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ABSTRACT

A Voronoi diagram is a tessellation technique, which sub-
divides space into regions in proximity to a given set of
objects called seeds. Patterns emerging naturally in biolog-
ical processes (for example, in cell tissue) can be modelled
in a biomimicry process via Voronoi diagrams. As they
originate in nature, we investigate the physical properties
of such patterns to determine whether they are optimal
given the constraints imposed by surrounding geometry
and natural forces.
This paper describes under what circumstances the
Voronoi tessellation has optimal (structural) properties by
surveying recent studies that apply this tessellation tech-
nique across different scales. To investigate the properties
of random and optimized Voronoi tessellations in compar-
ison to a regular tessellation method, we additionally run
and evaluate a simulation in Karamba3D, a parametric
structural engineering tool for Rhinoceros3D.
The novelty of this research lies in presenting a simple
and straightforward simulation of Voronoi diagrams and
highlighting how and where their advantages over regular
tessellations can be exploited by surveying more advanced
approaches as found in literature.
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O strukturalnim svojstvima Voronoi dijagrama

SAŽETAK

Voronoi dijagram je tehnika popločavanja koja čini par-
ticiju prostora s obzirom na udaljenosti od zadanog
skupa objekata koje nazivamo lokacije (en. seeds).
Uzorke koji nastaju tokom bioloških procesa (na prim-
jer u staničnom tkivu) možemo modelirati biomimikrij-
skim procesima korǐstenjem Voronoi dijagrama. Kako je
izvor takvih struktura prirodan, proučavamo fizička svoj-
stva takvih uzoraka da bismo ispitali njihovu optimalnost
s obzirom na ograničenja koja nameću vanjska geometrija
i prirodne sile.
U ovom članku opisujemo slučajeve u kojima je Voronoi
popločavanje (strukturalno) optimalno proučavanjem ne-
davnih ispitivanja koja ovo popločavanje koriste u
različitim razmjerima. Da bismo usporedili svoj-
stva slučajnog te optimiziranog Voronoi popločavanja
i metode pravilnog popločavanja, razvili smo simu-
laciju korǐstenjem Karamba3D, alata za parametarsko
strukturalno inženjersko modeliranje unutar programa
Rhinoceros3D.
Novost ovog istraživanja je predstavljanje jednostavne i
izravne simulacije Voronoi dijagrama, isticanje njenih pred-
nosti nad pravilnim popločavanjima te pregled korǐstenja
tih prednosti u naprednijim pristupima iz literature.

Ključne riječi: Voronoi dijagrami, 3D popločavanja, 3D
konstrukcije

1 Introduction

Figure 1 shows some example patterns found in nature next
to a two-dimensional Voronoi diagram, exemplifying the
resemblance between some naturally arising patterns and
Voronoi tessellation. Since these patterns arise naturally

we ask ourselves if there is a reason for this occurrence.
If this pattern developed through evolution, there might be
some properties that are optimal under constraints imposed
by geometry and natural forces. To this end we first created
a three-dimensional Voronoi diagram in Grasshopper and
investigated its structural properties using the Karamba3D
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(a)

(b)

(c)
Figure 1: (a) shows a two-dimensional Voronoi diagram within a square boundary. (b) shows a similar pattern found in

dragonfly wings. (c) shows foam in a transparent cube, after it has settled, displaying a Voronoi-like pattern1.

[10] plugin, a structural engineering tool. We do this by
creating random Voronoi tessellations of a cube. We com-
pare this to a regular triangle mesh tessellation. Since evo-
lution is an optimization process, we further test a model
of a Voronoi tessellation which is optimized in terms of
weight and elastic energy of the structure using Octopus
[11], which employs a genetic algorithm. We then research
relevant literature which employs Voronoi diagrams and
exploit its properties in some way. The paper is structured
as follows: In Section 2 we discuss the definition and cre-
ation of a Voronoi diagram. Section 3 compares random
and optimized Voronoi tessellations of a cube with a regu-
lar triangle mesh under load. We survey relevant literature
on methods where the properties of Voronoi diagrams can
be exploited in Section 4. Finally, we give our closing re-
marks on how and when Voronoi diagrams can be utilized
in Section 5.

