

+
x4y2

4−2x4y3y4 + x3
3− x4x2

3− x2
4x3 + x3

4
2(x3− x4)2 +(y3− y4)2 (6)

where

M ≡ (x3− x4)
2+(y3− y4)

2|y3− y4|. �

By working similarly, we derive a second order degree poly-
nomial w.r. to x12 and taking into account x12 <

x1+x2
2 , we

obtain:

x12 =
x1y2

1 + x1y2
2−2x1y1y2−

√
3N + x2y2

1
2(x1− x2)2 +(y1− y2)2 +

+
x2y2

2−2x2y1y2 + x3
1− x2x2

1− x2
2x1 + x3

2
2(x1− x2)2 +(y1− y2)2 (7)

where

N ≡ (x1− x2)
2 +(y1− y2)

2|y1− y2|.

The area of4A12A34F is given by:

A(4A12A34F) = |det

 xF yF 1
x12 y12 1
x34 y34 1

|. (8)

By substituting y4 = y3 +
y2−y1
x2−x1

(x4− x3) in (8) and by get-

ting as a common factor d(A1,A2)
|y1−y2| , we derive that

A(4A12A34F) =
f (x1,y1,x2,y2,x3,y3,x4,y4)g(x1,y1,x2,y2,x3,y3,x4,y4)
where

g(x1,y1,x2,y2,x3,y3,x4,y4) =

x3− x4 +(x1− x2)
|x3− x4|
|x1− x2|

. (9)

Without loss of generality, we assume that x2 > x1 and
x3 > x4.
Hence, by calculating (9), we deduce that A(4A12A34F) =
0 and A12, A34 and F are collinear only when A1A2 is paral-
lel to A4A3.
We denote by H the distance between A1A2 and
A3A4. Suppose that H > d(A1,A2) + d(A3,A4) and ϕ ≥
∠A2A1A3 ≤ 120◦, ϕ ≥ ∠A1A2A4 ≤ 120◦, where ϕ =
arctan( H

d(A1,A2)+H
√

3
3 +d(A3,A4)

).

Proposition 1 If A1A2 ‖ A4A3, the intersection point of the
common angle bisector of ∠A1FA2 and ∠A3FA4 and the
Simpson line defined by A12A34 is the Fermat-Torricelli
point F.

Proof. By applying Theorem 1, F lies on the Simpson
line. Therefore, the common angle bisector of ∠A1FA2 and
∠A3FA4 and the Simpson line defined by A12A34 passes
through the Fermat-Torricelli point F. �

Remark 1 If x34 <
x3+x4

2 and x12 <
x1+x2

2 , we derive:

x34 =
x3y2

3 + x3y2
4−2x3y3y4−

√
3M+ x4y2

3
2(x3− x4)2 +(y3− y4)2 +

+
x4y2

4−2x4y3y4 + x3
3− x4x2

3− x2
4x3 + x3

4
2(x3− x4)2 +(y3− y4)2 (10)
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and taking into account

x12 =
x1y2

1 + x1y2
2−2x1y1y2−

√
3N + x2y2

1
2(x1− x2)2 +(y1− y2)2 +

+
x2y2

2−2x2y1y2 + x3
1− x2x2

1− x2
2x1 + x3

2
2(x1− x2)2 +(y1− y2)2 ,

the corresponding determinant of the area A(4A12A34F)
is non-zero.

Examples of generalized regular quadrilaterals are the
square, rectangle and the isosceles trapezoid.
The following results are a direct consequence of Theo-
rem 1:

Proposition 2 A square is a generalized regular quadri-
lateral, which corresponds to two Steiner zero solutions,
having their Simpson lines perpendicular and meet at the
Fermat-Torricelli point F.

Corollary 1 A square is a generalized regular quadrilat-
eral, such that the two Simpson lines and the two corre-
sponding angle bisectors w.r to the vertical angles coincide
(two minimum Steiner trees).

Corollary 2 A rectangle is a generalized regular quadri-
lateral, such that the two Simpson lines and the two corre-
sponding angle bisectors w.r to the vertical angles coincide
and the Simpson line which is midperpendicular w.r. to the
parallel sides with greater length does not given a minimum
Steiner tree (a unique minimum Steiner tree).

Corollary 3 An isosceles trapezoid is a generalized regu-
lar quadrilateral, such that the Simpson line (midperpen-
dicular) which passes through the Fermat-Torricelli point
F and the corresponding angle bisector w.r to the vertical
angles coincide.

3 Creation of a “botanological” thumb for a
boundary rectangle in R2

A “botanological” network for four non-collinear points
in R2 is introduced and studied in [13] for open systems
(Botany).

Definition 3 (“Botanological” network, [13]) A “botano-
logical” network for four non-collinear points is a two-way
communication network, which has the topology of a
weighted minimal Steiner tree in R2, having two weighted
Fermat-Torricelli nodes (Steiner nodes), two weighted roots,
two weighted branches and one main branch.

Let A1A2A3A4 be a weighted rectangle in R2, Bi be a
weight which corresponds to each vertex Ai, for i =

1,2,3,4, A1F, A2F are the two roots of the correspond-
ing weighted Fermat-Torricelli tree (thumb). We assume
that the weighted Fermat-Torricelli point F is located on
the ground and A3F, A4F are two branches of the weighted
Fermat-Torricelli tree (thumb) and A1A4 >> A1A2.
The weighted Simpson line is a line defined by A12A34,
where A12 is a vertex of4A12A1A2, which lies on the oppo-
site side of A1A2 to O12 and A34 is a vertex of4A34A4A3,
which lies on the opposite side of A3A4 to O34. The
weighted Steiner points O12 and O34 are the two nodes
of the weighted Steiner tree and they both lie on A12A34,
with equal weights B12+B34

2 .

Definition 4 A “botanological” thumb for a boundary rect-
angle is a two-way communication network, which has the
topology of a weighted Fermat-Torricelli tree in R2, having
one weighted Fermat-Torricelli node, two weighted roots
and two weighted branches, which is enriched by the prop-
erty of generalized regularity of quadrilaterals, such that
A12A34 is perpendicular to A1A2.

We assume that the weighted Fermat-Torricelli point F of
A1A2A3A4 (B12 = B34 = 0) lies on the ground and A1A2 is
parallel to the ground.
Our main result is the following theorem, which gives
a weighted condition for the four weights of a thumb
whose weighted Simpson line is perpendicular to the ground
and A1A2 and passes through the corresponding weighted
Fermat-Torricelli point F.

Theorem 2 If A12A34 is perpendicular to A1A2,

B2
1 = B2

2 +B2
4−B2

3. (11)

Proof. We consider the weighted Steiner tree for the bound-
ary A1A2A3A4. We recall that the objective function is given
by:

f (O12,O34) = B1d(O12,A1)+B2d(O12,A2)+B3d(O34,A3)

+B4d(O34,A4)+
B12 +B34

2
d(O12,O34)→ min, (12)

where O12 is the weighted Fermat-Torricelli point (Steiner
node) of 4A1A2O34 with corresponding weights B1, B2
and B12+B34

2 , respectively, and O34 is the weighted Fermat-
Torricelli point (Steiner node) of 4A3A4O34 with corre-
sponding weights B3, B4 and B12+B34

2 , respectively.
Hence, the construction of the weighted Simpson line yields
the following relations:

B1 sin∠A1A2A12 = B2 sin∠A2A1A12 (13)

and

B3 sin∠A3A4A34 = B4 sin∠A4A3A34. (14)

The weighted balancing condition of the weighted Fermat-
Torricelli point F for A1A2A3A4 taking into account that
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~B14 =− ~B23, ~B12 =− ~B34 and ~B12 is perpendicular to ~B23,
we obtain that:

B1 cos∠A1A2A12 = B4 cos∠A4A3A34 (15)

and

B2 cos∠A2A1A12 = B3 cos∠A3A4A34. (16)

By squaring both sides of (13),(14),(15) and (16) and by
adding the first and third derived relation and the second
and fourth derived relation, we deduce (11). �

We need the following lemma, in order to prove that the
symmetry of a thumb is determined by a pair of equal
weights w.r. to the two symmetrical roots and a pair
of equal weights w.r. to the two symmetrical branches.
Let O = O(0,0), be the intersection of the diagonals of
A1A2A3A4.

Lemma 1

d(A1,F)2 +d(A3,F)2 = d(A2,F)2 +d(A4,F)2. (17)

Proposition 3 If the thumb inherits a symmetry w.r to the
midperpendicular line of the two opposite sides of the rect-
angle, which is perpendicular to the ground (equal branches
and equal roots), then B1 = B2 and B3 = B4.

Proof. By replacing d(A1,F) = d(A2,F) in (17), we get

d(A3,F) = d(A4,F).

The weighted Simpson line A12A34 is the midperpendicular
line of A1A2 and A3A4 and passes through the weighted
Fermat-Torricelli point F. Therefore, A1A2A3A4 is a gener-
alized weighted regular rectangle. Thus, we get:

B1 sin∠A1A2A12 = B2 sin∠A2A1A12 (18)

and

B3 sin∠A3A4A34 = B4 sin∠A4A3A34. (19)

By replacing ∠A1A2A12 = ∠A2A1A12 in (18) and
∠A3A4A34 = ∠A4A3A34 in (19), we get: B1 = B2 and
B3 = B4. �

4 Creation of a “botanological” thumb with
symmetrical branches in the three dimen-
sional Euclidean Space

Let A1iA2iA3iA4i be n tetrahedra in R3 and B ji be the weight
(positive real number) which corresponds to the vertex A ji,
for i = 1,2, ...,n and j = 1,2,3,4.
Weighted Fermat-Torricelli trees and weighted Steiner trees
that have got a subconscious have been established in [10]
and [11].

We denote by~u(Aik,A jk) the unit vector from Aik to A jk. We
assume that ‖∑4

j=1 B jk~u(Aik,A jk)‖ > Bik hold, in order to
locate weighted Fermat-Torricelli trees with four branches
{A0kA1k,A0kA2k,A0kA3k,A0kA4k} that got a subconscious
node.

Lemma 2 (Geometric plasticity of weighted Fermat-
Torricelli trees that have got a subconscious node[10])
If we select a point Pik with a non-negative weight Bik on
the ray that is defined by the line segment A0kAik, such that:

‖
4

∑
j=1

B jk~u(Pik,Pjk)‖> Bik,

Then the corresponding weighted Fermat-Torricelli
node P0k that has got a subconscious of
{P0kP1k,P0kP2k,P0kP3k,P0kP4k} remains the same with A0k,
for k = 1,2,3, ...,n.

The modified weighted Fermat-Torricelli problem for tetra-
hedra states that:

Problem 2 (Modified weighted Fermat-Torricelli prob-
lem [10])
Let A1kA2kA3kA4k be a tetrahedron in R3, Bik be a non-
negative number (weight) which corresponds to each line
segment A0kAik, respectively. Find a point A0k which mini-
mizes the sum of the lengths of the line segments a0ik that
connect every vertex Aik with A0k multiplied by the positive
weight Bik:

4

∑
i=1

Bia0ik = minimum. (20)

By letting Bik = Bik, for i = 1,2,3,4, k = 1,2, ...,n, the
weighted Fermat-Torricelli problem for tetrahedra and the
corresponding modified weighted Fermat-Torricelli prob-
lem for tetrahedra are equivalent by collecting instantaneous
images of the weighted Fermat-Torricelli network via the
geometric plasticity of tetrahedra in R3.
The geometric plasticity of tetrahedra connects the weighted
Fermat-Torricelli problem for tetrahedra with the modified
weighted Fermat-Torricelli problem for boundary tetrahedra
by allowing a mass flow continuity for the weights, such
that the corresponding weighted Fermat-Torricelli point
remains the same in R3.
The weighted Fermat-Torricelli nodes remain the same
P0k ≡ A0k but different values of the subconscious (remain-
ing weight) may occur.
We denote by B ji a mass flow which is transferred from A ji
to A0i for j = 1,2 by B0i a residual weight which remains
at A0 and by Bki a mass flow which is transferred from A0i
to Aki for k = 3,4.
We denote by B̃ ji a mass flow which is transferred from A0i
to A ji for i = 1,2, by B̃0i a residual weight which remains
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at A0i and by B̃ki a mass flow which is transferred from Aki
to A0i, for k = 3,4.
Thus, we derive the weighted outward flow condition and
weighted inward flow condition:

B1i +B2i = B3i +B4i +B0i (21)

and

B̃1i + B̃2i + B̃0i = B̃3i + B̃4i. (22)

By adding (21) and (22) and by setting B̄0i = B0i− B̃0i, we
obtain:

B̄1i + B̄2i = B̄3i + B̄4i + B̄0i (23)

such that:

B̄1i + B̄2i + B̄3i + B̄4i = c, (24)

where c is a positive real number, for i = 1,2, ...,n.
We denote by a0im the length of the line segment A0mAim,
αi0 jm ≡ ∠AimA0A jm and αi, j0km the angle which is formed
by the line segment that connects A0m with the trace of
the orthogonal projection of Aim to the plane defined by
4A jmA0Akm with a0im, for i, j,k, l = 1,2,3,4, i 6= j 6= k 6= i
and m = 1,2,3, ...,n

Lemma 3 (Determination of the position of A0i on ex-
actly five given angles [10, Proposition 2.9, p. 902], [12,
Formulas (10), (11), p. 120])
Each angle αi,k0ml depends on α102l , α103l , α104l , α203l and
α204l , for i,k,m = 1,2,3,4, i 6= k 6= m, and l = 1,2, , ...,n

cos2(αi,k0ml) =
sin2(αk0ml)− cos2(αm0il)− cos2(αk0il)

sin2(αk0ml)
+

+
2cos(αm0il)cos(αk0il)cos(αk0ml)

sin2(αk0ml)
(25)

and

cosα304 =−
1
4
[2b+

+4cosα102 (cosα104 cosα203 + cosα103 cosα204)−
−4(cosα103 cosα104 + cosα203 cosα204)]csc 2

α102 (26)

or

cosα304 =
1
4
[4cosα103(cosα104− cosα102 cosα204)+

+2(b+2cosα203 (−cosα102 cosα104+cosα204))]csc 2
α102

(27)

where

b≡

√
4

∏
i=3

(1+ cos(2α102)+ cos(2α10i)+ cos(2α20i)−4cosα102 cosα10i cosα20i).

We denote by αl the dihedral angle which is formed by
the planes defined by4A1lA0lA2l and4A1lA2lA3l , and by
αg4l the dihedral angle formed by the planes defined by
4A1lA4lA2l and4A1lA2lA3l , for l = 1,2, ...,n.

Lemma 4 [[10, Formula (27), p. 997]]
The variable length a04l is given by

a2
04l = a2

02 +a2
24l −2a24l

[√
a2

02l −h2
0,12l cosα124l+

+h0,12l sinα124l

(
cosαg4l

(( a2
02+a2

23−a2
03

2a23

)
−
√

a2
02l −h2

0,12l cosα123l

h0,12l sinα123l

)
+

+ sinαg4l sinarccos
(( a2

02l+a2
23l−a2

03l
2a23l

)
−
√

a2
02l −h2

0,12l cosα123l

h0,12l sinα123l

))]
(28)

and

h0,12l =
a01la02l

a12l

√
1−
(

a2
01l +a2

02l−a2
12l

2a01la02l

)2

. (29)

Theorem 3 [Dynamic Plasticity of weighted network
with two roots and two growing branches]
Given the weighted Fermat-Torricelli point A0i that has got
a subconscious B̄0i to be an interior point of the tetrahedron
A1iA2iA3iA4i with the vertices lie on four prescribed rays
that meet at A0i and from the five given values of α102i,
α103i, α104i, α203i, α204i, the positive real weights B̄ ji are
given by:

B̄1i =

(
sinα4,203i

sinα1,203i

)
c− B̄0i

2
, (30)

B̄2i =

(
sinα4,103i

sinα2,103i

)
c− B̄0i

2
, (31)

B̄3i =

(
sinα4,102i

sinα3,102i

)
c− B̄0i

2
, (32)

B̄4i =
c− B̄0i

2
, (33)

under the weighted conditions

B̄1i + B̄2i + B̄3i + B̄4i = c, (34)

and

B̄1i + B̄2i = B̄3i + B̄4i + B̄0i. (35)
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Proof. By considering a two-way communication network
and by assuming mass flow continuity the weights B̄ki, for
i = 1,2,3,4, are determined by the weighted outward and
inward flow conditions (21), (22), which yield the weighted
conditions (34) and (35).
Thus, we obtain that:

4

∑
k=1

Bkia0ki +
4

∑
k=1

B̃kia0ki→ min, (36)

which gives

4

∑
k=1

B̄kia0ki→ min. (37)

By differentiating (37) w.r. to a01l , a02l a03l , respectively,
taking into account the derivative of a04l w.r. to a01l , a02l
a03l , by lemma 4, we obtain (30), (31), (32) and (33). �

Remark 2 We note that the dynamic plasticity equations of
Theorem 3 have been derived in [10] for weighted Fermat-
Torricelli trees, which consist of two roots one branch and
one growing branch that have inherited a subconscious
(weighted Fermat-Torricelli node) under different weighted
(inflow - outflow conditions):
B̄1i + B̄2i + B̄3i = B̄0i + B̄4i for i = 1,2, ...,n.

