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arhitektonskim prostorima pomoću geometrije i grafike . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



KoG•23–2019 In Memoriam

MARIJA ŠIMIĆ HORVATH

Ksenija Horvatić-Baldasar

(1929. - 2019.)

7. svibnja 2019., u devedesetoj godini života, napustila nas
je naša draga profesorica i kolegica prof. dr. sc. Ksenija Hor-
vatić-Baldasar. Bila je dugogodišnja nastavnica na Fakultetu
strojarstva i brodogradnje Sveučilišta u Zagrebu, studentska
majka kako su je mnogi zvali.
Ro�ena je 29. rujna 1929. u Sarajevu, gdje je poha�ala i
završila osnovnu školu. U Splitu je upisala realnu gimna-
ziju, poznatu “Realku”, i maturirala 1949. godine. Maturi-
rala je s vremenskim odmakom jer je, kao brojne izbjeglice
iz Dalmacije u vremenu Drugog svjetskog rata, boravila u
El Shattu u Egiptu. Sklonost matematici, posebno geome-
triji, razvijala je od djetinjstva odrastajući uz oca profesora
statike i nacrtne geometrije u Tehničkoj školi. Time je za
Kseniju prirodni put bio upis studija matematike 1949. go-
dine na Prirodoslovno-matematičkom fakultetu u Zagrebu.
Diplomirala je 1954. godine s temom “Izoperimetrijski pro-
blem u prostoru” pod mentorstvom prof. dr. sc. Stanka Bi-
linskog.
Nakon diplome odmah se zapošljava u II. gimnaziji u Za-
grebu, da bi 1955. godine bila izabrana za asistenticu iz
kolegija Nacrtna geometrija na Tehničkom fakultetu, kas-
nije Strojarsko-brodogra�evnom fakultetu Sveučilišta u Za-
grebu (danas FSB-u) kod prof. dr. sc. Juraja Justinijanovića
gdje je i provela cijeli svoj radni vijek. Rado se sjećala
rada s prof. Justinijanovićem, često spominjući njegovu te-
meljitost u radu i način kako ih je uvodio i pripremao za

zahtjevnu nastavu iz nacrtne geometrije. Paralelno s obve-
zama u nastavi akademske godine 1962./1963. upisala je
studij trećeg stupnja na PMF-u Sveučilišta u Zagrebu iz po-
dručja geometrije. Magistarsku radnju radila je s velikim
geometričarem tog i današnjeg vremena, akademikom Vil-
kom Ničeom (1902. - 1987.). Radnju pod nazivom “Polarni
prostori s naročitim obzirom na kuglu” obranila je 1966. go-
dine.
Mi danas živimo u vremenu velike mobilnosti u znanstvenim
krugovima izloženi brojnim mogućnostima. Nekad nije bilo
tako, no Ksenija je već u ono vrijeme provela jednu akadem-
sku godinu, 1967./1968., na Sveučilištu u Georgiji (Athens,
SAD) gdje se usavršavala u području algebarskih struktura i
njihovoj primjeni na geometriju.
Habilitacijski postupak završila je 1971. godine na Arhitek-
tonskom fakultetu u Zagrebu i time je izabrana za predavača
iz Nacrtne geometrije na Fakultetu strojarstva i brodograd-
nje Sveučilišta u Zagrebu (FSB). Izuzetno je voljela svoj po-
ziv nastavnika, i uvijek se u potpunosti predavala u svom
poslu. Tome svjedoče i njezini brojni angažmani u nastavi
po Hrvatskoj, ali i šire, po tadašnjoj Jugoslaviji. Sudjelo-
vala je u nastavi na sljedećim fakultetima: Elektrotehnički
fakultet Sveučilišta u Zagrebu (kolegij Nacrtna geometrija),
Gra�evinski fakultet Sveučilišta u Zagrebu (kolegiji Nacrtna
geometrija i Primijenjena geometrija), Strojarski fakultet u
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Slavonskom Brodu i Strojarski fakultet u Banja Luci. Uvi-
jek je održavala svoju posebnu vezu sa Splitom pa je od ak.
god. 1971./1972. Deset godina izvodila nastavu na Odjelu u
Splitu (kasnije Fakultetu gra�evinskih znanosti) te na FESB-
u Sveučilišta u Splitu.
Bila je vrlo aktivna u geometrijskim krugovima, pogo-
tovo kao članica Hrvatskog društva za geometriju i grafiku
(HDGG). Ksenija je bila dio geometrijskog tima koji je os-
novao našu strukovnu udrugu 1994. godine tada pod nazi-
vom Hrvatsko društvo za konstruktivnu geometriju i kom-
pjutorsku grafiku. Djelovala je kao članica prvog uprav-
nog odbora Društva i u njemu se zadržala dugi niz godina.
HDGG je danas bitni dio me�unarodne udruge International
Society for Geometry and Graphics čiji su članovi česti su-
dionici poznate me�unarodne konferencije za geometriju i
grafiku koja se održava svake četiri godine u nekom dru-
gom dijelu svijeta. Mora se spomenuti da je Ksenija sudje-
lovala na prvoj takvoj konferenciji International Conference
of Descriptive Geometry and Computer Graphics održanoj
u Vancouveru, u Kanadi, 1978. godine. Tamo je poha�ala
tečaj s praktičnim radom u primjeni računala na zadaće u
Nacrtnoj geometriji. Odmah po povratku u Zagreb sa svojim
suradnicima nastojala je to implementirati u nastavni proces
s ciljem unapre�enja i modernizacije nastave Nacrtne ge-
ometrije.
Njezin trud i rad su rezultirali i napredovanjem u zvanjima
pa je 1985. godine izabrana za docenticu, a 1991. za izvan-
rednu profesoricu na Katedri za matematiku i nacrtnu ge-
ometriju na FSB-u Sveučilišta u Zagrebu.
1997. godine je u koautorstvu sa svojom dragom kolegicom
dr. sc. Ivankom Babić objavila sveučilišni udžbenik “Na-
crtna geometrija”. U naslje�e su nam autorice ostavile jedan
lijep udžbenik, pisan jednostavnim matematičkim jezikom i
prilago�en studentima tehničkih fakulteta i njihovim potre-
bama. U deset godina taj je udžbenik imao četiri izdanja, a i
danas se rado koristi u nastavi.
Znanstveni rad paralelno je razvijala uz svoje nastavno dje-
lovanje. U tom dijelu svog profesionalnog života sura�ivala
je s vrlo značajnim hrvatskim matematičarem svjetskih raz-
mjera prof. dr. sc. Zvonimirom Jankom pod čijim men-
torstvom je izradila i obranila doktorsku disertaciju iz po-
dručja konačne geometrije 1983. godine. U tom području
se i zadržala cijeli svoj radni vijek tijekom kojeg je objavila
13 znanstvenih radova, od čega ih je većinom publicirala u
koautorstvu sa svojim suradnicama prof. dr. sc. Idom Ma-
tulić Bedenić i prof. dr. sc. Erikom Kramer. S tim radovima
aktivno je sudjelovala na više znanstvenih skupova na po-
dručju bivše Jugoslavije i u inozemstvu.
Bila je članica Seminara za geometriju na Prirodoslovno-
matematičkom fakultetu te Seminara za konačne geometrije

na Elektrotehničkom fakultetu u Zagrebu.
1994. godine odlazi u mirovinu, ali njezin rad u nastavi ne
prestaje. I dalje je honorarno sudjelovala u nastavi nacrtne
geometrije izvodeći vježbe studentima FSB-a. 2003. go-
dine ukida se kolegij Nacrtna geometrija na FSB-u, za čiji
ostanak se Ksenija snažno borila, i time zauvijek odlazi iz
nastave.
Rado je posjećivala tematske sastanke HDGG-a i u ugod-
nom društvu svojih kolegica pričala o geometriji. Njezin rad,
kako nastavni, tako i znanstveni, pridonio je razvoju geome-
trije na tehničkim fakultetima u drugoj polovici dvadesetog
stoljeća, vrlo bitnom periodu za razvoj geometrije u Hrvat-
skoj.
Ostvarila se i kao majka dvoje djece, sina Davora i kćeri
Gordane, te je imala četvero unučadi.
Profesorica Ksenija, profesionalno angažirana, komunika-
tivna i neposredna ostaje nam u dragom sjećanju i spominje
se u našim razgovorima.
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TULIĆ-BEDENIĆ, Biplanes with k = 16 points on a
line, Rad JAZU 4 (1985), 125–127.
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TULIĆ-BEDENIĆ, On 2− (85,28,9) designs, Punime
matematike 4 (1991), 56–60.
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Balls Using Translation-like Bisector
Surfaces in Nil Geometry

Lattice Coverings by Congruent Translation Balls
Using Translation-like Bisector Surfaces in Nil
Geometry

ABSTRACT

In this paper we study the Nil geometry that is one of the
eight homogeneous Thurston 3-geometries.

We determine the equation of the translation-like bisector
surface of any two points. We prove, that the isosceles
property of a translation triangle is not equivalent to two
angles of the triangle being equal and that the triangle
inequalities do not remain valid for translation triangles in
general. We develop a method to determine the centre
and the radius of the circumscribed translation sphere of
a given translation tetrahedron.

A further aim of this paper is to study lattice-like coverings
with congruent translation balls in Nil space. We intro-
duce the notion of the density of the considered coverings
and give upper estimate to it using the radius and the
volume of the circumscribed translation sphere of a given
translation tetrahedron. The found minimal upper bound
density of the translation ball coverings ∆ ≈ 1.42783. In
our work we will use for computations and visualizations
the projective model of Nil described by E. Molnár in [6].

Key words: Thurston geometries, Nil geometry,
translation-like bisector surface of two points, circum-
scribed sphere of Nil tetrahedron, Dirichlet-Voronoi cell

MSC2010: 53A20, 52C17, 53A35, 52C35, 53B20

Rešetkasto pokrivanje kongruentnim transla-
cijskim kuglama pomoću simetralnih ploha u Nil
geometriji

SAŽETAK

U radu proučavamo jednu od osam homogenih Thurstono-

vih 3-geometrija, Nil geometriju.

Odred-ujemo jednadžbu translacijske simetralne plohe za

bilo koje dvije točke. Dokazujemo da činjenica da je tro-

kut jednakokračan nije ekvivalentna činjenici da trokut

ima dva jednaka kuta, te da općenito nejednakosti trokuta

ne vrijede za translacijske trokute. Razvijamo metodu za

odred-ivanje sredǐsta i polumjera opisane translacijske sfere

danog translacijskog tetraedra.

Daljnji je cilj ovog rada proučavanje rešetkastih pokri-

vanja kongruentnim translacijskim kuglama u Nil prostoru.

Uvodimo pojam gustoće promatranog pokrivanja i da-

jemo njezinu gornju procjenu pomoću polumjera i obujma

opisane translacijske sfere danog translacijskog tetraedra.

Pokazujemo da je gornja granica pokrivanja translacijskim

kuglama ∆≈ 1.42783. U radu koristimo izračune i vizuali-

zaciju projektivnog modela Nil prostora opisane u radu [6]

E. Molnára.

Ključne riječi: Thurstonove geometrije, Nil geometrija,

translacijska simetralna ploha dviju točaka, opisana sfera

Nil tetraedra, Dirichlet-Voronoijeve ćelije

1 Introduction

The basic problems in the classical theory of packings and
coverings, the development of which was strongly influ-
enced by the geometry of numbers and by crystallogra-
phy, are the determination of the densest packing and the

thinnest covering with congruent copies of a given body.
At present the body is a ball and now we consider the
lattice-like covering problem with congruent translation
balls in Nil space.

These questions related to the theory of the Dirichlet-
Voronoi cells (brifly D−V cells). In 3-dimensional spaces
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of constant curvature the D−V cells are widely inves-
tigated, but in the further Thurston geometries S2×R,
H2×R, Nil, Sol, S̃L2R there are few results in this topic.
Let X be one of the above five geometries and Γ is one
of its discrete isometry groups. Moreover, we distinguish
two distance function types: dg is the usual geodesic dis-
tance function and dt is the translation distance function
(see Section 3). Therefore, we obtain two types of the
D−V cells regarding the two distance functions.

The firs step to get the D−V cell of a given point set of
X is the determination of the translation or geodesic-like
bisector (or equidistant) surface of two arbitrary points of
X because these surface types contain the faces of D−V
cells.

In [12], [13], [14] we studied the geodesic-like equidis-
tant surfaces in S2×R, H2×R and Nil geometries, and
in [25] we discussed the translation-like bisector surfaces
in Sol geometry, but there are no results concerning the
translation-like equidistant surfaces in Nil and S̃L2R ge-
ometries.

In the Thurston spaces can be introduced in a natural way
(see [6]) translations mapping each point to any point.
Consider a unit vector at the origin. Translations, pos-
tulated at the beginning carry this vector to any point by
its tangent mapping. If a curve t → (x(t),y(t),z(t)) has
just the translated vector as tangent vector in each point,
then the curve is called a translation curve. This assump-
tion leads to a system of first order differential equations,
thus translation curves are simpler than geodesics and dif-
fer from them in Nil, S̃L2R and Sol geometries. In E3,
S3, H3, S2×R and H2×R geometries the translation and
geodesic curves coincide with each other.

Therefore, the translation curves also play an important
role in Nil, S̃L2R and Sol geometries and often seem to
be more natural in these geometries, than their geodesic
lines.

