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ABSTRACT

We derive the generalized regularity of convex quadrilater-
als in R2, which gives a new evolutionary class of convex
quadrilaterals that we call generalized regular quadrilat-
erals in R2. The property of generalized regularity states
that the Simpson line defined by the two Steiner points
passes through the corresponding Fermat-Torricelli point
of the same convex quadrilateral. We prove that a class
of generalized regular convex quadrilaterals consists of
convex quadrilaterals, such that their two opposite sides
are parallel. We solve the problem of vertical evolution
of a “botanological” thumb (a two way communication
weighted network) w.r to a boundary rectangle in R2 hav-
ing two roots,two branches and without having a main
branch, by applying the property of generalized regularity
of weighted rectangles. We show that the two branches
have equal weights and the two roots have equal weights, if
the thumb inherits a symmetry w.r to the midperpendicular
line of the two opposite sides of the rectangle, which is
perpendicular to the ground (equal branches and equal
roots). The geometric, rotational and dynamic plasticity of
weighted networks for boundary generalized regular tetra-
hedra and weighted regular tetrahedra lead to the creation
of “botanological” thumbs and “botanological” networks
(with a main branch) having symmetrical branches.
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Generalizirana regularnost i simetrija
“botanologičnih” mreža

SAŽETAK

Izvodimo generaliziranu regularnost konveksnih četverokuta
u R2 koja daje novu evolucijsku klasu konveksnih
četverokuta koju mi nazivamo generalizirani regularni
četverokuti u R2. Svojstvo generalizirane regularnosti kaže
da Simpsonov pravac definiran s dvije Steinerove točke
prolazi odgovarajućom Fermat-Torricellijevom točkom tog
istog četverokuta. Dokazujemo da se klasa generaliziranih
regularnih konveksnih četverokuta sastoji od konveksnih
četverokuta takvih da su njihove dvije nasuprotne stran-
ice paralelne. Rješavamo problem vertikalne evolucije
“botanologičnog palca” (težinska mreža, u oba smjera)
s obzirom na granični pravokutnik u R2 koji ima dva kori-
jena, dvije grane, bez da ima glavnu granu, primjenjujući
svojstvo generalizirane regularnosti težinskih pravokutnika.
Pokazujemo da dvije grane imaju jednake težine kao i dva
korijena ako “palac” nasljed-uje simetriju s obzirom na polu-
okomit pravac dvaju nasuprotnih stranica pravokutnika koji
je okomit na tlo (jednake grane i jednaki korijeni). Ge-
ometrijski, rotacijski i dinamični plasticitet težinskih mreža
za granični generalizirani regularni tetraedar i težinski regu-
larni tetraedar vodi ka stvaranju “botanologičnih palčeva”
i “botanologičnih” mreža (s glavnom granom) koja ima
simetrične grane.

Ključne riječi: Fermat-Torricellijev problem, Fermat-
Torricellijeva točka, Steinerovo stablo, Steinerove točke,
generalizirani regularni četverokuti, generalizirana regu-
larnost, “palac”

1 Introduction

Let A1,A2, ...,An be the vertices of a polygon A1A2A3...An
in a cyclic order.

An affinely regular polygon in R2 is derived by applying
an affine transformation to a regular polygon ([1]). Coxeter
introduced the affine regularity of polygons and proved the
following result ([2], [3]):
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A1A2A3...An is affinely regular if and only if there is m≥ 0,
such that−−−−−→
Ai−1Ai+2 = m

−−−−→
AiAi+1, for i = 1,2, ...,n.

Triangles are affine regular and parallelograms are affine
regular quadrilaterals in R2.
Gerber connected the affine regularity with the Euclidean
regularity of n− gons in [4], (see also [2] and [3])) and
proved the result: If you construct regular n− gons out-
wardly (or inwardly) on the sides of any affine regular
n− gon, then their centers form the vertices of a regular
n−gon. The case n = 4 was proved by Thebault, who gave
the first generalization of Napoleon’s regularity for the case
n = 3 (Napoleon’s theorem) ([2, p. 185]).
We start by giving the definitions of a weighted Fermat-
Torricelli tree and weighted Steiner tree for a boundary
quadrilateral, in order to derive a new regularity of quadri-
laterals which is different from Coxeter’s, Gerber’s and
Thebault’s approach. The new regularity of quadrilater-
als is achieved by the construction of isosceles triangles
outwardly on the parallel sides of a rectangle or a trapezoid.
Let A1A2A3A4 be a convex quadrilateral in R2. We de-
note by Ai(xi,yi) the vertices of A1A2A3A4, by Bi a pos-
itive real number (weight) which corresponds to Ai, by
O12(x012,y012), by O34(x034,y034) two points in R2 with
given weights B12 in O12 and B34 in O34, by d(X ,Y ) the
Euclidean distance ‖XY‖, for X ,Y ∈ R2.
The weighted Steiner problem for A1A2A3A4 in R2 states
that:

Problem 1 Find Oi(x0i,y0i), for i = {12,34}, such that

f (O12,O34) = B1d(O12,A1)+B2d(O12,A2)+

+B3d(O34,A3)+B4d(O34,A4)+

+
B12 +B34

2
d(O12,O34)→ min. (1)

For B1 = B2 = B3 = B4, the solution of the (unweighted)
Steiner problem is called a Steiner tree. Gilbert and Pol-
lack introduce the Steiner tree topologies for A1A2A3A4, in
their classical study ([5]). They mention three topologies
of solutions w.r to the boundary A1A2A3A4 :
1. If we set one point (node) F (Fermat-Torricelli point)
different from Ai, the solution is called a Fermat-Torricelli
tree. The Fermat-Torricelli point F has four connections
{FA1,FA2,FA3,FA4}. This is a special case of the un-
weighted Steiner problem, by setting B12 = 0 or B34 = 0.
2. If we set two points (nodes) O12 and O34 (Steiner
points) and B12 + B34 = 2, such that the objective func-
tion (40) is minimized, then we derive a solution which
is called a full Steiner tree. The Steiner points O12 and
O34 have three connections {A1O12,A2O12,O12O34} and
{A3O34,A4O34,O12O34}, respectively.
3. If we set one point (node) Steiner point O12 and
O34 ≡ A3orA4, such that the objective function (40) is min-
imized, then we derive a degenerate Steiner tree.

