Generalized Regularity and the Symmetry of Branches of "Botanological" Networks

To the weighted regularity of Euclid.

Generalized Regularity and the Symmetry of Branches of "Botanological" Networks

Abstract

We derive the generalized regularity of convex quadrilaterals in \mathbb{R}^{2}, which gives a new evolutionary class of convex quadrilaterals that we call generalized regular quadrilaterals in \mathbb{R}^{2}. The property of generalized regularity states that the Simpson line defined by the two Steiner points passes through the corresponding Fermat-Torricelli point of the same convex quadrilateral. We prove that a class of generalized regular convex quadrilaterals consists of convex quadrilaterals, such that their two opposite sides are parallel. We solve the problem of vertical evolution of a "botanological" thumb (a two way communication weighted network) w.r to a boundary rectangle in \mathbb{R}^{2} having two roots,two branches and without having a main branch, by applying the property of generalized regularity of weighted rectangles. We show that the two branches have equal weights and the two roots have equal weights, if the thumb inherits a symmetry w.r to the midperpendicular line of the two opposite sides of the rectangle, which is perpendicular to the ground (equal branches and equal roots). The geometric, rotational and dynamic plasticity of weighted networks for boundary generalized regular tetrahedra and weighted regular tetrahedra lead to the creation of "botanological" thumbs and "botanological" networks (with a main branch) having symmetrical branches.

Key words: Fermat-Torricelli problem, Fermat-Torricelli point, Steiner tree, Steiner points, generalized regular quadrilaterals, generalized regularity, "thumb"

MSC2010: 51N20, 51M20, 51E10, 52A15

1 Introduction

Let $A_{1}, A_{2}, \ldots, A_{n}$ be the vertices of a polygon $A_{1} A_{2} A_{3} \ldots A_{n}$ in a cyclic order.

Generalizirana regularnost i simetrija "botanologičnih" mreža

SAŽETAK

Izvodimo generaliziranu regularnost konveksnih četverokuta $u \mathbb{R}^{2}$ koja daje novu evolucijsku klasu konveksnih četverokuta koju mi nazivamo generalizirani regularni četverokuti u \mathbb{R}^{2}. Svojstvo generalizirane regularnosti kaže da Simpsonov pravac definiran s dvije Steinerove točke prolazi odgovarajućom Fermat-Torricellijevom točkom tog istog četverokuta. Dokazujemo da se klasa generaliziranih regularnih konveksnih četverokuta sastoji od konveksnih četverokuta takvih da su njihove dvije nasuprotne stranice paralelne. Rješavamo problem vertikalne evolucije "botanologičnog palca" (težinska mreža, u oba smjera) s obzirom na granični pravokutnik u \mathbb{R}^{2} koji ima dva korijena, dvije grane, bez da ima glavnu granu, primjenjujući svojstvo generalizirane regularnosti težinskih pravokutnika. Pokazujemo da dvije grane imaju jednake težine kao i dva korijena ako "palac" nasljeđuje simetriju s obzirom na poluokomit pravac dvaju nasuprotnih stranica pravokutnika koji je okomit na tlo (jednake grane i jednaki korijeni). Geometrijski, rotacijski i dinamični plasticitet težinskih mreža za granični generalizirani regularni tetraedar i težinski regularni tetraedar vodi ka stvaranju "botanologičnih palčeva" i "botanologičnih" mreža (s glavnom granom) koja ima simetrične grane.

Ključne riječi: Fermat-Torricellijev problem, FermatTorricellijeva točka, Steinerovo stablo, Steinerove točke, generalizirani regularni četverokuti, generalizirana regularnost, "palac"

An affinely regular polygon in \mathbb{R}^{2} is derived by applying an affine transformation to a regular polygon ([1]). Coxeter introduced the affine regularity of polygons and proved the following result ([2], [3]):
$A_{1} A_{2} A_{3} \ldots A_{n}$ is affinely regular if and only if there is $m \geq 0$, $\xrightarrow{\text { such that }}$
$\overrightarrow{A_{i-1} A_{i+2}}=m \overrightarrow{A_{i} A_{i+1}}$, for $i=1,2, \ldots, n$.
Triangles are affine regular and parallelograms are affine regular quadrilaterals in \mathbb{R}^{2}.
Gerber connected the affine regularity with the Euclidean regularity of n-gons in [4], (see also [2] and [3])) and proved the result: If you construct regular n-gons outwardly (or inwardly) on the sides of any affine regular n-gon, then their centers form the vertices of a regular $n-$ gon. The case $n=4$ was proved by Thebault, who gave the first generalization of Napoleon's regularity for the case $n=3$ (Napoleon's theorem) ([2] p. 185]).
We start by giving the definitions of a weighted FermatTorricelli tree and weighted Steiner tree for a boundary quadrilateral, in order to derive a new regularity of quadrilaterals which is different from Coxeter's, Gerber's and Thebault's approach. The new regularity of quadrilaterals is achieved by the construction of isosceles triangles outwardly on the parallel sides of a rectangle or a trapezoid. Let $A_{1} A_{2} A_{3} A_{4}$ be a convex quadrilateral in \mathbb{R}^{2}. We denote by $A_{i}\left(x_{i}, y_{i}\right)$ the vertices of $A_{1} A_{2} A_{3} A_{4}$, by B_{i} a positive real number (weight) which corresponds to A_{i}, by $O_{12}\left(x_{012}, y_{012}\right)$, by $O_{34}\left(x_{034}, y_{034}\right)$ two points in \mathbb{R}^{2} with given weights B_{12} in O_{12} and B_{34} in O_{34}, by $d(X, Y)$ the Euclidean distance $\|X Y\|$, for $X, Y \in \mathbb{R}^{2}$.
The weighted Steiner problem for $A_{1} A_{2} A_{3} A_{4}$ in \mathbb{R}^{2} states that:
Problem 1 Find $O_{i}\left(x_{0 i}, y_{0 i}\right)$,for $i=\{12,34\}$, such that

$$
\begin{aligned}
f\left(O_{12}, O_{34}\right)= & B_{1} d\left(O_{12}, A_{1}\right)+B_{2} d\left(O_{12}, A_{2}\right)+ \\
& +B_{3} d\left(O_{34}, A_{3}\right)+B_{4} d\left(O_{34}, A_{4}\right)+ \\
& +\frac{B_{12}+B_{34}}{2} d\left(O_{12}, O_{34}\right) \rightarrow \text { min. }
\end{aligned}
$$

For $B_{1}=B_{2}=B_{3}=B_{4}$, the solution of the (unweighted) Steiner problem is called a Steiner tree. Gilbert and Pollack introduce the Steiner tree topologies for $A_{1} A_{2} A_{3} A_{4}$, in their classical study ([5]). They mention three topologies of solutions w.r to the boundary $A_{1} A_{2} A_{3} A_{4}$:

1. If we set one point (node) F (Fermat-Torricelli point) different from A_{i}, the solution is called a Fermat-Torricelli tree. The Fermat-Torricelli point F has four connections $\left\{F A_{1}, F A_{2}, F A_{3}, F A_{4}\right\}$. This is a special case of the unweighted Steiner problem, by setting $B_{12}=0$ or $B_{34}=0$.
2. If we set two points (nodes) O_{12} and O_{34} (Steiner points) and $B_{12}+B_{34}=2$, such that the objective function (40) is minimized, then we derive a solution which is called a full Steiner tree. The Steiner points O_{12} and O_{34} have three connections $\left\{A_{1} O_{12}, A_{2} O_{12}, O_{12} O_{34}\right\}$ and $\left\{A_{3} O_{34}, A_{4} O_{34}, O_{12} O_{34}\right\}$, respectively.
3. If we set one point (node) Steiner point O_{12} and $O_{34} \equiv A_{3}$ or A_{4}, such that the objective function (40) is minimized, then we derive a degenerate Steiner tree.