In this paper we study the translation-like bisector surface
of any two points in Nil geometry, determine its equation
and visualize them. The translation-like bisector surfaces
play an important role in the construction of the D−V cells
because their faces lie on bisector surfaces. The D−V -
cells are relevant in the study of tilings, ball packing and
ball covering. E.g. if the point set is the orbit of a point
- generated by a discrete isometry group of Nil - then we
obtain a monohedral D−V cell decomposition (tiling) of
the considered space and it is interesting to examine its op-
timal ball packing and covering (see [21], [22]).

Moreover, we prove, that the isosceles property of a trans-
lation triangle is not equivalent to two angles of the triangle
being equal and that the triangle inequalities do not remain
valid for translation triangles in general.

Using the above bisector surfaces we develop a procedure
to determine the centre and the radius of the circumscribed
translation sphere of an arbitrary Nil tetrahedron. This is
useful to determine the least dense ball covering radius of a
given periodic polyhedral Nil tiling because the tiling can
be decomposed into tetrahedra. Applying the above proce-
dure we determine the minimal covering density of some
lattice types and thus we give an upper bound of the lattice-
like covering density related to the most important lattice
parameter k = 1.

2 On Nil geometry
Nil geometry can be derived from the famous real matrix
group L(R) discovered by Werner Heisenberg. The left
(row-column) multiplication of Heisenberg matrices1 x z

0 1 y
0 0 1

1 a c
0 1 b
0 0 1

=

1 a+ x c+ xb+ z
0 1 b+ y
0 0 1

 (1)

defines “translations” L(R)= {(x,y,z) : x, y, z∈R} on the
points of Nil = {(a,b,c) : a, b, c ∈ R}. These translations
are not commutative in general. The matrices K(z)C L of
the form

K(z) 3

1 0 z
0 1 0
0 0 1

 7→ (0,0,z) (2)

constitute the one parametric centre, i.e. each of its el-
ements commutes with all elements of L. The elements
of K are called fibre translations. Nil geometry of the
Heisenberg group can be projectively (affinely) interpreted
by “right translations” on points as the matrix formula

(1;a,b,c)→ (1;a,b,c)


1 x y z
0 1 0 0
0 0 1 x
0 0 0 1

=

= (1;x+a,y+b,z+bx+ c)

(3)

shows, according to (1). Here we consider L as projec-
tive collineation group with right actions in homogeneous
coordinates. We will use the Cartesian homogeneous coor-
dinate simplex E0(e0),E∞

1 (e1),E∞
2 (e2), E∞

3 (e3), ({ei}⊂V4

with the unit point E(e = e0 + e1 + e2 + e3)) which is dis-
tinguished by an origin E0 and by the ideal points of coor-
dinate axes, respectively. Moreover, y = cx with 0 < c ∈R
(or c ∈ R \ {0}) defines a point (x) = (y) of the pro-
jective 3-sphere P S 3 (or that of the projective space P 3

where opposite rays (x) and (−x) are identified). The
dual system {(ei)}, ({ei} ⊂ V 4), with eie j = δ

j
i (the Kro-

necker symbol), describes the simplex planes, especially
the plane at infinity (e0) =E∞

1 E∞
2 E∞

3 , and generally, v= u 1
c
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defines a plane (u) = (v) of P S 3 (or that of P 3). Thus
0 = xu = yv defines the incidence of point (x) = (y) and
plane (u) = (v), as (x)I(u) also denotes it. Thus Nil can be
visualized in the affine 3-space A3 (so in E3) as well [11].
In this context E. Molnár [6] has derived the well-known
infinitesimal arc-length square invariant under translations
L at any point of Nil as follows

(dx)2 +(dy)2 +(−xdy+dz)2 =

= (dx)2 +(1+ x2)(dy)2−2x(dy)(dz)+(dz)2 =: (ds)2
(4)

The translation group L defined by formula (3) can be ex-
tended to a larger group G of collineations, preserving the
fibres, that will be equivalent to the (orientation preserv-
ing) isometry group of Nil.
In [7] E. Molnár has shown that a rotation through angle
ω about the z-axis at the origin, as isometry of Nil, keep-
ing invariant the Riemann metric everywhere, will be a
quadratic mapping in x,y to z-image z as follows:

M = r(O,ω) : (1;x,y,z)→ (1;x,y,z);
x = xcosω− ysinω, y = xsinω+ ycosω,

z = z− 1
2

xy+
1
4
(x2− y2)sin2ω+

1
2

xycos2ω.

(5)

This rotation formula M , however, is conjugate by the
quadratic mapping α to the linear rotation Ω in (7) as fol-
lows

α
−1 : (1;x,y,z) α−1

−→ (1;x′,y′,z′) = (1;x,y,z− 1
2

xy) to

Ω : (1;x′,y′,z′) Ω−→ (1;x”,y”,z”) =

(1;x′,y′,z′)


1 0 0 0
0 cosω sinω 0
0 −sinω cosω 0
0 0 0 1

 ,

with α : (1;x”,y”,z”) α−→ (1;x,y,z) =

= (1;x”,y”,z”+
1
2

x”y”).

(6)

This quadratic conjugacy modifies the Nil translations in
(3), as well. Now a translation with (X ,Y,Z) in (3) instead
of (x,y,z) will be changed by the above conjugacy to the
translation

(1;x,y,z)−→ (1;x,y,z) =

= (1;x,y,z)


1 X Y Z− 1

2 XY
0 1 0 − 1

2Y
0 0 1 1

2 X
0 0 0 1

 ,
(7)

that is again an affine collineation.

2.1 Translation curves and balls

We consider a Nil curve (1,x(t),y(t),z(t)) with a given
starting tangent vector at the origin O = E0 = (1,0,0,0)

u = ẋ(0), v = ẏ(0), w = ż(0). (8)

For a translation curve let its tangent vector at the point
(1,x(t),y(t),z(t)) be defined by the matrix (3) with the fol-
lowing equation:

(0,u,v,w)


1 x(t) y(t) z(t)
0 1 0 0
0 0 1 x(t)
0 0 0 1

= (0, ẋ(t), ẏ(t), ż(t)).

(9)

Thus, the translation curves in Nil geometry (see [8], [10],
[11]) are defined by the above first order differential equa-
tion system ẋ(t) = u, ẏ(t) = v, ż(t) = v · x(t)+w, whose
solution is the following:

x(t) = ut, y(t) = vt, z(t) =
1
2

uvt2 +wt. (10)

We assume that the starting point of a translation curve is
the origin, because we can transform a curve into an arbi-
trary starting point by translation (3), moreover, unit initial
velocity translation can be assumed by “geographic” pa-
rameters φ and θ:

x(0) = y(0) = z(0) = 0;
u = ẋ(0) = cosθcosφ,

v = ẏ(0) = cosθsinφ,

w = ż(0) = sinθ;

−π≤ φ≤ π, −π

2
≤ θ≤ π

2
.

(11)

Definition 1 The translation distance dt(P1,P2) between
the points P1 and P2 is defined by the arc length of the
above translation curve from P1 to P2.

Definition 2 The sphere of radius r > 0 with centre at the
origin, (denoted by St

O(r)), with the usual longitude and al-
titude parameters φ and θ, respectively by (11), is specified
by the following equations:

St
O(r) :


x(φ,θ) = r cosθcosφ,
y(φ,θ) = r cosθsinφ,

z(φ,θ) = r2

2 cos2 θcosφsinφ+ r sinθ.

(12)

Definition 3 The body of the translation sphere of centre
O and of radius r in the Nil space is called translation ball,
denoted by Bt

O(r), i.e. Q ∈ Bt
O(r) iff 0≤ dt(O,Q)≤ r.

Remark 1 The translation sphere is a simply connected
surface without selfintersection in Nil space for any radius
0 < r ∈ R.

8
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We obtained in [20] the volume formula of the translation
ball Bt

O(r) of radius r by (4), (5) and (12):

Theorem 1 The volume of a translation ball of radius r is
the same as that of an Euclidean one:

Vol(Bt
O(r)) =

4
3

r3
π. (13)

The convexity of the translation ball play an important role
in the discussion of the ball covering therefore we recall
the following Theorem from the paper [20].

Theorem 2 A translation Nil ball Bt(St(r)) is convex in
the affine-Euclidean sense in our model if and only if
r ∈ [0,2].

2.2 The discrete translation group L(Z, k)

We consider the Nil translations defined in (1) and (3) and
choose first two non-commuting translations

τ1 =


1 t1

1 t2
1 t3

1
0 1 0 0
0 0 1 t1

1
0 0 0 1

 and τ2 =


1 t1

2 t2
2 t3

2
0 1 0 0
0 0 1 t1

2
0 0 0 1

 ,

(14)

now with upper indices for the coordinate variables.
Second, we define the translation (τ3)

k, (k ∈ N \
{0} k is fixed natural exponent), by the following commu-
tator:

(τ3)
k = (τ−1

2 τ
−1
1 τ2τ1)

k =


1 0 0 −t1

2 t2
1 + t1

1 t2
2

0 1 0 0
0 0 1 0
0 0 0 1


k

,

and so τ3 (k = 1)
(15)

is also defined. If we take integers as coefficients for
τ1,τ2,τ3, then we generate the discrete group 〈τ1,τ2,τ3〉,
denoted by L(τ1,τ2,k) or by L(Z,k). Here Z refers to the
integers.
We know (see e.g. [18] and [19]) that the orbit space
Nil/L(Z,k) is a compact manifold, i.e. a Nil space form.

Definition 4 The Nil point lattice ΓP(τ1,τ2,k) is a discrete
orbit of point P in the Nil space under group L(τ1,τ2,k)=
L(Z,k) with an arbitrary starting point P for every fixed
k ∈ N\{0}.

Remark 2 For simplicity we have chosen the origin as
starting point, by the homogeneity of Nil.

Remark 3 We may assume in the following that t2
1 = 0,

i.e. the image of the origin by the translation τ1 lies on the
plane [x,z].

We consider by (14-15) a fundamental “parallelepiped
complex” (see [20])

F̃ (k)=OT1T2T3T12T21T23T213T13, (see Fig. 1 for k = 1,2)

in the Euclidean sense, which is determined by translations
τ1,τ2,τ3. The images of F̃ (k) under L(Z,k) fill Nil with-
out gap. Overlaps occur only on the boundary.

Figure 1: The Nil parallelepipeds F̃ (1) (left) and F̃ (2)
(right).

Analogously to the Euclidean integer lattice and paral-
lelepiped, F̃ (k) (k ∈ N \ {0}) can be called a Nil par-
allelepiped, endowed by face pairing, as the upper ∼ hints
to it.
F̃ (k) is a fundamental domain of L(Z,k). We need only
its interior for its volume. The homogeneous coordi-
nates of the vertices of F̃ (k) can be determined in our
affine model by the translations (14-15) with the param-
eters t j

i , i ∈ {1,2}, j ∈ {1,2,3} (see (16) and Fig. 1).

T1(1, t1
1 ,0, t

3
1 ), T2(1, t1

2 , t
2
2 , t

3
2 ), T3(1,0,0,

t1
1 t2

2
k

),

T13(1, t1
1 ,0,

t1
1 t2

2
k

+ t3
1 ), T12(1, t1

1 + t1
2 , t

2
2 , t

3
2 + t3

1 ),

T21(1, t1
1 + t1

2 , t
2
2 , t

1
1 t2

2 + t3
1 + t3

2 ), T23(1, t1
2 , t

2
2 , t

3
2 +

t1
1 t2

2
k

),

T213 = T231(1, t1
1 + t1

2 , t
2
2 ,(k+1)

t1
1 t2

2
k

+ t3
1 + t3

2 ).

(16)

In [19] we have determined the volume of the Nil paral-
lelepiped F̃ (1). Analogously to that we get the volume
formula of F̃ (k) (k ∈ N) by the usual method:∫ ∫ ∫

F̃ (k)

√
det(gi j) dxdydz =Vol(F̃ (k)) =

=
1
k

∫ t2
2

0

∫ t1
1

0
|t1

1 · t2
2 | dxdy =

(t1
1 · t2

2 )
2

k
.

(17)

9
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If the parameter k is given, from this formula it can be seen
that the volume of a Nil parallelepiped depends on two pa-
rameters, i.e. on its projection into the [x,y] plane.

3 Translation-like bisector surfaces

Our further goals are to examine and visualize the
Dirichlet-Voronoi cells and the packing and covering prob-
lems of Nil geometry. In order to study the above questions
have to determine the “faces” of the D−V cells that are
parts of bisector (or equidistant) surfaces of given point
pairs. The definition below comes naturally:

Definition 5 The equidistant surface SP1P2 of two arbi-
trary points P1,P2 ∈ Nil consists of all points P′ ∈ Nil, for
which dt(P1,P′) = dt(P′,P2).