It is well known that the Steiner point with three connec-
tions possesses the equiangular property 360o

3 . The angle
formed by the Steiner point as a vertex and two connec-
tions is 120o, for the unweighted case and by assuming
that B12 +B34 = 2 ([5]). The same property holds for the
Fermat-Torricelli point for a boundary triangle, which coin-
cides with the Steiner point. The Fermat-Torricelli tree of
a convex quadrilateral consists of the two diagonals A1A3
and A2A4, which meet at the intersection point F (Fermat-
Torricelli point) for the unweighted case.
Rubinstein, Thomas and Weng studied in [8] the un-
weighted Steiner problem for tetrahedra in R3. They suc-
ceeded in locating the Simpson line, which passes through
the two Steiner points O12 and O34 in R3. The vertex A12 of
the equilateral4A12A1A2, which lies on the opposite side
of A1A2 to O12 is referred to as the e-point of A1A2. The
vertex A34 of the equilateral4A34A4A3, which lies on the
opposite side of A3A4 to O34 is referred to as the e-point
of A3A4. The Simpson line passes through the e-points of
A1A2 and A3A4, respectively, and

d(A12,A34) =

d(O12,A1)+d(O12,A2)+d(O34,A3)+d(O34,A4) = L.

The Melzak Circle is a circle C(O1,r12), which passes
through A1, A2, A12 and intersects the Simpson line at O12.
Similarly, the Melzak Circle C(O2,r34) passes through A3,
A4, A34 and intersects the Simpson line at O34. The Melzak
construction via the method of e-points is established in [7].
Furthermore, Rubinstein, Thomas and Weng gave explicit
formulas for computing Steiner trees for four points in R2,
for all possible cases, in which the lines defined by A1A2
and A3A4 either intersect or are parallel ([8, Chapter 3,
Cases (1), (2)]). We set ϕ ≡ ∠( ~A1A2, ~A3A4). For ϕ = 0,
(A1A2 and A3A4 are parallel), we refer to this solution as the
Steiner zero solution. The Steiner zero solution depends on
the distance h between the two parallel lines, the midpoints
of A1A2 and A3A4, respectively and the radius of Melzak
circles r12 and r34 ([8, Chapter 3, Expicit formulas Case (2),
page 65]).
Ivanov and Tuzhilin introduced the concept of the weighted
Simpson line and they found the relation of the length of
the weighted network with the length of a Simpson line ([6,
Theorem 1]) which gives

B12 +B34

2
L =

B1d(O12,A1)+B2d(O12,A2)+B3d(O34,A3)+B4d(O34,A4).

We note that A12 and A34 are not the e-points for the
weighted case.
In this paper, we introduce the generalized (weighted) regu-
larity of convex quadrilaterals and tetrahedra, which gives
a new evolutionary class of convex quadrilaterals and tetra-
hedra in R3.
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The property of generalized regularity states that the
Simpson line defined by the two Steiner points O12 and
O34 passes through the corresponding Fermat-Torricelli
point of the same convex quadrilateral. The property of
weighted regularity for weighted rectangles states that the
weighted Simpson line defined by the two weighted Steiner
points passes through the corresponding weighted Fermat-
Torricelli point of the same rectangle.
The main results are:
1. The property of generalized regularity possess a class
of convex quadrilaterals (generalized regular quadrilater-
als), which corresponds to the Steiner zero solution and it
consists of quadrilaterals having two of their opposite sides
parallel (Theorem 1).
2. Let A1A2A3A4 be a rectangle in R2 and A1F, A2F be the
two roots of the corresponding weighted Fermat-Torricelli
tree (thumb), the weighted Fermat-Torricelli point F is lo-
cated on the ground and A3F, A4F are two branches of the
weighted Fermat-Torricelli tree (thumb).
If the weighted Simpson line A12A34 is perpendicular to the
ground and A1A2A3A4 is a generalized regular quadrilateral,
we prove that B2

1 +B2
3 = B2

2 +B2
4 (Theorem 2).

3. Two branches have equal weights and the two roots have
equal weights, if the thumb inherits a symmetry w.r to the
midperpendicular line of the two opposite sides of the rect-
angle, which is perpendicular to the ground (equal branches
and equal roots, Proposition 3).
4. The dynamic Plasticity of weighted network with two
roots and two growing branches states that:
Given the weighted Fermat-Torricelli point A0i that has got
a subconscious B̄0i to be an interior point of the tetrahedron
A1iA2iA3iA4i with the vertices lie on four prescribed rays
that meet at A0i the positive real weights B̄ ji depends on the
five given values of α102i, α103i, α104i, α203i, α204i and B̄0i
(Theorem 3).
5. We assume that the common perpendicular line of each
tetrahedron A1iA2iA3iA4i passes through the common mid-
points m12 and m34 of A1iA2i and A4iA3i, respectively and
m12m34 >> A1iA2i. We prove the following theorem for a
botanological thumb (without a main branch) (Theorem 4):
If A0i lies on the common perpendicular segment m12m34,
then B̄1i = B̄2i and B̄3i = B̄4i.

6. We prove the following theorem for a “botanological”
network (with a main branch) (Theorem 4):
If A0i lies on the common perpendicular segment m12m34,
then B̄1i = B̄2i and B̄3i = B̄4i.

The dynamic plasticity (Theorem 3), geometric plasticity
(Lemma 2) and rotational plasticity (Proposition 4) of gen-
eralized regular tetrahedra (Definition 7) and generalized
weighted regular tetrahedra (Definition 8) develops a sym-
metry for the weights for a “botanological” thumb (Theo-
rem 4, Evolutionary scheme) or a botanological network in
R3 (Theorem 10, Evolutionary scheme).

2 The property of generalized regularity of
convex quadrilaterals in R2

Let A1A2A3A4 be a convex quadrilateral in R2, such that
B1 = B2 = B3 = B4 = 1 and B12 +B34 = 2. We recall that
a weight Bi corresponds to the vertex Ai, for i = 1,2,3,4,
a weight B12 ≡ 1 corresponds to the Steiner point O12 and
B34 ≡ 1 corresponds to the Steiner point O34. The Fermat-
Torricelli point F is the intersection of the two diagonals of
A1A3 and A2A4. We denote by L the Simpson line, which
passes through the e-points A12, A34 and O12, O34 and by
T12, T34 the intersection points of the common angle bisec-
tor of the vertical angles A1FA2 and A3FA4 and the line
segments A1A2 and A3A4, respectively.