We assume that the common perpendicular line of
A1iA2iA3iA4i passes through the common midpoints m12
and m34 of A1iA2i and A4iA3i, respectively and
m12m34 >> A1iA2i. We denote by ϕi the angle formed by
−−−→
A1iA2i and

−→
A 4iA3i and by B ji the weight (positive real num-

ber) which corresponds to the vertex A ji, for j = 1,2,3,4,
i = 1,2, ...,n. Hence, by rotating A1iA2iA3iA4i by ϕi with
respect to m12m34, we obtain n weighted isosceles trapezoid
A′1iA

′
2iA
′
3iA
′
4i and B′ji = B ji. We denote by Oi the intersec-

tion point of the equal diagonals A′1iA
′
3i and A′2iA

′
4i, by A0i

the corresponding weighted Fermat-Torricelli node with
remaining weight B0i (one node that has got a subconscious
) and by O12i and O34i the two corresponding weighted
Steiner nodes with remaining weights B12i and B34i (two
nodes that got a subconscious) for A′1iA

′
2iA
′
3iA
′
4i.

Theorem 4 If A0i lies on the common perpendicular seg-
ment m12m34, then

B̄1i = B̄2i (38)

and

B̄3i = B̄4i (39)

Proof. By substituting α4,102i = α3,102i in (32) and (33), we
obtain (39). By working cyclically with the indices and by
exchanging the indices 3→ 2, 4→ 1 and 1→ 4, 2→ 3, we
derive (38). �

We may consider that {A1i,A2i} lie on a circular cone C012i,
having m12m34 as axis of rotation with vertex the weighted
Fermat-Torricelli point A0i and {A3i,A4i} lie on a circular
cone C034i, having m12m34 as axis of rotation with vertex
the weighted Fermat-Torricelli point A0i. We note that C012i
and C034i intersect only at A0i.

Proposition 4 (Rotational plasticity of tetrahedra) If
we select {R1i,R2i} two points with weights B1i, B2i, re-
spectively, on C012i, such that their midpoint m12i lies on
the line defined by m12m34 and {R3i,R4i} two points with
weights B3i and B4i, respectively, on C034i, such that their
midpoint m34i lies on the line defined by m12m34, then
the corresponding weighted Fermat-Torricelli point R0i of
R1iR2iR3iR4i remains the same with A0i for B1i = B2i and
B3i = B4i, for i = 1,2, ...,n.

Proof. It is a direct consequence of Theorem 4 and taking
into account that
R1iR2iR3iR4i are derived by rotating the two isosceles trian-
gles4R1iA0iR2i and4R3iA0iR4i along m12m34. By rotating
properly R1iR2iR3iR4i, we may derive a weighted isosce-
les trapezoid or a weighted rectangle (R1iR2i = R3iR4i) for
B1i = B2i and B3i = B4i. Thus, the weighted balancing con-
dition ∑

4
j=1 B ji

−−−−−−→
u(A0i,A ji) =~0, yields R0i ≡ A0i.

�

Definition 5 A “botanological” thumb for a boundary sym-
metric tetrahedron A1iA2iA3iA4i whose common perpendic-
ular passes through the common midpoints m12 and m34
of A1iA2i and A4iA3i, respectively and m12m34 >> A1iA2i
is a “botanological” network, which is transformed to
a botanological “thumb” for a boundary rectangle or a
boundary isosceles trapezoid, by rotating properly A1iA2i
w.r. m12m34.

Definition 6 A “botanological” thumb is a collection of
“botanological” thumbs for a finite number of boundary sym-
metric tetrahedra in R3.

We will describe an evolutionary scheme for the creation of
a “botanological” thumb in R3.

1. Evolutionary Phase 1
At time t = 0, we consider a point “seed” A0i on the ground.
2. Evolutionary Phase 2
After time t, by assuming mass flow continuity two equal
roots start to grow underground and two equal branches start
to grow overground, such that their endpoints form a bound-
ary rectangle A′1iA

′
2iA
′
3iA
′
4i. Taking into account Proposi-

tion 3, we derive that B1i = B2i and B3i = B4i.

3. Evolutionary Phase 3
We consider two cases: (i) If A0i is the intersection of the
diagonals A′1iA

′
3i and A′2iA

′
4i the weighted Fermat-Torricelli

node A0i has acquired a subconscious B̄0i. (ii) If A0i lies
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on the midperpendicular line segment m12m34 the weighted
Fermat-Torricelli node A0i has acquired a subconscious B̄0i.

4. Evolutionary Phase 4
The subconscious B̄0i may cause a geometric plastic-
ity and/or a rotational plasticity of the weighted Fermat-
Torricelli tree {A′1iA0i,A′2iA0i,A′3iA0i,A′4iA0i}.
(i) The geometric plasticity (Theorem 2) yields a weighted
Fermat-Torricelli tree {R1iA0i,R2iA0i,R3iA0i,R4iA0i},
such that their endpoints form an isosceles trapezoid
R1iR2iR3iR4i, A′′0i ≡ A0i and B̄ ji corresponds to R ji, for
j = 1,2,3,4 and i = 1,2, ...,n.
(ii) The rotational plasticity (Proposition 4), the dynamic
plasticity (Theorem 3) and the symmetry of boundary tetra-
hedra taken from Theorem 4, creates a “botanological”
thumb for i = 1,2, ...,n, having the corresponding weighted
Fermat-Torricelli node A0i constant on the ground (point
“seed”), but with different subconscious quantities B̄0i, for
i = 1,2, ...,n.

5 Generalized regularity for tetrahedra in
the three dimensional Euclidean Space

The weighted Steiner problem for a boundary weighted
tetrahedron A1A2A3A4 in R3 having two subconscious
nodes (weighted Fermat-Torricelli or weighted Steiner
points) has been studied recently in [11].
We denote by A1A2A3A4 a tetrahedron in R3, with
Ai(xi,yi,zi) (i = 1,2,3,4), by bi a positive real num-
ber(weight) which corresponds to the vertex Ai, O12, O34
two interior points (nodes) of A1A2A3A4 in R3, by b12 the
weight which corresponds to O12, b34 the weight which
corresponds to O34, by H the length of the common perpen-
dicular (Euclidean distance) between the two lines defined
by A1A2, A4A3, by AiA j the Euclidean distance from Ai to
A j, by O12O34 the Euclidean distance from O12 to O34, by
AiO12 the Euclidean distance from Ai to O12 and by A jO34
the Euclidean distance from A j to O34, by T12 the intersec-
tion point of the line defined by O12O34 and the line defined
by A1A2 and by T34 the intersection point of the line defined
by O12O34 and the line defined by A4A3, M12 the midpoint
of A1A2 and M34 the midpoint of A4A3, for i, j = 1,2,3,4.
We denote by A′′4 the intersection point of the line defined by
the A4A3 and the line defined by the common perpendicular
of A1A2 and A4A3 and by A′′1 the intersection point of the
line defined by A1A2 and the line defined by the common
perpendicular of A1A2

We set
~ai j ≡

−−→
AiA j, for i, j = 1,2,3,4, i 6= j 6= k, α12 ≡∠A1O12A2,

α34 ≡ ∠A3O34A4, α1 ≡ ∠A2O12O34, α2 ≡ ∠A1O12O34,
α3 ≡ ∠A4O34O12, α4 ≡ ∠A3O34O12, ϕ ≡ arccos(~a12·~a43

a12a43
)

and bST = b12+b34
2 .

Furthermore, we denote by A12 the vertex of 4A1A12A2,
such that: ∠A1A12A2 = π−α12, ∠A12A1A2 = π−α1 and
∠A1A2A12 = π− α2, by A34 the vertex of 4A4A34A3,
such that: ∠A4A34A3 = π−α34, ∠A34A4A3 = π−α4 and
∠A4A3A34 = π− α3, by H12 the trace of the height of
4A1A12A2 w.r to the base A1A2 and by A34 the vertex of
4A4A34A3, such that: ∠A4A34A3 = π−α34, ∠A34A4A3 =
π−α4 and ∠A4A3A34 = π−α3 and by H34 the trace of the
height of4A4A34A3 w.r to the base A4A3.
We set H ≡ A′′4A′′1 , t34 ≡ A′′4T34 t12 ≡ A′′1T12 k1 ≡ A′′1A1 and
k2 ≡ A′′4A4, m12 ≡ A′′1M12 and m34 ≡ A′′4M34, h′12 ≡ A′′1H12
and h′34 ≡ A′′4H34.
We assume that: A1A4 +A2A3 > A1A2 +A3A4.
The weighted Steiner problem for A1A2A3A4 in R3 states
that:

Problem 3 ([11, Problem 5]) Find O12(x0,y0,z0) and
O34(x0′ ,y0′ ,z0′) with given weights b12 in O12 and b34
in O34, such that

f (O12,O34) =b1A1O12 +b2A2O12 +b3A3O34 +b4A4O34+

+
b12 +b34

2
O12O34→ min. (40)

Theorem 5 ([11, Theorem 3]) The solution of the
weighted Steiner problem is a weighted Steiner tree in
R3 whose nodes O12 and O34 (weighted Fermat-Torricelli
points) are seen by the angles:

cosα12 =
b2

ST −b2
1−b2

2
2b1b2

,

cosα1 =
b2

1−b2
2−b2

ST
2b2bST

,

cosα34 =
b2

ST −b2
3−b2

4
2b3b4

,

cosα4 =
b2

4−b2
3−b2

ST
2b3bST

. (41)

The inradius r12 is the radius of the inscribed circle of tri-
angle4A1A12A2 with sides A1A2 = λ

b12+b34
2 , A1A12 = λb2

and A2A12 = λb1, where λ = A1A2
b12+b34

2

.

The inradius r34 is the radius of the inscribed circle of tri-
angle4A3A34A4 with sides A3A4 = λ

b12+b34
2 , A3A34 = λb4

and A4A34 = λb3, where λ = A3A4
b12+b34

2

.

We use the substitutions for r12 and r34, ([11, Section 2,
p. 6]):

r12 ≡
A1A2

(b1 +b2 +
b12+b34

2 )(b1 +b2−
b12+b34

2 )(b2 +
b12+b34

2 −b1)(b1 +
b12+b34

2 −b2)
,

r34 ≡
A4A3

(b3 +b4 +
b12+b34

2 )(b3 +b4−
b12+b34

2 )(b3 +
b12+b34

2 −b4)(b4 +
b12+b34

2 −b3)
,

β12 = arccos(
A1A2

2r12
),

β34 = arccos(
A4A3

2r34
).
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Theorem 6 ([11, Theorem 4]) The following system of
equations w.r. to t34 and t12 allows the computation of
the position of the weighted Simpson line O12O34 of the
weighted full Steiner tree for A1A2A3A4 :

t34− t12 cosφ√
H2 + t2

12 sin2
φ

=
h′34− t34

r34
(42)

and

t12− t34 cosφ√
H2 + t2

34 sin2
φ

=
h′12− t12

r12
(43)

Proposition 5 ([11, Proposition 1])

t34− t12 cosφ√
H2 + t2

12 sin2
φ

=
m34− t34

a34

√
3

2

(44)

and

t12− t34 cosφ√
H2 + t2

34 sin2
φ

=
m12− t12

a12

√
3

2

(45)

Theorem 7 ([11, Theorem 5]) The following system of
equations w.r. to t34, t12 and ∠A4FA3 allows the compu-
tation of the position of the line defined by T12T34 of the
(unweighted) Fermat-Torricelli tree of A1A2A3A4 :

t34− t12 cosφ√
H2 + t2

12 sin2
φ

=
m34− t34

a34
2 tan ∠A4FA3

2

, (46)

t12− t34 cosφ√
H2 + t2

34 sin2
φ

=
m12− t12

a12
2 tan ∠A4FA3

2

, (47)

cot
∠A4FA3

2
= (48)

2(H2 + k1(t12− t2
34 cosϕ))+ k2(t34− t12 cosϕ)

(t12− k1)
√

H2 + t2
34 sin2

ϕ+(t34− k2)
√

H2 + t2
12 sin2

ϕ

.

We denote by ω the dihedral angle (twist angle) formed
by the planes A1A2T12T34 and A4A3T34T12, by ϕ12 =
∠A1T12T34 and ϕ34 = ∠A4T34T12.

Theorem 8 ([11, Theorem 6]) The twist angle ω is given
by

cosω =
cosϕ− cosϕ12 cosϕ34

sinϕ12 sinϕ34
. (49)

Remark 3 We correct two typographical errors that occur

in [11] by replacing
√

H2 + t34 sin2
φ by

√
H2 + t2

34 sin2
φ

and the angle ϕ34 by sinϕ34 in [11, Formula (3.1)].

Definition 7 A generalized regular tetrahedron is a tetra-
hedron, which determines a generalized (weighted) regular
quadrilateral, formed by rotating A1A2 or A3A4 by the twist
angle ω, w.r. to the (weighted) Simpson line A12A34.

We denote by ωF the twist angle formed by the planes de-
fined by 4A1FA2 and 4A3FA4 and by ωS the twist angle
formed by the planes4A1O12A2 and4A3O34A4.

Theorem 9 (Generalized regularity of tetrahedra) If
A1A2A3A4 is a generalized regular quadrilateral, then
generalized regular tetrahedra are derived by:
(i) rotating the twist angle ωF w.r. to the line defined by
M12M34

cosωF =
cosϕ− cos2∠A1M12F

sin2∠A1M12F
. (50)

or (ii)rotating the twist angle ωF w.r. to the Simpson line
defined by T12T34

cosωS =
cosϕ− cos2∠A1T12O12

sin2∠A1T12O12
. (51)

Proof. A generalized regular convex quadrilateral is a
trapezoid having the property: A1A2 ‖ A3A4. Thus, the
Fermat-Torricelli point F is the intersection of diago-
nals A1A3 and A2A4 and lies on the line defined by
M12M34, which yields ∠A1M12F = ∠A3M34F. By substi-
tuting ∠A1M12F = ∠A3M34F in (49), we obtain (50). We
recall that A1A2A12 and A3A4A34 are equilateral triangles
outward from A1A2A3A4 and the Simpson line intersects
A1A2 and A3A4 at T12 and T34, respectively. By substituting
∠A1T12O12 = ∠A3T34O34 in (49), we obtain (51). �

Remark 4 The position of A′′1 and A′′4 may be calculated
by Theorem 7.

Definition 8 A weighted regular tetrahedron is a tetrahe-
dron in R3, such that the weighted Simpson line L passes
through the weighted Fermat-Torricelli point F.

We assume that A1A2A3A4 is a weighted regular tetrahedron
A1A2A3A3, such that: M12M34 >> maxA1A2,A3A4.

Theorem 10 (Weighted regularity of tetrahedra) The
common perpendicular line of A1A2 and A3A4 passes
through the common midpoints M12 and M34, respectively,
if and only if b1 = b2 and b3 = b4.
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Proof. The weighted Simpson line passes through A12, A34,
the weighted Steiner nodes O12, O34, the weighted Fermat-
Torricelli point F and M12, M34. Therefore, 4A1A2A12
and A3A4A34 are isosceles triangles A1A12 = A2A12 and
A3A34 = A4A34, which yield b1 = b2 and b3 = b4. Hence,
it is shown one direction.
We assume that the common perpendicular line of A1A2
and A3A4 does not pass through the common midpoints
M12 and M34, b1 = b2 and b3 = b4. By substituting b1 = b2
and b3 = b4 and given a subconscious weight BS in (41), we
derive that ∠A1O12O34 = ∠A2O12O34 and ∠A3O34O12 =
∠A4O34O12. By substituting b1 = b2, b3 = b4 in (42) and
(43) we obtain the values of t12 and t34, in order to calculate
the twist angle ωS. By rotating A1A2 w.r. to A12A34 by ωS,
A1A2 ‖ A3A4, and A12A34 passes through M12, M34, other-
wise O12, O34 and F are not collinear. It proves another
direction and the theorem as well. �

We may follow the same evolutionary scheme for a
“botanological” thumb in R3. Taking into account that the
point seed which has got a subconscious BST is located
underground, an evolutionary two way communication net-
work will start to grow having two roots one main branch
and two branches. By assuming a constant mass flow conti-
nuity that corresponds to the two roots b1 = b2 (O12 is lo-
cated underground) one main branch with remaining weight
BST and two branches with weights b3 = b4 (O34 is located
overground). Therefore, by applying Theorem 10 we ob-
tain a boundary weighted regular tetrahedron formed by the
endpoints of two symmetrical roots and two symmetrical
branches, such that the main branch is perpendicular to the
ground.
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Visualization of Sphere and Horosphere Packings
Related to Coxeter Tilings by Simply Truncated
Orthoschemes with Parallel Faces

ABSTRACT

In this paper we describe and visualize the densest ball and
horoball packing configurations to the simply truncated 3-
dimensional hyperbolic Coxeter orthoschemes with parallel
faces, using the results of [24]. These beautiful packing
arrangements describe and show the very interesting struc-
ture of the mentioned orthoschemes and the corresponding
Coxeter reflection group. We use the Beltrami-Cayley-
Klein ball model of 3-dimensional hyperbolic space H3, the
images were made by the Python programming language.