It can be assumed by the homogeneity of Nil that the start-
ing point of a given translation curve segment is E0 = P1 =
(1,0,0,0) and the other endpoint will be given by its ho-
mogeneous coordinates P2 = (1,a,b,c). We consider the
translation curve segment tP1P2 and determine its parame-
ters (φ,θ,r) expressed by the real coordinates a, b, c of P2.
We obtain directly by equation system (12) the following:

Lemma 1 1. Let (1,a,b,c) (a,b ∈ R \ {0}, c ∈ R) be
the homogeneous coordinates of the point P ∈ Nil.
The parameters of the corresponding translation
curve tE0P are the following

φ = arccot
(a

b

)
, θ = arccot

(√a2 +b2

c− ab
2

)
, r =

∣∣∣c− ab
2

sinθ

∣∣∣.
(18)

2. Let (1,a,0,c) (a,c ∈ R \ {0}) be the homogeneous
coordinates of the point P ∈ Nil. The parameters of
the corresponding translation curve tE0P are the fol-
lowing

φ = π ·n, (n ∈ {0,1}), θ = arccot
(a

c

)
, r =

∣∣∣ a
cosθ

∣∣∣.
(19)

3. Let (1,a,0,0) (a ∈R\{0}) be the homogeneous co-
ordinates of the point P∈Nil. The parameters of the
corresponding translation curve tE0P are the follow-
ing

φ = π ·n, (n ∈ {0,1}), θ = π ·n, (n ∈ {0,1}), r = |a|.
(20)

4. Let (1,0,b,0) (b ∈R\{0}) be the homogeneous co-
ordinates of the point P∈Nil. The parameters of the

corresponding translation curve tE0P are the follow-
ing

φ =±π

2
, θ = π ·n, (n ∈ {0,1}), r = |b|. (21)

5. Let (1,0,0,c) (c ∈R\{0}) be the homogeneous co-
ordinates of the point P∈Nil. The parameters of the
corresponding translation curve tE0P are the follow-
ing

θ =±π

2
, r = |c|. (22)

�

In order to determine the translation-like bisector surface
SP1P2(x,y,z) of two given point E0 = P1 = (1,0,0,0) and
P2 = (1,a,b,c) we define the translation TP2 as elements
of the isometry group of Nil, that maps the origin E0 onto
P2 (see Fig. 2).
This isometrie TP2 and its inverse (up to a positive deter-
minant factor) can be given by:

TP2 =


1 a b c
0 1 0 0
0 0 1 a
0 0 0 1

, T−1
P2

=


1 −a −b ab− c
0 1 0 0
0 0 1 −a
0 0 0 1

,

(23)

and the images T−1
P2
(Pi) of points Pi (i ∈ {1,2,3}) are the

following (see also Fig. 2):

T−1
P2
(P1 = E0) = P2

1 = (1,−a,−b,ab− c),

T−1
P2
(P2) = E0 = (1,0,0,0),

T−1
P2
(P3) = P2

3 = (1,(x−a),(y−b),a(b− y)− c).

(24)

It is clear that P3 = (1,x,y,z) ∈ SP1P2 iff dt(P1,P3) =

dt(P3,P2)⇒ dt(P1,P3) = dt(E0,P2
3 ) where P2

3 = T−1
P2
(P3)

(see (23), (24)).
This method leads to

Lemma 2 The equation of the equidistant surface
SP1P2(x,y,z) of two points P1 = (1,0,0,0) and P2 =
(1,a,b,c) in Nil space (see Fig. 2, 3):

1. a,b,c 6= 0,

z =
1
4

(8x
(
a2 +b2

)
−4
(
a3−ab+4bc

)
a(b(a+ x)−ay−2c)

−b(a(a+ x)+8)
a

+ y(a+2x)+2c
)
,

(25)

2. a,b 6= 0, c = 0

z =−
a2
(
b2−2by+ y2 +4

)
+2ax

(
b2−2by+ y2−4

)
4(a(b− y)+bx)

−
b
(
x2 +4

)
(b−2y)

4(a(b− y)+bx)
,

(26)

10
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3. a,c 6= 0, b = 0

z =
a2
(
y2 +4

)
+2a

(
2cy+ x

(
y2−4

))
+4c(c+ xy)

4ay+8c
,

(27)

4. b,c 6= 0, a = 0

z =
b2
(
x2 +4

)
−2b

(
2cx+

(
x2 +4

)
y
)
+4c(c+ xy)

8c−4bx
,

(28)

5. b,c = 0, a 6= 0

z =
a
(
y2 +4

)
+2x

(
y2−4

)
4y

. (29)

6. a,c = 0, b 6= 0

z =−
(
x2 +4

)
(b−2y)

4x
. (30)

7. a,b = 0, c 6= 0

z =
1
2
(c+ xy). (31)

�

P
1

P
1

P
2

P
2

Figure 2: Translation-like bisectors (equidistant sur-
faces) of point pairs (P1,P2) with coordinates
((1,0,0,0),(1,1/2,1/2,3/2)) (left) and
((1,0,0,0),(1,0,0,2)) (right).

3.1 On isosceles and equilateral translation triangles

We consider 3 points A1, A2, A3 in the projective model
of Nil space. The translation segments connecting the
points Ai and A j (i< j, i, j,k∈ {1,2,3}) are called sides of
the translation triangle A1A2A3. The length of its side ak
(k∈ {1,2,3}) is the translation distance dt(Ai,A j) between
the vertices Ai and A j (i < j, i, j,k ∈ {1,2,3},k 6= i, j).
Similarly to the Euclidean geometry we can define the no-
tions of isosceles and equilateral translation triangles.

A
1

A
3

A
2

A
3

A
2

A
1

Figure 3: Equidistant surfaces of the “edges”
of the equilateral triangle A1A2A3
where the coordinates of the vertices
A1(1,0,0,0), A2(1,0.8,0.5,−0.131662),
A3(1,0.2,−0.058102,−0.983882).

An isosceles translation triangle is a triangle with (at least)
two equal sides and a triangle with all sides equal is called
an equilateral translation triangle (see Fig. 3) in the Nil
space.
We note here, that if in a translation triangle A1A2A3 e.g.
a1 = a2 then the bisector surface SA1A2 contains the vertex
A3 (see Fig. 3).
In the Euclidean space the isosceles property of a trian-
gle is equivalent to two angles of the triangle being equal
therefore has both two equal sides and two equal angles.
An equilateral triangle is a special case of an isosceles tri-
angle having not just two, but all three sides and angles
equal.

Proposition 1 The isosceles property of a translation tri-
angle is not equivalent to two angles of the triangle being
equal in the Nil space.

Proof. The missing coordinates y3 and z3 of the ver-
tices A1 = E0 = (1,0,0,0), A2 = (1,x2 = 1,y2 = 1/2,z2 =
−3/4) and A3 = (1,x3 = 0,y3,z3) can be determined by
the equation system dt(A1,A2) = dt(A1,A3) = dt(A2,A3).
We get the following coordinates: y3 ≈−0.6164636, z3 ≈
−1.367469 where (a3 = dt(A1,A2) = a2 = dt(A1,A3) =
a1 = dt(A2,A3) = 1.5).
The interior angles of translation triangles are denoted at
the vertex Ai by ωi (i ∈ {1,2,3}). We note here that the
angle of two intersecting translation curves depends on the
orientation of their tangent vectors.
In order to determine the interior angles of a translation
triangle A1A2A3 and its interior angle sum ∑

3
i=1(ωi), we

apply the method (we do not discuss here) developed in
[24] using the infinitesimal arc-lenght square of Nil geom-
etry (see (4)).
Our method (see [24]) provide the following results:

ω1 ≈ 1.08063, ω2 ≈ 0.84167, ω3 ≈ 1.22186,
3

∑
i=1

(ωi)≈

≈ 3.14416 > π≈ 3.14159.

11
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From the above results follows the statement. We note
here, that if the vertices of the translation triangle lie in
the [x,y] plane than the Euclidean isosceles property true
in the Nil geometry, as well. �

Using the above methods we obtain the following

Lemma 3 The triangle inequalities do not remain valid
for translation triangles in general.

Proof. We consider the translation triangle A1A2A3 where
A1 = (1,0,0,0), A2 = (1,−1,3,1), A3 = (1,1/4,1/2,1/2).
We obtain directly by equation systems (18-22) (see
Lemma 1 and [24]) the lengths of the translation segments
AiA j (i, j ∈ {1,2,3}, i < j):

dt(A1,A2)≈ 4.03113,
dt(A1,A3)≈ 0.70986,
dt(A2,A3)≈ 3.14307,

therefore dt(A2,A3)+dt(A1,A3)< dt(A1,A2). �

3.2 The locus of all points equidistant from three
given points

A point is said to be equidistant from a set of objects if
the distances between that point and each object in the set
are equal. Here we study that case where the objects are
vertices of a Nil translation triangle A1A2A3 and determine
the locus of all points that are equidistant from A1, A2 and
A3.
We consider 3 points A1, A2, A3 that do not all lie in the
same translation curve in the projective model of Nil space.
The translation segments connecting the points Ai and A j
(i < j, i, j,k ∈ {1,2,3},k 6= i, j) are called sides of the
translation triangle A1A2A3. The locus of all points that
are equidistant from the vertices A1, A2 and A3 is denoted
by C .
In the previous section we determined the equation of
translation-like bisector (equidistant) surface to any two
points in the Nil space. It is clear, that all points on
the locus C must lie on the equidistant surfaces SAiA j ,
(i < j, i, j ∈ {1,2,3}) therefore C = SA1A2 ∩SA1A3 and the
coordinates of each of the points of that locus and only
those points must satisfy the corresponding equations of
Lemma 2. Thus, the non-empty point set C can be de-
termined and can be visualized for any given translation
triangle (see Fig. 4 and 5). In the Fig. 4 we describe the
translation triangle A1A2A3 with vertices A1 = (1,0,0,0),
A2 = (1,0,0,1), A3 = (1,1,0,0) with the equidistant sur-
faces

SA1A2 : z=
1
8
(4xy+4), SA2A3 : z=

2xy2−8x+ y2 +4y+4
4y

of edges A1A2 and A2A3 and their intersection C = SA1A2 ∩
SA2A3 .

A
1

A
2

A
3

Figure 4: Translation triangle with vertices A1 =
(1,0,0,0), A2 = (1,0,0,1), A3 = (1,1,0,0)
with translation-like bisector surfaces SA1A2 and
SA2A3 and a part of the locus C = SA1A2 ∩SA1A3

of all points equidistant from three given points
A1, A2, A3.

If the vertices of the translation triangle A1A2A3 lie in e.g.
coordinate plane [y,z] or [x,z] we obtain the following lem-
mas:

Lemma 4 If the vertices of a translation triangle A1A2A3
lie on the [y,z] plane A1 = (1,0,0,0), A2 = (1,0,b2,b3),
A3 = (1,0,c2,c3) (b2 6= 0, b3 6= 0, c2 6= 0, c3 6= 0) then
the parametric equation (x ∈ R) of C is the following (see
Lemma 2 and Fig. 5):

C (x) :
{

x,
f

16(b2c3−b3c2)
,

g
32(b3c2−b2c3)

}
where

f =−2b3

(
−2c2x(b2x+2c3)+4c3(b2x+ c3)+ c2

2

(
x2 +4

))
+b2

(
b2

(
x2 +4

)
(2c3− c2x)+ x

(
c2

2

(
x2 +4

)
−4c2c3x+4c2

3

))
+b2

3(8c3−4c2x),

and

g = b2
2(x

2 +4)(c2(x2 +4)−2c3x)

−b2(4c2x(x2+4)(b3−c3)+4c3(c3(x2+4)−2b3x2)+c2
2(x

2+4)2)

+2b3(2b3(c2(x2 +4)−2c3x)+ x(c2
2(x

2 +4)−4c2c3x+4c2
3)).

Lemma 5 If the vertices of a translation triangle A1A2A3
lie on the [x,z] plane A1 = (1,0,0,0), A2 = (1,b1,0,b3),
A3 = (1,c1,0,c3) (b1 6= 0, b3 6= 0, c1 6= 0, c3 6= 0) then
the parametric equation (y ∈ R) of C is the following (see
Lemma 2 and Fig. 5):

C (y) :
{

f
16(b1c3−b3c1)

,y,
g

16(b3c1−b1c3)

}
where

f =−2b3

(
−2c1y(b1y−2c3)+4c3(c3−b1y)+ c2

1

(
y2 +4

))
+b1

(
b1

(
y2 +4

)
(c1y+2c3)− y

(
c2

1

(
y2 +4

)
+4c1c3y+4c2

3

))
+4b2

2(c1y+2c3),

12
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and

g =−b2
1c1y3−4b2

1c1y−2b2
1c3y2−8b2

1c3−4b1b3c1y2

−8b1b3c3y+b1c2
1y3 +4b1c2

1y+4b1c1c3y2 +4b1c2
3y−4b2

3c1y

−8b2
3c3 +2b3c2

1y2 +8b3c2
1 +8b3c1c3y+8b3c2

3.

A2

A3

A3

A2

A1

A1

Figure 5: Translation triangle with vertices
A1 = E0 = (1,0,0,0), A2 = (1,1/2,0,7/10),
A3 = (1,1,0,2/5) with translation-like bisector
surfaces SA1A2 and SA1A3 (left) and Translation
triangle with vertices A1 = E0 = (1,0,0,0),
A2 = (1,0,−1/5,4/5), A3 = (1,0,1,6/5) with
translation-like bisector surfaces SA1A2 and
SA1A3 (right).

3.3 Translation tetrahedra and their circumscribed
spheres

We consider 4 points A1, A2, A3, A4 in the projective model
of Nil space (see Section 2). These points are the ver-
tices of a translation tetrahedron in the Nil space if any
two translation segments connecting the points Ai and A j
(i < j, i, j ∈ {1,2,3,4}) do not have common inner points
and any three vertices do not lie in a same translation curve.
Now, the translation segments AiA j are called edges of the
translation tetrahedron A1A2A3A4.

The circumscribed sphere of a translation tetrahedron is a
translation sphere (see Definition 2, (12)) that touches each
of the tetrahedron’s vertices. As in the Euclidean case the
radius of a translation sphere circumscribed around a tetra-
hedron T is called the circumradius of T , and the center
point of this sphere is called the circumcenter of T .