It is well known that the Steiner point with three connections possesses the equiangular property $\frac{360^{\circ}}{3}$. The angle formed by the Steiner point as a vertex and two connections is 120°, for the unweighted case and by assuming that $B_{12}+B_{34}=2([5])$. The same property holds for the Fermat-Torricelli point for a boundary triangle, which coincides with the Steiner point. The Fermat-Torricelli tree of a convex quadrilateral consists of the two diagonals $A_{1} A_{3}$ and $A_{2} A_{4}$, which meet at the intersection point F (FermatTorricelli point) for the unweighted case.
Rubinstein, Thomas and Weng studied in [8] the unweighted Steiner problem for tetrahedra in \mathbb{R}^{3}. They succeeded in locating the Simpson line, which passes through the two Steiner points O_{12} and O_{34} in \mathbb{R}^{3}. The vertex A_{12} of the equilateral $\triangle A_{12} A_{1} A_{2}$, which lies on the opposite side of $A_{1} A_{2}$ to O_{12} is referred to as the e-point of $A_{1} A_{2}$. The vertex A_{34} of the equilateral $\triangle A_{34} A_{4} A_{3}$, which lies on the opposite side of $A_{3} A_{4}$ to O_{34} is referred to as the e-point of $A_{3} A_{4}$. The Simpson line passes through the e-points of $A_{1} A_{2}$ and $A_{3} A_{4}$, respectively, and
$d\left(A_{12}, A_{34}\right)=$
$d\left(O_{12}, A_{1}\right)+d\left(O_{12}, A_{2}\right)+d\left(O_{34}, A_{3}\right)+d\left(O_{34}, A_{4}\right)=L$.
The Melzak Circle is a circle $C\left(O_{1}, r_{12}\right)$, which passes through A_{1}, A_{2}, A_{12} and intersects the Simpson line at O_{12}. Similarly, the Melzak Circle $C\left(O_{2}, r_{34}\right)$ passes through A_{3}, A_{4}, A_{34} and intersects the Simpson line at O_{34}. The Melzak construction via the method of e-points is established in [7]. Furthermore, Rubinstein, Thomas and Weng gave explicit formulas for computing Steiner trees for four points in \mathbb{R}^{2}, for all possible cases, in which the lines defined by $A_{1} A_{2}$ and $A_{3} A_{4}$ either intersect or are parallel ([8, Chapter 3, Cases (1), (2)]). We set $\varphi \equiv \angle\left(\overrightarrow{A_{1} A_{2}}, \overrightarrow{A_{3} A_{4}}\right)$. For $\varphi=0$, $\left(A_{1} A_{2}\right.$ and $A_{3} A_{4}$ are parallel), we refer to this solution as the Steiner zero solution. The Steiner zero solution depends on the distance h between the two parallel lines, the midpoints of $A_{1} A_{2}$ and $A_{3} A_{4}$, respectively and the radius of Melzak circles r_{12} and r_{34} ([8, Chapter 3, Expicit formulas Case (2), page 65]).
Ivanov and Tuzhilin introduced the concept of the weighted Simpson line and they found the relation of the length of the weighted network with the length of a Simpson line ([6, Theorem 1]) which gives
$\frac{B_{12}+B_{34}}{2} L=$
$B_{1} d\left(O_{12}, A_{1}\right)+B_{2} d\left(O_{12}, A_{2}\right)+B_{3} d\left(O_{34}, A_{3}\right)+B_{4} d\left(O_{34}, A_{4}\right)$.
We note that A_{12} and A_{34} are not the e-points for the weighted case.
In this paper, we introduce the generalized (weighted) regularity of convex quadrilaterals and tetrahedra, which gives a new evolutionary class of convex quadrilaterals and tetrahedra in \mathbb{R}^{3}.

The property of generalized regularity states that the Simpson line defined by the two Steiner points O_{12} and O_{34} passes through the corresponding Fermat-Torricelli point of the same convex quadrilateral. The property of weighted regularity for weighted rectangles states that the weighted Simpson line defined by the two weighted Steiner points passes through the corresponding weighted FermatTorricelli point of the same rectangle.
The main results are:

1. The property of generalized regularity possess a class of convex quadrilaterals (generalized regular quadrilaterals), which corresponds to the Steiner zero solution and it consists of quadrilaterals having two of their opposite sides parallel (Theorem 1).
2. Let $A_{1} A_{2} A_{3} A_{4}$ be a rectangle in \mathbb{R}^{2} and $A_{1} F, A_{2} F$ be the two roots of the corresponding weighted Fermat-Torricelli tree (thumb), the weighted Fermat-Torricelli point F is located on the ground and $A_{3} F, A_{4} F$ are two branches of the weighted Fermat-Torricelli tree (thumb).
If the weighted Simpson line $A_{12} A_{34}$ is perpendicular to the ground and $A_{1} A_{2} A_{3} A_{4}$ is a generalized regular quadrilateral, we prove that $B_{1}^{2}+B_{3}^{2}=B_{2}^{2}+B_{4}^{2}$ (Theorem 2).
3. Two branches have equal weights and the two roots have equal weights, if the thumb inherits a symmetry w.r to the midperpendicular line of the two opposite sides of the rectangle, which is perpendicular to the ground (equal branches and equal roots, Proposition 3).
4. The dynamic Plasticity of weighted network with two roots and two growing branches states that:
Given the weighted Fermat-Torricelli point $A_{0 i}$ that has got a subconscious $\bar{B}_{0 i}$ to be an interior point of the tetrahedron $A_{1 i} A_{2 i} A_{3 i} A_{4 i}$ with the vertices lie on four prescribed rays that meet at $A_{0 i}$ the positive real weights $\bar{B}_{j i}$ depends on the five given values of $\alpha_{102 i}, \alpha_{103 i}, \alpha_{104 i}, \alpha_{203 i}, \alpha_{204 i}$ and $\bar{B}_{0 i}$ (Theorem 3).
5. We assume that the common perpendicular line of each tetrahedron $A_{1 i} A_{2 i} A_{3 i} A_{4 i}$ passes through the common midpoints m_{12} and m_{34} of $A_{1 i} A_{2 i}$ and $A_{4 i} A_{3 i}$, respectively and $m_{12} m_{34} \gg A_{1 i} A_{2 i}$. We prove the following theorem for a botanological thumb (without a main branch) (Theorem 4): If $A_{0 i}$ lies on the common perpendicular segment $m_{12} m_{34}$, then $\overline{B_{1 i}}=\overline{B_{2 i}}$ and $\overline{B_{3 i}}=\overline{B_{4 i}}$.
6. We prove the following theorem for a "botanological" network (with a main branch) (Theorem 4):
If $A_{0 i}$ lies on the common perpendicular segment $m_{12} m_{34}$, then $\overline{B_{1 i}}=\overline{B_{2 i}}$ and $\overline{B_{3 i}}=\overline{B_{4 i}}$.
The dynamic plasticity (Theorem 3), geometric plasticity (Lemma 2) and rotational plasticity (Proposition 4) of generalized regular tetrahedra (Definition 7) and generalized weighted regular tetrahedra (Definition 8) develops a symmetry for the weights for a "botanological" thumb (Theorem 4. Evolutionary scheme) or a botanological network in \mathbb{R}^{3} (Theorem 10, Evolutionary scheme).

2 The property of generalized regularity of convex quadrilaterals in \mathbb{R}^{2}

Let $A_{1} A_{2} A_{3} A_{4}$ be a convex quadrilateral in \mathbb{R}^{2}, such that $B_{1}=B_{2}=B_{3}=B_{4}=1$ and $B_{12}+B_{34}=2$. We recall that a weight B_{i} corresponds to the vertex A_{i}, for $i=1,2,3,4$, a weight $B_{12} \equiv 1$ corresponds to the Steiner point O_{12} and $B_{34} \equiv 1$ corresponds to the Steiner point O_{34}. The FermatTorricelli point F is the intersection of the two diagonals of $A_{1} A_{3}$ and $A_{2} A_{4}$. We denote by L the Simpson line, which passes through the e-points A_{12}, A_{34} and O_{12}, O_{34} and by T_{12}, T_{34} the intersection points of the common angle bisector of the vertical angles $A_{1} F A_{2}$ and $A_{3} F A_{4}$ and the line segments $A_{1} A_{2}$ and $A_{3} A_{4}$, respectively.

Definition 1 (Generalized regularity) A generalized regular quadrilateral is a convex quadrilateral in \mathbb{R}^{2}, such that the Simpson line L passes through the Fermat-Torricelli point F.

Definition 2 (Weighted regularity) A weighted regular quadrilateral is a convex quadrilateral in \mathbb{R}^{2}, such that the weighted Simpson line L passes through the weighted Fermat-Torricelli point F.

Without loss of generality, we assume that:
$A_{i}=A_{1}\left(x_{i}, y_{i}\right)$, for $i=1,2,3,4, F=\left(x_{F}, y_{F}\right), A_{34}=$ $A_{34}\left(x_{34}, y_{34}\right)$ and $A_{12}=A_{12}\left(x_{12}, y_{12}\right)$, such that:
$y_{4}>y_{3}>y_{2}>y_{1}, x_{1}<x_{4}<x_{3}<x_{2}$.

Theorem 1 The property of generalized regularity possess a class of convex quadrilaterals (generalized regular quadrilaterals), which corresponds to the Steiner zero solution and it consists of quadrilaterals having two of their opposite sides parallel.