Key words: Coxeter group, horosphere, hyperbolic geome-
try, packing, tilings

MSC2010: 52C17 52C22 52B15

Vizualizacija pakiranja sfera i horosfera povezanih
s Coxeterovim popločavanjem krnjim ortoshe-
mama paralelnih strana

SAŽETAK

U ovom radu opisujemo i vizualiziramo najgušće kon-
figuracije pakiranja sfera i horosfera na krnjim 3-
dimenzionalnim hiperboličnim Coxeterovim ortoshemama
s paralelnim stranama, koristeći rezultate [24]. Ovi lijepi
rasporedi pakiranja opisuju i pokazuju vrlo zanimljivu struk-
turu spomenutih ortoshema i odgovarajuće Coxeterove
zrcalne grupe. Koristimo sferni Beltrami-Cayley-Kleinov
model 3-dimenzionalnog hiperboličnog prostora H3. Slike
su izrad-ene programskim jezikom Python.

Ključne riječi: Coxeterova grupa, horosfera, hiperbolična
geometrija, pakiranje, popločavanje

1 Introduction

Visualization of mathematical problems is not only a repre-
sentation of specific objects or an approach in the teaching
process, but also plays an important role in understanding
the problem and developing solution steps. It can be shown
the deeper context of the problem and the possibilities to
move forward.

In hyperbolic spaces Hn for 2 ≤ n ≤ 9, the known dens-
est ball and horoball configurations are derived by Coxeter
simplex tilings, generated by reflections in the simplex hy-
perplanes [5]. In the former papers, they do not have parallel
faces.

In periodic ball or horoball packings, the local density de-
scribed below can be extended to the entire hyperbolic space
and it is related to the simplicial density function that we
generalized in [19] and [20]. In this paper, we shall use
such definition of packing density by [24].

A Coxeter simplex in Hn
has dihedral angles either integral

submultiples of π or zero. Thus, the group generated by re-
flections in the simplex side hyperplanes is isometry group
of Hn with the Coxeter simplex as fundamental domain.
Hence the group gives regular tessellations. We note here
that the Coxeter groups are finite for Sn, and infinite for En

or Hn
[1, 5, 7, 8, 9, 17, 23].

There are non-compact Coxeter simplices in Hn
with ideal

vertices in ∂Hn, however, only for dimensions 2 ≤ n ≤ 9;
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and only a finite number of them exists in dimensions n≥ 3,
see Johnson et al. [9] and Kellerhals [10]. Such simplices
are the most elementary building blocks of hyperbolic man-
ifolds, the volume of which is an important topological
invariant.

The simplicial packing density upper bound d3(∞) = (1+
1
22 − 1

42 − 1
52 +

1
72 +

1
82 − 1

102 − 1
112 + . . .)−1 = 0.85327 . . .

cannot be achieved by packing regular balls, instead it is
realized by horoball packings of H3

, the regular ideal sim-
plex tiles. More precisely, the centres of horoballs in ∂H3

lie at the vertices of the ideal regular Coxeter simplex tiling
with Schläfli symbol (3,3,6), see [2, 3, 4, 6, 18].

In [11] we have proved that this optimal horoball packing
configuration in H3 is not unique. We gave asymptotic
Coxeter packings by horoballs of different types, that have
different relative densities with respect to the fundamen-
tal domain, yielding the Böröczky–Florian-type simplicial
upper bound [4].

Furthermore, in [19, 20] we have found that, by allow-
ing horoballs of different types at each vertex of a totally
asymptotic simplex and generalizing the simplicial density
function to Hn

for (n≥ 2), the Böröczky-type density upper
bound is not valid for the fully asymptotic simplices for
n ≥ 4. For example, in H4

the locally optimal simplicial
packing density is 0.77038 . . . , higher than the Böröczky-
type density upper bound of d4(∞) = 0.73046 . . . using
horoballs of a single type. However, these ball packing con-
figurations are only locally optimal and cannot be extended
to the entirety of the ambient space Hn

. In [12] we found
seven horoball packings of Coxeter simplex tilings in H4

that yield densities of 0.71645, counterexamples to L. Fejes
Tóth’s conjecture stated in his foundational book Regular
Figures [6, p. 323].

In [24], we reported [13] and [14] and considered the Cox-
eter tilings in H3 where the generating orthoscheme was a
simple truncated one with some parallel faces i.e. their dihe-
dral angle is zero (symbol ∞). Here we studied the Coxeter
tilings with Schläfli symbol (∞,q,r,∞) (see Fig. 1. second
graph). We determined their optimal ball and horoball pack-
ings, proved that the densest packing was realized at tilings
(∞,3,6,∞), and (∞;6;3;∞) with density ≈ 0.8413392, see
Fig.1, 12, 19 and [20, 21, 22] and [14, 15, 16] for further
connections.

2 Basic Notions

For the computations and visualization, we use the projec-
tive model of the hyperbolic space H3 [1, 16, 23]. The

model is defined in general in the pseudo-Euclidean or
Lorentz space E1,n with signature (1,n), i.e. consider real
vector space Vn+1 equipped with the bilinear form:

〈 x, y〉=−x0y0 + x1y1 + · · ·+ xnyn

and the following equivalence relation:

x(x0, ...,xn)∼ y(y0, ...,yn)⇔∃ c ∈ R\{0} : y = c ·x

to interpret the same point [x] = [y] of Hn. The following
quadratic form (as a cone in V n+1):

Q = {[x] ∈ P n|〈 x, x〉= 0}=: ∂Hn

defines the boundary points (at infinity), the inner or proper
points of Hn (for them 〈 x, x〉 < 0), and the points lying
outside of Q are outer points of Hn (for them 〈 x, x〉> 0).
We can also define a linear polarity between the points and
hyperplanes: the polar hyperplane (a) of a point [x] ∈ P n is
Pol(x) := (a) = {[y]∈ P n|〈 x, y〉= 0}, and hence x∈Vn+1

is incident with a ∈ Vn+1 iff x a = 0. In this projective
model, we can define a metric structure related to the above
bilinear form, where for the distance of two proper (inner)
points:

cosh
(

d(x,y)
k

)
=

−〈 x, y〉√
〈 x, x〉〈 y, y〉

, (1)

(at present we may choose k = 1).

This corresponds to the distance formula in the well-known
Beltrami-Cayley-Klein model of Hn of constant curvature
K =−k2 =−1. We do not detail the analogous angle met-
ric for the dual form space V n+1 that present hyperfaces
and −cos expresses their angles of normal vectors (through
complex numbers), like in the spherical plane and space
[1, 9, 16, 17, 24](see also sect 3).
For a general projective coordinate simplex A0A1A2A3

we use the vector basis a0,a1,a2,a3 ∈ V4; for its faces
b0,b1,b2,b3 stand b0,b1,b2,b3 ∈ V 4 with aib j = δ

j
i , the

Kronecher symbol (Einstein convention). A symmetric lin-
ear polarity, i.e. plane −→ point mapping: V 3 u −→
u ∈ V4 will be defined by bi −→ Bi, bi −→ bi ja j with
bi j = b ji(i, j ∈ {0,1,2,3}), equivalent with a scalar prod-
uct 〈u,v〉 −→ R, 〈biui,b jv j〉 = biruiarb jv j = uibirδ

j
rv j =

uibi jv j.
If the polarity is invertible, i.e (bi j)−1 = ai j = 〈ai,a j〉, as
for H3, then forms (normal vectors of planes) and vectors
can be “identified”, as later on a polar plane←→ with its
pole point in H3.

65



KoG•25–2021 A. Yahya, J. Szirmai: Visualization of Sphere and Horosphere Packings Related to Coxeter Tilings......

3 The structure of truncated asymptotic or-
thoscheme

Our aim is to visualize the truncated simply asymptotic
orthoschemes that contain parallel faces in H3. This or-
thoschemes are represented by their Coxeter graphs (see
Fig.1-2), where the angle parameters p,q,r satisfy the in-
equalities π

p +
π

q < π

2 and π

q +
π

r ≥
π

2 .

Figure 1: Coxeter graphs of truncated asymptotic or-
thoscheme

Figure 2: A simply truncated orthoscheme with polar a3 of
A3

π

p +
π

q < π

2 , π

q +
π

r ≥
π

2

First, we will study the truncated orthoschemes that have the
corresponding singular Coxeter-Schläfli matrix as follows
(e.g from [7, 17]):

C =


1 −cos( π

p ) 0 0 0
−cos( π

p ) 1 −cos(π

q ) 0 0
0 −cos(π

q ) 1 −cos(π

r ) 0
0 0 −cos(π

r ) 1 c4
0 0 0 c4 1

 ,
(2)

where the constant c4 can be uniquely determined by the
zero determinant condition

c4 =−

√√√√1+ cos2( π

p )cos2( π

r )− cos2( π

p )− cos2( π

q )− cos2( π

r )

1− cos2( π

p )− cos2( π

q )
.

In our case, there are two parallel faces that meet in an ideal
point. That means the dihedral angle between these two
hyperplanes is equal to 0. Therefore, we assume that these
two hyperplanes are b0 and b1. Thus, their dihedral angle is
w01 = π

p → 0, if p tends to ∞, then Coxeter-Schläfli matrix
(2) would change to the following form

C
′
=


1 −1 0 0 0
−1 1 −cos(π

q ) 0 0
0 −cos(π

q ) 1 −cos(π

r ) 0
0 0 −cos(π

r ) 1 −1
0 0 0 −1 1

 . (3)

As a consequence, plane b3 and the polar plane a3 of vertex
A3 will also be parallel, as the second graph in Fig. 1 shows.

The computer visualization of the truncated orthoschemes
are given in Fig. 4.

Figure 3: Truncated orthoscheme with the two intersection
pairs of its parallel faces. b0 and b1 intersect in
ideal line k, b3 and a3 = A2A4A5 do that in l. The
ideal vertex A2 ∈ k, l.
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Figure 4: Truncated orthoscheme, where the truncating
face is A2A4A5

4 On sphere packings

In constructing the insphere, the largest inscribed classical
sphere, in the truncated orthoscheme, we followed in [24]
the procedure of [8] by bisector hyperplane.

The visualization of the optimum insphere in truncated or-
thoscheme (∞,3,3,∞) is given in Fig. 5. The problem may
occur if the insphere intersect the truncating hyperplanes a3

(see Fig 6).

The complete packings densities of insphere packings (and
their optimum density) can be found in [24], that gave the
optimum packing density ≈ 0.2623649, attained by sphere
packing in (∞,3,3,∞), small enough, not relevant, related
to [17].

Figure 5: Optimum insphere in the truncated orthoscheme
(∞,3,3,∞)

Figure 6: The insphere intersects the truncating polar plane
a3 of vertex A3

5 On horosphere packings

A horosphere in hyperbolic geometry is the surface orthog-
onal to the set of parallel lines, passing through the same
ideal point on the absolute quadratic surface (simply abso-
lute) ∂Hn (at present n = 3).

We introduce Cartesian homogeneous projective coordinate
system using vector basis ei (i = 0,1,2,3) for P 3 where the
coordinate centre of the model is O = (1,0,0,0) = e0. We
pick an arbitrary point at infinity A2 = (1,0,0,1).

As it is known, the equation of a horosphere with centre
A2 = (1,0,0,1) through point S = (1,0,0,s) (s ∈ (−1,1))
is

(s−1)2

1− s2 (−x0x0 + x1x1 + x2x2 + x3x3)+(x0− x3)
2
= 0

This surface can be described in the usual Cartesian coordi-
nate system by the formula

2(x2 + y2)

1− s
+

4(z− ( s+1
2 ))2

(1− s)2 = 1, (4)

where x = x1

x0 , y = x2

x0 , z = x3

x0 .

In computer visualization, it is very powerful to convert the
horosphere equation into a polar coordinate system. We use
the following conversion

x =

√
1− s

2
cosθsinφ, y =

√
1− s

2
sinθsinφ,

z =
1+ s

2
+

1− s
2

cosφ, (5)

where parameters θ ∈ [0,2π), φ ∈ [0,π].
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We will apply the previous truncated orthoscheme (based
on the set of unit normal Napier cycles) in [7, 24] as before.

We separate our discussion into two cases depending on
the number of vertices lying at infinity A0, A2 or both. We
can also attach two horospheres altogether, where they are
touching each other on edge A0A2.

5.1 Packings with one horosphere

We have some truncated orthoschemes given with Schläfli
symbols such that it has only one point at the in-
finity: (∞,3,3,∞), (∞,3,4,∞), (∞,3,5,∞), (∞,4,3,∞),
(∞,5,3,∞). However, if the truncated orthoscheme has
two ideal vertices of truncated orthoscheme we can also
study the corresponding horosphere packing centred at one
either of these vertices.

It is clear that the densest horoshpere packing configuration
would be reached whenever this horosphere (horoball) with
centre A2 touch the opposite face (represented by hyper-
plane b2). One could simply take the projection of A2 into
b2 by the projection formula a2 7−→ ap

2 = a2−〈a2,b2〉b2.
The optimal horosphere should contain the point Ap

2 there-
fore we can determine the parameter s and so the actual
equation (4) of the horosphere.

We provide the computer visualization of optimum horo-
spheres packing, attained by truncated orthoscheme tilings
with Schläfli symbols (∞,3,3,∞), in Fig. 7-9. The optimum
packing density is ≈ 0.8188080, see [24].

Figure 7: The largest horoball related to truncated or-
thoscheme of tiling (∞,3,3,∞)

Figure 8: The neighbouring turncated orthoschemes to
horosphere configuration (first crown) to tiling
(∞,3,3,∞)

Figure 9: The first to third crowns of neighbouring horo-
sphere configurations to tiling (∞,3,3,∞)

5.2 Packing with two horospheres

Now, we focus on the orthoscheme tiling with the Schläfli
symbols (∞,3,6,∞), (∞,4,4,∞), and (∞,6,3,∞).

Figure 10: Two horospheres, B0 and B2, that touch each
other at a point lying on edge A0A2
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Remark 1 : These two horospheres could not intersect the
opposite faces b0 and b2, therefore there will be a restric-
tion for the movement of the point of tangency along edge
A2A0.

We can parameterize the possible movement of the
point of tangency P along edge A2A0, see Fig. 10, e.g.
P(r(t)) = (1− t)a2 + t ·a0. Then, for every possible t, we
have parameters si (i = 1,2) related to both horospheres.

Optimal horoball packing of tiling (∞,4,4,∞)

In this situation, we have quite interesting structure, we
obtain that the possible parameter of t lies in [≈ 0.2150 <
t <≈ 0.3497]. We can compute the volumes of horoball
sectors as the functions of t. It is analogous to the previous
case, the volume function of horoball sectors centred at
A2 is a monotonic increasing function of t if the point of
tangency moving with direction to A0 while the volume
function of horoball sectors centred at A0 is decreasing in
this situation.

In this case, we proved (in [24]) that the density was in-
creasing as a function of t, see Fig. 11. Furthermore, the
maximum density δopt ≈ 0.8188081 is attained when t is
largest, i.e when the horosphere centred at A2 touches the
opposite face b2.

Figure 11: The plot of density function for all possible t in
case (∞,4,4,∞)

Optimal horoball packing of tilings (∞,3,6,∞) and
(∞,6,3,∞)

We similarly visualize the densest horosphere (horoball)
packings to the truncated orthoscheme tilings with Schläfli
symbol (∞,3,6,∞) and (∞,6,3,∞).

Figure 12: Two horospheres, B0 and B2, that touch each
other at the point lying on A0A2 related to tiling
(∞,3,6,∞).

Figure 13: Adjacent orthoschemes and the corresponding
horosphere configuration (first crown) to trun-
cated orthoscheme tiling(∞,3,6,∞)

Figure 14: The horosphere configuration (first crown) related
to tiling (∞,3,6,∞)
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Figure 15: The optimum packing density horospheres con-
figuration (first-third crown) to the orthoscheme
tiling (∞,3,6,∞) with density 0.8413392.

There are some basic facts for these (dual) orthoschemes.

1. In these symmetric dual situations, there is only one
possible value of parameter t in each case, t(3,6) ≈
0.2119416, t(6,3), ≈ 0.5745582.

2. If (q,r) = (3,6) then the optimal horosphere B2
touches the plane b2 and B0 touches the face b0 and if
(q,r) = (6,3) B2 touches the plane b2 and B0 touches
the polar face a3.

3. The packing density of these two configurations are
the same, ≈ 0.8413392, see [24].

Finally, we give the computer visualization in Fig. 12-15
related to Coxeter tiling (∞,3,6,∞) and in Fig. 16-19 for
Coxeter tiling (∞,6,3,∞).