Lemma 6 For any translation tetrahedron there exists
uniquely a translation sphere (called the circumsphere) on
which all four vertices lie.

Proof. The Lemma follows directly from the properties
of the translation distance function (see Definition 1 and
(12)). The procedure to determine the radius and the cir-
cumcenter of a given translation tetrahedron is the folow-
ing:

The circumcenter C =(1,x,y,z) of a given translation tetra-
hedron A1A2A3A4 (Ai = (1,xi,yi,zi), i ∈ {1,2,3,4}) have
to hold the following system of equation:

dt(A1,C) = dt(A2,C) = dt(A3,C) = dt(A4,C), (32)

therefore it lies on the translation-like bisector surfaces
SAi,A j (i < j, i, j ∈ {1,2,3,4}) which equations are deter-
mined in Lemma 2. The coordinates x,y,z of the circum-
center of the circumscribed sphere around the tetrahedron
A1A2A3A4 are obtained by the system of equation derived
from the facts:

C ∈ SA1A2 ,SA1A3 ,SA1A4 . (33)

Finally, we get the circumradius r as the translation dis-
tance e.g. r = dt(A1,C).
We apply the above procedure to two tetrahedra deter-
mined their centres and the radii of their circumscribed
balls that are displayed in Fig. 6 and 7. �

Figure 6: Translation tetrahedron with vertices A1 =
(1,0,0,0), A2 = (1,1.4,0,1), A3 = (1,0.5,1,1),
A4 = (1,0,0,1.5) and its circumscibed sphere of
radius r ≈ 0.92804.

Figure 7: Translation tetrahedron with vertices A1 =
(1,0,0,0), A2 = (1,4,2,1), A3 = (1,1,3,0),
A4 = (1,0,−2,1) and its circumscibed sphere
of radius r ≈ 7.96825.
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4 The lattice-like translation ball coverings

In [21] we investigated the lattice-like geodesic ball cover-
ings with congruent geodesic balls and in this section we
study the similar problem of the translation ball coverings.
In the following, we shall consider lattice coverings, each
of them consisting of congruent translation balls of Nil.
Let Bc

Γ
(R) denote a translation ball covering of Nil space

with balls Bc(R) of radius R where their centres give rise
to a Nil point lattice Γ(τ1,τ2,k) (k ∈ N+). F̃ (k) is an ar-
bitrary Nil parallelepiped of this lattice (see Section 2.2).
The images of F̃ (k) by our discrete translation group
L(τ1,τ2,k) = L(Z,k) cover the Nil space without gap.

Remark 4 In the Nil geometry, similarly to the Euclidean
space Ed , (d ≥ 1), an arbitrary lattice Γ gives a lattice-
like covering of equal balls if the radius R of the balls is
large enough. For the geodesic ball packings it is not true
because the geodesic balls should have a radius R∈ [0,2π]
(see [19]).

If we start with a translation-like lattice covering Bc
Γ
(R)

and shrink the balls until they finally do not cover the space
any more, then the minimal radius defines the least dense
covering to a given lattice Γ(τ1,τ2,k). The thresfold value
Rc

Γ
is called the minimal covering radius of the point lattice

Γ(τ1,τ2,k):

Rc
Γ :=min{R : where Bc

Γ(R) lattice covering by Γ(τ1,τ2,k)}.
(34)

For the density of the packing it is sufficient to relate the
volume of the minimal covering ball to that of the solid
F̃ (k).
Analogously to the Euclidean case it can be defined the
density ∆(Bc

Γ
(R)) of the lattice-like geodesic ball covering

Bc
Γ
(R):

Definition 6

∆(Bc
Γ(R)) :=

Vol(Bc
Γ
(R))

Vol(F̃ (k))
, (35)

and its minimum ∆(Bc
Γ
(Rc

Γ
)) for radius Rc

Γ
in (34).

The main problem is that to which lattice Γ(τ1,τ2,k) be-
longs the optimal minimal density where k ∈N+ is a given
parameter.

∆opt(Bc) = inf
Γ

{
∆(Bc

Γ(R
c
Γ))
}
. (36)

and Γc
opt denotes any optimal lattice, if it exists at all.

Remark 5 The covering radius is the radius of the cir-
cumsphere of the lattice’s Dirichlet-Voronoi cell i.e. the
largest distance between the midpoint and the vertices of
its Dirichlet-Voronoi cell, whose description deserves sep-
arate studies (see [15]).

In the following we study the most important case related
to parameter k = 1.

4.1 Method to determination of densest lattice-like
translation ball covering of a given lattice

We develop an algorithm to determine the lattice-like
thinnest ball covering of a given lattice Γ(τ1,τ2,1).
The lattice is generated by the translations τ1 and τ2 where
their coordinates in the model are t j

i (i = 1,2; j = 1,2,3)
(see (16)).

The Nil parallelepiped F̃ (1)=E0T opt
1 T2T3T12T21T23T213T13

is a fundamental domain of L(Z,1). The homogeneous co-
ordinates of its vertices can be derived from the coordinates
of τ1 and τ2 (see Fig. 1 and (3) with (16)). We examine the
minimal covering radius Rc to the given lattice Γ(τ1,τ2,1).

Rc
Γ :=min{R : where Bc

Γ(R) lattice covering by Γ(τ1,τ2,1)}.

It is sufficient to investigate such ball arrangements Bc
Γ
(R)

where the balls cover F̃ (1) .
From (14-16) follows, that the fundamental paral-
lelepiped F̃ (1) can be decomposed into Euclidean tetra-
hedra {E0,T1,T2,T3}, {T3,T1,T23,T13}, {T3,T1, T23,T2},
{T12,T1,T23, T2}, {T12,T1, T23, T13}, {T12,T21,T23,T13}
which fill it just once. The radius Ri (i = 1,2 . . .6) of each
circumscribed ball to the above point sets can be deter-
mined by the procedure described in the previous section.
It is clear, that the lattice-like ball arrangement Bc

Γ
(Rc

Γ
) of

radius Rc
Γ
=max{Ri} cover the fundamental parallelepiped

F̃ (1) and thus the Nil space if the translation ball of radius
Rc

Γ
is convex in Euclidean sense i.e. Rc

Γ
∈ [0,2] (see Theo-

rem 2).

4.1.1 Upper bound for the covering density

To have a comparison, first we consider our optimal
lattice-like arrangement B p

Γ
(Rp) for the conjectured dens-

est lattice-like translation ball packing in the Nil space (see
[24]). These balls will be blown up to a covering. This op-
timal lattice is given in [20] with parameters

t1,p
1 ≈1.31225; t3,p

1 =
t3,p
3
2

; t1,p
2 ≈0.65613; t2,p

2 ≈1.13644;

t3,p
2 ≈1.11847; rp ≈ 0.74565; t3,p

3 = 2rp.

(37)

This packing can be generated by the translations
Γp(τ

p
1 ,τ

p
2 ,1) where τ

p
1 and τ

p
2 are given by the above co-

ordinates t j,p
i i = 1,2; j = 1,2,3 (see (36)). Thus we ob-

tain the neighbouring balls around an arbitrary ball of the
packing B p

Γ
(Rc

Γp) by the lattice Γp(τ
p
1 ,τ

p
2 ,1). We have ball

14
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“columns” in z-direction and in regular hexagonal projec-
tion onto the [x,y]-plane. From the structure of this lat-
tice follows that in this case the corresponding lattice point
sets {0,T p

1 ,T p
2 ,T p

3 }, {T
p

3 , T p
1 ,T p

23, T p
13}, {T

p
3 , T p

1 ,T p
23, T p

2 },
{T p

12,T
p

1 ,T p
23, T p

2 }, {T
p

12,T
p

1 , T p
23, T p

13}, {T
p

12,T
p

21,T
p

23,T
p

13}
are congruent by Nil isometries. The radius Rp of each cir-
cumscribed ball to the above point sets can be determined
by the following system of equations:

dt(O,C) = dt(C,T p
3 ) = dt(C,T p

1 ) = dt(C,T p
2 ),

where C(1,c1,c2,c3) is the center of the circumscribed ball
of the point set {E0,T

p
1 , T p

2 ,T p
3 } (dt is the Nil translation

distance, see Definition 1):

c1 ≈ 0.45563,c2 ≈ 0.26306,c3 ≈ 0.80558,Rc
Γp ≈ 0.91257.

Figure 8: Locally optimal lattice-like translation ball cov-
ering related to lattice Γp(τ

p
1 ,τ

p
2 ,1).

Remark 6 C(1,c1,c2,c3) is a vertex of the Dirichlet-
Voronoi domain of the centre point E0.

Rc
Γp ∈ [0,2] thus by Theorem 2 the ball of radius Rc

Γp is
convex in affin-Euclidean sense. Their circumscribed con-
gruent Nil balls are convex thus they cover the tetrahedra
and so the ball arrangement Bc

Γp(Rc
Γp) cover the Nil space.

Thus the radius Rc
Γp of circumscribed ball give us the cov-

ering radius to the lattice Γp, indeed, and we get by (13),
(17) and by the Definition 6 the following results:

Vol(B(Rc
Γp))≈ 3.18341,Vol(P̃ ) =Vol(F̃ (1))≈ 2.22397,

∆(Rc
Γp ,τ

p
1 ,τ

p
2 ,1) :=

Vol(BΓ(Rc
Γp))

Vol(F̃ (1))
≈ 1.43141.

(38)

Remark 7 The density of the least dense lattice-like ball
covering in the the Euclidean space is

∆opt(Rc
opt ,τ

c
1,τ

c
2,1)< ∆E =

5
√

5π

24
≈ 1.46350.

This ∆E attains for the so-called inner centred cubic lattice
type of E3. That means a Nil-lattice-ball-covering can be
“looser” than a Euclidean one.

Similarly to the above computations we can apply our
method to any given Nil lattice. In the Table 1 we summa-
rize the data of some locally optimal lattice-like translation
ball coverings:

Table 1
Lattice parameters Rc

Γ
∆c

Γ

t j
i = 1, (i = 1,2, j = 1,2,3) ≈ 0.88666 ≈ 2.91980

t1
1 = t1,d

1 , t3
1 = t3,d

1 ,

t1
2 = t1,d

2 , t2
2 = t2,d

2 , t3
2 = t3,d

2

≈ 0.91257 ≈ 1.43141

t1
1 = 1.3, t3

1 = 0.74,

t1
2 = 0.65, t2

2 = 1.13, t3
2 = 1.12

≈ 0.90406 ≈ 1.43429

t1
1 = 1.29, t3

1 = 0.74,

t1
2 = 0.64, t2

2 = 1.13, t3
2 = 1.12

≈ 0.89997 ≈ 1.43692

t1
1 = 1.1, t3

1 = 0.5,

t1
2 = 0.5, t2

2 = 1, t3
2 = 1

≈ 0.77177 ≈ 1.59134

t1
1 = 1.1, t3

1 = 0.5,

t1
2 = 0.4, t2

2 = 1, t3
2 = 1

≈ 0.78667 ≈ 1.68533

t1
1 = 1.31, t3

1 = 0.74,

t1
2 = 0.65, t2

2 = 1.13, t3
2 = 1.12

≈ 0.90732 ≈ 1.42783

From the previous computations follows the following

Theorem 3 The density of the least dense lattice-like
translation ball covering is less or equal than the locally
thinnest covering with congruent tranlation balls related to
the lattice Γu(τu

1,τ
u
2,1) where the lattice is given by the pa-

rameters t1
1 = 1.31, t3

1 = 0.74, t1
2 = 0.65, t2

2 = 1.13, t3
2 =

1.12 (see Fig. 9).

∆opt(Rc
opt ,τ

c
1,τ

c
2,1)≤ ∆(Rc

Γu ,τu
1,τ

u
2,1)≈ 1.42783

(see Table 1 and Fig. 9).

The exact determination of the thinnest lattice-like ball
covering with congruent translation balls seems to be diffi-
cult, but we are working on refining the upper bound den-
sity and determine a “good” lower bound density.
Optimal sphere packings and coverings in other homoge-
neous Thurston geometries represent another huge class of
open mathematical problems. For Nil, Sol, S̃L2R, H2×R,
S2×R geometries only very few results are known [17],
[19], [20], [21], [22], [23].
Detailed studies are the objective of ongoing research.
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Figure 9: Locally optimal lattice-like translation ball cov-
ering related to lattice Γu(τu

1,τ
u
2,1) with density

≈ 1.42783.
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ABSTRACT

In order to create extremely sharp photographs, focus
stacking has become a widely used method nowadays,
mainly in macro or micro photography. Whereas the as-
pect of computationally detecting sharp regions of an im-
age has been dealt with in many publications, there is only
little published about the geometric background. This pa-
per analyzes the process from a purely geometrical point
of view, revealing some non-trivial aspects that may po-
tentially also lead to improvements in a variety of appli-
cations such as the 3D scanning of small objects. It is
shown that – under calibrated conditions and with cer-
tain restrictions – focus stacking of a scene leads to ar-
bitrarily many geometrically correct perspective images of
this scene, even including normal projections. The rea-
son for this is that the process of photography never leads
to purely two-dimensional images, but collinearly distorted
spatial images.