2 Background

The Voronoi diagram describes a partition of space into
regions surrounding a number of seed points. The defi-
nition below follows the one found in [1]. For the two-
dimensional case, let S be the set of n seed-points. The
dominance of a seed p over q, p,q ∈ S, is defined as

dom(p,q) = {x ∈ R|δ(x, p)≤ δ(x,q)}. (1)

Here, δ describes the Euclidean distance. This can be
adapted for higher dimensions and other metrics. A result

of this is the partitioning of space into points lying closer
to p or q, creating regions per seed p where portions of
the plane lie in all of the dominances of p over remaining
seeds in S. Formally, this means

reg(p) =
⋂

q∈S−p

dom(p,q). (2)

For each region, the boundary consists of at most n− 1
edges and vertices, the endpoints of the edges. The points
lying on an edge are equidistant from exactly two seeds.
The vertices are equidistant from at least three. Thus, the
regions form a polygonal partition of the plane, which is
called the Voronoi diagram. For a large number of seeds,
the Voronoi diagram converges towards a hexagonal pat-
tern [2]. The Voronoi diagram is named for GEORGY
F. VORONOY, who investigated the n-dimensional case in
1908 [12].

3 Simulation of a 3D Voronoi structure un-
der load

Using Karamba3D [10], a structural engineering tool, we
modelled three structures within a cube: a random Voronoi
tessellation, a regular triangle mesh tessellation, and an
optimized Voronoi tessellation. We use built-in com-
ponents of Grasshopper to model the Voronoi structure
which in turn is used as input for the Karamba3D model.
Karamba3D transforms the Voronoi structure into beams
which together with supports and loads are assembled into

1Photographs c©Georg Glaeser, with permission.
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(a) Triangle mesh tessellation (b) Random Voronoi tessellation (c) Optimized Voronoi tessellation

Figure 2

a structural model. When building a structure, we usually
aim for something which is light and stiff, saving on mate-
rial cost while still preserving stability. For this reason, we
compare the models in terms of mass and elastic energy,
aiming for a minimum of both. Elastic energy can serve as
a measure of stiffness, the resistance against deformation.
It is given in kNm. All tessellations are confined to a cube
of 5m length. Each steel-beam is modelled as a tube with a
diameter of 114mm, and its walls have a thickness of 4mm.
A uniformly distributed load is applied on top of the cube
in negative z-direction, the points where the beams join on
the xy-plane serve as supports.
For the initial Voronoi structure, we begin by randomly
placing

s ∈ {10,20,30,40,50,75,100}

seeds within the cube to create the Voronoi cells. This is
repeated 500 times, and elastic energy as well as mass are
averaged for each N. Next, we create a triangle mesh by
subdividing the cube into

n ∈ {23,33,43,53,63,73,83}

smaller cubes and splitting them into two tetrahedra. This
way we can compare the irregular Voronoi tessellation to
a triangle tessellation of similar mass. We chose this tri-
angle mesh as being representative of a regular tessellation
method.
Finally, we create random Voronoi cells with the same
number of seeds as above, but this time we employ a
genetic algorithm to find optimal positions for the seed
points, minimizing both mass and elastic energy. To this
end we use the multi-objective optimization package Oc-
topus [11]. This introduces the Pareto principle for multi-
ple goals.Octopus uses genome components as well as the
objectives (mass and elastic energy) as input. We mod-

elled the x,y, and z coordinates of the seed points as three
genome components on the input side, which are further
fed as input to the Karamba3D components creating the
structural model. Mass and elastic energy, as calculated by
the Karamba3D components, are then minimized by Oc-
topus using a genetic algorithm. This means Octopus re-
arranges the x,y, and z coordinates of the input genomes,
which in turn are used by Karamba3D to update the model.
For optimization we need to pick a number of generations
after which we stop the optimization process. Choosing a
fixed number for all seeds gave an unfair advantage to the
structures with a lower amount of seed points, as an op-
timal solution is found more quickly for a low amount of
seeds. We instead set the number of generations to be twice
the amount of seed points. This ensures that we can com-
pare the results for a different amount of seeds. We then
pick a solution on the Pareto front which satisfies both ob-
jectives equally well, by choosing the one closest to the
bisector of the oriented coordinate axes. A better alterna-
tive would be to stop the optimization process when the
optimal solution only shows a marginal change within a
pre-defined timeframe. This, however, is not implemented
as a standard feature in Octopus.
We now compare the models first by examining their struc-
tures visually in Fig. 2. The number of cells for the Voronoi
structures is set to 20. The subdivisions for the triangle
mesh were set to 2 in order to arrive at a similar mass.
Fig. 2 shows the utilization plot of the three models with
the lower and upper threshold set to 20% and 80% of the
minimum and maximum utilization respectively. The uti-
lization is plotted uniformly between its extremes in red
and blue. Values outside the range are colored in green or
yellow. For the triangle mesh model one can see that the
bending and axial deformation energy is strongest on the
top of the structure where the load is applied. The bottom
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Figure 3: Comparison of elastic energy as a function of mass for random Voronoi structure, triangle mesh structure and
optimized Voronoi structure. Random Voronoi has a lower elastic energy for lower number of seeds than the
triangle mesh tessellation. Optimized Voronoi structure outperforms both in terms of weight.