In our opinion, non-Euclidean tilings and packings and their
investigations will play an important role in the research of
material structure in the near future, thus visualization of
them is also important to know them better.

Figure 16: Two horospheres, B0 and B2, that touch each
other at a point on edge A0A2 related to tiling
(∞,6,3,∞).

Figure 17: The horosphere configuration (first crown) to trun-
cated orthoscheme tiling (∞,6,3,∞)

Figure 18: The optimum packing density horosphere con-
figuration (first-second crown) related to the or-
thoscheme tiling (∞,6,3,∞).

Figure 19: The optimum packing density horosphere configu-
ration (first-third crown) to the orthoscheme tiling
(∞,6,3,∞).
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Birkhäuser, Basel, 1981.
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Jenö Szirmai
orcid.org/0000-0001-9610-7993
e-mail: szirmai@math.bme.hu

Budapest University of Technology and Economics
Institute of Mathematics, Department of Geometry
Budapest, P. O. Box: 91, H-1521

71

http://homepages.math.uic.edu/rkozma/SVOHP.html)
http://homepages.math.uic.edu/rkozma/SVOHP.html)


KoG•25–2021 L. Weydemann, C. Clemenz, C. Preisinger: On the Structural Properties of Voronoi Diagrams

https://doi.org/10.31896/k.25.8
Review
Accepted 25. 11. 2021.

LEONARD WEYDEMANN
CHRISTIAN CLEMENZ

CLEMENS PREISINGER

On the Structural Properties of
Voronoi Diagrams

On the Structural Properties of Voronoi
Diagrams

ABSTRACT

A Voronoi diagram is a tessellation technique, which sub-
divides space into regions in proximity to a given set of
objects called seeds. Patterns emerging naturally in biolog-
ical processes (for example, in cell tissue) can be modelled
in a biomimicry process via Voronoi diagrams. As they
originate in nature, we investigate the physical properties
of such patterns to determine whether they are optimal
given the constraints imposed by surrounding geometry
and natural forces.
This paper describes under what circumstances the
Voronoi tessellation has optimal (structural) properties by
surveying recent studies that apply this tessellation tech-
nique across different scales. To investigate the properties
of random and optimized Voronoi tessellations in compar-
ison to a regular tessellation method, we additionally run
and evaluate a simulation in Karamba3D, a parametric
structural engineering tool for Rhinoceros3D.
The novelty of this research lies in presenting a simple
and straightforward simulation of Voronoi diagrams and
highlighting how and where their advantages over regular
tessellations can be exploited by surveying more advanced
approaches as found in literature.

Key words: Voronoi diagrams, 3D tessellations, 3D scaf-
folds

MSC2010: 51-02, 52C25, 05B45

O strukturalnim svojstvima Voronoi dijagrama

SAŽETAK

Voronoi dijagram je tehnika popločavanja koja čini par-
ticiju prostora s obzirom na udaljenosti od zadanog
skupa objekata koje nazivamo lokacije (en. seeds).
Uzorke koji nastaju tokom bioloških procesa (na prim-
jer u staničnom tkivu) možemo modelirati biomimikrij-
skim procesima korǐstenjem Voronoi dijagrama. Kako je
izvor takvih struktura prirodan, proučavamo fizička svoj-
stva takvih uzoraka da bismo ispitali njihovu optimalnost
s obzirom na ograničenja koja nameću vanjska geometrija
i prirodne sile.
U ovom članku opisujemo slučajeve u kojima je Voronoi
popločavanje (strukturalno) optimalno proučavanjem ne-
davnih ispitivanja koja ovo popločavanje koriste u
različitim razmjerima. Da bismo usporedili svoj-
stva slučajnog te optimiziranog Voronoi popločavanja
i metode pravilnog popločavanja, razvili smo simu-
laciju korǐstenjem Karamba3D, alata za parametarsko
strukturalno inženjersko modeliranje unutar programa
Rhinoceros3D.
Novost ovog istraživanja je predstavljanje jednostavne i
izravne simulacije Voronoi dijagrama, isticanje njenih pred-
nosti nad pravilnim popločavanjima te pregled korǐstenja
tih prednosti u naprednijim pristupima iz literature.

Ključne riječi: Voronoi dijagrami, 3D popločavanja, 3D
konstrukcije

1 Introduction

Figure 1 shows some example patterns found in nature next
to a two-dimensional Voronoi diagram, exemplifying the
resemblance between some naturally arising patterns and
Voronoi tessellation. Since these patterns arise naturally

we ask ourselves if there is a reason for this occurrence.
If this pattern developed through evolution, there might be
some properties that are optimal under constraints imposed
by geometry and natural forces. To this end we first created
a three-dimensional Voronoi diagram in Grasshopper and
investigated its structural properties using the Karamba3D
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(a)

(b)

(c)
Figure 1: (a) shows a two-dimensional Voronoi diagram within a square boundary. (b) shows a similar pattern found in

dragonfly wings. (c) shows foam in a transparent cube, after it has settled, displaying a Voronoi-like pattern1.

[10] plugin, a structural engineering tool. We do this by
creating random Voronoi tessellations of a cube. We com-
pare this to a regular triangle mesh tessellation. Since evo-
lution is an optimization process, we further test a model
of a Voronoi tessellation which is optimized in terms of
weight and elastic energy of the structure using Octopus
[11], which employs a genetic algorithm. We then research
relevant literature which employs Voronoi diagrams and
exploit its properties in some way. The paper is structured
as follows: In Section 2 we discuss the definition and cre-
ation of a Voronoi diagram. Section 3 compares random
and optimized Voronoi tessellations of a cube with a regu-
lar triangle mesh under load. We survey relevant literature
on methods where the properties of Voronoi diagrams can
be exploited in Section 4. Finally, we give our closing re-
marks on how and when Voronoi diagrams can be utilized
in Section 5.

2 Background

The Voronoi diagram describes a partition of space into
regions surrounding a number of seed points. The defi-
nition below follows the one found in [1]. For the two-
dimensional case, let S be the set of n seed-points. The
dominance of a seed p over q, p,q ∈ S, is defined as

dom(p,q) = {x ∈ R|δ(x, p)≤ δ(x,q)}. (1)

Here, δ describes the Euclidean distance. This can be
adapted for higher dimensions and other metrics. A result

of this is the partitioning of space into points lying closer
to p or q, creating regions per seed p where portions of
the plane lie in all of the dominances of p over remaining
seeds in S. Formally, this means

reg(p) =
⋂

q∈S−p

dom(p,q). (2)

For each region, the boundary consists of at most n− 1
edges and vertices, the endpoints of the edges. The points
lying on an edge are equidistant from exactly two seeds.
The vertices are equidistant from at least three. Thus, the
regions form a polygonal partition of the plane, which is
called the Voronoi diagram. For a large number of seeds,
the Voronoi diagram converges towards a hexagonal pat-
tern [2]. The Voronoi diagram is named for GEORGY
F. VORONOY, who investigated the n-dimensional case in
1908 [12].

3 Simulation of a 3D Voronoi structure un-
der load

Using Karamba3D [10], a structural engineering tool, we
modelled three structures within a cube: a random Voronoi
tessellation, a regular triangle mesh tessellation, and an
optimized Voronoi tessellation. We use built-in com-
ponents of Grasshopper to model the Voronoi structure
which in turn is used as input for the Karamba3D model.
Karamba3D transforms the Voronoi structure into beams
which together with supports and loads are assembled into

1Photographs c©Georg Glaeser, with permission.
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(a) Triangle mesh tessellation (b) Random Voronoi tessellation (c) Optimized Voronoi tessellation

Figure 2

a structural model. When building a structure, we usually
aim for something which is light and stiff, saving on mate-
rial cost while still preserving stability. For this reason, we
compare the models in terms of mass and elastic energy,
aiming for a minimum of both. Elastic energy can serve as
a measure of stiffness, the resistance against deformation.
It is given in kNm. All tessellations are confined to a cube
of 5m length. Each steel-beam is modelled as a tube with a
diameter of 114mm, and its walls have a thickness of 4mm.
A uniformly distributed load is applied on top of the cube
in negative z-direction, the points where the beams join on
the xy-plane serve as supports.
For the initial Voronoi structure, we begin by randomly
placing

s ∈ {10,20,30,40,50,75,100}

seeds within the cube to create the Voronoi cells. This is
repeated 500 times, and elastic energy as well as mass are
averaged for each N. Next, we create a triangle mesh by
subdividing the cube into

n ∈ {23,33,43,53,63,73,83}

smaller cubes and splitting them into two tetrahedra. This
way we can compare the irregular Voronoi tessellation to
a triangle tessellation of similar mass. We chose this tri-
angle mesh as being representative of a regular tessellation
method.
Finally, we create random Voronoi cells with the same
number of seeds as above, but this time we employ a
genetic algorithm to find optimal positions for the seed
points, minimizing both mass and elastic energy. To this
end we use the multi-objective optimization package Oc-
topus [11]. This introduces the Pareto principle for multi-
ple goals.Octopus uses genome components as well as the
objectives (mass and elastic energy) as input. We mod-

elled the x,y, and z coordinates of the seed points as three
genome components on the input side, which are further
fed as input to the Karamba3D components creating the
structural model. Mass and elastic energy, as calculated by
the Karamba3D components, are then minimized by Oc-
topus using a genetic algorithm. This means Octopus re-
arranges the x,y, and z coordinates of the input genomes,
which in turn are used by Karamba3D to update the model.
For optimization we need to pick a number of generations
after which we stop the optimization process. Choosing a
fixed number for all seeds gave an unfair advantage to the
structures with a lower amount of seed points, as an op-
timal solution is found more quickly for a low amount of
seeds. We instead set the number of generations to be twice
the amount of seed points. This ensures that we can com-
pare the results for a different amount of seeds. We then
pick a solution on the Pareto front which satisfies both ob-
jectives equally well, by choosing the one closest to the
bisector of the oriented coordinate axes. A better alterna-
tive would be to stop the optimization process when the
optimal solution only shows a marginal change within a
pre-defined timeframe. This, however, is not implemented
as a standard feature in Octopus.
We now compare the models first by examining their struc-
tures visually in Fig. 2. The number of cells for the Voronoi
structures is set to 20. The subdivisions for the triangle
mesh were set to 2 in order to arrive at a similar mass.
Fig. 2 shows the utilization plot of the three models with
the lower and upper threshold set to 20% and 80% of the
minimum and maximum utilization respectively. The uti-
lization is plotted uniformly between its extremes in red
and blue. Values outside the range are colored in green or
yellow. For the triangle mesh model one can see that the
bending and axial deformation energy is strongest on the
top of the structure where the load is applied. The bottom
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Figure 3: Comparison of elastic energy as a function of mass for random Voronoi structure, triangle mesh structure and
optimized Voronoi structure. Random Voronoi has a lower elastic energy for lower number of seeds than the
triangle mesh tessellation. Optimized Voronoi structure outperforms both in terms of weight.

part appears mostly rigid, which is in contrast with the ran-
dom and optimized Voronoi structures. Here, higher defor-
mation energy is present throughout the structures. How-
ever, the optimized structure shows this to a lesser extent
than the random structure. This agrees with the plots in
Fig. 3 described below. With regard to the triangle mesh, it
should be noted that the larger angles found in the Voronoi
structures make them easier to construct. A striking fea-
ture of the optimized Voronoi tessellation, is the apparent
formation of a cupola-like structure in the lower parts of
the cube, which distributes the load evenly. In Fig. 3 we
compare the models by plotting their respective elastic en-
ergy as a function of their mass. Looking at triangle mesh
and random Voronoi tessellation plots, we can see that for
low subdivisions the triangle mesh shows a high elastic en-
ergy. Clearly the random Voronoi-modelled structure is
superior for a lower mass. This changes at a mass around
9000kg. With more subdivisions the triangle structure is
now more resistant to stress than the Voronoi structure of
a similar mass. The optimized Voronoi structure is highly
stable already at low mass. Comparing the mass of the
three structures at an elastic energy of 0.001kNm, for ex-
ample, we see that the optimized structure weighs only ap-
proximately 1800kg whereas the other two already have a
mass of over 9000kg at this point. Consequently, from a
material utilization point of view, the triangle mesh is su-
perior, whereas when aiming for light and rigid structures,
the optimized Voronoi structure is preferable. The ”bump”
in the graph of the optimized Voronoi that can be seen at
the point for 30 seeds (third from left) can be explained
by a local optimum, where the genetic algorithm might not
have found the true optimum after the respective number
of generations. Owing to the random nature of the algo-
rithm, the results generally may vary, but the general trend
of the graph will remain the same.

To compare their performance in terms of weight and rigid-
ity, we plot the models’ respective elastic energy as a func-
tion of mass in Fig. 3.
The plots generally show a trend towards low elastic en-
ergy the more mass ,i.e. beams are added. Comparing ran-
dom and triangle mesh tessellation, we see that the random
Voronoi outperforms the triangle mesh in terms of elastic
energy up to a mass of about 9000kg. Heavier triangu-
lar structures, however, are more rigid than their Voronoi
counterparts at approximately the same mass. The opti-
mized Voronoi structures are much lighter than both ran-
dom and triangle tessellation, while still retaining simi-
lar rigidity. For example, to reach an elastic energy of
around 0.001kNm the optimized Voronoi structure weighs
1800kg, whereas random and triangular Voronoi structures
have a mass of approximately 8600kg and 8000kg respec-
tively at the same value for elastic energy.
To summarize: Random Voronoi structures give a good
out-of-the-box solution when a low number of seeds is
used and are comparable to regular triangle meshes. How-
ever, we can still optimize the position of the seeds to in
turn create structures that clearly outperform triangle tes-
sellations of similar weight.

4 Related Work

Finding that random Voronoi structures can still be im-
proved by optimization processes, we have reviewed recent
literature where structures can be manufactured or at least
simulated by using Voronoi tessellation as an initial step
before optimization. We identify two main areas where the
structural properties of Voronoi diagrams are applicable:
additive manufacturing and to a lesser extent architecture,
where an important role is attributed to aesthetics, which is
secondary to our interest.
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4.1 Additive Manufacturing

More commonly known as 3D printing is the process of
constructing a 3D-model from a digital model. There are
a number of different ways to achieve this, a popular one
being fused filament manufacturing. Here a thermoplastic
material is melted to iteratively build a 3D-model through
the use of a movable nozzle. Generally speaking, the sur-
veyed papers all deal with the infill pattern of models, as
printing a solid model needlessly wastes material. Since
a completely hollow object would not be very resistant to
stress, however, an infill pattern is sought that minimizes
material use and maximizes resistance to stress. To this
end a variety of optimization strategies are employed to
find an optimal positioning of the Voronoi seed cells. As
we will see, it is also possible to achieve different kinds of
elastic behaviour.
Öncel and Yaman [8] use topological optimization under
specific load and support conditions and finite element
analysis to define a number of density regions where the
average stress is larger, and thus, more seeds need to be
placed. This creates an infill pattern using hollow Voronoi
cells. The objective of the optimization process is a pat-
tern that minimizes the maximum deflection and mass of
the printed object. They test their approach on three dif-
ferent models by comparing the performance of random
Voronoi tessellation to their approach. The approach can
be used in a given geometry, and the optimized Voronoi in-
fill pattern exhibited higher mechanical performance than
random Voronoi structures for the same model.
In a similar approach by Lu et al. [4], an optimal strength-
to-weight ratio for 3D-printed objects is found by using ir-
regular Voronoi diagrams for a hollowed interior structure.
In order to find an optimal placement of the Voronoi cells,
an initial stress map is computed. Additionally, the hollow-
ing of the cells is maximized so that interior and exterior
stresses can be sustained while minimizing the amount of
material used.
A more biomimetic approach is given in Deering et al. [3]:
Here, porous scaffolds are proposed to mimic the natural
structure of trabecular bone by using Voronoi tessellation
with selective seeding. Stress shielding effects, where an
implant’s high stiffness results in a stiffness discrepancy
between surrounding bone and the implant, are an impor-
tant factor for osseointegration. Since the geometry and
size of the pores in the material influence the effects of
stress on the scaffold, this approach aims to mimic the
anisotropic network of struts and plates of trabecular bone.
This is done by selectively placing Voronoi seeds on peri-
odic planes within the volume. The resulting structure has
a similar performance as the one measured in human bone.
Contrary to the objectives of the papers before, in the work
by Martinez et al. [5], the goal is a structure which ex-
hibits elastic behaviour. Through the use of a polyhedral

cone-like metric for the Voronoi diagram its geometry is
changed. Varying the density, anisotropy, and angle of the
design results in a graded elastic behaviour of the printed
structure. This allows the printing of objects which can be
both rigid and elastic in parts: for example, the creation
of a cylinder which remains vertically rigid but allows for
rotation in one direction. This is applicable to the design
of prosthetics or wheels. Note that a rubber-like printing
material is used in this case.