Key words: ray optics, focus stacking, Depth of Field,
computational photography, image registration, light field
camera

MSC2010: 51P05, 65T60, 78A05

Podešavanje dubinske oštrine s čisto geometrij-
skog gledǐsta

SAŽETAK

Da bi se stvorile izuzetno oštre fotografije u današnje se
vrijeme često koristi metoda podešavanja dubinske oštrine.
Posebno je česta njezina upotreba u makro ili mikro fo-
tografiji. Iako je tema računalnog odred-ivanja oštrih po-
dručja slike obrad-ena u mnogim publikacijama, o nje-
govoj je geometrijskoj pozadini objavljeno malo radova.
Ovaj rad analizira spomenuti postupak s čisto geometri-
jskog gledǐsta otkrivajući neke netrivijalne aspekte koji
mogu dovesti do pobolǰsanja u mnogim njegovim primje-
nama kao što je 3D skeniranje malih predmeta. Pokazano
je da podešavanje dubinske oštrine scene – pod kalibri-
ranim uvjetima i uz odred-ena ograničenja – može proizvesti
po volji mnogo geometrijski ispravnih perspektivnih slika
te scene, pa čak i njezinu ortogonalnu projekciju. Ra-
zlog tome je činjenica da proces fotografiranja nikada ne
rezultira čistim dvodimenzionalnim slikama, već kolinearno
iskrivljenim prostornim slikama.

Ključne riječi: geometrijska optika, podešavanje du-
binske oštrine, dubinska oštrina, računski rekonstruirana
fotografija, registracija slike, light field kamera

1 Are photographs central projections?

Photography is a source of fascination for many people
– especially for mathematicians and geometry enthusi-
asts. In geometry classes, we sometimes say (in simpli-
fied terms): photographs correspond to central projections
(perspectives) of space. This means a reduction of three-
dimensional space into the two-dimensional plane. This
can be “proved” by the fact that it is possible to reconstruct

the photographed three-dimensional scene quite accurately
from a number of photographs. It is quintessential that
high-quality lens systems are used that reproduce straight
edges as exactly straight.
Even though this idea works quite well for scenes with
larger technical objects, such as polyhedra (e.g., a fur-
nished room or a building), it poses huge problems in the
context of macro photography, meaning photographs of
objects that measure just a few centimeters or even less
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Figure 1: Two flies, depicted in different ways. Left: Focus-stacked with medium aperture and without flash, right: single
photo, closed aperture, twin flash. Whereas the left image is completely sharp, the image on the right illustrates the limits
of macro photography, even with professional equipment.

than that. There, the “Depth of Field” (DoF) is compara-
tively much smaller than in regular photography.

2 An impossible photograph

The flies in Figure 1, measuring about 1 cm, are funda-
mentally different in terms of the photographic techniques
used to depict them. The picture on the left (with some
disgorged digestive juice) is in sharp focus overall. An
insect photographer will be puzzled: it seems impossible
to take such a photograph – even if we used highly ex-
pensive equipment with special macro objectives, macro
flashes and the highest aperture number possible (as in the
picture on the right, where minuscule droplets of water can
be seen on the complex eyes.)
This poses two questions: why can an object as small as a
fly not be rendered in sharp focus overall, and how does it
seem to be possible after all? This paper will explain the
situation from a mathematical/geometrical point of view.

3 The lens formula

In physics, the method of operation of a lens (or a well-
aligned lens system) is explained as follows: Let P be a
point in the real world. It emits (reflects) light rays in all
directions. Two of them will have easily predictable prop-
erties. The principal ray through the lens center C will not
be refracted, while the ray parallel to the optical axis will

go through the focal point F∗ after the refraction. Behind
the lens (the lens system), the two rays – and all others –
meet in the pixel P∗.

VIRTUAL
HALFSPACE

REAL
HALFSPACE

Figure 2: The principle of geometric ray optics (simpli-
fied): From the infinitely many light rays emitted from a
space point, the principal ray through the lens center C is
not refracted, and the ray parallel to the optical axis will
go through the focal point F∗ after the refraction.

From Figure 2, using similar triangles, we can derive the
lens formula:
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1
f
=

1
d
+

1
d∗

. (1)

Here, f denotes the focal distance and d and d∗ the ori-
ented distances of the point in space P and the pixel P∗

from the symmetry plane through the lens center C, re-
spectively.
Using this method, we can determine the corresponding
pixel for each point in space.

4 The Gaussian Collineation

Let us define d = k f . Using the lens formula, we then get

d∗ =
k

k−1
· f =

d
k−1

. (2)

According to the intercept theorems, we get the following
simple relation between the distances of a point in space P
and its pixel P∗ from the center C:

CP∗ =
1

k−1
·CP. (3)

Even though the geometrical mapping P 7→ P∗ works in
both directions, a camera will only be able to depict the
half space whose points lie at a greater distance from the
lens than the focal distance f (k > 1): points in the plane
through the point F perpendicular to the optical axis are
projected onto far points, because the denominator k− 1
vanishes in that case.
It is easy to show that the mapping P 7→ P∗ preserves
straight lines: Let g be an arbitrary straight line in space.
It can always be defined as the intersection of two special
planes ε and ϕ, with ε being the connecting plane of g with
the center C and ϕ being the plane through g that is paral-
lel to the optical axis. ε is transformed into itself (ε∗ = ε)
because we can think of the plane as a pencil of principal
rays. The other plane, ϕ∗, can be conceived of as rays par-
allel to the optical axis that transition into a pencil through
the focal point F∗ and the intersection line of ϕ with the
symmetry plane. The image g∗ of g is the intersection of
ε∗ and ϕ∗ and therefore a straight line ([1]). The mapping
P 7→ P∗ is thus a collineation – which is the technical term
for images that preserve straight lines. This mapping is a
very special form of perspective collineation: the center
lies in the collineation plane (the symmetry plane). Such
a collineation is called elation. This insight goes back to
C. F. GAUSS ([2]).

We briefly describe the Gaussian collineation P(x,y,z) 7→
P∗(x∗,y∗,z∗) analytically. The coordinate system shall
have its origin in the camera center C, and the z-axis shall
be the optical axis. Then we have

 x∗

y∗

z∗

=
f

f − z

 x
y
z

 . (4)

When we switch to homogenous coordinates

x =
x1

x0
, y =

x2

x0
, z =

x3

x0
, and x∗ =

x∗1
x∗0
, y∗ =

x∗2
x∗0
, z∗ =

x∗3
x∗0
,

we obtain


x∗0
x∗1
x∗2
x∗3

=


f x0− x3

f x1
f x2
f x3

 . (5)

From this, we can immediately read all important facts of
the collineation, namely that it is an elation with center C.
The fixpoints lie in x3 = 0, i.e., the lens symmetry plane.
The zero plane and the vanishing plane are parallel to the
fixpoint plane at distance ± f , respectively.

5 How does this relate to photography?

Using the simple formula (3), we can very easily transform
spatial objects made of a number of points into equally
spatial objects. How does this relate to photography, which
after all produces a two-dimensional result?

Let us consider a point P at a distance d from the symme-
try plane (collineation plane). If the plane π of the sensor
of our camera happens to be located at a distance d∗ from
the collineation plane, the pixel P∗ will lie in π. Thus, the
intersection of the object that we aim to reproduce with the
“plane of sharpness” (also called focal plane), sometimes
also referred as through P at a distance d parallel to the
collineation plane is in sharp focus.1 All other points are
rendered more or less sharp.

The extent of blurring is dependent on a number of differ-
ent parameters, as we shall see. One crucial parameter is
the size of the distance of the photographed object propor-
tionally to the focal length.

1Using our common sense, we may have assumed that in a photographic image, all those points would be rendered sharp that have a certain constant
distance (thus lying on a sphere around C) from the lens center, which depends on the distance d∗ from the sensor plane. However, according to the lens
formula, this is not the case, as all of those points lie in a plane, the plane of sharpness, also called focal plane, at a distance d.
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6 Photographing elephants vs. flies

C

VIRTUAL HALFSPACE

REAL HALFSPACE

Figure 3: Depicting large objects from a great distance.
The corresponding virtual 3D image is “almost flat”, i.e.,
all image points are close to the sensor plane. The image
in the sensor plane is more or less “sharp”.

Let us first consider the image of a “large” object from a
great distance (what we mean is the relation of the object
size to the focal length f (Figure 3)).
For points at a great distance d = k · f (k >> 1), the image
distance d/(k−1) (formula 2) does not vary a great deal.
The collinear virtual object behind the lens will thus be
strongly oblate, which means that there will be minor blur-
ring of those points that do not lie precisely in the plane
of sharpness. Taking a sharp full-size photograph of an
elephant thus poses no problem.
The smaller the object that we want to photograph, and the
closer it is to the “forbidden” vanishing plane (Figure 4),
the more the expression f/( f −d) = 1/(1−k) in the trans-
formation formula (3) will vary. This means that the points
will become more blurry, which leads to a genuine prob-
lem.
A brief remark: Short focal lengths f apparently have a
positive effect on the focus depth, as a fly or a snail be-
comes larger proportionally to f . Cameras with small sen-
sors have a correspondingly shorter focal length.2

7 Geometry vs. physics

In geometry, the matter seems to be trivial: Let us intersect
the light ray through the lens center with the sensor plane.
Seen from the perspective of physics, this, of course, does
not work: a single light ray is not sufficient to expose the
sensor. We will thus have to install a circle-shaped opening

in the collineation plane – the aperture. All light rays ema-
nating from a point in space P will then lie inside a skewed
circular cone through the opening, which is itself refracted
in a skewed circular cone (Figure 5.)
The entirety of light rays in this refracted skewed circular
cone exposes the sensor plane in a dot-shaped way only if
P lies on the plane of sharpness. In all other cases, there
is a so-called circle of confusion on the sensor (CoC for
short.)
We could now assume that we only need sufficient lighting
(flash) in order to keep the aperture as small as possible
(we speak of a high aperture number in such cases.) How-
ever, that is only possible up to a certain limit (the aperture
should be bigger than 1 mm at any rate.) If we reduce
the size further, the wave properties of light further com-
plicate the matter: this leads to diffraction on the edges
of the aperture, which results in inconvenient diffraction
blurring. Optimal results can be obtained by using the op-
timum aperture indicated by the manufacturer of the lens.
Photographers know that exceeding the optimum aperture
will reduce the image quality.

8 Focus stacking

In the picture of the elephant, we hardly ran into any prob-
lems – if a photographer targets a point that lies approxi-
mately at the end of the first third of the desired distance
range, the picture will be sufficiently sharp.3

In macro photography, however, a lack of sharpness is a se-
rious problem – especially if we are not dealing with artis-
tic but scientific images.
Nowadays, a technique called focus stacking has been es-
tablished; in essence, it works in the following way: the
camera takes a number of images of a scene in as short an
interval as possible, varying the distance of the focal plane.
This way, we get an image series where different layers of
the object are focused consecutively.
The theory of image processing is quite advanced by now,
and software used for this purpose is able to distinguish
sharp from blurry pixels. Here, we can only briefly men-
tion two methods and do not go into details: One method
is to use the shape of the edge gradient profile at each par-
ticular edge point to classify edge sharpness (see, e.g., [3]).
The other method is to compute the fast Fourier Trans-
form and analyze the result. The Fourier transform tells
us which frequencies are present in the image. If there is a

2In technical specifications, the focal length (e.g., 100 mm) of a lens is often provided in terms of a 35 mm equivalent, which means that for a “full
format sensor size” of 24mm×36mm, the lens has a focal length of 100 mm.

If the sensor, however, only has a size of, for example, 6mm× 9mm, the same visual impression can be achieved with a focal length of just 25 mm.
In this special case, we have a crop factor of 4. Nowadays, it is possible to take amazingly sharp macro photographs with good smartphones, owing to
their extremely short focal lengths and correspondingly tiny sensors (with much larger crop factors.) However, this leads to the problem of having a large
number of pixels in the tightest of spaces, which inevitably leads to a loss of quality.

3Artistic photographers often encounter the opposite problem: they deliberately want to work with blurred areas. In such cases, using larger focal
lengths and a wide-open aperture is recommendable.
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π∗π
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Figure 4: When a small object close to the lens is being photographed, the 3D distortion of the corresponding virtual image
is considerable. Only points in the focal plane π∗ will therefore be depicted in sharp focus.

CoC

π∗

π

Plane of sharpness
(focal plane) π∗

corresponding to π

Pc

C

sensor plane π

collineation plane
with circular aperture
(center = lens center C)

P∗

REAL HALFSPACEVIRTUAL HALFSPACE

Figure 5: The Circle of Confusion (CoC) in the sensor plane π can be interpreted as the intersection of an oblique cone
passing through the circular aperture opening c.
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Figure 6: Two mating dragon flies, photographed several times with varying lens centers (and focal points). The first and
the last photo of the series can be seen on the left. The focus-stacked image on the right can be considered sharp in the
zone that is defined by the two animals. The background still remains blurred, which is – aesthetically speaking – a big
advantage. Thus, focus stacking can also be considered as an artistic tool.

small amount of high frequencies, then the image is blurry
(e.g., [4]).

In a second step, one sharp image is created from this entire
image series. How well this works even without a tripod is
shown in Figure 6: on the left, we see the first and the last
picture of such a series by way of example; on the right,
we see the final product.4

If the photo series is done without tripod, there is of course
a slight movement of the camera to be expected between
the single photos. There even might be a tilt and/or motion
blur. In [5], solutions for these problems are proposed that
are based on affine transformations of the images.

There is an interesting connection to “light field cameras”
that capture information about the light field emanating
from a scene (conventional cameras only record light in-
tensity).

One type of light field camera uses an array of micro-lenses
placed in front of an otherwise conventional image sen-
sor to sense intensity, color, and directional information.
Multi-camera arrays are another type of light field camera.
Holograms are a type of film-based light field image.