Definition 1 (Generalized regularity) A generalized reg-
ular quadrilateral is a convex quadrilateral in R2, such that
the Simpson line L passes through the Fermat-Torricelli
point F.

Definition 2 (Weighted regularity) A weighted regular
quadrilateral is a convex quadrilateral in R2, such that
the weighted Simpson line L passes through the weighted
Fermat-Torricelli point F.

Without loss of generality, we assume that:
Ai = A1(xi,yi), for i = 1,2,3,4, F = (xF ,yF), A34 =
A34(x34,y34) and A12 = A12(x12,y12), such that:
y4 > y3 > y2 > y1, x1 < x4 < x3 < x2.

Theorem 1 The property of generalized regularity possess
a class of convex quadrilaterals (generalized regular quadri-
laterals), which corresponds to the Steiner zero solution
and it consists of quadrilaterals having two of their opposite
sides parallel.

Proof. The intersection of the two diagonals A1A3, A2A4 is
the unweighted Fermat-Torricelli point F = (xF ,yF), where

xF =

x1(y3−y1)
x3−x1

− x2(y4−y2)
x4−x2

− y1 + y2
y3−y1
x3−x1

− y4−y2
x4−x2

(2)

and

yF =

(y3− y1)

(
x1(y3−y1)

x3−x1
− x2(y4−y2)

x4−x2
−y1+y2

y3−y1
x3−x1

− y4−y2
x4−x2

− x1

)
x3− x1

+ y1. (3)

We shall express the coordinates of the e-point A34 =
A34(x34,y34 x34 and y34 w.r. to x3,y3,x4,y4 (see Fig 1).
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Figure 1: Generalized regularity of quadrilaterals

The relation A34A3 = A3A4 yields:

(x34− x3)
2 +(y34(x3,y3,x4,y4,x34)− y3)

2 =

(x3− x4)
2 +(y3− y4)

2. (4)

The midperpendicular line which is defined by A34 =
A34(x34,y34) and the midpoint M34 = ( x3+x4

2 , y3+y4
2 ) yields:

(y34(x3,y3,x4,y4,x34) =

(x4− x3)
((

x34− x3+x4
2

))
y3− y4

+
1
2
(y3 + y4) . (5)

By replacing (5) in (4), we derive a second order degree
polynomial w.r. to x34 and taking into account x34 >

x3+x4
2 ,

we obtain:

x34 =
x3y2

3 + x3y2
4−2x3y3y4 +

√
3M+ x4y2

3
2(x3− x4)2 +(y3− y4)2 +

+
x4y2

4−2x4y3y4 + x3
3− x4x2

3− x2
4x3 + x3

4
2(x3− x4)2 +(y3− y4)2 (6)

where

M ≡ (x3− x4)
2+(y3− y4)

2|y3− y4|. �

By working similarly, we derive a second order degree poly-
nomial w.r. to x12 and taking into account x12 <

x1+x2
2 , we

obtain:

x12 =
x1y2

1 + x1y2
2−2x1y1y2−

√
3N + x2y2

1
2(x1− x2)2 +(y1− y2)2 +

+
x2y2

2−2x2y1y2 + x3
1− x2x2

1− x2
2x1 + x3

2
2(x1− x2)2 +(y1− y2)2 (7)

where

N ≡ (x1− x2)
2 +(y1− y2)

2|y1− y2|.

The area of4A12A34F is given by:

A(4A12A34F) = |det

 xF yF 1
x12 y12 1
x34 y34 1

|. (8)

By substituting y4 = y3 +
y2−y1
x2−x1

(x4− x3) in (8) and by get-

ting as a common factor d(A1,A2)
|y1−y2| , we derive that

A(4A12A34F) =
f (x1,y1,x2,y2,x3,y3,x4,y4)g(x1,y1,x2,y2,x3,y3,x4,y4)
where

g(x1,y1,x2,y2,x3,y3,x4,y4) =

x3− x4 +(x1− x2)
|x3− x4|
|x1− x2|

. (9)

Without loss of generality, we assume that x2 > x1 and
x3 > x4.
Hence, by calculating (9), we deduce that A(4A12A34F) =
0 and A12, A34 and F are collinear only when A1A2 is paral-
lel to A4A3.
We denote by H the distance between A1A2 and
A3A4. Suppose that H > d(A1,A2) + d(A3,A4) and ϕ ≥
∠A2A1A3 ≤ 120◦, ϕ ≥ ∠A1A2A4 ≤ 120◦, where ϕ =
arctan( H

d(A1,A2)+H
√

3
3 +d(A3,A4)

).

Proposition 1 If A1A2 ‖ A4A3, the intersection point of the
common angle bisector of ∠A1FA2 and ∠A3FA4 and the
Simpson line defined by A12A34 is the Fermat-Torricelli
point F.

Proof. By applying Theorem 1, F lies on the Simpson
line. Therefore, the common angle bisector of ∠A1FA2 and
∠A3FA4 and the Simpson line defined by A12A34 passes
through the Fermat-Torricelli point F. �

Remark 1 If x34 <
x3+x4

2 and x12 <
x1+x2

2 , we derive:

x34 =
x3y2

3 + x3y2
4−2x3y3y4−

√
3M+ x4y2

3
2(x3− x4)2 +(y3− y4)2 +

+
x4y2

4−2x4y3y4 + x3
3− x4x2

3− x2
4x3 + x3

4
2(x3− x4)2 +(y3− y4)2 (10)
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and taking into account

x12 =
x1y2

1 + x1y2
2−2x1y1y2−

√
3N + x2y2

1
2(x1− x2)2 +(y1− y2)2 +

+
x2y2

2−2x2y1y2 + x3
1− x2x2

1− x2
2x1 + x3

2
2(x1− x2)2 +(y1− y2)2 ,

the corresponding determinant of the area A(4A12A34F)
is non-zero.