4.2 Architecture

To show whether the aforementioned properties of
Voronoi-inspired techniques scale to larger structures, we
survey approaches in the area of architecture. Since aes-
thetics play a larger role, the approaches are more limited.
Mele et al. [6, 7] investigate the mechanical properties of
irregular structural patterns as applied to tube configura-
tions for tall buildings at macro-scale. The aim being to
investigate properties of irregular patterns, with respect to
constructability. In a first step, hexagonal patterns - non-
regular patterns based fully on Voronoi diagrams, mixed
regular patterns, and irregular patterns - are examined. Pat-
terns generated from a regular hexagonal pattern are char-
acterized by density degree and irregularity degree which
can be varied along the building’s height. The resulting
Voronoi tube structure carries tributary gravity loads and
total wind load. The mechanical properties of the Voronoi-
based structures were examined by representative volume
elements-based approach. It was observed that irregular
patterns are lighter, and the design procedure seemed use-
ful for the initial design of such structures.
For use in the design of grid-shell structures, Pietroni et al.
[9] propose a framework based on Voronoi diagrams which
also exhibits good static performance, comparable to more
conventional triangle or quad-based grid-shell structures.
Using a finite element static analysis of the input sur-
face, they create a stress tensor field according to which
the tessellation’s elements are sized and aligned. To ac-
count for aesthetics, they adapt the cell’s geometry to form
hexagons.

Common to the mentioned works is that Voronoi diagrams
serve as an initial step in the design process but can be
optimized towards fulfilling certain criteria. The Voronoi
structure’s properties of seed location, as well as the cells’
size, orientation and geometry are due to change because
of the optimization procedure. This approach scales from
3D printed objects to larger structures.

5 Conclusion

In this paper we have investigated the structural properties
of Voronoi tessellations under stress, inspired by the occur-
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rence of similar patterns in nature. In a simple simulation,
we have shown that random Voronoi diagrams can be used
for the creation of structures which are rigid under applied
load while being significantly lighter than a regular trian-
gle mesh tessellation up to a certain point. These Voronoi
structures can still be optimized by selective placement of

their seeds. We have surveyed papers where light and rigid
structures are desired and identified two areas of applica-
tion: additive manufacturing and to a lesser extent architec-
ture. Voronoi structures give a good starting point, but their
seed placement, cell-orientation, cell-size, cell-geometry
can be further optimized to fulfil a stated objective.
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[5] J. MARTÍNEZ, S. HORNUS, H. SONG, S. LEFEB-
VRE, Polyhedral Voronoi Diagrams for Additive
Manufacturing, ACM Transaction on Graphics 37(4)
(2018), 15.

[6] E. MELE, M. FRALDI, G. M. MONTUORI, G. PER-
RELLA, V.D. VISTA, Hexagrid-Voronoi transition in
structural patterns for tall buildings, Frattura e In-
tegrita Strutturale 13(47) (2019), 186–208.

[7] E. MELE, M. FRALDI, G. M. MONTUORI, G. PER-
RELLA, Non-conventional Structural Patterns for Tall
Buildings: from Diagrid to Hexagrid and Beyond,
Frattura e Integrita Strutturale (2016).
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ABSTRACT

In this paper we present a review of the basic ideas and
results concerning asymptotic lines of plane curves. We
discuss their different definitions, namely that of a limit-
ing position of tangent lines, of the tangent line at infinity,
and finally the one that requires that the distance between
points of a curve and asymptotic line tends to 0 as the
point moves along an infinite branch of the curve. We
also recall the method of determining asymptotes of alge-
braic curves from the leading coefficients in their equation
and provide examples.

Key words: plane curve, asymptote, limiting tangent
line, tangent at infinity
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Asimptote ravninske krivulje - ponovni pogled

SAŽETAK

U ovom radu dajemo pregled osnovnih ideja i rezultata
vezanih uz asimptote ravninskih krivulja. Raspravljamo o
njihovim različitim definicijama, naime, o definiciji kao o
graničnom položaju tangenata, o definiciji kao o tangenti
u beskonačnosti, te konačno o definiciji koja zahtijeva da
udaljenost izmed-u točke krivulje i asimptote teži 0 kako
se točka kreće duž beskonačne grane krivulje. Takod-er
se prisjećamo metode odred-ivanja asimptota algebarskih
krivulja iz vodećih koeficijenata u njihovoj jednadžbi te
navodimo primjere.

Ključne riječi: ravninska krivulja, asimptota, granična
tangenta, tangenta u beskonačnosti

1 Introduction

Many plane curves have asymptotes. They are an in-
evitable part of the curve sketching. In this paper, the term
asymptote will primarily refer to the asymptotic straight
line, where, of course, there exist other asymptotic curves
such as asymptotic parabolas or cubic curves, or asymp-
totic points.

In the first encounter with the notion an asymptote is very
often described as a straight line that approaches a curve
but never touches it which is a suitable description for the
prototype school examples of curves, such as a hyperbola
as the graph of a rational function f (x) = 1/x, the graph
of an exponential and logarithmic function, or a hyperbola
as a curve in analytic geometry. However, rigorous math-
ematical definition which developed through history in-
cludes the possibility that the curve intersects its asymptote
or that it oscillates around the asymptote. In this historical
development, we can mention Apollonius of Perga (262

BC-190 BC) who introduced the aforementioned descrip-
tion of an asymptote of a curve as “lines [a curve and its
asymptote] which do not meet, in whatever direction they
are produced” [21]. Much later, in his work on perspective,
Desargues (1591-1661) took a different approach, namely
that of projective geometry, and introduced asymptotes as
tangent lines at infinity, whereas Newton (1643-1727) used
asymptotes as the main tool in classification of cubics on
the account of their points at infinity [1]. In historical cal-
culus sources from the transition between 19th and the 20th

century, an asymptote of a curve was given as the limiting
position of a tangent line to the curve when the point of
tangency moves away from the origin, or a line, the dis-
tance of which from a point in a curve diminishes as the
point moves away from the origin [3, 4, 5, 6, 18, 22].

In school and early university mathematics asymptotes are
considered for graphs of real (smooth) functions. There is
no unique or “the best” choice of definition, which may be
confirmed by the following quotations:
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“My own preference is for the limiting tangent definition,
partly because I feel that asymptotes have something to do
with tangents, and partly because it is easier to use than the
rival definitions” ([8], p. 281);
and
“The limit of tangents may not exist, even when asymp-
totes exist [in the sense of definition by distance]. This fact
shows that the limit of tangents is not a suitable definition
of an asymptote” ([6], p. 91).
In our previous work we were interested in students’ recol-
lection of the notion of asymptote [13, 12, 11]. Motivated
by the richness of the notion, our aim here is to present a
mathematical review of the basic ideas and results concern-
ing asymptotes of plane curves that goes beyond school
requirements.

2 Definitions of an asymptote

Definition 1 [23] A line l is an asymptote to a curve if the
distance from a point P to the line l tends to zero as P tends
to infinity along some unbounded part of the curve.

Definition 2 [9] Asymptotes are the limits of tangent lines
when the point of contact tends to infinity.

Definition 3 [19] An asymptote of a plane curve is a tan-
gent to the projective curve determined by it at a point at
infinity, which tangent is not the line at infinity.

These definitions are not equivalent in general. In the fol-
lowing we first analyze what they imply.

Distance between points in Definition 1 is taken as the Eu-
clidean distance. But if this distance tends to zero, then
the vertical (for a horizontal or oblique asymptote) or the
horizontal distance (for a vertical asymptote), also tends to
zero [2, 6, 15]. The vertical or the horizontal distance is
the absolute value of difference of the corresponding coor-
dinates of a point on a curve and on an asymptotic line.
This consideration implies that, following Definition 1, a
line y = kx+ l is an asymptote of a function f : I → R of
class C1, where I ⊂ R is an open interval, if and only if
lim
x→∞

( f (x)− kx− l) = 0 [15]. Now it follows

k = lim
x→∞

f (x)
x

, l = lim
x→∞

( f (x)− kx). (1)

To use Definition 2, we start from a tangent line of a curve
which is the graph of a function f at a point (x0, f (x0)),
and given by

y = f ′(x0)x+ f (x0)− f ′(x0)x0.

The graph of a function f has a limiting tangent line if and
only if the direction of the tangent line and its intercept

with y axis have limiting value, that is, the limits

lim
x0→∞

f ′(x0), lim
x0→∞

( f (x0)− f ′(x0)x0)

exist [4, 8]. If lim
x0→∞

f ′(x0) =∞ the function might still have

vertical asymptote.
We reason similarly for parametrized curves or curves
given by implicit equations; to find a tangent line of a
curve c(t) = (u(t),v(t)) or a curve given by F(x,y) = 0
requires looking at the limiting value of the gradient v′/u′

or − ∂F
∂x /

∂F
∂y , and if the limit exists, then looking at the lim-

iting value of the intercept of the tangent line on the axis
[4, 8].
Definition 3 is set up in projective plane which is also a nat-
ural way of thinking about asymptotes. We extend R2 and
assume the following correspondence between R2 and P2,
which maps a point at infinity of the curve in the direction
of x→ ∞ to the origin of the real plane

(x,y) 7→ [x,y,z] 7→ [z,y,x] =
[ z

x
,

y
x
,1
]
7→
( z

x
,

y
x

)
. (2)

First arrow represents the mapping P : R2→ P2, P(x,y) =
[x,y,z], where points in P2 are equivalence classes given
with [x,y,z] = {(αx,αy,αz),α ∈ R, α 6= 0}. Second is
projective transformation T : P2→ P2, T [x,y,z] = [z,x,y],
such that T 2 = id. Last is the mapping R : P2 → R2,
R[z,y,x] = (z,y). An asymptote, as the tangent at infin-
ity, corresponds to the tangent line at the origin following
the mapping in (2) [8, 10, 20].

Example 1. The curve c given by the equation F(x,y) =
y3− x3 + 1 = 0 has the line y = x as an asymptote in the
sense of all definitions.

Def.1. Let P(xP,yP) be a point on the curve c, and d =
|xP−yP|√

2
is the distance between the point P on the

curve c and the line y = x. Since

d =

(
xP− 3

√
x3

P−1
)

√
2

→ 0, for xP→ ∞

the line y = x is an asymptote.

Def.2. The equation of the tangent line to the curve c at
point P is(

∂F
∂x

)
P
(x− xP)+

(
∂F
∂y

)
P
(y− yP) = 0.

The direction of the tangent line in a point (xP,yP)

is given by kP =− ( ∂F
∂x )P(
∂F
∂y

)
P

=
3x2

P
3y2

P
, and the intercept of
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the tangent line with y axis by lP = yP+
( ∂F

∂x )P(
∂F
∂y

)
P

·xP =

−3
3· 3
√

x3
P−1

, both having the limiting values for xP→∞

as kP→ 1 and lP→ 0 respectively. The line y = x is
a limiting tangent line.

Def.3. The homogeneous equation of the curve c in the pro-
jective plane P2 is given with f (x,y,z) = y3− x3 +
z3 = 0. The equation of the tangent line to the pro-
jective curve at point with homogeneous coordinates
P[xP,yP,zP] is(

∂ f
∂x

)
P

x+
(

∂ f
∂y

)
P

y+
(

∂ f
∂z

)
P

z = 0,

that is, (−3x2
P)x+ (3y2

P)y+ (3z2
P)z = 0. The point

at infinity of the curve f (x,y,z) = 0 has homoge-
neous coordinates [1,1,0] and the equation of the
tangent line to the curve at the point at infinity is
−3x+3y = 0, that is, the line y = x in the real plane.
This line is a tangent at infinity.

Figure 1: Example 1

Example 2. The graph of the function f (x) = sinx
x has the

line y = 0 as an asymptote in the sense of Definitions 1 and
3, but not in the sense of Definition 2.

Def.1. Since k = lim
x→∞

f (x)
x = 0 and l = lim

x→∞
( f (x)− kx) =

lim
x→∞

sinx
x = 0, the line y = 0 is the asymptote.

Def.2. The direction of the tangent line f ′(x0) =
cosx0

x0
−

sinx0
x2

0
→ 0 has a limiting value, but the intercept of

the tangent line with the y axis, f (x0)− f ′(x0)x0 =
−cosx0 has no limiting value as x0→ ∞. The func-
tion has no limiting tangent line.

Def.3. Following the correspondence (2) we obtain

(x, f (x)) 7→ [x, f (x),1] 7→ [1, f (x),x] =
[

1
x
,

f (x)
x

,1
]

7→
(

t, t · f
(

1
t

))
, t =

1
x
.

The tangent of the function F(t) = t · f
( 1

t

)
, for t = 0

and F(0) = lim
x→∞

f (x)
x = 0, is the limit of the secants

through point (0,0) and (F(t), t), as t → 0. Since
lim
t→0

F(t)
t = lim

t→0
f
( 1

t

)
= lim

x→∞
f (x) = 0, the limit of the

secants is y = 0 which corresponds back to the line
y = 0 as tangent at infinity.

Figure 2: Example 2

To analyze relations between Definitions 1, 2 and 3, we
introduce c = (u(t),v(t)) as a (parametrized) curve in R2,
with continuous first derivatives and infinite branch in the
direction t→ t0, and without loss of generality u(t)→ ∞.

Theorem 1 (1) If a line l is an asymptote of the curve c
in the sense of Definition 2, then l is an asymptote of
the curve c in the sense of Definition 1.

(2) If a line l is an asymptote of the curve c in the sense
of Definition 2, then l is an asymptote of the curve c
in the sense of Definition 3.

(3) A line l is an asymptote of the curve c in the sense
of Definition 3 if and only if l is an asymptote of the
curve c in the sense of Definition 1.

Definition 2.

Definition 3.Definition 1.

Figure 3: Relationship between the three definitions of an
asymptote

We provide the proof of the Theorem 1.

(1) Proof. Assume c has a limiting tangent line, that is,

y = lim
t→t0

v′(t)
u′(t)

· x+ lim
t→t0

(
v(t)− v′(t)

u′(t)
·u(t)

)
(3)

where k = lim
t→t0

v′(t)
u′(t) and l = lim

t→t0

(
v(t)− v′(t)

u′(t) ·u(t)
)

.

The distance between the limiting tangent line and
point on curve c is given by

d =
|k ·u(t)− v(t)+ l|√

k2 +1
.
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Since

lim
t→t0

(v(t)− k ·u(t)) = lim
t→t0

v(t)
u(t) − k

1
u(t)

= lim
t→t0

v′(t)·u(t)−v(t)·u′(t)
(u(t))2

− u′(t)
(u(t))2

= lim
t→t0

(
v(t)− v′(t)

u′(t)
·u(t)

)
= l,

then d→ 0 as t→ t0, and the limiting tangent given
in (3) is an asymptote in the sense of Definition 1.�

(2) Proof. Assume c has a limiting tangent line y =
kx+ l given in (3). By embedding R2 in P2 the ho-
mogenenous coordinates of a point on the curve c
are

(u(t),v(t)) 7→ [u(t),v(t),1] =
[

1,
v(t)
u(t)

,
1

u(t)

]
and the point at infinity of the curve c is[

1, lim
t→t0

v(t)
u(t)

, lim
t→t0

1
u(t)

]
= (1,k,0)

since by l’Hospital rule k = lim
t→t0

v′(t)
u′(t)

= lim
t→t0

v(t)
u(t)

.

Tangent at infinity corresponds to the limit of the se-
cants (or the chords [6, 8]) joining the point at infin-
ity of the curve with an arbitrary point on the projec-
tive curve, as it tends to the point at infinity. Follow-
ing (2)

(u(t),v(t)) 7→ [u(t),v(t),1] 7→

7→ [1,v(t),u(t)] =
[

1
u(t)

,
v(t)
u(t)

,1
]

and the chord joining points (0,k) and
(

1
u(t) ,

v(t)
u(t)

)
on

the corresponding curve is

y− k =
v(t)
u(t) − k

1
u(t) −0

(z−0)

y = (v(t)− k ·u(t)) · z+ k

which transforms back into y= k ·x+(v(t)−k ·u(t)).
The tangent at infinity is thus given by

y = k · x+ lim
t→t0

(v(t)− k ·u(t)) . (4)

Since lim
t→t0

(v(t)− k · u(t)) = l the tangent at infinity

given in (4) coincides with the limiting tangent given
in (3). �

(3) Proof. Let y = kx + l be a tangent at infinity of
a curve c given in (4). Then k = lim

t→t0

v(t)
u(t) , and

l = lim
t→t0

(v(t)− k ·u(t)). Distance between the tan-

gent at infinity and a curve c is given by

d =
|k ·u(t)− v(t)+ l|√

k2 +1
→ 0 as t→ t0.

Therefore, the tangent at infinity given in (4) is an
asymptote in the sense of Definition 1.

To show the converse, let y = kx+ l be an asymptote
of a curve c in the sense of Definition 1, that is,

d =
|k ·u(t)− v(t)+ l|√

k2 +1
→ 0 as t→ t0.