9 The focal plane sweeps through the object

For any position of the sensor plane (distance d∗), there
is thus exactly one plane of sharpness (distance d) in the
Gaussian collineation; its position follows from the lens
formula (1):

d = f d∗/(d∗− f ). (6)

9.1 Focus stacking with a microscope

Before we continue with “ordinary photography” (espe-
cially macro photography), let us take a quick look at “mi-
cro photography”, i.e., taking pictures by means of a mi-
croscope (Figure 7). Here, the Depth of Field (DoF) is ex-
tremely shallow. When we use focus stacking, we sweep
the focal plane in tiny steps. In contrast to classic pho-
tography, however, the entire lens system – including the
sensor plane – is just translated. Thus, the distance of the
lens center to the sensor plane stays constant during the
sweeping process.
As a consequence, we do not have to care about rela-
tive scaling of the corresponding images. In principle,
we get section lines of our object and we even know

4An additional advantage of this method is the fact that we usually do not get an “infinitely” sharp image, but that there is a certain layer rendered in
sharp focus. Blurry backgrounds facilitate the isolation of objects from the background and prevent the viewer’s gaze from getting caught in unnecessary
details.
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the accurate distance of these section lines: the trans-
lation of either the lens system or the object carrier re-
spectively. Therefore, the scanned object is completely
recognized three-dimensionally (see Figure 8; the mi-
croscopic photos show salt crystals and were taken by
Johannes Weber, University of Applied Arts Vienna).

Figure 7: When the focal plane of a microscope sweeps
through the object, this is equivalent to a perfectly con-
trolled translation of the object along the optical axis. The
single pictures do not have to be registered – they are all
scaled in the same manner.

Figure 8: Having control of all coordinates, the object is
well-determined and can be displayed and measured arbi-
trarily.

9.2 Focus stacking with a normal camera

In contrast to focus-stacked pictures taken by a micro-
scope, focus stacking is a bit more complicated in ordinary
photography: In commercially available cameras, the po-
sition of the sensor plane is fixed and the position of the
lens center C moves forward and backward on the optical

axis. If we focus on points that are very far away, C lies
in front of the sensor plane at a distance f (if d∗ = f then
d = ∞). If we photograph a two-dimensional shape – such
as, for instance, a drawing – that lies in a plane parallel to
the sensor plane at a distance of s = d + d∗ and focus it,
the center C will have the position at a distance d∗ from
the sensor plane that we want to calculate.
With the formula (6), the following applies:

s = d∗2/(d∗− f ) or d∗2− sd∗+ s f = 0 (7)

The ambiguous solution of this quadratic equation is

d∗ =
s
2
±
√

s2

4
− s f .

In order for the expression below the root not to be nega-
tive, s ≥ 4 f must apply. This is, indeed, always the case
because of the requirement d > f (if d = d∗ = 2 f , the so-
lutions coincide). Furthermore, both solutions are always
valid, even though one would – for practical reasons – tend
to stick to one algebraic sign when computing a series of
camera positions.

Figure 9: When the center C of the lens system (and there-
fore also the focal point F) is moving along the optical axis
(with fixed sensor plane π), the plane of sharpness which
corresponds to the sensor plane is moving in parallel. Its
intersection lines with the spatial object are depicted in
sharp focus, but in an absolute size that depends on the
distance Cπ.

If the lens system lies within the computed distance d∗

in front of the fixed sensor plane π, our two-dimensional
shape will firstly be rendered sharp overall on the sensor,
and secondly, it will appear similar, and thus perspectively
undistorted, even though it will not keep its original size.
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Figure 10: A spatial object (in this case a red cube) is “scanned” by a “sweeping focal plane.” Only the intersections with
the plane are depicted in the sensor plane. If the corresponding images of the section are not scaled, the result is neither a
central nor a normal projection (image on the left). Scaled with the factor in Equation 8, the image is a normal projection
(middle image); scaled with the factor in Equation 9 as in the image to the right, the result is a perfect central projection
(= “perspective”.) In the latter case, the center of the perspective can vary almost arbitrarily.

Let us now turn back to three-dimensional objects. If we
take a series of photographs while purposefully varying
the distance of the lens center, we will get photographs in
which one section line of the object is rendered sharp and
largely undistorted (it is merely scaled.)
Figure 9 illustrates this matter: in a simulation of this pro-
cess, a cube was mapped by way of layers, which can be
triangles, quadrangles, pentagons or hexagons. However,
if we now simply put these pictures on top of one another,
we will end up with strangely distorted perspectives (see
also Figure 10 on the left).
Straight lines – such as the edges of the cube – are depicted
as curved (it is possible to show that they form parabolas.)
The reason for this is of course that, owing to the differ-
ent distance of the lens center from the sensor plane, the
section lines are scaled proportionately to this distance.

10 Converting the scanning process into
normal and central projections

Strictly speaking, we scanned our object three-
dimensionally in this way – even though we must bear
in mind that only those section lines were recorded that
were visible from the respective center. Let us now con-
duct some skilful scaling, in order to compute the relations
in the visible three-dimensional real space during the scan-
ning process.
Let t be a line segment in the plane of sharpness, and thus
in space, and t∗ the line segment parallel to it in the sensor

plane π. According to the intercept theorems, the follow-
ing applies: t : d = t∗ : d∗. With the scaling factor

λ = d/d∗, (8)

we can thus calculate the genuine length t from the im-
age length. If we scale all pictures of the series, with
the factor changing from one picture to another, we get
a normal projection of the object (see Figure 10, middle).
This is remarkable insofar as it is impossible to achieve a
normal projection with a single photograph, except if we
used an astronomical telescope with an almost infinite fo-
cal length.5

In order to achieve an exact central projection (perspec-
tive), which exclusively relies on unambiguously recorded
points, we will choose a position as the center where the
lens center used to be when the last still visible points of
the object to be depicted appeared sharp (d = dm maxi-
mal ⇒ d∗ = d∗m minimal). The ith picture will then not
only be scaled according to the formula (8), with the fac-
tor λi = di/d∗i , but additionally with the factor d∗m/dm: If
we now feed the image series into a software designed to
recognize sharp pixels, we will get a picture of graphical
precision that is sharp and perspectively correct, as can be
seen in Figure 10 on the right.

µ =
di

d∗i
· d
∗
m

dm
(9)

5There is, however, one limitation: even from a number of positions on the optical axis, we cannot always see as much of a surface as we would in a
genuine normal projection. Just think, for example, of a spaceship directly approaching the moon. From its position, we will never be able to see 50% of
the moon’s surface, the way we do from Earth.
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Figure 11: A square stamp of typical macro size is being
focus-stacked. With the application of the corresponding
scalings of the images, the result is a geometrically perfect
perspective.

The square stamp in Figure 11 passes the relatively strict
geometrical tests that can be used in order to test the cor-
rectness of a perspective, and the same is true of the “geo-
metric still life” in Figure 12. This is important because we
do not usually photograph miniature geometrical figures in
practice, but living beings and natural objects. Creating a
full-size sharp photograph of the stamp would be a classic
task of macro photography, while the still life is already a
medium-sized scene and thus easier to photograph with a
sharp focus overall.

Figure 12: A typical geometric scene (cube, square, cylin-
der of revolution). From the geometric point of view, the
stacked image fulfills all requirements of a single central
projection.

11 Outlook

Speaking from a mathematical/geometrical point of view,
it is important to note that much more can be done with
a series of pictures of an object, owing to the fact that
these pictures provide information of the object’s location
in space – one example would be 3D models. In any case,
focus stacking on the macro level should make it possible
to achieve results that would rival those of laser scanners, if
they were done under laboratory conditions – even though
the technology behind it is simpler, quicker, and cheaper.
Using the above described geometrical insights, methods
like the ones proposed by [6] could be enhanced.

Figure 13: Here, only three photos were stacked, allowing
major parts of the praying mantis to appear sharp. The
blurred rest of the stacked photo is deliberate.

If the objects that we want to photograph happen to be
small animals, we are faced with the additional problem
that these seldom tend to freeze in place, and usually at
least move their feelers or individual limbs (Figure 13).
In such cases, the image series should be processed in the
tenth of a second at the most, which will probably be pos-
sible in a few years’ time, bearing in mind the rapid tech-
nological advancement in recent years. Currently, com-
mercially available cameras still need a full half second
for a complete series of 8 to 10 pictures – the bottleneck
does not occur when saving the pictures but is a result of
the continuous re-adjustment of the focus. In order to de-
pict as many parts of the object’s surface as possible, and
also for additional accuracy, one could use several rigidly
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connected cameras simultaneously. The registration of the
surface parts should easily be possible since all camera po-
sitions are well known.
From an aesthetic point of view, we often only need two
or tree pictures of an insect for impressive photographs. In
Figure 13, it was important to focus on the tongs and eyes
of the praying mantis – it is secondary that the rest of its
body appears blurred.
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ABSTRACT

In the paper the concept of a covertex inscribed triangle
of a parabola in an isotropic plane is introduced. It is a
triangle inscribed to the parabola that has the centroid
on the axis of parabola, i.e. whose circumcircle passes
through the vertex of the parabola. We determine the co-
ordinates of the triangle centers, and the equations of the
lines, circles and conics related to the triangle.
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Covertex trokuti upisani paraboli u izotropnoj
ravnini

SAŽETAK

U radu se uvodi pojam covertex trokuta upisanog paraboli

u izotropnoj ravnini. To je trokut upisan paraboli čije

težǐste leži na osi parabole, tj. čija opisana kružnica pro-

lazi tjemenom parabole. Odred-uju se koordinate točaka

te jednadžbe pravaca, kružnica i konika povezanih s tim

trokutom.

Ključne riječi: izotropna ravnina, trokut, parabola

1 Motivation

The following theorem, which can be found in [10], is a
well-known fact from the geometry of Euclidean plane:
Let A,B,C be three points on a parabola P different from
its vertex and different mutually. These are the equivalent
statements:

10 The normal lines to P at A,B,C are concurrent.

20 The centroid of the triangle ABC lies on the axis of
parabola P .

30 The circumcircle of the triangle ABC passes through
the vertex of parabola P .

The perpendicularity is not defined in the isotropic plane,
and often an isotropic line plays a role of a line perpendic-
ular to a given one. Therefore, every normal to P passes
through the absolute point. From that point of view, the
property 10 is fulfilled for any three points on the parabola,
and it is interesting to study the triangles having properties
20 and 30.

The result above together with other results stated in [10]
inspired the authors to write this paper.

2 Introduction

Let us start by recalling some basic facts about the isotropic
plane. The isotropic plane is a real projective metric plane
whose absolute figure is a pair consisting of an absolute
point Ω and an absolute line ω incident to it, [11], [12].
The isotropic points are the points incident with the ab-
solute line ω and the isotropic lines are the lines passing
through the absolute point Ω.
In the affine model of the isotropic plane where the co-
ordinates of the points are defined by x =

x0

x2
, y =

x1

x2
, the

absolute line has the equation x2 = 0 and the absolute point
has the coordinates (0 : 1 : 0).
Two lines are parallel if they pass through the same
isotropic point, and two points are parallel if they are in-
cident with the same isotropic line. For two non-parallel
points A = (xA,yA) and B = (xB,yB), a distance is defined
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by d(A,B) = xB−xA, and for two parallel points, xA = xB, a
span is defined by s(A,B) = yB− yA. For two non-parallel
lines p and q, given by the equations y = kpx + lp and
y = kqx+ lq, an angle is defined by ∠(p,q) = kq− kp. All
these quantities are oriented.
A triangle in the isotropic plane is called allowable if non
of its sides is an isotropic line. In our study only such tri-
angles are considered.
The midpoint of the points A and B is defined as M =( xA+xB

2 , yA+yB
2

)
, while the bisector of the lines p and q is

given by the equation y = kp+kq
2 x+ lp+lq

2 .
A normal line to a line l at a point P is the isotropic line n
passing through P. A distance from P to l is defined as the
span s(N,P), where N is the intersection point of l and n,
i.e. the point on l parallel to P.
The classification of conics in the isotropic plane can be
found in [2] and [11]. A circle is a conic touching the ab-
solute line ω at the absolute point Ω. The equation of such
a circle is given by

y = ux2 + vx+w, u 6= 0, u,v,w ∈ R.

A parabola is a conic touching the absolute line at a point
different from the absolute point. By choosing a suitable
coordinate system every parabola can be represented by the
equation

y2 = x. (1)

It has vertex (focus) at O = (0,0), the x-axis as its axis, and
y-axis as its directrix. A numerous properties of parabola
were discussed in [13], [15] and [19].

3 Covertex Inscribed Triangles of Parabola

Let A = (a2,a),B = (b2,b),C = (c2,c) be three points on
the parabola P given by (1) different from its vertex and
different mutually. Thus, a, b, c are mutually different
nonzero real numbers. It can be easily checked that A,B,C
lie on the circle C with equation

(a+b)(b+ c)(c+a)y = (2)
−x2 +(a2 +b2 + c2 +ab+bc+ ca)x+abc(a+b+ c).

The circle C passes through the vertex O = (0,0) precisely
when

a+b+ c = 0. (3)

In that case the centroid G =
(

a2+b2+c2

3 , a+b+c
3

)
of the

triangle ABC lies on the axis of the parabola P , and we
proved:

Theorem 1 A triangle inscribed to a parabola has the
centroid on the axis of parabola if and only if its circum-
circle passes through the vertex of parabola.