Proof. The intersection of the two diagonals $A_{1} A_{3}, A_{2} A_{4}$ is the unweighted Fermat-Torricelli point $F=\left(x_{F}, y_{F}\right)$, where
$x_{F}=\frac{\frac{x_{1}\left(y_{3}-y_{1}\right)}{x_{3}-x_{1}}-\frac{x_{2}\left(y_{4}-y_{2}\right)}{x_{4}-x_{2}}-y_{1}+y_{2}}{\frac{y_{3}-y_{1}}{x_{3}-x_{1}}-\frac{y_{4}-y_{2}}{x_{4}-x_{2}}}$
and
$y_{F}=\frac{\left(y_{3}-y_{1}\right)\left(\frac{\frac{x_{1}\left(y_{3}-y_{1}\right)}{x_{3}-x_{1}}-\frac{x_{2}\left(y_{4}-y_{2}\right)}{x_{4}-x_{2}}-y_{1}+y_{2}}{\frac{y_{3}-y_{1}}{x_{3}-x_{1}}-\frac{y_{4}-y_{2}}{x_{4}-x_{2}}}-x_{1}\right)}{x_{3}-x_{1}}+y_{1}$.
We shall express the coordinates of the e-point $A_{34}=$ $A_{34}\left(x_{34}, y_{34} x_{34}\right.$ and y_{34} w.r. to $x_{3}, y_{3}, x_{4}, y_{4}$ (see Fig 1).

Figure 1: Generalized regularity of quadrilaterals
The relation $A_{34} A_{3}=A_{3} A_{4}$ yields:

$$
\begin{align*}
& \left(x_{34}-x_{3}\right)^{2}+\left(y_{34}\left(x_{3}, y_{3}, x_{4}, y_{4}, x_{34}\right)-y_{3}\right)^{2}= \\
& \left(x_{3}-x_{4}\right)^{2}+\left(y_{3}-y_{4}\right)^{2} . \tag{4}
\end{align*}
$$

The midperpendicular line which is defined by $A_{34}=$ $A_{34}\left(x_{34}, y_{34}\right)$ and the midpoint $M_{34}=\left(\frac{x_{3}+x_{4}}{2}, \frac{y_{3}+y_{4}}{2}\right)$ yields:
$\left(y_{34}\left(x_{3}, y_{3}, x_{4}, y_{4}, x_{34}\right)=\right.$
$\frac{\left(x_{4}-x_{3}\right)\left(\left(x_{34}-\frac{x_{3}+x_{4}}{2}\right)\right)}{y_{3}-y_{4}}+\frac{1}{2}\left(y_{3}+y_{4}\right)$.
By replacing (5) in (4), we derive a second order degree polynomial w.r. to x_{34} and taking into account $x_{34}>\frac{x_{3}+x_{4}}{2}$, we obtain:

$$
\begin{align*}
x_{34} & =\frac{x_{3} y_{3}^{2}+x_{3} y_{4}^{2}-2 x_{3} y_{3} y_{4}+\sqrt{3} M+x_{4} y_{3}^{2}}{2\left(x_{3}-x_{4}\right)^{2}+\left(y_{3}-y_{4}\right)^{2}}+ \\
& +\frac{x_{4} y_{4}^{2}-2 x_{4} y_{3} y_{4}+x_{3}^{3}-x_{4} x_{3}^{2}-x_{4}^{2} x_{3}+x_{4}^{3}}{2\left(x_{3}-x_{4}\right)^{2}+\left(y_{3}-y_{4}\right)^{2}} \tag{6}
\end{align*}
$$

where
$M \equiv\left(x_{3}-x_{4}\right)^{2}+\left(y_{3}-y_{4}\right)^{2}\left|y_{3}-y_{4}\right|$.
and taking into account

$$
\begin{aligned}
x_{12} & =\frac{x_{1} y_{1}^{2}+x_{1} y_{2}^{2}-2 x_{1} y_{1} y_{2}-\sqrt{3} N+x_{2} y_{1}^{2}}{2\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}+ \\
& +\frac{x_{2} y_{2}^{2}-2 x_{2} y_{1} y_{2}+x_{1}^{3}-x_{2} x_{1}^{2}-x_{2}^{2} x_{1}+x_{2}^{3}}{2\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
\end{aligned}
$$

the corresponding determinant of the area $A\left(\triangle A_{12} A_{34} F\right)$ is non-zero.

Examples of generalized regular quadrilaterals are the square, rectangle and the isosceles trapezoid.
The following results are a direct consequence of Theorem 1 :

Proposition 2 A square is a generalized regular quadrilateral, which corresponds to two Steiner zero solutions, having their Simpson lines perpendicular and meet at the Fermat-Torricelli point F.

Corollary 1 A square is a generalized regular quadrilateral, such that the two Simpson lines and the two corresponding angle bisectors w.r to the vertical angles coincide (two minimum Steiner trees).

Corollary 2 A rectangle is a generalized regular quadrilateral, such that the two Simpson lines and the two corresponding angle bisectors w.r to the vertical angles coincide and the Simpson line which is midperpendicular w.r. to the parallel sides with greater length does not given a minimum Steiner tree (a unique minimum Steiner tree).

Corollary 3 An isosceles trapezoid is a generalized regular quadrilateral, such that the Simpson line (midperpendicular) which passes through the Fermat-Torricelli point F and the corresponding angle bisector w.r to the vertical angles coincide.

3 Creation of a "botanological" thumb for a boundary rectangle in \mathbb{R}^{2}

A "botanological" network for four non-collinear points in \mathbb{R}^{2} is introduced and studied in [13] for open systems (Botany).

Definition 3 ("Botanological" network, [13]) A "botanological" network for four non-collinear points is a two-way communication network, which has the topology of a weighted minimal Steiner tree in \mathbb{R}^{2}, having two weighted Fermat-Torricelli nodes (Steiner nodes), two weighted roots, two weighted branches and one main branch.

Let $A_{1} A_{2} A_{3} A_{4}$ be a weighted rectangle in \mathbb{R}^{2}, B_{i} be a weight which corresponds to each vertex A_{i}, for $i=$
$1,2,3,4, A_{1} F, A_{2} F$ are the two roots of the corresponding weighted Fermat-Torricelli tree (thumb). We assume that the weighted Fermat-Torricelli point F is located on the ground and $A_{3} F, A_{4} F$ are two branches of the weighted Fermat-Torricelli tree (thumb) and $A_{1} A_{4} \gg A_{1} A_{2}$.
The weighted Simpson line is a line defined by $A_{12} A_{34}$, where A_{12} is a vertex of $\triangle A_{12} A_{1} A_{2}$, which lies on the opposite side of $A_{1} A_{2}$ to O_{12} and A_{34} is a vertex of $\triangle A_{34} A_{4} A_{3}$, which lies on the opposite side of $A_{3} A_{4}$ to O_{34}. The weighted Steiner points O_{12} and O_{34} are the two nodes of the weighted Steiner tree and they both lie on $A_{12} A_{34}$, with equal weights $\frac{B_{12}+B_{34}}{2}$.
Definition 4 A "botanological" thumb for a boundary rectangle is a two-way communication network, which has the topology of a weighted Fermat-Torricelli tree in \mathbb{R}^{2}, having one weighted Fermat-Torricelli node, two weighted roots and two weighted branches, which is enriched by the property of generalized regularity of quadrilaterals, such that $A_{12} A_{34}$ is perpendicular to $A_{1} A_{2}$.

We assume that the weighted Fermat-Torricelli point F of $A_{1} A_{2} A_{3} A_{4}\left(B_{12}=B_{34}=0\right)$ lies on the ground and $A_{1} A_{2}$ is parallel to the ground.
Our main result is the following theorem, which gives a weighted condition for the four weights of a thumb whose weighted Simpson line is perpendicular to the ground and $A_{1} A_{2}$ and passes through the corresponding weighted Fermat-Torricelli point F.

Theorem 2 If $A_{12} A_{34}$ is perpendicular to $A_{1} A_{2}$,
$B_{1}^{2}=B_{2}^{2}+B_{4}^{2}-B_{3}^{2}$.
Proof. We consider the weighted Steiner tree for the boundary $A_{1} A_{2} A_{3} A_{4}$. We recall that the objective function is given by:

$$
\begin{align*}
& f\left(O_{12}, O_{34}\right)=B_{1} d\left(O_{12}, A_{1}\right)+B_{2} d\left(O_{12}, A_{2}\right)+B_{3} d\left(O_{34}, A_{3}\right) \\
& +B_{4} d\left(O_{34}, A_{4}\right)+\frac{B_{12}+B_{34}}{2} d\left(O_{12}, O_{34}\right) \rightarrow \min \tag{12}
\end{align*}
$$

where O_{12} is the weighted Fermat-Torricelli point (Steiner node) of $\triangle A_{1} A_{2} O_{34}$ with corresponding weights B_{1}, B_{2} and $\frac{B_{12}+B_{34}}{2}$, respectively, and O_{34} is the weighted FermatTorricelli point (Steiner node) of $\triangle A_{3} A_{4} O_{34}$ with corresponding weights B_{3}, B_{4} and $\frac{B_{12}+B_{34}}{2}$, respectively.
Hence, the construction of the weighted Simpson line yields the following relations:
$B_{1} \sin \angle A_{1} A_{2} A_{12}=B_{2} \sin \angle A_{2} A_{1} A_{12}$
and
$B_{3} \sin \angle A_{3} A_{4} A_{34}=B_{4} \sin \angle A_{4} A_{3} A_{34}$.
The weighted balancing condition of the weighted FermatTorricelli point F for $A_{1} A_{2} A_{3} A_{4}$ taking into account that
$\overrightarrow{B_{14}}=-\overrightarrow{B_{23}}, \overrightarrow{B_{12}}=-\overrightarrow{B_{34}}$ and $\overrightarrow{B_{12}}$ is perpendicular to $\overrightarrow{B_{23}}$, we obtain that:
$B_{1} \cos \angle A_{1} A_{2} A_{12}=B_{4} \cos \angle A_{4} A_{3} A_{34}$
and
$B_{2} \cos \angle A_{2} A_{1} A_{12}=B_{3} \cos \angle A_{3} A_{4} A_{34}$.
By squaring both sides of (13), (14), (15) and (16) and by adding the first and third derived relation and the second and fourth derived relation, we deduce (11).
We need the following lemma, in order to prove that the symmetry of a thumb is determined by a pair of equal weights w.r. to the two symmetrical roots and a pair of equal weights w.r. to the two symmetrical branches. Let $O=O(0,0)$, be the intersection of the diagonals of $A_{1} A_{2} A_{3} A_{4}$.