part appears mostly rigid, which is in contrast with the ran-
dom and optimized Voronoi structures. Here, higher defor-
mation energy is present throughout the structures. How-
ever, the optimized structure shows this to a lesser extent
than the random structure. This agrees with the plots in
Fig. 3 described below. With regard to the triangle mesh, it
should be noted that the larger angles found in the Voronoi
structures make them easier to construct. A striking fea-
ture of the optimized Voronoi tessellation, is the apparent
formation of a cupola-like structure in the lower parts of
the cube, which distributes the load evenly. In Fig. 3 we
compare the models by plotting their respective elastic en-
ergy as a function of their mass. Looking at triangle mesh
and random Voronoi tessellation plots, we can see that for
low subdivisions the triangle mesh shows a high elastic en-
ergy. Clearly the random Voronoi-modelled structure is
superior for a lower mass. This changes at a mass around
9000kg. With more subdivisions the triangle structure is
now more resistant to stress than the Voronoi structure of
a similar mass. The optimized Voronoi structure is highly
stable already at low mass. Comparing the mass of the
three structures at an elastic energy of 0.001kNm, for ex-
ample, we see that the optimized structure weighs only ap-
proximately 1800kg whereas the other two already have a
mass of over 9000kg at this point. Consequently, from a
material utilization point of view, the triangle mesh is su-
perior, whereas when aiming for light and rigid structures,
the optimized Voronoi structure is preferable. The ”bump”
in the graph of the optimized Voronoi that can be seen at
the point for 30 seeds (third from left) can be explained
by a local optimum, where the genetic algorithm might not
have found the true optimum after the respective number
of generations. Owing to the random nature of the algo-
rithm, the results generally may vary, but the general trend
of the graph will remain the same.

To compare their performance in terms of weight and rigid-
ity, we plot the models’ respective elastic energy as a func-
tion of mass in Fig. 3.
The plots generally show a trend towards low elastic en-
ergy the more mass ,i.e. beams are added. Comparing ran-
dom and triangle mesh tessellation, we see that the random
Voronoi outperforms the triangle mesh in terms of elastic
energy up to a mass of about 9000kg. Heavier triangu-
lar structures, however, are more rigid than their Voronoi
counterparts at approximately the same mass. The opti-
mized Voronoi structures are much lighter than both ran-
dom and triangle tessellation, while still retaining simi-
lar rigidity. For example, to reach an elastic energy of
around 0.001kNm the optimized Voronoi structure weighs
1800kg, whereas random and triangular Voronoi structures
have a mass of approximately 8600kg and 8000kg respec-
tively at the same value for elastic energy.
To summarize: Random Voronoi structures give a good
out-of-the-box solution when a low number of seeds is
used and are comparable to regular triangle meshes. How-
ever, we can still optimize the position of the seeds to in
turn create structures that clearly outperform triangle tes-
sellations of similar weight.

4 Related Work

Finding that random Voronoi structures can still be im-
proved by optimization processes, we have reviewed recent
literature where structures can be manufactured or at least
simulated by using Voronoi tessellation as an initial step
before optimization. We identify two main areas where the
structural properties of Voronoi diagrams are applicable:
additive manufacturing and to a lesser extent architecture,
where an important role is attributed to aesthetics, which is
secondary to our interest.
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4.1 Additive Manufacturing