Examples of generalized regular quadrilaterals are the
square, rectangle and the isosceles trapezoid.
The following results are a direct consequence of Theo-
rem 1:

Proposition 2 A square is a generalized regular quadri-
lateral, which corresponds to two Steiner zero solutions,
having their Simpson lines perpendicular and meet at the
Fermat-Torricelli point F.

Corollary 1 A square is a generalized regular quadrilat-
eral, such that the two Simpson lines and the two corre-
sponding angle bisectors w.r to the vertical angles coincide
(two minimum Steiner trees).

Corollary 2 A rectangle is a generalized regular quadri-
lateral, such that the two Simpson lines and the two corre-
sponding angle bisectors w.r to the vertical angles coincide
and the Simpson line which is midperpendicular w.r. to the
parallel sides with greater length does not given a minimum
Steiner tree (a unique minimum Steiner tree).

Corollary 3 An isosceles trapezoid is a generalized regu-
lar quadrilateral, such that the Simpson line (midperpen-
dicular) which passes through the Fermat-Torricelli point
F and the corresponding angle bisector w.r to the vertical
angles coincide.

3 Creation of a “botanological” thumb for a
boundary rectangle in R2

A “botanological” network for four non-collinear points
in R2 is introduced and studied in [13] for open systems
(Botany).

Definition 3 (“Botanological” network, [13]) A “botano-
logical” network for four non-collinear points is a two-way
communication network, which has the topology of a
weighted minimal Steiner tree in R2, having two weighted
Fermat-Torricelli nodes (Steiner nodes), two weighted roots,
two weighted branches and one main branch.

Let A1A2A3A4 be a weighted rectangle in R2, Bi be a
weight which corresponds to each vertex Ai, for i =

1,2,3,4, A1F, A2F are the two roots of the correspond-
ing weighted Fermat-Torricelli tree (thumb). We assume
that the weighted Fermat-Torricelli point F is located on
the ground and A3F, A4F are two branches of the weighted
Fermat-Torricelli tree (thumb) and A1A4 >> A1A2.
The weighted Simpson line is a line defined by A12A34,
where A12 is a vertex of4A12A1A2, which lies on the oppo-
site side of A1A2 to O12 and A34 is a vertex of4A34A4A3,
which lies on the opposite side of A3A4 to O34. The
weighted Steiner points O12 and O34 are the two nodes
of the weighted Steiner tree and they both lie on A12A34,
with equal weights B12+B34

2 .

Definition 4 A “botanological” thumb for a boundary rect-
angle is a two-way communication network, which has the
topology of a weighted Fermat-Torricelli tree in R2, having
one weighted Fermat-Torricelli node, two weighted roots
and two weighted branches, which is enriched by the prop-
erty of generalized regularity of quadrilaterals, such that
A12A34 is perpendicular to A1A2.

We assume that the weighted Fermat-Torricelli point F of
A1A2A3A4 (B12 = B34 = 0) lies on the ground and A1A2 is
parallel to the ground.
Our main result is the following theorem, which gives
a weighted condition for the four weights of a thumb
whose weighted Simpson line is perpendicular to the ground
and A1A2 and passes through the corresponding weighted
Fermat-Torricelli point F.

Theorem 2 If A12A34 is perpendicular to A1A2,

B2
1 = B2

2 +B2
4−B2

3. (11)

Proof. We consider the weighted Steiner tree for the bound-
ary A1A2A3A4. We recall that the objective function is given
by:

f (O12,O34) = B1d(O12,A1)+B2d(O12,A2)+B3d(O34,A3)

+B4d(O34,A4)+
B12 +B34

2
d(O12,O34)→ min, (12)

where O12 is the weighted Fermat-Torricelli point (Steiner
node) of 4A1A2O34 with corresponding weights B1, B2
and B12+B34

2 , respectively, and O34 is the weighted Fermat-
Torricelli point (Steiner node) of 4A3A4O34 with corre-
sponding weights B3, B4 and B12+B34

2 , respectively.
Hence, the construction of the weighted Simpson line yields
the following relations:

B1 sin∠A1A2A12 = B2 sin∠A2A1A12 (13)

and

B3 sin∠A3A4A34 = B4 sin∠A4A3A34. (14)

The weighted balancing condition of the weighted Fermat-
Torricelli point F for A1A2A3A4 taking into account that
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~B14 =− ~B23, ~B12 =− ~B34 and ~B12 is perpendicular to ~B23,
we obtain that:

B1 cos∠A1A2A12 = B4 cos∠A4A3A34 (15)

and

B2 cos∠A2A1A12 = B3 cos∠A3A4A34. (16)

By squaring both sides of (13),(14),(15) and (16) and by
adding the first and third derived relation and the second
and fourth derived relation, we deduce (11). �

We need the following lemma, in order to prove that the
symmetry of a thumb is determined by a pair of equal
weights w.r. to the two symmetrical roots and a pair
of equal weights w.r. to the two symmetrical branches.
Let O = O(0,0), be the intersection of the diagonals of
A1A2A3A4.

Lemma 1

d(A1,F)2 +d(A3,F)2 = d(A2,F)2 +d(A4,F)2. (17)

Proposition 3 If the thumb inherits a symmetry w.r to the
midperpendicular line of the two opposite sides of the rect-
angle, which is perpendicular to the ground (equal branches
and equal roots), then B1 = B2 and B3 = B4.

Proof. By replacing d(A1,F) = d(A2,F) in (17), we get

d(A3,F) = d(A4,F).

The weighted Simpson line A12A34 is the midperpendicular
line of A1A2 and A3A4 and passes through the weighted
Fermat-Torricelli point F. Therefore, A1A2A3A4 is a gener-
alized weighted regular rectangle. Thus, we get:

B1 sin∠A1A2A12 = B2 sin∠A2A1A12 (18)

and

B3 sin∠A3A4A34 = B4 sin∠A4A3A34. (19)

By replacing ∠A1A2A12 = ∠A2A1A12 in (18) and
∠A3A4A34 = ∠A4A3A34 in (19), we get: B1 = B2 and
B3 = B4. �

4 Creation of a “botanological” thumb with
symmetrical branches in the three dimen-
sional Euclidean Space

Let A1iA2iA3iA4i be n tetrahedra in R3 and B ji be the weight
(positive real number) which corresponds to the vertex A ji,
for i = 1,2, ...,n and j = 1,2,3,4.
Weighted Fermat-Torricelli trees and weighted Steiner trees
that have got a subconscious have been established in [10]
and [11].