Lemma 1

$d\left(A_{1}, F\right)^{2}+d\left(A_{3}, F\right)^{2}=d\left(A_{2}, F\right)^{2}+d\left(A_{4}, F\right)^{2}$.
Proposition 3 If the thumb inherits a symmetry w.r to the midperpendicular line of the two opposite sides of the rectangle, which is perpendicular to the ground (equal branches and equal roots), then $B_{1}=B_{2}$ and $B_{3}=B_{4}$.

Proof. By replacing $d\left(A_{1}, F\right)=d\left(A_{2}, F\right)$ in 17), we get
$d\left(A_{3}, F\right)=d\left(A_{4}, F\right)$.
The weighted Simpson line $A_{12} A_{34}$ is the midperpendicular line of $A_{1} A_{2}$ and $A_{3} A_{4}$ and passes through the weighted Fermat-Torricelli point F. Therefore, $A_{1} A_{2} A_{3} A_{4}$ is a generalized weighted regular rectangle. Thus, we get:
$B_{1} \sin \angle A_{1} A_{2} A_{12}=B_{2} \sin \angle A_{2} A_{1} A_{12}$
and
$B_{3} \sin \angle A_{3} A_{4} A_{34}=B_{4} \sin \angle A_{4} A_{3} A_{34}$.
By replacing $\angle A_{1} A_{2} A_{12}=\angle A_{2} A_{1} A_{12}$ in (18) and $\angle A_{3} A_{4} A_{34}=\angle A_{4} A_{3} A_{34}$ in 19), we get: $B_{1}=B_{2}$ and $B_{3}=B_{4}$.

4 Creation of a "botanological" thumb with symmetrical branches in the three dimensional Euclidean Space

Let $A_{1 i} A_{2 i} A_{3 i} A_{4 i}$ be n tetrahedra in \mathbb{R}^{3} and $B_{j i}$ be the weight (positive real number) which corresponds to the vertex $A_{j i}$, for $i=1,2, \ldots, n$ and $j=1,2,3,4$.
Weighted Fermat-Torricelli trees and weighted Steiner trees that have got a subconscious have been established in [10] and [11].

We denote by $\vec{u}\left(A_{i k}, A_{j k}\right)$ the unit vector from $A_{i k}$ to $A_{j k}$. We assume that $\left\|\sum_{j=1}^{4} B_{j k} \vec{u}\left(A_{i k}, A_{j k}\right)\right\|>B_{i k}$ hold, in order to locate weighted Fermat-Torricelli trees with four branches $\left\{A_{0 k} A_{1 k}, A_{0 k} A_{2 k}, A_{0 k} A_{3 k}, A_{0 k} A_{4 k}\right\}$ that got a subconscious node.

Lemma 2 (Geometric plasticity of weighted FermatTorricelli trees that have got a subconscious node[10]) If we select a point $P_{i k}$ with a non-negative weight $B_{i k}$ on the ray that is defined by the line segment $A_{0 k} A_{i k}$, such that:
$\left\|\sum_{j=1}^{4} B_{j k} \vec{u}\left(P_{i k}, P_{j k}\right)\right\|>B_{i k}$,
Then the corresponding weighted Fermat-Torricelli node $P_{0 k}$ that has got a subconscious of $\left\{P_{0 k} P_{1 k}, P_{0 k} P_{2 k}, P_{0 k} P_{3 k}, P_{0 k} P_{4 k}\right\}$ remains the same with $A_{0 k}$, for $k=1,2,3, \ldots, n$.

The modified weighted Fermat-Torricelli problem for tetrahedra states that:

Problem 2 (Modified weighted Fermat-Torricelli prob-

 lem [10])Let $A_{1 k} A_{2 k} A_{3 k} A_{4 k}$ be a tetrahedron in \mathbb{R}^{3}, $\mathcal{B}_{i k}$ be a nonnegative number (weight) which corresponds to each line segment $A_{0 k} A_{i k}$, respectively. Find a point $A_{0 k}$ which minimizes the sum of the lengths of the line segments $a_{0 i k}$ that connect every vertex $A_{i k}$ with $A_{0 k}$ multiplied by the positive weight $\mathcal{B}_{i k}$:
$\sum_{i=1}^{4} \mathcal{B}_{i} a_{0 i k}=$ minimum.
By letting $\mathcal{B}_{i k}=B_{i k}$, for $i=1,2,3,4, k=1,2, \ldots, n$, the weighted Fermat-Torricelli problem for tetrahedra and the corresponding modified weighted Fermat-Torricelli problem for tetrahedra are equivalent by collecting instantaneous images of the weighted Fermat-Torricelli network via the geometric plasticity of tetrahedra in \mathbb{R}^{3}.
The geometric plasticity of tetrahedra connects the weighted Fermat-Torricelli problem for tetrahedra with the modified weighted Fermat-Torricelli problem for boundary tetrahedra by allowing a mass flow continuity for the weights, such that the corresponding weighted Fermat-Torricelli point remains the same in \mathbb{R}^{3}.
The weighted Fermat-Torricelli nodes remain the same $P_{0 k} \equiv A_{0 k}$ but different values of the subconscious (remaining weight) may occur.
We denote by $B_{j i}$ a mass flow which is transferred from $A_{j i}$ to $A_{0 i}$ for $j=1,2$ by $B_{0 i}$ a residual weight which remains at A_{0} and by $B_{k i}$ a mass flow which is transferred from $A_{0 i}$ to $A_{k i}$ for $k=3,4$.
We denote by $\tilde{B}_{j i}$ a mass flow which is transferred from $A_{0 i}$ to $A_{j i}$ for $i=1,2$, by $\tilde{B}_{0 i}$ a residual weight which remains
at $A_{0 i}$ and by $\tilde{B}_{k i}$ a mass flow which is transferred from $A_{k i}$ to $A_{0 i}$, for $k=3,4$.
Thus, we derive the weighted outward flow condition and weighted inward flow condition:
$B_{1 i}+B_{2 i}=B_{3 i}+B_{4 i}+B_{0 i}$
and
$\tilde{B}_{1 i}+\tilde{B}_{2 i}+\tilde{B}_{0 i}=\tilde{B}_{3 i}+\tilde{B}_{4 i}$.
By adding 21 and 22 and by setting $\bar{B}_{0 i}=B_{0 i}-\tilde{B}_{0 i}$, we obtain:
$\bar{B}_{1 i}+\bar{B}_{2 i}=\bar{B}_{3 i}+\bar{B}_{4 i}+\bar{B}_{0 i}$
such that:
$\bar{B}_{1 i}+\bar{B}_{2 i}+\bar{B}_{3 i}+\bar{B}_{4 i}=c$,
where c is a positive real number, for $i=1,2, \ldots, n$.
We denote by $a_{0 i m}$ the length of the line segment $A_{0 m} A_{i m}$, $\alpha_{i 0 j m} \equiv \angle A_{i m} A_{0} A_{j m}$ and $\alpha_{i, j 0 k m}$ the angle which is formed by the line segment that connects $A_{0 m}$ with the trace of the orthogonal projection of $A_{i m}$ to the plane defined by $\triangle A_{j m} A_{0} A_{k m}$ with $a_{0 i m}$, for $i, j, k, l=1,2,3,4, i \neq j \neq k \neq i$ and $m=1,2,3, \ldots, n$