A

B

C

G
x

y

Figure 1: Covertex inscribed triangle of a parabola

The triangles having the property from Theorem 1 are
called the covertex inscribed triangles of the parabola. If
such a triangle ABC has vertices A = (a2,a), B = (b2,b),
C = (c2,c), the equations of its sides are:

AB ... x+ cy+ab = 0,
BC ... x+ay+bc = 0, (4)
CA ... x+by+ ca = 0.

Considering (3) we will use the standard notation:

p = abc, q = ab+bc+ ca. (5)

The following relations are interesting, useful and their va-
lidity can easily be proved:

a2 = bc−q,

a3 = p−aq,

a2 +b2 + c2 =−2q,

a2b2 +b2c2 + c2a2 = q2,

a4 +b4 + c4 = 2q2.

The equation (2) of the circumcircle C of ABC now takes
the form

py = x2 +qx, (6)

the centroid is G =
(
− 2

3 q,0
)
, and the Euler line has the

equation x =− 2
3 q, [6].

The properties of an allowable triangle in the isotropic
plane have been studied in numerous papers, [3], [4], [5],
[6], [7], [8], [14], [16], [18]. The observed triangle was set-
tled in the standard position having the circumcircle with
the equation y= x2 and the vertices of the form A= (a,a2),
B = (b,b2), C = (c,c2), where a+b+c = 0. The same no-
tations p= abc, q= ab+bc+ca were used as well. There-
fore, it is not of our interest to prove the theorems on the

29
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special case of covertex inscribed triangles of parabola. In-
stead we determine the coordinates of the triangle centers,
and the equations of the lines, circles and conics related to
the triangles.
The midpoint Am of the points B and C has the coordi-
nates Am =

(
−q− 1

2 a2,− 1
2 a
)

and lies on the circle with
the equation

py =−2x2−3qx−q2. (7)

Indeed,

−2
(

q+
1
2

a2
)2

+3q
(

q+
1
2

a2
)
−q2

=−1
2

a4− 1
2

a2q =−1
2

a
(
a3 +qa

)
=−1

2
ap.

It can be proved similarly that the midpoints Bm, Cm of the
sides AC, AB, respectively, also lie on the circle given by
(7). Thus, that circle is the Euler circle of the triangle ABC.
Let us now prove that the circle having the equation

4py = x2 (8)

is the inscribed circle of the triangle ABC. The line BC has
the equation x+ay+bc = 0 given in (4). The intersection
point of BC and the circle (8) is the point D =

(
−2bc, bc

a

)
having the intersection multiplicity 2. Therefore, D is the
contact point of BC and (8). In the similar way, it can be
shown that the lines CA and AB also touch the circle given
by (8).
The inscribed circle and Euler circle of a triangle touch
each other externally in a point called Feuerbach point,
and their common tangent is called the Feuerbach line of
the considered triangle, [1]. So, we prove:

Theorem 2 The Feuerbach point of the covertex inscribed
triangle ABC of the parabola P is

Φ =

(
−2

3
q,

1
9p

q2
)

(9)

and its Feuerbach line is given by the equation

3qx+9py+q2 = 0. (10)

Proof. By eliminating y in (7) and (8), the equation
9x2+12qx+4q2 = 0 with double root x=− 2

3 q is obtained.
From (8) we get y= 1

9p q2. The radical axis of the inscribed
circle and Euler circle is obtained by eliminating the terms
next to x2 in (7) and (8). Thus, the line having the equation
3qx+9py+q2 = 0 is their common tangent. �

In the isotropic plane the principle of projective duality is
preserved. The dual of the triangle inscribed circle is its
circumcircle, while the dual of the Euler circle is the cir-
cle inscribed to the triangle formed by angle bisectors of

the considered triangle, [7]. The circumscribed circle and
the dual Euler circle of the triangle touch each other at one
point, so-called dual Feuerbach point, and their common
tangent is called dual Feuerbach line.

Theorem 3 The dual Feuerbach point of the covertex in-
scribed triangle ABC of the parabola P is

Φ
′ =

(
−2

3
q,− 2

9p
q2
)

(11)

and its dual Feuerbach line is given by the equation

3qx+9py+4q2 = 0. (12)

Proof. The equations of the sides CA, AB from (4) can be
written in the form cx+bcy+ac2 = 0, bx+bcy+ab2 = 0,
and their angle bisector has equation −ax+2bcy+a(b2 +
c2) = 0, which because of −b2 − c2 = q+ bc, and after
multiplying by a, turns to 2py = a2x+a2q+ap. By elimi-
nating the terms next to x2 in this equation and in the equa-
tion of the circle

8py =−x2−4qx−4q2 (13)

we obtain the equation x2 + 4(a2 + q)x + 4(a2q + q2 +
ap) = 0. Because of

a2q+q2 +ap = bcq+a2bc = b2c2,

it turns to the equation x2+4bcx+4b2c2 = 0 having a dou-
ble root. Therefore, the observed angle bisector touches
the circle (13). The same fact holds for the other two an-
gle bisectors of the triangle ABC as well. Thus, (13) is the
equation of the dual Euler circle of ABC. Now by elim-
inating y in (6) and (13) we get equation 9x2 + 12qx +
4q2 = 0 with a double root x = − 2

3 q. Hence, the point(
− 2

3 q,− 1
9p q2

)
is their contact point. By eliminating the

terms next to x2 in (6) and (13), the equation (12) of their
radical axis is obtained. �

The orthic axis of the triangle is the radical axis of a pencil
of circles consisting of some important circles of that tri-
angle as the circumcircle, Euler circle and polar circle, see
[1] and [14].

Theorem 4 The orthic axis of the covertex inscribed tri-
angle ABC of the parabola P is given by the equation

qx+3py+q2 = 0. (14)

Proof. By eliminating the terms next to x2 in the equations
(6) and (7) of the circumcircle and Euler circle of the trian-
gle ABC, the equation (14) of their radical axis is obtained.

�

30
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Theorem 5 The polar circle of the covertex inscribed tri-
angle ABC of the parabola P has the equation

2py =−x2−2qx−q2. (15)

Proof. The polar of the point (u,v) with respect to the cir-
cle (15) has the equation p(y+ v) = −xu− q(x+ u)− q2.
Therefore, the polar of A = (a2,a) has the equation py+
(q+a2)x+(q+a2)q+ap= 0, i.e. py+bcx+bc(q+a2) =
0, and finally x+ay+bc = 0 being the equation of the side
BC. Similarly we get that the polars of B and C are the
sides CA and AB, respectively. �

The circles of the pencil mentioned above intersect each
other in the points having coordinates

(−q,0) ,
(
−q

3
,− 2

3p
q2
)
.

This can be easily proved by using e.g. (6) and (7).

The Gergonne point of the triangle ABC is the intersection
point of three cevians AD, BE, CF defined by the contact
points D, E, F of the inscribed circle, [3], and we have:

Theorem 6 The Gergonne point of the covertex inscribed
triangle ABC of the parabola P has the coordinates

Γ =

(
9p2

q2 ,−3p
q

)
. (16)

Proof. The line with the equation qx+(3p− aq)y = 3ap
obviously passes through the vertex A = (a2,a). It also
passes through the contact point D=

(
−2bc, bc

a

)
of the side

BC and the inscribed circle of the triangle ABC since

−2bcq+3b2c2−bcq = 3bc(bc−q) = 3ap.

Thus, the observed line is the cevian AD. On the other
hand, it also passes through the point Γ given in (16). Since
the analogue statements hold for the lines BE and CF , Γ is
the Gergonne point of the triangle ABC. �

Corollary 1 The Gergonne point of the covertex inscribed
triangle ABC of the parabola P lies on the parabola P

Corollary 1 together with Theorem 1 present new geomet-
ric results in the isotropic plane.

A

B

C

G

F

F ’

G

x

y

Figure 2: The centroid G, Feuerbach point Φ, dual Feuer-
bach point Φ′ and Gergonne point Γ of the
covertex inscribed triangle ABC of a parabola

Theorem 7 Every conic circumscribed to the covertex in-
scribed triangle ABC of the parabola P has the equation
of the form

Ax2 +2Bxy+Cy2 +(qA−C)x+(2qB− pA)y−2pB = 0,
(17)

the axis with equation

Bx+Cy+qB− 1
2

pA = 0 (18)

and the center with the coordinates

M =

(
2qB2− pAB−qAC+C2

2(AC−B2)
,

pA2−qAB−BC
2(AC−B2)

)
.

(19)

Proof. Every conic is given by the equation of the form

Ax2 +2Bxy+Cy2 +2Dx+2Ey+F = 0. (20)

The points A = (a2,a) and B = (b2,b) lie on the conic pre-
cisely when the following equalities hold:

a4A+2a3B+a2C+2a2D+2aE +F = 0,
b4A+2b3B+b2C+2b2D+2bE +F = 0. (21)

By subtracting the two upper equations and dividing by
a−b we get

(a2 +b2)(a+b)A+2(a2 +ab+b2)B+(a+b)C

+2(a+b)D+2E = 0,
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i.e.

(cq+ p)A−2qB− cC−2cD+2E = 0 (22)

since

(a2 +b2)(a+b) = (−q−ab)(−c) = cq+ p.

Similarly, we get

(bq+ p)A−2qB−bC−2bD+2E = 0,
(aq+ p)A−2qB−aC−2aD+2E = 0.

It immediately follows pA − 2qB + 2E = 0, and from
(22) also qA−C − 2D = 0. Thus, 2D = qA−C and
2E = 2qB− pA are valid. From (20) we get (a4 + a2q−
ap)A+2(a3 +aq)B+F = 0, and finally F =−2pB since
a3+aq = p. We proved that the conic circumscribed to the
triangle ABC has to have the equation of the form (17).
The equation (20) can be written in homogeneous coordi-
nates as follows

Ax2
0 +2Bx0x1 +Cx2

1 +2Dx0x2 +2Ex1x2 +Fx2
2 = 0,

and the point (u0 : u1 : u2) has the polar with the equation

Au0x0 +B(u1x0 +u0x1)+Cu1x1 +D(u0x2 +u2x0)

+E(u1x2 +u2x1)+Fu2x2 = 0. (23)

Particularly, the polar of the absolute point Ω = (0 : 1 : 0)
is given by the equation Bx0 +Cx1 +Ex2 = 0, i.e. in affine
coordinates Bx+Cy+E = 0. Thus, when the conic is given
by the equation (17), its axis is given by the equation (18).
The equation (23) written in the form

(Au0 +Bu1 +Du2)x0 +(Bu0 +Cu1 +Eu2)x1

+(Du0 +Eu1 +Fu2)x2 = 0

is the equation of the absolute line x2 = 0 precisely when
Au0+Bu1+Du2 = 0 and Bu0+Cu1+Eu2 = 0. Therefore,
the coordinates of the point M =

(
u0
u2
, u1

u2

)
= (u,v) have to

satisfy the equations Au+Bv+D= 0 and Bu+Cv+E = 0,
which leads to

M =

(
BE−CD
AC−B2 ,

BD−AE
AC−B2

)
.

So, when the conic is given by (17), its center is given by
(19). �

The properties of the Steiner ellipse, Steiner axis and
Steiner point of a triangle in the isotropic plane were stud-
ied in details in [8] and [18]. Here we prove the following
two theorems:

Theorem 8 The Steiner ellipse of the covertex inscribed
triangle ABC of the parabola P has the equation

3qx2 +9pxy−q2y2 +4q2x+6pqy−9p2 = 0, (24)

while the Steiner axis is given by

9px−2q2y+6pq = 0. (25)

Proof. By inserting A = 3q, B = 9
2 p, C = −q2 into (17),

(18), (19), the circumscribed conic (24) with the axis (25)
and the center M =

(
− 2

3 ,0
)

is obtained. The point M is
the centroid G of the triangle ABC, and therefore (24) is
the equation of the Steiner ellipse. �

Theorem 9 The Steiner point of the covertex inscribed tri-
angle ABC of the parabola P has the coordinates

S =

(
9p2

q2 ,
81p3

q4 +
9p
q

)
. (26)

Proof. The coordinates of the point S satisfy the equations
(6) and (24). So, it is the intersection of the circumcircle
and the Steiner ellipse of the triangle ABC. �

The isogonal conjugate P′ of a point P with respect to tri-
angle ABC is constructed by reflecting the lines AP, BP,
CP about the angle bisectors at the points A, B, C, respec-
tively. The three reflected lines then concur at the isogonal
conjugate P′. The isogonality in the isotropic plane was
studied in [9].

Theorem 10 The isogonal point P′ = (x′,y′) of the point
P = (x,y) with respect to the covertex inscribed triangle
ABC of the parabola P has the coordinates

x′ = −qx2 + pxy+q2x− p2

x2 +qx− py
,

y′ =
qxy+ py2− px+q2y− pq

x2 +qx− py
. (27)

Proof. If a point P = (u,v) is given, then the slope of the
line AP equals to k = v−a

u−a2 . The line isogonal to the line
AP with respect to the lines AB and AC with slopes− 1

c and
− 1

b , respectively, has the slope

−1
c
− 1

b
− k =

a
bc
− v−a

u−a2 =
au−bcv+aq

bcu−ap
.

and the equation

(bcv−au−aq)x+(bcu−ap)y = aqu+apv−a2 p−a3q.

(28)

Similarly, the line isogonal to the line BP with respect to
the lines BC and BA has the equation

(cav−bu−bq)x+(cau−bp)y = bqu+bpv−b2 p−b3q.

(29)
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By subtracting (28) and (29) and then dividing by a−b we
get

(cv+u+q)x+(cu+ p)y =−qu− pv− cp−q2.