We denote by~u(Aik,A jk) the unit vector from Aik to A jk. We
assume that ‖∑4

j=1 B jk~u(Aik,A jk)‖ > Bik hold, in order to
locate weighted Fermat-Torricelli trees with four branches
{A0kA1k,A0kA2k,A0kA3k,A0kA4k} that got a subconscious
node.

Lemma 2 (Geometric plasticity of weighted Fermat-
Torricelli trees that have got a subconscious node[10])
If we select a point Pik with a non-negative weight Bik on
the ray that is defined by the line segment A0kAik, such that:

‖
4

∑
j=1

B jk~u(Pik,Pjk)‖> Bik,

Then the corresponding weighted Fermat-Torricelli
node P0k that has got a subconscious of
{P0kP1k,P0kP2k,P0kP3k,P0kP4k} remains the same with A0k,
for k = 1,2,3, ...,n.

The modified weighted Fermat-Torricelli problem for tetra-
hedra states that:

Problem 2 (Modified weighted Fermat-Torricelli prob-
lem [10])
Let A1kA2kA3kA4k be a tetrahedron in R3, Bik be a non-
negative number (weight) which corresponds to each line
segment A0kAik, respectively. Find a point A0k which mini-
mizes the sum of the lengths of the line segments a0ik that
connect every vertex Aik with A0k multiplied by the positive
weight Bik:

4

∑
i=1

Bia0ik = minimum. (20)

By letting Bik = Bik, for i = 1,2,3,4, k = 1,2, ...,n, the
weighted Fermat-Torricelli problem for tetrahedra and the
corresponding modified weighted Fermat-Torricelli prob-
lem for tetrahedra are equivalent by collecting instantaneous
images of the weighted Fermat-Torricelli network via the
geometric plasticity of tetrahedra in R3.
The geometric plasticity of tetrahedra connects the weighted
Fermat-Torricelli problem for tetrahedra with the modified
weighted Fermat-Torricelli problem for boundary tetrahedra
by allowing a mass flow continuity for the weights, such
that the corresponding weighted Fermat-Torricelli point
remains the same in R3.
The weighted Fermat-Torricelli nodes remain the same
P0k ≡ A0k but different values of the subconscious (remain-
ing weight) may occur.
We denote by B ji a mass flow which is transferred from A ji
to A0i for j = 1,2 by B0i a residual weight which remains
at A0 and by Bki a mass flow which is transferred from A0i
to Aki for k = 3,4.
We denote by B̃ ji a mass flow which is transferred from A0i
to A ji for i = 1,2, by B̃0i a residual weight which remains

58



KoG•25–2021 A. N. Zachos: Generalized Regularity and the Symmetry of Branches of “Botanological” Networks

at A0i and by B̃ki a mass flow which is transferred from Aki
to A0i, for k = 3,4.
Thus, we derive the weighted outward flow condition and
weighted inward flow condition:

B1i +B2i = B3i +B4i +B0i (21)

and

B̃1i + B̃2i + B̃0i = B̃3i + B̃4i. (22)

By adding (21) and (22) and by setting B̄0i = B0i− B̃0i, we
obtain:

B̄1i + B̄2i = B̄3i + B̄4i + B̄0i (23)

such that:

B̄1i + B̄2i + B̄3i + B̄4i = c, (24)

where c is a positive real number, for i = 1,2, ...,n.
We denote by a0im the length of the line segment A0mAim,
αi0 jm ≡ ∠AimA0A jm and αi, j0km the angle which is formed
by the line segment that connects A0m with the trace of
the orthogonal projection of Aim to the plane defined by
4A jmA0Akm with a0im, for i, j,k, l = 1,2,3,4, i 6= j 6= k 6= i
and m = 1,2,3, ...,n

Lemma 3 (Determination of the position of A0i on ex-
actly five given angles [10, Proposition 2.9, p. 902], [12,
Formulas (10), (11), p. 120])
Each angle αi,k0ml depends on α102l , α103l , α104l , α203l and
α204l , for i,k,m = 1,2,3,4, i 6= k 6= m, and l = 1,2, , ...,n

cos2(αi,k0ml) =
sin2(αk0ml)− cos2(αm0il)− cos2(αk0il)

sin2(αk0ml)
+

+
2cos(αm0il)cos(αk0il)cos(αk0ml)

sin2(αk0ml)
(25)

and

cosα304 =−
1
4
[2b+

+4cosα102 (cosα104 cosα203 + cosα103 cosα204)−
−4(cosα103 cosα104 + cosα203 cosα204)]csc 2

α102 (26)

or

cosα304 =
1
4
[4cosα103(cosα104− cosα102 cosα204)+

+2(b+2cosα203 (−cosα102 cosα104+cosα204))]csc 2
α102

(27)

where

b≡

√
4

∏
i=3

(1+ cos(2α102)+ cos(2α10i)+ cos(2α20i)−4cosα102 cosα10i cosα20i).

We denote by αl the dihedral angle which is formed by
the planes defined by4A1lA0lA2l and4A1lA2lA3l , and by
αg4l the dihedral angle formed by the planes defined by
4A1lA4lA2l and4A1lA2lA3l , for l = 1,2, ...,n.

Lemma 4 [[10, Formula (27), p. 997]]
The variable length a04l is given by

a2
04l = a2

02 +a2
24l −2a24l

[√
a2

02l −h2
0,12l cosα124l+

+h0,12l sinα124l

(
cosαg4l

(( a2
02+a2

23−a2
03

2a23

)
−
√

a2
02l −h2

0,12l cosα123l

h0,12l sinα123l

)
+

+ sinαg4l sinarccos
(( a2

02l+a2
23l−a2

03l
2a23l

)
−
√

a2
02l −h2

0,12l cosα123l

h0,12l sinα123l

))]
(28)

and

h0,12l =
a01la02l

a12l

√
1−
(

a2
01l +a2

02l−a2
12l

2a01la02l

)2

. (29)

Theorem 3 [Dynamic Plasticity of weighted network
with two roots and two growing branches]
Given the weighted Fermat-Torricelli point A0i that has got
a subconscious B̄0i to be an interior point of the tetrahedron
A1iA2iA3iA4i with the vertices lie on four prescribed rays
that meet at A0i and from the five given values of α102i,
α103i, α104i, α203i, α204i, the positive real weights B̄ ji are
given by:

B̄1i =

(
sinα4,203i

sinα1,203i

)
c− B̄0i

2
, (30)

B̄2i =

(
sinα4,103i

sinα2,103i

)
c− B̄0i

2
, (31)

B̄3i =

(
sinα4,102i

sinα3,102i

)
c− B̄0i

2
, (32)

B̄4i =
c− B̄0i

2
, (33)

under the weighted conditions

B̄1i + B̄2i + B̄3i + B̄4i = c, (34)

and

B̄1i + B̄2i = B̄3i + B̄4i + B̄0i. (35)
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Proof. By considering a two-way communication network
and by assuming mass flow continuity the weights B̄ki, for
i = 1,2,3,4, are determined by the weighted outward and
inward flow conditions (21), (22), which yield the weighted
conditions (34) and (35).
Thus, we obtain that:

4

∑
k=1

Bkia0ki +
4

∑
k=1

B̃kia0ki→ min, (36)

which gives

4

∑
k=1

B̄kia0ki→ min. (37)

By differentiating (37) w.r. to a01l , a02l a03l , respectively,
taking into account the derivative of a04l w.r. to a01l , a02l
a03l , by lemma 4, we obtain (30), (31), (32) and (33). �

Remark 2 We note that the dynamic plasticity equations of
Theorem 3 have been derived in [10] for weighted Fermat-
Torricelli trees, which consist of two roots one branch and
one growing branch that have inherited a subconscious
(weighted Fermat-Torricelli node) under different weighted
(inflow - outflow conditions):
B̄1i + B̄2i + B̄3i = B̄0i + B̄4i for i = 1,2, ...,n.

We assume that the common perpendicular line of
A1iA2iA3iA4i passes through the common midpoints m12
and m34 of A1iA2i and A4iA3i, respectively and
m12m34 >> A1iA2i. We denote by ϕi the angle formed by
−−−→
A1iA2i and

−→
A 4iA3i and by B ji the weight (positive real num-

ber) which corresponds to the vertex A ji, for j = 1,2,3,4,
i = 1,2, ...,n. Hence, by rotating A1iA2iA3iA4i by ϕi with
respect to m12m34, we obtain n weighted isosceles trapezoid
A′1iA

′
2iA
′
3iA
′
4i and B′ji = B ji. We denote by Oi the intersec-

tion point of the equal diagonals A′1iA
′
3i and A′2iA

′
4i, by A0i

the corresponding weighted Fermat-Torricelli node with
remaining weight B0i (one node that has got a subconscious
) and by O12i and O34i the two corresponding weighted
Steiner nodes with remaining weights B12i and B34i (two
nodes that got a subconscious) for A′1iA

′
2iA
′
3iA
′
4i.

Theorem 4 If A0i lies on the common perpendicular seg-
ment m12m34, then

B̄1i = B̄2i (38)

and

B̄3i = B̄4i (39)

Proof. By substituting α4,102i = α3,102i in (32) and (33), we
obtain (39). By working cyclically with the indices and by
exchanging the indices 3→ 2, 4→ 1 and 1→ 4, 2→ 3, we
derive (38). �

We may consider that {A1i,A2i} lie on a circular cone C012i,
having m12m34 as axis of rotation with vertex the weighted
Fermat-Torricelli point A0i and {A3i,A4i} lie on a circular
cone C034i, having m12m34 as axis of rotation with vertex
the weighted Fermat-Torricelli point A0i. We note that C012i
and C034i intersect only at A0i.

Proposition 4 (Rotational plasticity of tetrahedra) If
we select {R1i,R2i} two points with weights B1i, B2i, re-
spectively, on C012i, such that their midpoint m12i lies on
the line defined by m12m34 and {R3i,R4i} two points with
weights B3i and B4i, respectively, on C034i, such that their
midpoint m34i lies on the line defined by m12m34, then
the corresponding weighted Fermat-Torricelli point R0i of
R1iR2iR3iR4i remains the same with A0i for B1i = B2i and
B3i = B4i, for i = 1,2, ...,n.

Proof. It is a direct consequence of Theorem 4 and taking
into account that
R1iR2iR3iR4i are derived by rotating the two isosceles trian-
gles4R1iA0iR2i and4R3iA0iR4i along m12m34. By rotating
properly R1iR2iR3iR4i, we may derive a weighted isosce-
les trapezoid or a weighted rectangle (R1iR2i = R3iR4i) for
B1i = B2i and B3i = B4i. Thus, the weighted balancing con-
dition ∑

4
j=1 B ji

−−−−−−→
u(A0i,A ji) =~0, yields R0i ≡ A0i.

�

Definition 5 A “botanological” thumb for a boundary sym-
metric tetrahedron A1iA2iA3iA4i whose common perpendic-
ular passes through the common midpoints m12 and m34
of A1iA2i and A4iA3i, respectively and m12m34 >> A1iA2i
is a “botanological” network, which is transformed to
a botanological “thumb” for a boundary rectangle or a
boundary isosceles trapezoid, by rotating properly A1iA2i
w.r. m12m34.

Definition 6 A “botanological” thumb is a collection of
“botanological” thumbs for a finite number of boundary sym-
metric tetrahedra in R3.

We will describe an evolutionary scheme for the creation of
a “botanological” thumb in R3.

1. Evolutionary Phase 1
At time t = 0, we consider a point “seed” A0i on the ground.
2. Evolutionary Phase 2
After time t, by assuming mass flow continuity two equal
roots start to grow underground and two equal branches start
to grow overground, such that their endpoints form a bound-
ary rectangle A′1iA

′
2iA
′
3iA
′
4i. Taking into account Proposi-

tion 3, we derive that B1i = B2i and B3i = B4i.

3. Evolutionary Phase 3
We consider two cases: (i) If A0i is the intersection of the
diagonals A′1iA

′
3i and A′2iA

′
4i the weighted Fermat-Torricelli

node A0i has acquired a subconscious B̄0i. (ii) If A0i lies
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on the midperpendicular line segment m12m34 the weighted
Fermat-Torricelli node A0i has acquired a subconscious B̄0i.