Lemma 3 (Determination of the position of $A_{0 i}$ on exactly five given angles [10, Proposition 2.9, p. 902], [12, Formulas (10), (11), p. 120])
Each angle $\alpha_{i, k 0 m l}$ depends on $\alpha_{102 l}, \alpha_{103 l}, \alpha_{104 l}, \alpha_{203 l}$ and $\alpha_{204 l}$, for $i, k, m=1,2,3,4, i \neq k \neq m$, and $l=1,2,, \ldots, n$

$$
\begin{align*}
\cos ^{2}\left(\alpha_{i, k 0 m l}\right)= & \frac{\sin ^{2}\left(\alpha_{k 0 m l}\right)-\cos ^{2}\left(\alpha_{m 0 i l}\right)-\cos ^{2}\left(\alpha_{k 0 i l}\right)}{\sin ^{2}\left(\alpha_{k 0 m l}\right)}+ \\
& +\frac{2 \cos \left(\alpha_{m 0 i l}\right) \cos \left(\alpha_{k 0 i l}\right) \cos \left(\alpha_{k 0 m l}\right)}{\sin ^{2}\left(\alpha_{k 0 m l}\right)} \tag{25}
\end{align*}
$$

and
$\cos \alpha_{304}=-\frac{1}{4}[2 b+$
$+4 \cos \alpha_{102}\left(\cos \alpha_{104} \cos \alpha_{203}+\cos \alpha_{103} \cos \alpha_{204}\right)-$
$\left.-4\left(\cos \alpha_{103} \cos \alpha_{104}+\cos \alpha_{203} \cos \alpha_{204}\right)\right] \csc ^{2} \alpha_{102}$
or
$\cos \alpha_{304}=\frac{1}{4}\left[4 \cos \alpha_{103}\left(\cos \alpha_{104}-\cos \alpha_{102} \cos \alpha_{204}\right)+\right.$
$\left.+2\left(b+2 \cos \alpha_{203}\left(-\cos \alpha_{102} \cos \alpha_{104}+\cos \alpha_{204}\right)\right)\right] \csc ^{2} \alpha_{102}$
where
$b \equiv \sqrt{\prod_{i=3}^{4}\left(1+\cos \left(2 \alpha_{102}\right)+\cos \left(2 \alpha_{10 i}\right)+\cos \left(2 \alpha_{20 i}\right)-4 \cos \alpha_{102} \cos \alpha_{10 i} \cos \alpha_{20 i}\right)}$.

We denote by α_{l} the dihedral angle which is formed by the planes defined by $\triangle A_{1 l} A_{0 l} A_{2 l}$ and $\triangle A_{1 l} A_{2 l} A_{3 l}$, and by $\alpha_{g_{4 l}}$ the dihedral angle formed by the planes defined by $\triangle A_{1 l} A_{4 l} A_{2 l}$ and $\triangle A_{1 l} A_{2 l} A_{3 l}$, for $l=1,2, \ldots, n$.

Lemma 4 [[10, Formula (27), p. 997]]
The variable length $a_{04 l}$ is given by
$a_{04 l}^{2}=a_{02}^{2}+a_{24 l}^{2}-2 a_{24 l}\left[\sqrt{a_{02 l}^{2}-h_{0,12 l}^{2}} \cos \alpha_{124 l}+\right.$
$+h_{0,12 l} \sin \alpha_{124 l}\left(\cos \alpha_{g_{4 l}}\left(\frac{\left(\frac{a_{02}^{2}+a_{23}^{2}-a_{03}^{2}}{2 a_{23}}\right)-\sqrt{a_{02 l}^{2}-h_{0,12 l}^{2}} \cos \alpha_{123 l}}{h_{0,12 l} \sin \alpha_{123 l}}\right)+\right.$
$\left.\left.+\sin \alpha_{g_{4 l}} \sin \arccos \left(\frac{\left(\frac{a_{02 l}^{2}+a_{23 l}^{2}-a_{03 l}^{2}}{2 a_{23 l}}\right)-\sqrt{a_{02 l}^{2}-h_{0,12 l}^{2}} \cos \alpha_{123 l}}{h_{0,12 l} \sin \alpha_{123 l}}\right)\right)\right]$
and
$h_{0,12 l}=\frac{a_{01 l} a_{02 l}}{a_{12 l}} \sqrt{1-\left(\frac{a_{01 l}^{2}+a_{02 l}^{2}-a_{12 l}^{2}}{2 a_{01 l} a_{02 l}}\right)^{2}}$.
Theorem 3 [Dynamic Plasticity of weighted network with two roots and two growing branches]
Given the weighted Fermat-Torricelli point $A_{0 i}$ that has got a subconscious $\bar{B}_{0 i}$ to be an interior point of the tetrahedron $A_{1 i} A_{2 i} A_{3 i} A_{4 i}$ with the vertices lie on four prescribed rays that meet at $A_{0 i}$ and from the five given values of $\alpha_{102 i}$, $\alpha_{103 i}, \alpha_{104 i}, \alpha_{203 i}, \alpha_{204 i}$, the positive real weights $\bar{B}_{j i}$ are given by:
$\bar{B}_{1 i}=\left(\frac{\sin \alpha_{4,203 i}}{\sin \alpha_{1,203 i}}\right) \frac{c-\bar{B}_{0 i}}{2}$,
$\bar{B}_{2 i}=\left(\frac{\sin \alpha_{4,103 i}}{\sin \alpha_{2,103 i}}\right) \frac{c-\bar{B}_{0 i}}{2}$,
$\bar{B}_{3 i}=\left(\frac{\sin \alpha_{4,102 i}}{\sin \alpha_{3,102 i}}\right) \frac{c-\bar{B}_{0 i}}{2}$,
$\overline{B_{4 i}}=\frac{c-\bar{B}_{0 i}}{2}$,
under the weighted conditions
$\bar{B}_{1 i}+\bar{B}_{2 i}+\bar{B}_{3 i}+\bar{B}_{4 i}=c$,
and
$\bar{B}_{1 i}+\bar{B}_{2 i}=\bar{B}_{3 i}+\bar{B}_{4 i}+\bar{B}_{0 i}$.

Proof. By considering a two-way communication network and by assuming mass flow continuity the weights $\bar{B}_{k i}$, for $i=1,2,3,4$, are determined by the weighted outward and inward flow conditions (21), 22), which yield the weighted conditions (34) and (35).
Thus, we obtain that:
$\sum_{k=1}^{4} B_{k i} a_{0 k i}+\sum_{k=1}^{4} \tilde{B}_{k i} a_{0 k i} \rightarrow \min$,
which gives
$\sum_{k=1}^{4} \bar{B}_{k i} a_{0 k i} \rightarrow \min$.
By differentiating (37) w.r. to $a_{01 l}, a_{02 l} a_{03 l}$, respectively, taking into account the derivative of $a_{04 l}$ w.r. to $a_{01 l}, a_{02 l}$ $a_{03 l}$, by lemma 4 , we obtain (30), (31), (32) and (33).

Remark 2 We note that the dynamic plasticity equations of Theorem 3 have been derived in [10] for weighted FermatTorricelli trees, which consist of two roots one branch and one growing branch that have inherited a subconscious (weighted Fermat-Torricelli node) under different weighted (inflow - outflow conditions):
$\overline{B_{1 i}}+\overline{B_{2 i}}+\overline{B_{3 i}}=\overline{B_{0 i}}+\overline{B_{4 i}}$ for $i=1,2, \ldots, n$.
We assume that the common perpendicular line of $A_{1 i} A_{2 i} A_{3 i} A_{4 i}$ passes through the common midpoints m_{12} and m_{34} of $A_{1 i} A_{2 i}$ and $A_{4 i} A_{3 i}$, respectively and $m_{12} m_{34} \gg A_{1 i} A_{2 i}$. We denote by φ_{i} the angle formed by $\overrightarrow{A_{1 i} A_{2 i}}$ and $\vec{A}_{4 i} A_{3 i}$ and by $B_{j i}$ the weight (positive real number) which corresponds to the vertex $A_{j i}$, for $j=1,2,3,4$, $i=1,2, \ldots, n$. Hence, by rotating $A_{1 i} A_{2 i} A_{3 i} A_{4 i}$ by φ_{i} with respect to $m_{12} m_{34}$, we obtain n weighted isosceles trapezoid $A_{1 i}^{\prime} A_{2 i}^{\prime} A_{3 i}^{\prime} A_{4 i}^{\prime}$ and $B_{j i}^{\prime}=B_{j i}$. We denote by O_{i} the intersection point of the equal diagonals $A_{1 i}^{\prime} A_{3 i}^{\prime}$ and $A_{2 i}^{\prime} A_{4 i}^{\prime}$, by $A_{0 i}$ the corresponding weighted Fermat-Torricelli node with remaining weight $B_{0 i}$ (one node that has got a subconscious) and by $O_{12 i}$ and $O_{34 i}$ the two corresponding weighted Steiner nodes with remaining weights $B_{12 i}$ and $B_{34 i}$ (two nodes that got a subconscious) for $A_{1 i}^{\prime} A_{2 i}^{\prime} A_{3 i}^{\prime} A_{4 i}^{\prime}$.

Theorem 4 If $A_{0 i}$ lies on the common perpendicular segment $m_{12} m_{34}$, then
$\overline{B_{1 i}}=\overline{B_{2 i}}$
and
$\overline{B_{3 i}}=\overline{B_{4 i}}$
Proof. By substituting $\alpha_{4,102 i}=\alpha_{3,102 i}$ in (32) and (33), we obtain (39). By working cyclically with the indices and by exchanging the indices $3 \rightarrow 2,4 \rightarrow 1$ and $1 \rightarrow 4,2 \rightarrow 3$, we derive (38).