Then

lim
t→t0

(v(t)− k ·u(t)) = l and lim
t→t0

v(t)
u(t)

= k

which correspond to the coefficients of a tangent at
infinity given in (4). �

However, as stated in [8] for algebraic curves the following
theorem holds.

Theorem 2 Definitions 1, 2, 3 are equivalent in the case
of algebraic curves.

3 Methods of finding asymptotes of alge-
braic curves

Definitions we discussed provide different ways how to de-
termine asymptotes of plane curves. We summarize that
the most common way how to determine slant asymptotes
of a function graph is to look for them as y = kx+ l where
coefficients k, l are given by (1). Furthermore, in the spe-
cial case of a rational function f (x) = P(x)

Q(x) its (linear or
curvilinear) asymptote is the quotient of the polynomials
in the numerator and denominator. For example, a function
f (x) = x2+1

x−1 can be rewritten as f (x) = x+1+ 2
x−1 which

enables to recognize the equation of its slant asymptote as
y = x+1. Its vertical asymptote appears as the zero of the
denominator x = 1 (see Figure 4 on the right). This proce-
dure also gives asymptotes of algebraic curves when their
equation can be expressed in the suitable form by express-
ing, for instance, y by x.

Generally, finding asymptotes of a real algebraic plane
curve reduces to finding corresponding tangent lines at the
points at infinity of the projective curve (see Example 1 and
[10]) or at the origin for the corresponding curves obtained
by projective transformations (see Examples 2, 4 and 5,
and [17, 20]). In the purely algebraic context, finding
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asymptotes comes down to determining lines that reduce
the degree of the equation of algebraic curve. Regardless
of the chosen definition, an asymptote of the curve is line
that intersects the curve in at least two coincident points at
an infinite distance [2, 4, 5, 6, 7].
In the case of a hyperbola b2x2−a2y2 = a2b2, if we analyze
a number of common (real) points with a line y = kx+ l
(which can be 0, 1 or 2), we arrive at the quadratic equa-
tion (b2−a2k2)x2−2a2klx−a2l2−a2b2 = 0 with one so-
lution in x if and only if k2a2− b2 = l2. This is known
as the tangency condition. However, when the leading
coefficient vanishes, that is b2− a2k2 = 0 (implying that
k = ± b

a 6= 0), and when the next coefficient vanishes as
well, giving l = 0, we arrive at the known equation of an
asymptote of the hyperbola as y = ± b

a x. This method of
determining the asymptote can also be generalized. In [14]
conditions for a quadratic curve

a1x2 +a2xy+a3y2 +b1x+b2y+ c = 0 (5)

to have asymptotes are explored, which can be further in-
terpreted as conditions that ensure that a quadratic curve
is a hyperbola. By substituting y = kx+ l in (5) we arrive
at the quadratic equation in x, and by equating the coeffi-
cients of x2 and x to 0, while the constant coefficient is not
0, we obtain the asymptotes of a curve. Summarizing [14],
if

A1 a2
2− 4a1a3 > 0 and the equation (5) cannot be fac-

torised into linear factors, it represents a hyperbola
with asymptotes y = kx+ l, where k and l are so-
lutions of equations a1 + a2k+ a3k2 = 0 and a2l +
2a3kl +b1 +b2k = 0.

A2 a3 = 0,a2 6= 0 and the equation (5) cannot be fac-
torised into linear factors, it represents a hyper-
bola with a vertical asymptote x = − a1

a2
and a slant

asymptote y =− a1
a2

x+ a1b2−a2b1
a2

2
.

Example 3.

(i) Let the curve be given by−2x2+xy+y2−y−1 = 0
(see Figure 4 above)

• From A1 it follows that the curve is a hyper-
bola and the coefficients of its asymptotes sat-
isfy −2+ k + k2 = 0 and l + 2kl − k = 0. It
follows k1 = 1, k2 = −2 and l1 = 1

3 , l2 = 2
3 .

Asymptotes are y = x+ 1
3 and y =−2x+ 2

3 .

• The equation of the curve can be written as
(y− x)(y+2x) = y+1. We have

y− x =
y+1
y+2x

−−−−−−→
x→∞,y→x

x+1
3x

=
1
3
+

1
x
.

The asymptote is y− x = 1
3 , and similarly the

other asymptote is y+2x = 2
3 .

(ii) Let the curve be given by −x2 + xy− y−1 = 0 (see
Figure 4 below)

• From A2 it follows that the curve is a hyper-
bola with the vertical asymptote x = 1 and a
slant asymptote y = x+1.

• The equation of the curve can be written as
x(y− x) = y+1, and

y− x =
y+1

x
−−−−−−→
x→∞,y→x

x+1
x

= 1+
1
x
.

The asymptote is y = x+ 1. From − x2

y + x−
1− 1

y = 0, it follows that when y→ ∞, then
x−1→ 0. x = 1 is vertical asymptote.

Figure 4: Example 3

We describe methods of finding asymptotes of general al-
gebraic curves. Let c be an algebraic curve given by an
equation.

F(x,y)= Pn(x,y)+Pn−1(x,y)+ · · ·+P1(x,y)+P0 = 0 (6)

where Pm(x,y) is a term of degree m, Pn =
m
∑

i=0
am,ixm−iyi.
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Assume x → ∞. Substituting y = kx + l results with an
equation of degree n in x. For the line y = kx+ l to be an
asymptote of the curve (6) the two coefficients of the top
degree in the resulting equation must vanish, thus provid-
ing the coefficient k as the root of the leading term Pn(x,y)
in (x,y) = (1,k). This method for finding asymptotes is
reported in different sources, and in [6] it is summarized
with the following theorem:

Theorem 3 The line y = kx+ l is an asymptote of the al-
gebraic curve (6) if and only if

(1) k is a real root of equation Pn(1, t) = 0,

(2) for chosen k, the coefficient l is a root of equation
ψ(s,k) = 0, where

φ(s,k,x)=ψ(s,k)+
1
x

ψ1(s,k)+
1
x2 ψ2(s,k)+ · · ·= 0

and φ is obtained by reduction from F (x,s+ kx) = 0,
and

(3) for chosen k and l, equation φ(l+ε,k,x) = 0 admits
real root ε such that ε→ 0 for x→ ∞.

The equation of the curve (6) can be expressed as

xnPn

(
1,

y
x

)
+ xn−1Pn−1

(
1,

y
x

)
+ xn−2Pn−2

(
1,

y
x

)
+ · · ·

+ xP1

(
1,

y
x

)
+P0 = 0.

By substituting y
x = k+ l

x and by Taylor’s theorem we ob-
tain [5, 6, 15]

xnPn(1,k)+ xn−1 (Pn−1(1,k)+ l ·P′n(1,k)
)
+

xn−2
(

Pn−2(1,k)+ l ·P′n−1(1,k)+
l2

2
P′′n (1,k)

)
+ · · ·= 0.

The simplest situation is when k is a simple root of
Pn(1, t) = 0. Then P′n(1,k) 6= 0 and for x→ ∞ the form
ψ(s,k) in condition (3) of Theorem 3 reduces to

Pn−1(1,k)+ s ·P′n(1,k).

But if k is r-tuple root of Pn(1, t) = 0, depending on the
values of Pi(1,k) and P( j)

i (1,k), and corresponding form
ψ(s,k), different situations can occur. For example, dif-
ferent branches can correspond to the same asymptote, the
curve can have parallel asymptotes, or the curve can have
no asymptotes. In the latter case, the curve could have
a parabolic branch with a parabolic asymptote, or a gen-
eral curvilinear asymptote, when the condition (3) of The-
orem 3 fails.
The condition (3) of Theorem 3 is the necessary condition
for the line y = kx+ l to be the asymptote of the curve (6),

that is, that the curve must have an infinite branch in the
direction of the line y = kx+ l. Note that the method of
leading coefficients following from conditions (3) and (3)
in the Theorem 3 would still provide a line as an asymp-
tote even if the curve has no infinite branch (see Example
4). Nunnemacher [16] noted that such spurious asymp-
totes correspond to the complex branch of the curve. He
provided a simpler method for exploring asymptotes of al-
gebraic curves, focused on the multiplicity of the factor
ax+ by (rather than y− kx) in the term of the top degree
in (6). This method simplifies the calculation, and paral-
lel asymptotes and parabolic branches are easily discerned
(see Examples 4 and 5) but the theorem does not resolve
the issue of spurious asymptotes when no real branch can
be associated with the obtained line.

Theorem 4 Suppose that ax+by is a factor of the top de-
gree form Pn of multiplicity m with a and b real. Let r ≤ m
denote the largest integer with the property that there exist
polynomials Q j(x,y) for n− r + 1 ≤ j ≤ n satisfying the
conditions:

Pn(x,y) = (ax+by)rQn(x,y),

Pn−1(x,y) = (ax+by)r−1Qn−1(x,y), . . . ,

and finally Pn−r+1(x,y) = (ax+by)Qn−r+1(x,y).

Then associated with the factor ax+by is a set of at most
r possible asymptotes ax+ by = t0, where t0 is a real root
of the equation

trQn(b,−a)+ tr−1Qn−1(b,−a)+ · · ·+ tQn−r+1(b,−a)

+Pn−r(b,−a) = 0.

All real asymptotes to the curve c arise in this way as
ax+ by ranges over the real linear factors of Pn(x,y). If
r > 1 it may happen that some of these lines are spurious
asymptotes.

We illustrate the methods and issues with asymptotes of
algebraic curves in the following examples.

Example 4 Let c be the curve given by the equation

F(x,y) = x4−2x2y2 + y4 + x3−2x2y+ xy2 +1 = 0.

Following Theorem 3, we find k1 = 1,k2 =−1 as the zeros
of the leading term P4(1, t) = (t−1)2(t +1)2 in the equa-
tion of the curve. We substitute for y = kx+ l:

• If y= x+ l, then F(x,x+ l)= l2(2x+ l)2+x · l2+1=
0.
The condition (3) of Theorem 3 implies 4l2 +
1
x (4l3 + l2)+ 1

x2 (l4 + 1) = 0 and the coefficient l of
the line derives from ψ = 4l2 = 0, therefore l = 0.
This is spurious asymptote since c has no a real
branch for x→ ∞ in the direction of the line y− x =
0.
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• If y =−x+ l, then F(x,−x+ l) = (−2x+ l)2l2 + x ·
(−2x+ l)2 +1 = 0.
The condition (3) of Theorem 3 implies 4+ 1

x ·(4l2−
4l)+ 1

x2 (−4l3 + l2)+ 1
x3 (l4 + 1) = 0 and the coeffi-

cient l of the line derives from ψ= 4= 0, but asymp-
tote is not obtained.
c has a parabolic branch for x→ ∞ in the direction
of the line y+ x = 0.

Figure 5: Example 4

We establish the same by Theorem 4. The terms in
the equation of the curve are P4(x,y) = (y − x)2(y +
x)2, P3(x,y) = x(y− x)2, P2(x,y) = P1(x,y) = 0. Depend-
ing on multiplicity, factors of the leading term are exam-
ined to obtain an equation for t as a coefficient in the equa-
tion of the line ax+by = t as a potential asymptote.

• Factor y− x can contribute with power r = 2 in the
point (1,1).
The terms factorise into P4 =(y−x)2 ·Q4, Q4(x,y)=
(y+ x)2, P3 = (y− x) ·Q3, Q3 = (y− x)(y+ x).
The equation for t is t2 ·22+t ·0 ·2+0 = 0⇒ t2 = 0.
This is a spurious asymptote since c has no a real
branch for x→ ∞ in the direction of the line y− x =
0.

• Factor y+ x can contribute with power r = 2 in the
point (1,−1).
The terms factorise into P4 = (y + x)2 ·
Q4, Q4(x,y) = (y−x)2, but P3 has no factor (y+x).
The power of the factor y+ x needs to be reduced to
r = 1 in the same point.
The terms factorise into P4 = (y+x) ·Q4, Q4(x,y) =
(y+x)(y−x)2, and the equation for t is t ·0+4 = 0,
and asymptote is not obtained.
c has a parabolic branch for x→ ∞ in the direction
of the line y+ x = 0.

Following idea from (2) and [20] curve c transforms so that
its points at infinity correspond to the origin. In the pro-
jective plane, the homogeneous equation of the curve c is

(y−x)2(y+x)2−x(y−x)2z+z4 = 0 and homogeneous co-
ordinates of its points at infinity are [1,1,0] and [1,−1,0].

• For the point at infinity [1,1,0], we use the following
transformation of coordinates X ≡ 1,Y ≡ y−x,Z≡ z
and the corresponding curve is

Y 2(Y +2)2−Y 2Z +Z4 = 0 ⇒
4Y 2 =−4Y 3 +Y 2Z−Y 4−Z4.

But the curve has an isolated point at (Y,Z) = (0,0)
and no tangent there.
The curve c does not have a real branch for x→∞ in
the direction of the line y−x = 0. Its point at infinity
[1,1,0] is an isolated point.

• For the point at infinity [1,−1,0], we use the follow-
ing transformation of coordinates X ≡ 1, Y ≡ y+ x,
Z ≡ z and the corresponding curve is

(Y −2)2Y 2− (Y −2)2Z +Z4 = 0 ⇒
4Z = 4Y 2 +4Y Z−4Y 3−Y 2Z +Y 4 +Z4.

The tangent at (Y,Z) = (0,0) is Z = 0, which corre-
sponds to the line at infinity. There is no asymptote,
c has a parabolic branch for x→ ∞ in the direction
of the line y+ x = 0.

Example 5 Let c be the curve given by the equation

F(x,y) = x4−2x2y2 + y4 +2xy−2x2−1 = 0.

Following Theorem 3 we find k1 = 1,k2 =−1 as the zeros
of the leading term P4(1, t) = (t−1)2(t +1)2 in the equa-
tion of the curve. We substitute for y = kx+ l:

• y = x+ l⇒ F(x,x+ l) = l2(2x+ l)2 +2xl−1 = 0.
The condition (3) of Theorem 3 implies 4l2 +
1
x (4l3 +2l)+ 1

x2 (l4−1) = 0 and coefficient l of the
line derives from ψ = 4l2 = 0⇒ l = 0.
c has an asymptote y− x = 0.

• y = −x + l ⇒ F(x,−x + l) = (−2x + l)2l2 + 2x ·
(−2x+ l)−1 = 0.
The condition (3) of Theorem 3 implies 4l2−4+ 1

x ·
(−4l3 +2l)+ 1

x2 (l4−1) = 0 and coefficient l of the
line derives from ψ = 4l2−4 = 0⇒ l =±1.
c has parallel asymptotes y=−x−1 and y=−x+1.
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Figure 6: Example 5

We establish the same by Theorem 4. The terms in
the equation of the curve are P4(x,y) = (y − x)2(y +
x)2, P3(x,y) = 0, P2(x,y) = 2x(y− x), P1(x,y) = 0. De-
pending on multiplicity, factors of leading term are exam-
ined to obtain equation for t as a coefficient in the equation
of the line ax+by = t as potential asymptote.

• Factor y− x can contribute with power r = 2 in the
point (1,1).
The terms factorise into P4 = (y − x)2 · Q4,
Q4(x,y) = (y+ x)2, P3 = (y− x) · 0, and the equa-
tion for t is t2 ·22 + t ·0+0 = 0⇒ t2 = 0.
c has an asymptote y− x = 0.

• Factor y+ x can contribute with power r = 2 in the
point (1,−1).
The terms factorise into P4 = (y + x)2 · Q4,
Q4(x,y) = (y−x)2, P3 = (y+x) ·0, and the equation
for t is t2 · (−2)2 + t ·0+(−4) = 0⇒ 4t2−4 = 0.
c has parallel asymptotes y+ x− 1 = 0 and y+ x+
1 = 0.

Following idea from (2) and [20] curve c transforms so
that its points at infinity correspond to the origin. In the
projective plane, the homogeneous equation of the curve
c is (y− x)2(y+ x)2 + 2x(y− x)z2− z4 = 0 and homoge-
neous coordinates of its points at infinity are [1,1,0] and
[1,−1,0].

• For the point at infinity[1,1,0], we use the following
transformation of coordinates X ≡ 1,Y ≡ y−x,Z≡ z
and the corresponding curve is

Y 2(Y +2)2 +2Y Z2−Z4 = 0 ⇒
4Y 2 =−4Y 3−2Y Z2−Y 4 +Z4.

The curve has tangent Y = 0 at the cusp (Y,Z) =
(0,0), which corresponds to the asymptote y−x = 0
of the two branches of the curve c.

• For the point at infinity [1,−1,0], we use the fol-
lowing transformation of coordinates X ≡ 1,Y ≡
y+ x,Z ≡ z and the corresponding curve is

(Y −2)2Y 2 +2(Y −2)Z2−Z4 = 0 ⇒
4Y 2−4Z2 = 4Y 3−2Y Z2−Y 4 +Z4.

The curve has tangents Y −Z = 0 and Y +Z = 0 at
the node (Y,Z) = (0,0), which corresponds to paral-
lel asymptotes y−x−1 = 0 and y−x+1 = 0 of the
curve c.