4. Evolutionary Phase 4
The subconscious B̄0i may cause a geometric plastic-
ity and/or a rotational plasticity of the weighted Fermat-
Torricelli tree {A′1iA0i,A′2iA0i,A′3iA0i,A′4iA0i}.
(i) The geometric plasticity (Theorem 2) yields a weighted
Fermat-Torricelli tree {R1iA0i,R2iA0i,R3iA0i,R4iA0i},
such that their endpoints form an isosceles trapezoid
R1iR2iR3iR4i, A′′0i ≡ A0i and B̄ ji corresponds to R ji, for
j = 1,2,3,4 and i = 1,2, ...,n.
(ii) The rotational plasticity (Proposition 4), the dynamic
plasticity (Theorem 3) and the symmetry of boundary tetra-
hedra taken from Theorem 4, creates a “botanological”
thumb for i = 1,2, ...,n, having the corresponding weighted
Fermat-Torricelli node A0i constant on the ground (point
“seed”), but with different subconscious quantities B̄0i, for
i = 1,2, ...,n.

5 Generalized regularity for tetrahedra in
the three dimensional Euclidean Space

The weighted Steiner problem for a boundary weighted
tetrahedron A1A2A3A4 in R3 having two subconscious
nodes (weighted Fermat-Torricelli or weighted Steiner
points) has been studied recently in [11].
We denote by A1A2A3A4 a tetrahedron in R3, with
Ai(xi,yi,zi) (i = 1,2,3,4), by bi a positive real num-
ber(weight) which corresponds to the vertex Ai, O12, O34
two interior points (nodes) of A1A2A3A4 in R3, by b12 the
weight which corresponds to O12, b34 the weight which
corresponds to O34, by H the length of the common perpen-
dicular (Euclidean distance) between the two lines defined
by A1A2, A4A3, by AiA j the Euclidean distance from Ai to
A j, by O12O34 the Euclidean distance from O12 to O34, by
AiO12 the Euclidean distance from Ai to O12 and by A jO34
the Euclidean distance from A j to O34, by T12 the intersec-
tion point of the line defined by O12O34 and the line defined
by A1A2 and by T34 the intersection point of the line defined
by O12O34 and the line defined by A4A3, M12 the midpoint
of A1A2 and M34 the midpoint of A4A3, for i, j = 1,2,3,4.
We denote by A′′4 the intersection point of the line defined by
the A4A3 and the line defined by the common perpendicular
of A1A2 and A4A3 and by A′′1 the intersection point of the
line defined by A1A2 and the line defined by the common
perpendicular of A1A2

We set
~ai j ≡

−−→
AiA j, for i, j = 1,2,3,4, i 6= j 6= k, α12 ≡∠A1O12A2,

α34 ≡ ∠A3O34A4, α1 ≡ ∠A2O12O34, α2 ≡ ∠A1O12O34,
α3 ≡ ∠A4O34O12, α4 ≡ ∠A3O34O12, ϕ ≡ arccos(~a12·~a43

a12a43
)

and bST = b12+b34
2 .

Furthermore, we denote by A12 the vertex of 4A1A12A2,
such that: ∠A1A12A2 = π−α12, ∠A12A1A2 = π−α1 and
∠A1A2A12 = π− α2, by A34 the vertex of 4A4A34A3,
such that: ∠A4A34A3 = π−α34, ∠A34A4A3 = π−α4 and
∠A4A3A34 = π− α3, by H12 the trace of the height of
4A1A12A2 w.r to the base A1A2 and by A34 the vertex of
4A4A34A3, such that: ∠A4A34A3 = π−α34, ∠A34A4A3 =
π−α4 and ∠A4A3A34 = π−α3 and by H34 the trace of the
height of4A4A34A3 w.r to the base A4A3.
We set H ≡ A′′4A′′1 , t34 ≡ A′′4T34 t12 ≡ A′′1T12 k1 ≡ A′′1A1 and
k2 ≡ A′′4A4, m12 ≡ A′′1M12 and m34 ≡ A′′4M34, h′12 ≡ A′′1H12
and h′34 ≡ A′′4H34.
We assume that: A1A4 +A2A3 > A1A2 +A3A4.
The weighted Steiner problem for A1A2A3A4 in R3 states
that:

Problem 3 ([11, Problem 5]) Find O12(x0,y0,z0) and
O34(x0′ ,y0′ ,z0′) with given weights b12 in O12 and b34
in O34, such that

f (O12,O34) =b1A1O12 +b2A2O12 +b3A3O34 +b4A4O34+

+
b12 +b34

2
O12O34→ min. (40)

Theorem 5 ([11, Theorem 3]) The solution of the
weighted Steiner problem is a weighted Steiner tree in
R3 whose nodes O12 and O34 (weighted Fermat-Torricelli
points) are seen by the angles:

cosα12 =
b2

ST −b2
1−b2

2
2b1b2

,

cosα1 =
b2

1−b2
2−b2

ST
2b2bST

,

cosα34 =
b2

ST −b2
3−b2

4
2b3b4

,

cosα4 =
b2

4−b2
3−b2

ST
2b3bST

. (41)

The inradius r12 is the radius of the inscribed circle of tri-
angle4A1A12A2 with sides A1A2 = λ

b12+b34
2 , A1A12 = λb2

and A2A12 = λb1, where λ = A1A2
b12+b34

2

.

The inradius r34 is the radius of the inscribed circle of tri-
angle4A3A34A4 with sides A3A4 = λ

b12+b34
2 , A3A34 = λb4

and A4A34 = λb3, where λ = A3A4
b12+b34

2

.