We may consider that $\left\{A_{1 i}, A_{2 i}\right\}$ lie on a circular cone $C_{012 i}$, having $m_{12} m_{34}$ as axis of rotation with vertex the weighted Fermat-Torricelli point $A_{0 i}$ and $\left\{A_{3 i}, A_{4 i}\right\}$ lie on a circular cone $C_{034 i}$, having $m_{12} m_{34}$ as axis of rotation with vertex the weighted Fermat-Torricelli point $A_{0 i}$. We note that $C_{012 i}$ and $C_{034 i}$ intersect only at $A_{0 i}$.

Proposition 4 (Rotational plasticity of tetrahedra) If we select $\left\{R_{1 i}, R_{2 i}\right\}$ two points with weights $B_{1 i}, B_{2 i}$, respectively, on $C_{012 i}$, such that their midpoint $m_{12 i}$ lies on the line defined by $m_{12} m_{34}$ and $\left\{R_{3 i}, R_{4 i}\right\}$ two points with weights $B_{3 i}$ and $B_{4 i}$, respectively, on $C_{034 i}$, such that their midpoint $m_{34 i}$ lies on the line defined by $m_{12} m_{34}$, then the corresponding weighted Fermat-Torricelli point $R_{0 i}$ of $R_{1 i} R_{2 i} R_{3 i} R_{4 i}$ remains the same with $A_{0 i}$ for $B_{1 i}=B_{2 i}$ and $B_{3 i}=B_{4 i}$, for $i=1,2, \ldots, n$.

Proof. It is a direct consequence of Theorem 4 and taking into account that
$R_{1 i} R_{2 i} R_{3 i} R_{4 i}$ are derived by rotating the two isosceles triangles $\triangle R_{1 i} A_{0 i} R_{2 i}$ and $\triangle R_{3 i} A_{0 i} R_{4 i}$ along $m_{12} m_{34}$. By rotating properly $R_{1 i} R_{2 i} R_{3 i} R_{4 i}$, we may derive a weighted isosceles trapezoid or a weighted rectangle ($R_{1 i} R_{2 i}=R_{3 i} R_{4 i}$) for $B_{1 i}=B_{2 i}$ and $B_{3 i}=B_{4 i}$. Thus, the weighted balancing condition $\sum_{j=1}^{4} B_{j i} \overrightarrow{u\left(A_{0 i}, A_{j i}\right)}=\overrightarrow{0}$, yields $R_{0 i} \equiv A_{0 i}$.

Definition 5 A "botanological" thumb for a boundary symmetric tetrahedron $A_{1 i} A_{2 i} A_{3 i} A_{4 i}$ whose common perpendicular passes through the common midpoints m_{12} and m_{34} of $A_{1 i} A_{2 i}$ and $A_{4 i} A_{3 i}$, respectively and $m_{12} m_{34} \gg A_{1 i} A_{2 i}$ is a "botanological" network, which is transformed to a botanological "thumb" for a boundary rectangle or a boundary isosceles trapezoid, by rotating properly $A_{1 i} A_{2 i}$ w.r. $m_{12} m_{34}$.

Definition 6 A "botanological" thumb is a collection of "botanological" thumbs for a finite number of boundary symmetric tetrahedra in \mathbb{R}^{3}.

We will describe an evolutionary scheme for the creation of a "botanological" thumb in \mathbb{R}^{3}.

1. Evolutionary Phase 1

At time $t=0$, we consider a point "seed" $A_{0 i}$ on the ground.
2. Evolutionary Phase 2

After time t, by assuming mass flow continuity two equal roots start to grow underground and two equal branches start to grow overground, such that their endpoints form a boundary rectangle $A_{1 i}^{\prime} A_{2 i}^{\prime} A_{3 i}^{\prime} A_{4 i}^{\prime}$. Taking into account Proposition 3, we derive that $B_{1 i}=B_{2 i}$ and $B_{3 i}=B_{4 i}$.
3. Evolutionary Phase 3

We consider two cases: (i) If $A_{0 i}$ is the intersection of the diagonals $A_{1 i}^{\prime} A_{3 i}^{\prime}$ and $A_{2 i}^{\prime} A_{4 i}^{\prime}$ the weighted Fermat-Torricelli node $A_{0 i}$ has acquired a subconscious $\bar{B}_{0 i}$. (ii) If $A_{0 i}$ lies
on the midperpendicular line segment $m_{12} m_{34}$ the weighted Fermat-Torricelli node $A_{0 i}$ has acquired a subconscious $\bar{B}_{0 i}$.

4. Evolutionary Phase 4

The subconscious $\bar{B}_{0 i}$ may cause a geometric plasticity and/or a rotational plasticity of the weighted FermatTorricelli tree $\left\{A_{1 i}^{\prime} A_{0 i}, A_{2 i}^{\prime} A_{0 i}, A_{3 i}^{\prime} A_{0 i}, A_{4 i}^{\prime} A_{0 i}\right\}$.
(i) The geometric plasticity (Theorem 2) yields a weighted Fermat-Torricelli tree $\left\{R_{1 i} A_{0 i}, R_{2 i} A_{0 i}, R_{3 i} A_{0 i}, R_{4 i} A_{0 i}\right\}$, such that their endpoints form an isosceles trapezoid $R_{1 i} R_{2 i} R_{3 i} R_{4 i}, A_{0 i}^{\prime \prime} \equiv A_{0 i}$ and $\bar{B}_{j i}$ corresponds to $R_{j i}$, for $j=1,2,3,4$ and $i=1,2, \ldots, n$.
(ii) The rotational plasticity (Proposition 4), the dynamic plasticity (Theorem 3) and the symmetry of boundary tetrahedra taken from Theorem 4, creates a "botanological" thumb for $i=1,2, \ldots, n$, having the corresponding weighted Fermat-Torricelli node $A_{0 i}$ constant on the ground (point "seed"), but with different subconscious quantities $\bar{B}_{0 i}$, for $i=1,2, \ldots, n$.

5 Generalized regularity for tetrahedra in the three dimensional Euclidean Space

The weighted Steiner problem for a boundary weighted tetrahedron $A_{1} A_{2} A_{3} A_{4}$ in \mathbb{R}^{3} having two subconscious nodes (weighted Fermat-Torricelli or weighted Steiner points) has been studied recently in [11].
We denote by $A_{1} A_{2} A_{3} A_{4}$ a tetrahedron in \mathbb{R}^{3}, with $A_{i}\left(x_{i}, y_{i}, z_{i}\right)(i=1,2,3,4)$, by b_{i} a positive real num$\operatorname{ber}\left(\right.$ weight) which corresponds to the vertex A_{i}, O_{12}, O_{34} two interior points (nodes) of $A_{1} A_{2} A_{3} A_{4}$ in \mathbb{R}^{3}, by b_{12} the weight which corresponds to O_{12}, b_{34} the weight which corresponds to O_{34}, by H the length of the common perpendicular (Euclidean distance) between the two lines defined by $A_{1} A_{2}, A_{4} A_{3}$, by $A_{i} A_{j}$ the Euclidean distance from A_{i} to A_{j}, by $O_{12} O_{34}$ the Euclidean distance from O_{12} to O_{34}, by $A_{i} O_{12}$ the Euclidean distance from A_{i} to O_{12} and by $A_{j} O_{34}$ the Euclidean distance from A_{j} to O_{34}, by T_{12} the intersection point of the line defined by $O_{12} O_{34}$ and the line defined by $A_{1} A_{2}$ and by T_{34} the intersection point of the line defined by $O_{12} O_{34}$ and the line defined by $A_{4} A_{3}, M_{12}$ the midpoint of $A_{1} A_{2}$ and M_{34} the midpoint of $A_{4} A_{3}$, for $i, j=1,2,3,4$.
We denote by $A_{4}^{\prime \prime}$ the intersection point of the line defined by the $A_{4} A_{3}$ and the line defined by the common perpendicular of $A_{1} A_{2}$ and $A_{4} A_{3}$ and by $A_{1}^{\prime \prime}$ the intersection point of the line defined by $A_{1} A_{2}$ and the line defined by the common perpendicular of $A_{1} A_{2}$
We set
$\vec{a}_{i j} \equiv \overrightarrow{A_{i} A_{j}}$, for $i, j=1,2,3,4, i \neq j \neq k, \alpha_{12} \equiv \angle A_{1} O_{12} A_{2}$, $\alpha_{34} \equiv \angle A_{3} O_{34} A_{4}, \alpha_{1} \equiv \angle A_{2} O_{12} O_{34}, \alpha_{2} \equiv \angle A_{1} O_{12} O_{34}$, $\alpha_{3} \equiv \angle A_{4} O_{34} O_{12}, \alpha_{4} \equiv \angle A_{3} O_{34} O_{12}, \varphi \equiv \arccos \left(\frac{\vec{a}_{12} \cdot \vec{a}_{43}}{a_{12} a_{43}}\right)$ and $b_{S T}=\frac{b_{12}+b_{34}}{2}$.