More commonly known as 3D printing is the process of
constructing a 3D-model from a digital model. There are
a number of different ways to achieve this, a popular one
being fused filament manufacturing. Here a thermoplastic
material is melted to iteratively build a 3D-model through
the use of a movable nozzle. Generally speaking, the sur-
veyed papers all deal with the infill pattern of models, as
printing a solid model needlessly wastes material. Since
a completely hollow object would not be very resistant to
stress, however, an infill pattern is sought that minimizes
material use and maximizes resistance to stress. To this
end a variety of optimization strategies are employed to
find an optimal positioning of the Voronoi seed cells. As
we will see, it is also possible to achieve different kinds of
elastic behaviour.
Öncel and Yaman [8] use topological optimization under
specific load and support conditions and finite element
analysis to define a number of density regions where the
average stress is larger, and thus, more seeds need to be
placed. This creates an infill pattern using hollow Voronoi
cells. The objective of the optimization process is a pat-
tern that minimizes the maximum deflection and mass of
the printed object. They test their approach on three dif-
ferent models by comparing the performance of random
Voronoi tessellation to their approach. The approach can
be used in a given geometry, and the optimized Voronoi in-
fill pattern exhibited higher mechanical performance than
random Voronoi structures for the same model.
In a similar approach by Lu et al. [4], an optimal strength-
to-weight ratio for 3D-printed objects is found by using ir-
regular Voronoi diagrams for a hollowed interior structure.
In order to find an optimal placement of the Voronoi cells,
an initial stress map is computed. Additionally, the hollow-
ing of the cells is maximized so that interior and exterior
stresses can be sustained while minimizing the amount of
material used.
A more biomimetic approach is given in Deering et al. [3]:
Here, porous scaffolds are proposed to mimic the natural
structure of trabecular bone by using Voronoi tessellation
with selective seeding. Stress shielding effects, where an
implant’s high stiffness results in a stiffness discrepancy
between surrounding bone and the implant, are an impor-
tant factor for osseointegration. Since the geometry and
size of the pores in the material influence the effects of
stress on the scaffold, this approach aims to mimic the
anisotropic network of struts and plates of trabecular bone.
This is done by selectively placing Voronoi seeds on peri-
odic planes within the volume. The resulting structure has
a similar performance as the one measured in human bone.
Contrary to the objectives of the papers before, in the work
by Martinez et al. [5], the goal is a structure which ex-
hibits elastic behaviour. Through the use of a polyhedral

cone-like metric for the Voronoi diagram its geometry is
changed. Varying the density, anisotropy, and angle of the
design results in a graded elastic behaviour of the printed
structure. This allows the printing of objects which can be
both rigid and elastic in parts: for example, the creation
of a cylinder which remains vertically rigid but allows for
rotation in one direction. This is applicable to the design
of prosthetics or wheels. Note that a rubber-like printing
material is used in this case.

4.2 Architecture

To show whether the aforementioned properties of
Voronoi-inspired techniques scale to larger structures, we
survey approaches in the area of architecture. Since aes-
thetics play a larger role, the approaches are more limited.
Mele et al. [6, 7] investigate the mechanical properties of
irregular structural patterns as applied to tube configura-
tions for tall buildings at macro-scale. The aim being to
investigate properties of irregular patterns, with respect to
constructability. In a first step, hexagonal patterns - non-
regular patterns based fully on Voronoi diagrams, mixed
regular patterns, and irregular patterns - are examined. Pat-
terns generated from a regular hexagonal pattern are char-
acterized by density degree and irregularity degree which
can be varied along the building’s height. The resulting
Voronoi tube structure carries tributary gravity loads and
total wind load. The mechanical properties of the Voronoi-
based structures were examined by representative volume
elements-based approach. It was observed that irregular
patterns are lighter, and the design procedure seemed use-
ful for the initial design of such structures.
For use in the design of grid-shell structures, Pietroni et al.
[9] propose a framework based on Voronoi diagrams which
also exhibits good static performance, comparable to more
conventional triangle or quad-based grid-shell structures.
Using a finite element static analysis of the input sur-
face, they create a stress tensor field according to which
the tessellation’s elements are sized and aligned. To ac-
count for aesthetics, they adapt the cell’s geometry to form
hexagons.

Common to the mentioned works is that Voronoi diagrams
serve as an initial step in the design process but can be
optimized towards fulfilling certain criteria. The Voronoi
structure’s properties of seed location, as well as the cells’
size, orientation and geometry are due to change because
of the optimization procedure. This approach scales from
3D printed objects to larger structures.

5 Conclusion

In this paper we have investigated the structural properties
of Voronoi tessellations under stress, inspired by the occur-
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rence of similar patterns in nature. In a simple simulation,
we have shown that random Voronoi diagrams can be used
for the creation of structures which are rigid under applied
load while being significantly lighter than a regular trian-
gle mesh tessellation up to a certain point. These Voronoi
structures can still be optimized by selective placement of

their seeds. We have surveyed papers where light and rigid
structures are desired and identified two areas of applica-
tion: additive manufacturing and to a lesser extent architec-
ture. Voronoi structures give a good starting point, but their
seed placement, cell-orientation, cell-size, cell-geometry
can be further optimized to fulfil a stated objective.
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