We use the substitutions for r12 and r34, ([11, Section 2,
p. 6]):

r12 ≡
A1A2

(b1 +b2 +
b12+b34

2 )(b1 +b2−
b12+b34

2 )(b2 +
b12+b34

2 −b1)(b1 +
b12+b34

2 −b2)
,

r34 ≡
A4A3

(b3 +b4 +
b12+b34

2 )(b3 +b4−
b12+b34

2 )(b3 +
b12+b34

2 −b4)(b4 +
b12+b34

2 −b3)
,

β12 = arccos(
A1A2

2r12
),

β34 = arccos(
A4A3

2r34
).
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Theorem 6 ([11, Theorem 4]) The following system of
equations w.r. to t34 and t12 allows the computation of
the position of the weighted Simpson line O12O34 of the
weighted full Steiner tree for A1A2A3A4 :

t34− t12 cosφ√
H2 + t2

12 sin2
φ

=
h′34− t34

r34
(42)

and

t12− t34 cosφ√
H2 + t2

34 sin2
φ

=
h′12− t12

r12
(43)

Proposition 5 ([11, Proposition 1])

t34− t12 cosφ√
H2 + t2

12 sin2
φ

=
m34− t34

a34

√
3

2

(44)

and

t12− t34 cosφ√
H2 + t2

34 sin2
φ

=
m12− t12

a12

√
3

2

(45)

Theorem 7 ([11, Theorem 5]) The following system of
equations w.r. to t34, t12 and ∠A4FA3 allows the compu-
tation of the position of the line defined by T12T34 of the
(unweighted) Fermat-Torricelli tree of A1A2A3A4 :

t34− t12 cosφ√
H2 + t2

12 sin2
φ

=
m34− t34

a34
2 tan ∠A4FA3

2

, (46)

t12− t34 cosφ√
H2 + t2

34 sin2
φ

=
m12− t12

a12
2 tan ∠A4FA3

2

, (47)

cot
∠A4FA3

2
= (48)

2(H2 + k1(t12− t2
34 cosϕ))+ k2(t34− t12 cosϕ)

(t12− k1)
√

H2 + t2
34 sin2

ϕ+(t34− k2)
√

H2 + t2
12 sin2

ϕ

.

We denote by ω the dihedral angle (twist angle) formed
by the planes A1A2T12T34 and A4A3T34T12, by ϕ12 =
∠A1T12T34 and ϕ34 = ∠A4T34T12.

Theorem 8 ([11, Theorem 6]) The twist angle ω is given
by

cosω =
cosϕ− cosϕ12 cosϕ34

sinϕ12 sinϕ34
. (49)

Remark 3 We correct two typographical errors that occur

in [11] by replacing
√

H2 + t34 sin2
φ by

√
H2 + t2

34 sin2
φ

and the angle ϕ34 by sinϕ34 in [11, Formula (3.1)].

Definition 7 A generalized regular tetrahedron is a tetra-
hedron, which determines a generalized (weighted) regular
quadrilateral, formed by rotating A1A2 or A3A4 by the twist
angle ω, w.r. to the (weighted) Simpson line A12A34.

We denote by ωF the twist angle formed by the planes de-
fined by 4A1FA2 and 4A3FA4 and by ωS the twist angle
formed by the planes4A1O12A2 and4A3O34A4.

Theorem 9 (Generalized regularity of tetrahedra) If
A1A2A3A4 is a generalized regular quadrilateral, then
generalized regular tetrahedra are derived by:
(i) rotating the twist angle ωF w.r. to the line defined by
M12M34

cosωF =
cosϕ− cos2∠A1M12F

sin2∠A1M12F
. (50)

or (ii)rotating the twist angle ωF w.r. to the Simpson line
defined by T12T34

cosωS =
cosϕ− cos2∠A1T12O12

sin2∠A1T12O12
. (51)

Proof. A generalized regular convex quadrilateral is a
trapezoid having the property: A1A2 ‖ A3A4. Thus, the
Fermat-Torricelli point F is the intersection of diago-
nals A1A3 and A2A4 and lies on the line defined by
M12M34, which yields ∠A1M12F = ∠A3M34F. By substi-
tuting ∠A1M12F = ∠A3M34F in (49), we obtain (50). We
recall that A1A2A12 and A3A4A34 are equilateral triangles
outward from A1A2A3A4 and the Simpson line intersects
A1A2 and A3A4 at T12 and T34, respectively. By substituting
∠A1T12O12 = ∠A3T34O34 in (49), we obtain (51). �

Remark 4 The position of A′′1 and A′′4 may be calculated
by Theorem 7.

Definition 8 A weighted regular tetrahedron is a tetrahe-
dron in R3, such that the weighted Simpson line L passes
through the weighted Fermat-Torricelli point F.

We assume that A1A2A3A4 is a weighted regular tetrahedron
A1A2A3A3, such that: M12M34 >> maxA1A2,A3A4.

Theorem 10 (Weighted regularity of tetrahedra) The
common perpendicular line of A1A2 and A3A4 passes
through the common midpoints M12 and M34, respectively,
if and only if b1 = b2 and b3 = b4.

62



KoG•25–2021 A. N. Zachos: Generalized Regularity and the Symmetry of Branches of “Botanological” Networks

Proof. The weighted Simpson line passes through A12, A34,
the weighted Steiner nodes O12, O34, the weighted Fermat-
Torricelli point F and M12, M34. Therefore, 4A1A2A12
and A3A4A34 are isosceles triangles A1A12 = A2A12 and
A3A34 = A4A34, which yield b1 = b2 and b3 = b4. Hence,
it is shown one direction.
We assume that the common perpendicular line of A1A2
and A3A4 does not pass through the common midpoints
M12 and M34, b1 = b2 and b3 = b4. By substituting b1 = b2
and b3 = b4 and given a subconscious weight BS in (41), we
derive that ∠A1O12O34 = ∠A2O12O34 and ∠A3O34O12 =
∠A4O34O12. By substituting b1 = b2, b3 = b4 in (42) and
(43) we obtain the values of t12 and t34, in order to calculate
the twist angle ωS. By rotating A1A2 w.r. to A12A34 by ωS,
A1A2 ‖ A3A4, and A12A34 passes through M12, M34, other-
wise O12, O34 and F are not collinear. It proves another
direction and the theorem as well. �

We may follow the same evolutionary scheme for a
“botanological” thumb in R3. Taking into account that the
point seed which has got a subconscious BST is located
underground, an evolutionary two way communication net-
work will start to grow having two roots one main branch
and two branches. By assuming a constant mass flow conti-
nuity that corresponds to the two roots b1 = b2 (O12 is lo-
cated underground) one main branch with remaining weight
BST and two branches with weights b3 = b4 (O34 is located
overground). Therefore, by applying Theorem 10 we ob-
tain a boundary weighted regular tetrahedron formed by the
endpoints of two symmetrical roots and two symmetrical
branches, such that the main branch is perpendicular to the
ground.
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