Finally, let us mention that a subtle and so far the most
systematic analysis of asymptotes of algebraic curves in
real plane, accompanied by an computational algorithm for
finding asymptotes by polynomial root isolation was pro-
vided by Zeng in [23]. Similarly to the projective geom-
etry approach, he introduced an indeterminate to extend
the field R to a new structure that contains an infinitely
large point and keeps the usual ordering and the Euclidean
metrics. Based on Sturm sequences and Sturm’s theorem,
applied to root isolation of the leading polynomial coeffi-
cient of the two-variable polynomial defining an algebraic
curve in real plane, he developed an algorithm for count-
ing its infinite branches and determining the corresponding
asymptotes, if they exist. We omit it here due to its com-
plexity and lack of the space to elaborate its many technical
details.
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ABSTRACT

Reflections have a long history in computer graphics, as
they are important for conveying a sense of realism as well
as depth and proportion. Their implementations come
with a multitude of difficulties, and each solution typically
has various trade-offs.

Approaches highly depend on the geometry of the reflec-
tive surface since curved reflectors are usually more difficult
to portray accurately. Techniques can typically be catego-
rized by whether they work with the actual geometry of
the reflected objects or with an image of these objects. For
curved surfaces, image-based techniques are usually pre-
ferred, whereas for planar surfaces the reflected geometry
can be used more easily because of the lack of distortion.
With current advances in graphics hardware technology,
ray tracing is also becoming more viable for real-time ap-
plications. Many modern solutions often combine multiple
approaches to form a hybrid technique.

In this paper, we give an overview of the techniques used
in computer graphics applications to create real-time re-
flections. We highlight the trade-offs that have to be dealt
with when choosing a particular technique, as well as their
ability to produce interreflections. Finally, we describe how
contemporary state-of-the-art rendering engines deal with
reflections.

Key words: reflections, interreflections, real-time render-
ing

MSC2010: 51-04, 51p05, 78A05

Tehnike zrcaljenja u Real-Time računalnoj grafici

SAŽETAK

Zrcaljenja imaju dugu povijest primjene u računalnoj

grafici zbog njihove važnosti u prenošenju realističnosti

prikaza te prikaza dubine i omjera na slikama. Pri im-

plementaciji zrcaljenja dolazimo do raznih teškoća i svako

novo rješenje često imaju svoju cijenu.

Pristupi implementacije ovise o geometriji plohe na ko-

joj leži prikaz, što je ploha zakrivljenija, to je teže postići

vjerni prikaz. Tehnike možemo kategorizirati u one koje

rade sa stvarnom geometrijom zrcaljenih objekata te one

koje rade samo sa slikama objekata. Kod zakrivljenih ploha

koriste se tehnike bazirane na slikama, dok se kod ravnin-

skih ploha koristi zrcaljena geometrija jer nema iskrivljenja.

Zahvaljujući trenutnom razvoju tehnologije grafičkih hard-

vera, metoda praćenja zraka (ray tracing) postaje sve is-

plativija u real-time primjeni. Mnoga moderna rješenja

kombiniraju razne pristupe i dolazi do hibridnih tehnika.

U ovom radu dajemo pregled tehnika korǐstenih u pri-

mjeni računalne grafike za postizanje real-time zrcal-

nih slika. Naglašavamo probleme koji nastaju pri

korǐstenju odred-ene tehnike te njihove mogućnosti u

pogledu stvaranja med-uzrcaljenja. Naposljetku, opisujemo

kako moderni alati za renderiranje rješavaju probleme zr-

caljenja.

Ključne riječi: zrcaljenje, med-uzrcaljenje, real-time ren-

deriranje

1 Introduction

Reflections have been a research topic in Computer Graph-
ics for over forty years because of the big part they play in

depicting realistic scenes. They have a great impact on how
we perceive things. For example, mirrors can make small
spaces look much larger by giving a sense of depth. They
can also convey if a surface is rough or smooth and whether
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it is planar or curved. We were made aware of these im-
portant properties and the complex topic, when we created
a scene that demonstrates the geometry of a C-60 fullerene
using multiple mirrors as seen in Figure 1.
Recently, major advances have been made on the topic of
real-time reflections. In addition, their field of application
grew as well. Besides their typical use in video games,
real-time reflections are now also used in architectural vi-
sualization and movie production. But older techniques
are also still relevant to this day. Depending on the spe-
cific application, each technique has its own advantages
and disadvantages.
In the following chapters, we give an overview of the cur-
rent state-of-the-art techniques to provide the reader with
an outline of the advantages and drawbacks one needs to
consider (Section 2) and we discuss contemporary multi-
purpose rendering engines and how they deal with reflec-
tions (Section 3).

Figure 1: Interreflections of a single C-60 fullerene cre-
ated with our implementation of a geometry-
based reflection technique. The fullerene is
placed in front of three orthogonal mirrors,
which are positioned on the XY, XZ and YZ
plane respectively.

2 Techniques

Over the years many different techniques have been de-
veloped to create real-time reflections. McReynolds and
Blythe [12] categorize them into two groups: object-space
and image-space techniques. The former work directly
with the geometry while the latter uses textures to cre-
ate reflections. So, henceforth, we will label these tech-
niques geometry-based and image-based respectively. His-
torically, ray tracing was not used in real-time applications
because of its long computation time per frame. In recent

years, it has become more and more advanced to allow for
interactive frame rates. Additionally, the development of
new graphics hardware, that has dedicated ray tracing ca-
pabilities, has made it suitable for a wider range of real-
time applications. Because of this, we include them as a
category in our list of techniques. Besides those categories,
there are many hybrid techniques that combine multiple
approaches to alleviate their individual shortcomings. In
this section, we discuss each category in detail, showing
examples and considering their advantages and disadvan-
tages.

2.1 Geometry-Based Techniques

McReynolds and Blythe [12] describe geometry-based
techniques as approaches that directly transform the ge-
ometry of the reflected object. In other words, they create
virtual objects that are transformed to represent reflections.
This process highly depends on the surface of the reflector.

2.1.1 Planar Surfaces

For planar surfaces, a single affine transformation for each
object is enough to describe its reflection, since the reflec-
tor’s surface normal does not change. This means that it
can easily be computed and applied as an additional trans-
formation matrix for example.
Geometry-based techniques need an additional clipping
stage, as the virtual object that is created can protrude the
plane of reflection or extend beyond its boundary. Accord-
ing to McReynolds and Blythe [12] clipping can easily be
done for planar reflectors either by defining custom clip-
ping planes, which the graphics pipeline can use, or by
using the stencil buffer to distinguish between pixels that
belong to the reflective surface and those that do not. The
stencil buffer approach can either be done by rendering
the reflector first and then only render the reflected ob-
jects inside the stencil or by rendering the reflections first
and clearing the image buffer around the stencil afterwards.
The second approach can be faster, because the stencil is
only used for one clearing operation and not for rendering
every individual reflected object. The first approach is bet-
ter suited for interreflections between multiple reflective
surfaces, since the stencil can contain flags that distinguish
between different reflectors and the depth of reflection. An
example of our implementation using the stencil buffer is
shown in Figure 2. We use the stencil to determine where
to draw the virtual objects.

2.1.2 Curved Surfaces

In the case of curved reflectors, it gets more complicated.
Reflections now also depend on the viewpoint, which can
be seen in Figure 3. Therefore, they must now be com-
puted for each vertex individually by finding the correct
intersection point of the viewing ray and the reflector sur-
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Figure 2: Our simple reflection setup. We mirror the object for as long as it remains in front of any mirror plane. The left
image shows a top-view of the reflections. The final result on the right is created by using a stencil buffer to only
render pixels that are inside the mirrors bounds.

face. McReynolds and Blythe [12] mention that a closed-
form solution for finding the reflection point for arbitrary
viewpoints, reflector positions, surface shapes, and vertex
positions can be very difficult and is usually too complex
to generalize.

Ofek and Rappoport [15] proposed a solution for reflec-
tions on curved reflectors that creates virtual objects by re-
flecting each polygon’s vertices. They assume that the re-
flector itself is represented by a polygonal mesh. If this was
not he case, they would tesselate the reflector. Each poly-
gon on the reflector divides the space around the reflector
into a hidden and a visible cell. Each reflected object is
also tesselated depending on the desired resolution of the
result. Afterwards, each polygon of the reflected object is
reflected. This is done by finding the virtual reflected ver-
tex for each vertex in the polygon. In order to reflect this
vertex correctly, Ofek and Rappoport find the polygon on
the reflector that is used as the mirror. To prevent the re-
sult from looking like a linear approximation, they use the
barycentric coordinates of the mirrored vertices inside the
cell above the reflector polygon to interpolate between the
three tangent planes associated with the reflector polygon.
This interpolation is then used as the final plane of reflec-
tion for that particular vertex. In order to quickly find out
in which cells the vertices are located, Ofek and Rappoport
[15] use an explosion map as their data structure. Explo-
sion maps are very similar to environment maps, which we
will discuss in Section 2.2.1. Instead of color information
the map contains polygon IDs to quickly find surface poly-
gons for any given UV coordinate. They claim that their
method works best for convex surfaces but it also works
for concave surfaces. Surfaces that have both convex and
concave areas should be split into separate meshes.

McReynolds and Blythe [12] mention that clipping the vir-
tual objects created by such a method against curved reflec-
tors directly is possible but can be a time consuming oper-
ation if the reflector is complex. An alternative would be
to use the depth buffer to only render objects with greater
depth than the reflector, but this would also render them
incorrectly if one virtual object occludes another one.
To summarize, creating reflections using curved reflectors
paired with a geometric approach can be very complicated,
depending on scene size and complexity. The results are
relatively accurate but usually other approaches are pre-
ferred for curved reflectors, as we will see in the next sec-
tion.

Figure 3: A comparison of reflection rays on planar and
curved surfaces. On the left the object O gets
reflected to the same virtual position O′ because
the surface normal N does not change. On the
right the same object’s reflection point varies
depending on the viewing position.

2.2 Image-Based Techniques

As the name implies image-based techniques use images
or textures to create reflections. McReynolds and Blythe
[12] state that these textures are then used for the reflec-
tive surface which is the case for environmental mapping.
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Additionally, we also include approaches into this category
that use the final or intermediate rendered image itself.

2.2.1 Environment Mapping

An early technique that was developed to create reflections
is environment mapping, which is also often called reflec-
tion mapping. The idea is to project the scene onto the
surface of a primitive centered around the reflective object.
This is done by rendering the scene, viewed from the cen-
ter point of the reflective object, onto six images forming
a cube. These images are mapped onto the primitive using
a mapping function that depends on the type of primitive.
During the rendering step, another function is needed to
retrieve the information from the map.
One of the most popular environment mapping methods is
cube mapping and was proposed by Greene [7]. The map
is created as described above and uses the cube formed by
the image planes directly without re-mapping. The cube
can be aligned with the coordinate axes, so that the largest
vector component of the reflected viewing direction de-
termines the face that needs to be indexed directly. The
texture coordinates are determined with the remaining two
components. If the cube is not aligned, the cube faces have
to be tested for intersection with the reflected viewing ray.
An example of cube map indexing can be seen in Figure 4.

Figure 4: A top-view of cube map indexing. The viewing
direction V is reflected in the object’s surface
normal N. The reflected direction R determines
the cube face and the texture coordinates to use
for the final color value.

Another technique that was proposed very early on by
Blinn and Newell [4] is sphere mapping, which uses a
sphere as the primitive onto which to map the environment.
The key difference is that the image planes get mapped

onto a sphere whose surface is then re-mapped to a cir-
cular shape inside a 2D texture. This has the advantage
that all information is contained in only a single image.
However, sphere maps also have drawbacks. Some tex-
ture space is wasted since the texture itself is rectangular.
But more importantly, they introduce sampling problems.
While texture coordinates are interpolated linearly, sphere
maps are non-linear. This leads to interpolation artefacts,
especially close to the edge of the circular image.
Regardless of which primitive is used, environment map-
ping is especially useful for curved reflectors, because re-
flections can be calculated without complex geometrical
transformations for each object’s vertex in the scene. In
some cases, it is also convenient that the maps can be pre-
processed if the surroundings or the reflectors are static.
On the other hand, if either the surroundings or the posi-
tion of the reflector, i.e. the reflection center, change, the
map needs to be recalculated. The resolution of the texture
map is also important since it influences how accurately
the reflection can be depicted. In addition, their accuracy
depends on the distance between the reflected object and
the reflector and will be better for more distant objects.
According to McReynolds and Blythe [12] interreflections
are possible by iteratively creating the environment maps
for each reflector and then applying them for the next iter-
ation.
More information and specific calculations for the map-
pings mentioned above can be found in the work of Mizu-
tatni and Reindel [13] and in McReynolds and Blythe [12].
Building on these environment mapping methods, Yu et
al. [20] developed a technique to improve on regular envi-
ronment maps by using 4D light fields instead of 2D tex-
tures. Light fields are a collection of images on a 2D image
plane. From those images, every possible viewing ray can
be synthesized inside a given region, according to Yu et
al. By surrounding the reflector with six such light fields,
they can support dynamic reflections for moving reflectors
inside the cube, including motion parallax.
Another extension to environment mapping can be found
in Popescu et al. [16]. In addition to environment maps,
they use two types of impostors to approximate the geome-
try of objects in the scene. The first type is the billboard. It
approximates an object by mapping its image to a textured
quadrilateral which can easily be intersected with reflected
viewing rays. Optionally, they can also store surface nor-
mals per texel, to facilitate interreflections. The second
type of imposter they use, is the depth map which is a
billboard with an added depth channel. The depth maps
improve reflections in cases where the object is close to
the reflector or when the object and the reflector intersect.
They also allow for motion parallax. Popescu et al. sug-
gest that their method can be regarded as a middle ground
between environment maps and ray tracing. The impostors
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use more geometric information than the environment, but
do not have as much geometric complexity as ray tracing.

2.2.2 Screen Space Techniques

A modern approach that has been developed in the last
decade is called Screen-Space Reflections (SSR). The
method was introduced as Real-Time Local Reflections
by Sousa et al. [17]. This approach creates the reflec-
tions in a post-processing step. First, the scene is rendered
into a buffer structure called G-Buffer. The G-Buffer is a
collection of render targets that contains diffuse color in-
formation but also the geometrical information for each
pixel of the rendered scene. It stores depth, surface nor-
mal and position values. After rendering to the G-Buffer,
a ray is shot from the viewing position towards each sur-
face point stored in the G-Buffer and then it is traced along
its reflected ray using the stored surface normal. This ray
is sampled at specific intervals. The sample points are
mapped into the 2D screen space, where the sample point’s
depth is checked against the G-Buffers depth value. If the
depth value in the G-Buffer is lower, this marks an intersec-
tion. An illustration of this process can be seen in Figure 5.

Sousa et al. [17] mention that, while it is a relatively fast
technique, it can have problems due to the very limited
information in screen space. McGuire et al. [11] give de-
tailed information on the implementation of Screen-Space
Reflections and improve the path sampling for more effi-
ciency. A major drawback of this method is that it can
only produce reflections of objects that are contained in-
side the current view. Tracing rays outside the image is not
possible. This can lead to artefacts on the image boundary.

2.3 Real-Time Ray Tracing Techniques

An early implementation of ray tracing goes back to the
work of Whitted [19]. He proposed a method for real-
istic rendering by following the viewing ray through the
scene and recursively applying the intersection informa-
tion to the current pixel. The number of how often the ray
is reflected needs to be limited to keep the computation
time low, but the higher the number the better the result.
While this method works very well to create realistic im-
ages, it is computationally expensive. It heavily relies on
visible surface algorithms to only test for intersections on
an object if the ray crosses its bounding volume, instead of
testing all objects in the scene. This technique alone is not
sufficient for high-resolution images at interactive frame
rates in complex scenes. There have been many improve-
ments to this ray tracing algorithm, but only in recent years
it was getting to a point where the results became real-time
viable through advanced techniques and dedicated ray trac-
ing hardware.

Figure 5: A top-down overview of Screen-Space Reflec-
tion. A ray is shot through the current pixel in
yellow. It is reflected using the surface normal
N, that is contained in the current pixel of the G-
Buffer. The reflected ray gets sampled and pro-
jected into Screen-Space. As soon as the sample
depth is bigger than the depth in the G-Buffer,
an intersection has been found. The color value
of the intersection in the G-Buffer is then used
for the final color in the current pixel.