Furthermore, we denote by A_{12} the vertex of $\triangle A_{1} A_{12} A_{2}$, such that: $\angle A_{1} A_{12} A_{2}=\pi-\alpha_{12}, \angle A_{12} A_{1} A_{2}=\pi-\alpha_{1}$ and $\angle A_{1} A_{2} A_{12}=\pi-\alpha_{2}$, by A_{34} the vertex of $\triangle A_{4} A_{34} A_{3}$, such that: $\angle A_{4} A_{34} A_{3}=\pi-\alpha_{34}, \angle A_{34} A_{4} A_{3}=\pi-\alpha_{4}$ and $\angle A_{4} A_{3} A_{34}=\pi-\alpha_{3}$, by H_{12} the trace of the height of $\triangle A_{1} A_{12} A_{2}$ w.r to the base $A_{1} A_{2}$ and by A_{34} the vertex of $\triangle A_{4} A_{34} A_{3}$, such that: $\angle A_{4} A_{34} A_{3}=\pi-\alpha_{34}, \angle A_{34} A_{4} A_{3}=$ $\pi-\alpha_{4}$ and $\angle A_{4} A_{3} A_{34}=\pi-\alpha_{3}$ and by H_{34} the trace of the height of $\triangle A_{4} A_{34} A_{3}$ w.r to the base $A_{4} A_{3}$.
We set $H \equiv A_{4}^{\prime \prime} A_{1}^{\prime \prime}, t_{34} \equiv A_{4}^{\prime \prime} T_{34} t_{12} \equiv A_{1}^{\prime \prime} T_{12} k_{1} \equiv A_{1}^{\prime \prime} A_{1}$ and $k_{2} \equiv A_{4}^{\prime \prime} A_{4}, m_{12} \equiv A_{1}^{\prime \prime} M_{12}$ and $m_{34} \equiv A_{4}^{\prime \prime} M_{34}, h_{12}^{\prime} \equiv A_{1}^{\prime \prime} H_{12}$ and $h_{34}^{\prime} \equiv A_{4}^{\prime \prime} H_{34}$.
We assume that: $A_{1} A_{4}+A_{2} A_{3}>A_{1} A_{2}+A_{3} A_{4}$.
The weighted Steiner problem for $A_{1} A_{2} A_{3} A_{4}$ in \mathbb{R}^{3} states that:

Problem 3 ([11, Problem 5]) Find $O_{12}\left(x_{0}, y_{0}, z_{0}\right)$ and $O_{34}\left(x_{0^{\prime}}, y_{0^{\prime}}, z_{0^{\prime}}\right)$ with given weights b_{12} in O_{12} and b_{34} in O_{34}, such that

$$
\begin{align*}
f\left(O_{12}, O_{34}\right)= & b_{1} A_{1} O_{12}+b_{2} A_{2} O_{12}+b_{3} A_{3} O_{34}+b_{4} A_{4} O_{34}+ \\
& +\frac{b_{12}+b_{34}}{2} O_{12} O_{34} \rightarrow \text { min. } \tag{40}
\end{align*}
$$

Theorem 5 ([11, Theorem 3]) The solution of the weighted Steiner problem is a weighted Steiner tree in \mathbb{R}^{3} whose nodes O_{12} and O_{34} (weighted Fermat-Torricelli points) are seen by the angles.

$$
\begin{align*}
\cos \alpha_{12} & =\frac{b_{S T}^{2}-b_{1}^{2}-b_{2}^{2}}{2 b_{1} b_{2}}, \\
\cos \alpha_{1} & =\frac{b_{1}^{2}-b_{2}^{2}-b_{S T}^{2}}{2 b_{2} b_{S T}}, \\
\cos \alpha_{34} & =\frac{b_{S T}^{2}-b_{3}^{2}-b_{4}^{2}}{2 b_{3} b_{4}}, \\
\cos \alpha_{4} & =\frac{b_{4}^{2}-b_{3}^{2}-b_{S T}^{2}}{2 b_{3} b_{S T}} . \tag{41}
\end{align*}
$$

The inradius r_{12} is the radius of the inscribed circle of triangle $\triangle A_{1} A_{12} A_{2}$ with sides $A_{1} A_{2}=\lambda \frac{b_{12}+b_{34}}{2}, A_{1} A_{12}=\lambda b_{2}$ and $A_{2} A_{12}=\lambda b_{1}$, where $\lambda=\frac{A_{1} A_{2}}{\frac{b_{12}+b_{34}}{} \text {. }}$
The inradius r_{34} is the radius of the inscribed circle of triangle $\triangle A_{3} A_{34} A_{4}$ with sides $A_{3} A_{4}=\lambda \frac{b_{12}+b_{34}}{2}, A_{3} A_{34}=\lambda b_{4}$ and $A_{4} A_{34}=\lambda b_{3}$, where $\lambda=\frac{A_{3} A_{4}}{\frac{b_{12}+b_{34}}{2}}$.
We use the substitutions for r_{12}^{2} and r_{34}, ([11, Section 2, p. 6]):
$r_{12} \equiv \frac{A_{1} A_{2}}{\left(b_{1}+b_{2}+\frac{b_{12}+b_{34}}{2}\right)\left(b_{1}+b_{2}-\frac{b_{12}+b_{34}}{2}\right)\left(b_{2}+\frac{b_{12}+b_{34}}{2}-b_{1}\right)\left(b_{1}+\frac{b_{12}+b_{34}}{2}-b_{2}\right)}$,
$r_{34} \equiv \frac{A_{4} A_{3}}{\left(b_{3}+b_{4}+\frac{b_{12}+b_{34}}{2}\right)\left(b_{3}+b_{4}-\frac{b_{12}+b_{34}}{2}\right)\left(b_{3}+\frac{b_{12}+b_{34}}{2}-b_{4}\right)\left(b_{4}+\frac{b_{12}+b_{34}}{2}-b_{3}\right)}$,
$\beta_{12}=\arccos \left(\frac{A_{1} A_{2}}{2 r_{12}}\right)$,
$\beta_{34}=\arccos \left(\frac{A_{4} A_{3}}{2 r_{34}}\right)$.

Theorem 6 ([11, Theorem 4]) The following system of equations w.r. to t_{34} and t_{12} allows the computation of the position of the weighted Simpson line $O_{12} O_{34}$ of the weighted full Steiner tree for $A_{1} A_{2} A_{3} A_{4}$:
$\frac{t_{34}-t_{12} \cos \phi}{\sqrt{H^{2}+t_{12}^{2} \sin ^{2} \phi}}=\frac{h_{34}^{\prime}-t_{34}}{r_{34}}$
and
$\frac{t_{12}-t_{34} \cos \phi}{\sqrt{H^{2}+t_{34}^{2} \sin ^{2} \phi}}=\frac{h_{12}^{\prime}-t_{12}}{r_{12}}$
Proposition 5 ([11, Proposition 1])
$\frac{t_{34}-t_{12} \cos \phi}{\sqrt{H^{2}+t_{12}^{2} \sin ^{2} \phi}}=\frac{m_{34}-t_{34}}{a_{34} \frac{\sqrt{3}}{2}}$
and
$\frac{t_{12}-t_{34} \cos \phi}{\sqrt{H^{2}+t_{34}^{2} \sin ^{2} \phi}}=\frac{m_{12}-t_{12}}{a_{12} \frac{\sqrt{3}}{2}}$
Theorem 7 ([11, Theorem 5]) The following system of equations w.r. to t_{34}, t_{12} and $\angle A_{4} F A_{3}$ allows the computation of the position of the line defined by $T_{12} T_{34}$ of the (unweighted) Fermat-Torricelli tree of $A_{1} A_{2} A_{3} A_{4}$:

$$
\begin{align*}
& \frac{t_{34}-t_{12} \cos \phi}{\sqrt{H^{2}+t_{12}^{2} \sin ^{2} \phi}}=\frac{m_{34}-t_{34}}{\frac{a_{34}}{2} \tan \frac{\angle A_{4} F A_{3}}{2}}, \tag{46}\\
& \frac{t_{12}-t_{34} \cos \phi}{\sqrt{H^{2}+t_{34}^{2} \sin ^{2} \phi}}=\frac{m_{12}-t_{12}}{\frac{a_{12}}{2} \tan \frac{\angle A_{4} F A_{3}}{2}}, \tag{47}
\end{align*}
$$

$$
\begin{equation*}
\cot \frac{\angle A_{4} F A_{3}}{2}= \tag{48}
\end{equation*}
$$

$$
\frac{2\left(H^{2}+k_{1}\left(t_{12}-t_{34}^{2} \cos \varphi\right)\right)+k_{2}\left(t_{34}-t_{12} \cos \varphi\right)}{\left(t_{12}-k_{1}\right) \sqrt{H^{2}+t_{34}^{2} \sin ^{2} \varphi}+\left(t_{34}-k_{2}\right) \sqrt{H^{2}+t_{12}^{2} \sin ^{2} \varphi}} .
$$

We denote by ω the dihedral angle (twist angle) formed by the planes $A_{1} A_{2} T_{12} T_{34}$ and $A_{4} A_{3} T_{34} T_{12}$, by $\varphi_{12}=$ $\angle A_{1} T_{12} T_{34}$ and $\varphi_{34}=\angle A_{4} T_{34} T_{12}$.