Bounding Volume Hierarchies (BVH) and KD-trees are es-
sential for improving ray tracing speed, as they reduce the
number of objects that need to be checked for intersection.
An overview of these ray tracing data structures and archi-
tectures can be found in Deng et al. [5]. Recent advances
have made it possible to construct a BVH in real-time as
shown in Lauterbach et al. [9]. This allows for highly
complex and dynamic scenes where the spatial data struc-
ture needs to change every frame. Denoising algorithms
also greatly reduce the number of reflected rays needed per
pixel to generate images without visible artefacts. State-of-
the-art techniques for denoising ray traced images can be
found in the papers by Bako et al. [1] and Marrs et al. [10].
Bako et al. use neural networks to denoise the images.
Marrs et al. introduce an improved temporal antialiasing
technique that uses adaptive ray tracing.
The most recent GPU architectures come with ray tracing
cores that are capable of computing the above-mentioned
algorithms in parallel directly on the GPU, allowing for no-
tably faster image generation. Details on the most recent
algorithms and architecture can be found in the Turing ar-
chitecture white paper by NVIDIA [14].
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To summarize, the biggest advantage of real-time ray trac-
ing are the accurate reflections they produce. Interreflec-
tions are not only possible but inherently come with the
algorithm. Despite the recent improvements real-time ray
tracing is still dependent on dedicated hardware.

2.4 Hybrid Techniques

Each of the before mentioned techniques has its own short-
comings. Some of them can be avoided or alleviated by
using more than one technique.
An early hybrid technique can be found in the work of Kil-
gard [8]. It combines planar reflections with stencil buffer
clipping. This improves the clipping stage in certain cases.
Interreflections, for example, can be done quite easily with
the stencil buffer as it allows for marking individual pixels
with the interreflection recursion depth.
Bastos and Stürzlinger [3] developed a hybrid approach
that improves upon traditional environment mapping.
They call it a hybrid between a geometry-based and an
image-based solution. They warp the texture contained in
the environment map into the space of the reflected view-
point. In addition to the color information stored in the
environment map, they also store the depth value of the
texels. Their method preserves the depth of the reflected
scene and corrects the perspective distortion that appears
in classic environment mapping techniques. A detailed de-
scription for viewpoint warping can be found in their paper
[3].
A more recent hybrid approach was proposed by Ganestam
and Dogget [6]. They wanted to seamlessly trace paths in
the scene, without using a full ray tracing approach. So,
they developed a heuristic scene tracing approach. They
divide the scene into different volumes. In a volume that is
close to the camera, objects are placed inside a BVH (see
Section 2.3), which is updated every frame. Outside this
first volume, objects are rendered into a cube map structure
of G-buffers. These buffers can be used for tracing the path
in image space, reducing the complexity of the scene out-
side the innermost volume. Rays can be seamlessly traced
between these two volumes. The combination of those two
techniques is very efficient in avoiding the long computa-
tion times of ray tracing and the problems that come with
the image-based buffer technique.
Walewski et al. [18] developed a method for hybrid render-
ing that determines which parts of the scene are to be ren-
dered with secondary effects, like shadows and reflections,
by calculating an importance value for them. They esti-
mate the time it takes to render an object using ray tracing
and weigh it against the importance value. Then they sort
the scene into a graph, putting the more relevant objects at
the top. When calculating the secondary effects, they start
with the objects with the highest importance value and then
follow the graph towards the most important objects that

can still fit into the remaining available calculation time for
the current frame. The importance value depends on mul-
tiple variables. Most of them are calculated every frame,
like the size in the viewport, for example. Some are also
determined by the user beforehand, for example, how im-
portant it is to select objects that were previously chosen
for secondary effects. For a detailed description of how the
importance value is calculated see the paper of Waliewski
et al. [18].
The PICA PICA hybrid rendering pipeline is a hybrid ren-
dering approach by Barré-Brisebois et al. [2] that combines
traditional rasterization shaders with compute shaders and
ray tracing shaders for the entire rendering pipeline. Their
method does not specifically focus on reflections, but they
are included as an integral part of their feature set. They
state that reflections are one of the main features that ben-
efit from ray tracing. Although they incorporated Screen-
Space Reflections into their approach, they mostly use ray
tracing for the final result to keep it simple. They also make
use of denoising algorithms we previously mentioned in
Section 2.3, that work on the final image to remove arte-
facts in areas where the number of traced rays was not high
enough.

3 State-of-the-Art Rendering Engines

Currently, there are many real-time rendering engines pub-
licly available. Most of them use state-of-the-art computer
graphics techniques to portray realistic scenes and effects.
Among those techniques, reflections are only a small sub-
set of their capabilities, albeit a very important one. We
will discuss two examples of freely available engines and
compare their approaches and capabilities to give an in-
sight into how they can produce real-time reflections. We
chose these two because of their popularity and their ex-
tensive documentation.

3.1 Unreal Engine 4

The Unreal Engine 4 offers multiple different ways to pro-
duce real-time reflections. The first one uses planar re-
flections. This is Unreal Engine’s geometric approach to
render the scene a second time using a user-defined plane
as a mirror. The engine handles clipping and reflective ob-
jects around the plane are taken care of automatically. This
feature must be turned on deliberately in the engine’s set-
tings before it is available to the user, as it is potentially
expensive to compute. Furthermore, they advise to only
use a few of these planes if any at all, since it directly cor-
responds to the scene’s complexity. To compensate for this
the engine has multiple parameters to limit the number of
reflected objects, for example, a maximum distance. More
information can be found in the Unreal Engine Documen-
tation on planar reflections [24].
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The second method the Unreal Engine offers is Screen
Space Reflections. This method is turned on by default.
It generates little computational overhead as compared to
other methods. There are only very few parameters to
tweak the result, but the most notable one certainly is the
quality setting that can be set between 0 and 100, with 50
as the default. The documentation [26] does not mention
exactly how this parameter affects the algorithm.

The third option for reflections uses environment map-
ping. This method comes in multiple different forms. The
Unreal Engine defines these as Reflection Capture Actors
and Scene Capture Actors [23] that can be placed inside
the scene. The former ones only map reflections inside
a user-defined volume. This volume is either a cuboid or
spherical. Their reflections are computed before run time
and do not affect per frame computation time very much,
since they are just environment maps which we already dis-
cussed in Section 2.2.1. The latter ones are fully dynamic
cube maps. Their maps capture the entire scene and are
recalculated on every frame, according to the documenta-
tion. This comes with a large computational cost. There
is also the option for a 2-dimensional screen capture that
works similarly but only maps to one texture instead of six
cube map faces.

The final method for real-time reflections in Unreal Engine
4 is one that uses real-time ray tracing [25]. Its ray tracer
is actually a hybrid between conventional ray tracing and
raster effects, according to the documentation. A key in-
gredient for real-time viability is the denoising algorithm
used by the engine. This allows for fewer samples during
ray tracing.

Figure 6: A comparison of environment mapping (top),
screen-space reflections (middle) and ray tracing (bottom)
using Unreal Engine 4. The images are taken from the
BlueprintOffice scene by Epic Games with the default ren-
dering settings. The top image uses only Reflection Cap-
ture Actors. Notice how the reflection of the blue light
source is not captured here. The reflections on the floor
are blurry due to the limited environment map resolution.
The windows of the building in the background are not en-
compassed by an environment map and therefore do not
show reflections. In the middle image, only screen-space
reflections are used. Thereby, the windows of the opposite
building cannot show reflections because the outside walls
of the room are not contained in the rendered image. The
reflections on the floor are sharper because they use infor-
mation from the rendered image directly. The bottom im-
age uses ray tracing with a single bounce after the first in-
tersection. The biggest difference in this image, compared
to the other two, is that the windows of the building in the
background show reflections of the exterior. The reflections
on the floor are also sharper but much more subtle.
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Figure 6 shows a comparison of images that were created
using different reflection techniques which are available in
Unreal Engine 4.

3.2 Unity

Unity also supports multiple reflection techniques but their
rendering engine is split into three separate rendering
pipelines supporting different effects. When choosing a
specific reflection technique, this has to be taken into ac-
count. See the Unity rendering pipeline documentation
[22, 21] for a comparison between the rendering pipelines.

Similar to the Unreal Engine, Unity offers environment
mapping in the form of cube maps. Here they are called
Reflection Probes. They are placed inside the scene and
can be used by any reflective object that comes close to the
Reflection Probe. If there are multiple probes close to re-
flectors, the final reflection gets interpolated between their
environment maps. According to the Unity documentation,
this technique is available in every currently supported ren-
dering pipeline, albeit with some minor differences.

Screen Space Reflections are available as a post-processing
effect, but only in the High Definition Rendering Pipeline.

Real-time ray tracing is currently in preview and only
available inside the High Definition Rendering Pipeline.
Their approach is to completely replace other rasterized
effects with ray tracing. This means that the ray traced re-
flections replace the screen space reflections. Additionally,
ray tracing is not supported in combination with Reflection
Probes.

4 Conclusion

Reflections in real-time scenes can be achieved in mul-
tiple ways. Geometry-based techniques can produce re-
alistic results and are easy to calculate for planar reflec-
tors, but curved surfaces are too complex to find a gen-
eralized solution. Image-based techniques can break the
complexity of curved reflectors, since they work in image
space rather than object space. Although not accurate, en-
vironment maps give a good approximate solution that can
be calculated before run-time. Screen-Space Reflections
work well for accurate reflections in real-time but are lim-
ited to the information of the camera view. Real-time ray
tracing is getting more viable with dedicated hardware and
improved algorithms to reduce tracing complexity. Hybrid
approaches can compensate for the drawbacks of individ-
ual methods and can also produce fast and accurate results
even though they can be more complex. Current state-
of-the-art engines offer the user a variety of techniques to
choose from to fit their individual needs.
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[3] R. BASTOS, W. STÜRZLINGER, Forward Mapped
Planar Mirror Reflections, University of North Car-
olina at Chapel Hill, Computer Science Technical Re-
port TR98-206 (1998).

[4] J.F. BLINN, M.E. NEWELL, Texture and Reflection
in Computer Generated Images, Communications of
the ACM 19(10) (1976), 542–547.

[5] Y. DENG, Y. NI, Z. LI, S. MU, W. ZHANG, Toward
Real-Time Ray Tracing: A Survey on Hardware Ac-
celeration and Microarchitecture Techniques, ACM
Computing Surveys (CSUR) 50(4) (2017), 1–41.

[6] P. GANESTAM, M. DOGGETT, Real-time Multiply
Recursive Reflections and Refractions Using Hybrid
Rendering, The Visual Computer 31 (2015), 1395–
1403.

[7] N. GREENE, Environment Mapping and Other Ap-
plications of World Projections, IEEE computer
graphics and Applications 6(11) (1986), 21–29.

[8] M. KILGARD, Creating Reflections and Shadows Us-
ing Stencil Buffers, At Game Developers Conference
7 (1999).

[9] C. LAUTERBACH, M. GARLAND, S. SENGUPTA,
D. LUEBKE, D. MANOCHA, Fast BVH Construction
on GPUs, Computer Graphics Forum 28(2) (2009),
375–384.

[10] A. MARRS, J. SPJUT, H. GRUEN, R. SATHE,
M. MCGUIRE, Improving Temporal Antialiasing
with Adaptive Ray Tracing, Ray Tracing Gems:
High-Quality and Real-Time Rendering with DXR
and Other APIs (2019), 353.

[11] M. MCGUIRE, M. MARA, Efficient GPU Screen-
Space Ray Tracing, Journal of Computer Graphics
Techniques (JCGT) 3 (2014), 73–85.

94



KoG•25–2021 C. Clemenz, L. Weydemann: Reflection Techniques in Real-Time Computer Graphics

[12] T. MCREYNOLDS, D. BLYTHE, Advanced Graphics
Programming Using OpenGL, Elsevier, 2005.

[13] Y. MIZUTANI, K. REINDEL, Environment Mapping
Algorithms, https://www.reindelsoftware.

com/Documents/Mapping/Mapping.html, Ac-
cessed: 2021-8-4.

[14] NVIDIA, NVIDIA Turing GPU Architecture, White
Paper, 2018.

[15] E. OFEK, A. RAPPOPORT, Interactive Reflections on
Curved Objects, Proceedings of the 25th annual con-
ference on Computer graphics and interactive tech-
niques (1998), 333–342.

[16] V. POPESCU, C. MEI, J. DAUBLE, E. SACKS,
Reflected-scene Impostors for Realistic Reflections
at Interactive Rates, Computer Graphics Forum 25(3)
(2006), 313–322.

[17] T. SOUSA, N. KASYAN, N. SCHULZ, Secrets of
CryENGINE 3 Graphics Technology, SIGGRAPH,
Advances in Real-Time Rendering in 3D Graphics
and Games (2011).

[18] P. WALEWSKI, T. GAŁAJ, D. SZAJERMAN, Heuris-
tic Based Real-Time Hybrid Rendering with the Use
of Rasterization and Ray Tracing Method, Open
Physics 17(1) (2019), 527–544.

[19] T. WHITTED, An Improved Illumination Model for
Shaded Display, Proceedings of the 6th annual con-
ference on Computer graphics and interactive tech-
niques 17(1) (1979), 14.

[20] J. YU, J. YANG, L. MCMILLAN, Real-Time Reflec-
tion Mapping with Parallax, Proceedings of the 2005
symposium on Interactive 3D graphics and games
(2005), 133–138.

[21] Unity High Definition Rendering Pipeline Doc-
umentation, https://docs.unity3d.com/

Packages/com.unity.render-pipelines.

high-definition@12.0/manual/

Feature-Comparison.html, Accessed: 2021-
9-14.

[22] Unity Universal Rendering Pipeline
Documentation, https://docs.

unity3d.com/Packages/com.unity.

render-pipelines.universal@12.0/manual/

universalrp-builtin-feature-comparison.

html, Accessed: 2021-9-14.

[23] Reflections in the Unreal Engine Manual,
https://docs.unrealengine.com/4.26/

en-US/Resources/Showcases/Reflections/,
Accessed: 2021-5-27.

[24] Planar Reflections in the Unreal Engine Man-
ual, https://docs.unrealengine.com/4.26/

en-US/BuildingWorlds/LightingAndShadows/

PlanarReflections/, Accessed: 2021-7-28.

[25] Ray Tracing in the Unreal Engine Manual,
https://docs.unrealengine.com/4.26/

en-US/RenderingAndGraphics/RayTracing/,
Accessed: 2021-9-22.

[26] Screen-Space Reflections in the Un-
real Engine Manual, https://docs.

unrealengine.com/4.27/en-US/

RenderingAndGraphics/PostProcessEffects/

ScreenSpaceReflection/, Accessed: 2021-9-22.

Christian Clemenz
e-mail: christian.clemenz@uni-ak.ac.at

University of Applied Arts Vienna
Oskar-Kokoschka-Platz 2, A-1010 Vienna, Austria

Leonard Weydemann
e-mail: leonard.weydemann@uni-ak.ac.at

University of Applied Arts Vienna
Oskar-Kokoschka-Platz 2, A-1010 Vienna, Austria

95

https://www.reindelsoftware.com/Documents/Mapping/Mapping.html
https://www.reindelsoftware.com/Documents/Mapping/Mapping.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@12.0/manual/Feature-Comparison.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@12.0/manual/Feature-Comparison.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@12.0/manual/Feature-Comparison.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@12.0/manual/Feature-Comparison.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.0/manual/universalrp-builtin-feature-comparison.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.0/manual/universalrp-builtin-feature-comparison.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.0/manual/universalrp-builtin-feature-comparison.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.0/manual/universalrp-builtin-feature-comparison.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.0/manual/universalrp-builtin-feature-comparison.html
https://docs.unrealengine.com/4.26/en-US/Resources/Showcases/Reflections/
https://docs.unrealengine.com/4.26/en-US/Resources/Showcases/Reflections/
https://docs.unrealengine.com/4.26/en-US/BuildingWorlds/LightingAndShadows/PlanarReflections/
https://docs.unrealengine.com/4.26/en-US/BuildingWorlds/LightingAndShadows/PlanarReflections/
https://docs.unrealengine.com/4.26/en-US/BuildingWorlds/LightingAndShadows/PlanarReflections/
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/RayTracing/
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/RayTracing/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/PostProcessEffects/ScreenSpaceReflection/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/PostProcessEffects/ScreenSpaceReflection/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/PostProcessEffects/ScreenSpaceReflection/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/PostProcessEffects/ScreenSpaceReflection/


KoG•25–2021 Instructions for Authors / How to get KoG?

INSTRUCTIONS FOR AUTHORS

SCOPE. “KoG” publishes scientific and professional papers from the fields of geometry, applied geometry and computer
graphics.

SUBMISSION. Scientific papers submitted to this journal should be written in English, professional papers should be
written in Croatian or English. The papers have not been published or submitted for publication elsewhere.
The manuscript should be sent in PDF format via e-mail to the editor:

Ema Jurkin
ema.jurkin@rgn.hr

The first page should contain the article title, author and coauthor names, affiliation, a short abstract in English, a list of
keywords and the Mathematical subject classification.

UPON ACCEPTANCE. After the manuscript has been accepted for publication authors are requested to send its LaTex file
via e-mail to the address:

ema.jurkin@rgn.hr

Figures should be titled by the figure number that match to the figure number in the text of the paper.

The corresponding author and coauthors will receive hard copies of the issue free of charge.

How to get KoG?

The easiest way to get your copy of KoG is by contacting the editor’s office:
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