Theorem 8 ([11, Theorem 6]) The twist angle ω is given by
$\cos \omega=\frac{\cos \varphi-\cos \varphi_{12} \cos \varphi_{34}}{\sin \varphi_{12} \sin \varphi_{34}}$.

Remark 3 We correct two typographical errors that occur in [11] by replacing $\sqrt{H^{2}+t_{34} \sin ^{2} \phi}$ by $\sqrt{H^{2}+t_{34}^{2} \sin ^{2} \phi}$ and the angle φ_{34} by $\sin \varphi_{34}$ in [11] Formula (3.1)].

Definition 7 A generalized regular tetrahedron is a tetrahedron, which determines a generalized (weighted) regular quadrilateral, formed by rotating $A_{1} A_{2}$ or $A_{3} A_{4}$ by the twist angle ω, w.r. to the (weighted) Simpson line $A_{12} A_{34}$.

We denote by ω_{F} the twist angle formed by the planes defined by $\triangle A_{1} F A_{2}$ and $\triangle A_{3} F A_{4}$ and by ω_{S} the twist angle formed by the planes $\triangle A_{1} O_{12} A_{2}$ and $\triangle A_{3} O_{34} A_{4}$.

Theorem 9 (Generalized regularity of tetrahedra) If
$A_{1} A_{2} A_{3} A_{4}$ is a generalized regular quadrilateral, then generalized regular tetrahedra are derived by:
(i) rotating the twist angle ω_{F} w.r. to the line defined by $M_{12} M_{34}$
$\cos \omega_{F}=\frac{\cos \varphi-\cos ^{2} \angle A_{1} M_{12} F}{\sin ^{2} \angle A_{1} M_{12} F}$.
or (ii)rotating the twist angle ω_{F} w.r. to the Simpson line defined by $T_{12} T_{34}$
$\cos \omega_{S}=\frac{\cos \varphi-\cos ^{2} \angle A_{1} T_{12} O_{12}}{\sin ^{2} \angle A_{1} T_{12} O_{12}}$.
Proof. A generalized regular convex quadrilateral is a trapezoid having the property: $A_{1} A_{2} \| A_{3} A_{4}$. Thus, the Fermat-Torricelli point F is the intersection of diagonals $A_{1} A_{3}$ and $A_{2} A_{4}$ and lies on the line defined by $M_{12} M_{34}$, which yields $\angle A_{1} M_{12} F=\angle A_{3} M_{34} F$. By substituting $\angle A_{1} M_{12} F=\angle A_{3} M_{34} F$ in (49), we obtain (50). We recall that $A_{1} A_{2} A_{12}$ and $A_{3} A_{4} A_{34}$ are equilateral triangles outward from $A_{1} A_{2} A_{3} A_{4}$ and the Simpson line intersects $A_{1} A_{2}$ and $A_{3} A_{4}$ at T_{12} and T_{34}, respectively. By substituting $\angle A_{1} T_{12} O_{12}=\angle A_{3} T_{34} O_{34}$ in (49), we obtain (51).

Remark 4 The position of $A_{1}^{\prime \prime}$ and $A_{4}^{\prime \prime}$ may be calculated by Theorem 7

Definition 8 A weighted regular tetrahedron is a tetrahedron in \mathbb{R}^{3}, such that the weighted Simpson line L passes through the weighted Fermat-Torricelli point F.

We assume that $A_{1} A_{2} A_{3} A_{4}$ is a weighted regular tetrahedron $A_{1} A_{2} A_{3} A_{3}$, such that: $M_{12} M_{34} \gg \max A_{1} A_{2}, A_{3} A_{4}$.

Theorem 10 (Weighted regularity of tetrahedra) The common perpendicular line of $A_{1} A_{2}$ and $A_{3} A_{4}$ passes through the common midpoints M_{12} and M_{34}, respectively, if and only if $b_{1}=b_{2}$ and $b_{3}=b_{4}$.

Proof. The weighted Simpson line passes through A_{12}, A_{34}, the weighted Steiner nodes O_{12}, O_{34}, the weighted FermatTorricelli point F and M_{12}, M_{34}. Therefore, $\triangle A_{1} A_{2} A_{12}$ and $A_{3} A_{4} A_{34}$ are isosceles triangles $A_{1} A_{12}=A_{2} A_{12}$ and $A_{3} A_{34}=A_{4} A_{34}$, which yield $b_{1}=b_{2}$ and $b_{3}=b_{4}$. Hence, it is shown one direction.
We assume that the common perpendicular line of $A_{1} A_{2}$ and $A_{3} A_{4}$ does not pass through the common midpoints M_{12} and $M_{34}, b_{1}=b_{2}$ and $b_{3}=b_{4}$. By substituting $b_{1}=b_{2}$ and $b_{3}=b_{4}$ and given a subconscious weight B_{S} in (41), we derive that $\angle A_{1} O_{12} O_{34}=\angle A_{2} O_{12} O_{34}$ and $\angle A_{3} O_{34} O_{12}=$ $\angle A_{4} O_{34} O_{12}$. By substituting $b_{1}=b_{2}, b_{3}=b_{4}$ in (42) and (43) we obtain the values of t_{12} and t_{34}, in order to calculate the twist angle ω_{S}. By rotating $A_{1} A_{2}$ w.r. to $A_{12} A_{34}$ by ω_{S}, $A_{1} A_{2} \| A_{3} A_{4}$, and $A_{12} A_{34}$ passes through M_{12}, M_{34}, otherwise O_{12}, O_{34} and F are not collinear. It proves another direction and the theorem as well.

We may follow the same evolutionary scheme for a "botanological" thumb in \mathbb{R}^{3}. Taking into account that the point seed which has got a subconscious $B_{S T}$ is located underground, an evolutionary two way communication network will start to grow having two roots one main branch and two branches. By assuming a constant mass flow continuity that corresponds to the two roots $b_{1}=b_{2}$ (O_{12} is located underground) one main branch with remaining weight $B_{S T}$ and two branches with weights $b_{3}=b_{4}$ (O_{34} is located overground). Therefore, by applying Theorem 10 we obtain a boundary weighted regular tetrahedron formed by the endpoints of two symmetrical roots and two symmetrical branches, such that the main branch is perpendicular to the ground.

References

[1] H. S. M. Coxeter, Affinely regular polygons, Abh. Math. Semin. Univ. Hamb. 34 (1969), 38-58.
[2] H. S. M. Coxeter, Affine regularity, C. R. Math. Acad. Sci., Soc. R. Can. 13 (5) (1991), 181-186.
[3] H. S. M. Coxeter, Affine regularity, Abh. Math. Semin. Univ. Hamb. 62 (1992), 249-253.
[4] L. Gerber, Napoleon's theorem and the parallelogram inequality for affine regular polygons, Am. Math. Mon. 87 (1980), 644-648.
[5] E. N. Gilbert, H. O. Pollak, Steiner Minimal trees, SIAM J. Appl. Math. 16 (1968), 1-29.
[6] A. O. Ivanov, A. A. Tuzhilin, Weighted minimal binary trees, Russ. Math. Surv. 50(3) (1995), 623-624.
[7] Z. A. Melzak, On the Steiner problem, Canad. Math. Bull. 4 (1961), 143-148.
[8] J. H. Rubinstein, D. A. Thomas, J. Weng, Minimum networks for four Points in Space, Geom. Dedicata. 93 (2002), 57-70.
[9] A. N. Zachos, Exact location of the weighted Fermat-Torricelli point on flat surfaces of revolution, Result. Math. 65(1-2) (2014), 167-179.
[10] A. ZACHOS, The plasticity of some mass transportation networks in the three dimensional Euclidean space, J. Convex Anal. 27(3) (2020), 989-1002.
[11] A. N. Zachos, An evolutionary design of weighted minimum networks for four points in the threedimensional Euclidean space, Analysis (Munchen) 41(2) (2021), 79-112.
[12] A. Zachos, G. Zouzoulas, The weighted FermatTorricelli problem for tetrahedra and an "inverse" problem, J. Math. Anal. Appl. 353 (2009), 114-120.
[13] A. Zachos, G. Zouzoulas, An evolutionary structure of convex quadrilaterals. III., J. Convex Anal. 25(3) (2018), 759-765.

Anastasios N. Zachos

orcid.org/0000-0002-7137-3096
azachos@gmail.com
University of Patras, Department of Mathematics GR-26500 Rion, Greece