So, we conclude that the following two equalities have to
hold

(u+q)x+ py =−qu− pv−q2, vx+uy =−p.

Solving the system of equations, we get

x =−qu2+puv+q2u−p2

u2 +qu− pv
,y =

quv+pv2−pu+q2v−pq
u2 +qu− pv

,

which finishes the proof. �

The symmedian center K is the isogonal conjugate of the
triangle centroid G. Therefore we have:

Theorem 11 The symmedian center K of the covertex in-
scribed triangle ABC of the parabola P has the coordi-
nates

K =

(
−2q3 +9p2

2q2 ,
3p
2q

)
(30)

and the Brocard diameter is given by

x =−2q3 +9p2

2q2 .

Proof. The claim follows from (27) after inserting x =
− 2

3 q, y = 0. �

Theorem 12 The isogonal image of the isotropic line x′ =
m with respect to the covertex inscribed triangle ABC of the
parabola P is a special hyperbola circumscribed to ABC
having equation

(q+m)x2 + pxy+q(q+m)x−mpy− p2 = 0. (31)

Proof. It follows directly from the first equation in (27). �

The isogonal image of the Euler line, so-called Jeřabek hy-
perbola, and the isogonal image of the Brocard diameter,
so-called Kiepert hyperbola, in the case of standard trian-
gle were studied in detailed in [5] and [16]. Here we prove

Theorem 13 The Jeřabek hyperbola of the covertex in-
scribed triangle ABC of the parabola P is given by

qx2 +3pxy+q2x+2pqy−3p2 = 0, (32)

while its Kiepert hyperbola is given by

9px2−2q2xy+9pqx− (2q3 +9p2)y+2pq2 = 0. (33)

A

B

C

G

G

S

K

x

y

Figure 3: The centroid G, symmedian center K and
Steiner point S of the covertex inscribed triangle
ABC of a parabola. The Steiner axis and Steiner
ellipse are marked in blue, the Euler line and
Jeřabek hyperbola are marked in green, while
the Brocard diameter and Kiepert hyperbola are
marked in orange.

Proof. The equations (32) and (33) follow directly from
Theorem 12 by inserting m =− 2

3 q and m =− 2q3+9p2

2q2 into
(31) for the Euler line and Brocard diameter, respectively.

�

The concept of reciprocity with respect to the standard tri-
angle in the isotropic plane was introduced and studied in
[17]. Here we prove the following theorem:

Theorem 14 The lines given by the equations

Ux+V y+W = 0 (34)

and

U ′x+V ′y+W ′ = 0, (35)

where

U ′ = qU2 +V 2−UW, V ′ = pU2−VW,

W ′ = q2U2 +qV 2 +W 2− pUV −2qUW, (36)

are reciprocal lines with respect to the covertex inscribed
triangle ABC of the parabola P .

Proof. Let the line having the equation (34) be given. The
points

D =

(
bcV −aW

aU−V
,
W −bcU
aU−V

)
,

D′ =
(

qV +aW −aqU− pU
aU−V

,
qU +aV −W

aU−V

)
(37)

33
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lie on the line BC given by x+ ay+ bc = 0, and they are
isotomic conjugate since they have the same midpoint as
the points B and C. Indeed,

bcV −aW
aU−V

+
qV +aW −aqU− pU

aU−V
=−q−bc = b2 + c2,

W −bcU
aU−V

+
qU +aV −W

aU−V
=−a = b+ c.

The point D obviously lies on the line (34), and point D′

on the line (35). Thus, the lines (34) and (35) intersect the
line BC in the isotomic conjugate points of the side BC.
The similar claims can be proved for the sides AB and CA
as well. Therefore, the lines (34) and (35) are reciprocal
with respect to the triangle ABC. �

Using Theorem 14 it can be easily shown that the orthic
axis of the triangle ABC is reciprocal to its Steiner axis,
while the Euler line of the triangle is reciprocal to its Feuer-
bach line.

The concepts of equicevian points and equiangular lines of
the triangle in the isotropic plane were studied in [4] where
a number of their significant properties was considered. A
point P such that the points D = AP∩BC, E = BP∩CA,
F =CP∩AB satisfy the equalities

d(A,D) = d(B,E) = d(C,F) = t2, t 6= 0, (38)

is called the equicevian point of the triangle ABC. It is
known that each allowable triangle in the isotropic plane
has two equicevian points.

Theorem 15 The equicevian points of the covertex in-
scribed triangle ABC of the parabola P are of the form

P =

(
2
3
(t2−q),

3p
t2

)
, (39)

where t2 =±q.

Proof. Let us look for a point P such that (38) is fulfilled.
The abscissa of the point D equals a2+ t2, and the equality

d(B,D)

d(C,D)
=

t2 +a2−b2

t2 +a2− c2

follows. Similarly we get

d(C,E)
d(A,E)

=
t2 +b2− c2

t2 +b2−a2 ,
d(A,F)

d(B,F)
=

t2 + c2−a2

t2 + c2−b2 .

According to Ceva’s theorem, which also holds in
the isotropic plane, the lines AD, BE and CF pass
through the point P if and only if d(B,D)d(C,E)d(A,F)
+d(C,D)d(A,E)d(B,F) = 0, i.e.

(t2 +a2−b2)(t2 +b2− c2)(t2 + c2−a2)

+(t2 +a2− c2)(t2 +b2−a2)(t2 + c2−b2) = 0,

which holds precisely when

2t6 +2t2 (b2c2 + c2a2 +a2b2−a4−b4− c4)= 0,

i.e.
2t6−2q2t2 = 0.

As t 6= 0, it has to be t4−q2 = 0, which leads to t2 =±q.
The line BC has the equation y =− 1

a x− bc
a , so the ordinate

of the point D equals 1
a

(
−a2− t2−bc

)
= 1

a

(
q−2bc− t2

)
.

Therefore,

D =

(
a2 + t2,

1
a

(
q−2bc− t2)) .

It can be easily checked that the coordinates of the points
A and D satisfy the equation

(t2−2q+3bc)x+at2y = 2a2t2−2a2q+3ap.

Thus, that is the equation of the line AD. Some short cal-
culation shows that the same line passes through the point
P =

(
2
3

(
t2−q

)
, 3p

t2

)
. The equivalent statements holds for

the lines BE and CF . Thus the point P is equicevian point
of the triangle ABC. �

The equicevian points of the standard triangle considered
in [4] are so to say equal. It is not like that in the case of
the covertex inscribed triangle of the parabola. Here the
equicevian points are given by the coordinates

P1 =

(
0,

3p
q

)
, P2 =

(
−4q

3
,−3p

q

)
. (40)

They are symmetrical with respect to the centroid G of the
triangle and they lie on its Steiner axis. It is also known
that they are the foci of its circumscribed Steiner ellipse
of the triangle ABC, [4]. But in the case of the covertex
inscribed triangle, it can be noticed that one of them, the
point P1, lies on the vertex tangent (directrix) of parabola
P . So, an interesting geometric fact can be stated:

Theorem 16 The circumscribed Steiner ellipse of the
covertex inscribed triangle ABC of the parabola P touches
the directrix of parabola P at one of the foci.

A line l such that the points D′ = l ∩ BC, E ′ = l ∩CA,
F ′ = l∩AB satisfy the equalities

∠(BC,AD′) = ∠(CA,BE ′) = ∠(AB,CF ′) = ϕ, ϕ 6= 0,
(41)

is called the equiangular line of the triangle ABC. It was
proved in [4] that each allowable triangle has two equian-
gular lines.
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Theorem 17 The equiangular lines of the covertex in-
scribed triangle ABC of the parabola P have the equations

qx−3py+q2 +
9
q

p2 = 0, qx+ py+q2 +
3
q

p2 = 0. (42)

Proof. Because of (41) the line AD′ has the slope ϕ− 1
a ,

and its equation is

y =
(

ϕ− 1
a

)
x+2a−a2

ϕ. (43)

From (43) and the equation y = − 1
a x− bc

a of the line BC
we get the coordinates of the point D′

xD′ =
1

aϕ

(
a3

ϕ−2a2−bc
)
,

yD′ =
1

a2ϕ

(
2a2 +bc−a3

ϕ− pϕ
)
.

Analogously, we obtain the coordinates of the point E ′

xE ′ =
1

bϕ

(
b3

ϕ−2b2− ca
)
,

yE ′ =
1

b2ϕ

(
2b2 + ca−b3

ϕ− pϕ
)
.

Using the equalities a+b =−c and a2+ab+b2 =−q, the
slope of the line D′E ′ is calculated

1
ab
· a

2b2ϕ+ cpϕ− cq
2ab+ c2 + pϕ

=
1
p
· abpϕ+ c2 pϕ− c2q

2ab+ c2 + pϕ
.

Similarly, we determine the slope of the line D′F ′

1
p
· acpϕ+b2 pϕ−b2q

2ac+b2 + pϕ
.

The points D′, E ′ and F ′ are collinear precisely when

abpϕ+ c2 pϕ− c2q
2ab+ c2 + pϕ

− acpϕ+b2 pϕ−b2q
2ac+b2 + pϕ

= 0,

which is equivalent to p2ϕ2−q2 = 0. Thus,

ϕ =± q
p
.

Therefore, the slope of the line D′E ′ equals

1
p
· ±abq± c2q− c2q

2ab+ c2±q
=

1
p
· ±2abq∓q2−abq+q2

3ab−q±q
.

So, we get two lines with slopes q
3p and− q

p . Since equian-
gular lines of a triangle pass through its symmedian center,
[4], which is now given by (30), their equations are of the
form (42). �
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[9] R. KOLAR-ŠUPER, Z. KOLAR-BEGOVIĆ, V. VO-
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orcid.org/0000-0001-9190-5371
e-mail: msimic@arhitekt.hr

Faculty of Architecture, University of Zagreb
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KoG•23–2019 R. Kolar-Šuper: Bouvaist Cubic of a Triangle in an Isotropic Plane

https://doi.org/10.31896/k.23.4
Original scientific paper
Accepted 6. 11. 2019.
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ABSTRACT

The cubic in an isotropic plane which passes through the
intersections of the sides of an orthic triangle with the
sides of a complementary triangle of a given triangle, and
through the point which is complementary to the Steiner
point of triangle is studied in this paper. It is proved that
its non-isotropic asymptote is parallel to Lemoine line of a
given triangle.

Key words: isotropic plane, Bouvaist cubic, point com-
plementary to the Steiner point
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Bouvaistova kubika trokuta u izotropnoj ravnini

SAŽETAK

U članku se proučava kubika koja prolazi kroz sjecǐsta

stranica ortotrokuta i komplementarnog trokuta danog

trokuta i kroz točku komplementarnu Steinerovoj točki tog

trokuta. Dokazuje se da je neizotropna asimptota kubike

paralelna s Lemoineovim pravcem danog trokuta.

Ključne riječi: izotropna ravnina, Bouvaistova kubika,

komplementarna točka Steinerovoj točki

In [1], Bouvaist showed the existence of a cubic in Eu-
clidean geometry, which passes through all nine intersec-
tions of the sides of an orthic triangle and a complementary
triangle of a given triangle and through a point comple-
mentary to the Steiner point of that triangle. He proved
that this cubic is circular and its real asymptote is parallel
to the Lemoine line of a given triangle.

It will be shown in this paper that some analogous state-
ment holds in the isotropic plane as well.

The isotropic (or Galilean) plane is a projective–metric
plane, where the absolute consists of one line, i.e., the ab-
solute line ω, and one point on that line, i.e., the absolute
point Ω. The lines through the point Ω are isotropic lines,
and the points on the line ω are isotropic points (the points
at infinity). Two points P1 = (x1,y1), P2 = (x2,y2) with
x1 = x2 are said to be parallel, and we shall say they are on
the same isotropic line. Any isotropic line is perpendicular
to any non-isotropic line.

A triangle is said to be allowable if none of its sides is
isotropic. Each allowable triangle ABC can be set by a
suitable choice of the coordinate system in the standard
position, in which its circumscribed circle has the equation
y = x2, and its vertices are the points A = (a,a2), B =
(b,b2), C = (c,c2), where a+ b+ c = 0. We shall say
then that ABC is a standard triangle. To prove geometric
facts for each allowable triangle it is sufficient to give a
proof for the standard triangle (see [3]).
With the labels

p = abc and q = bc+ ca+ab

a number of useful equalities are proved in [3], as e.g.

a2 = bc−q,

(b− c)2 =−(q+3bc),

(c−a)(a−b) = 2q−3bc.

In [3], it is proved that the sides BhCh and BmCm of the
orthic triangle AhBhCh and the complementary triangle
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AmBmCm of the standard triangle have the equations:

y−2ax+q−2bc = 0,

y+ax+q− bc
2

= 0,

and the equations of their other sides are obtained by a
cyclic permutation a→ b→ c→ a. That is why every cu-
bic through all nine intersections of the sides of these two
triangles has the equation of the form:

∏(y−2ax+q−2bc)−λ ∏

(
y+ax+q− bc

2

)
= 0, (1)

where ∏ denotes the product of three factors, the first of
which is written, and the other two arise from the first one
by cyclic permutations a→ b→ c→ a.
In [4], it is shown that the point

S =

(
3p
2q

,−9p2

2q2 −q
)

is complementary to the Steiner point of the standard tri-
angle ABC. For that point we obtain

y−2ax+q−2bc =−9p2

2q2 −
3ap

q
−2bc

=− bc
2q2 (9a2bc+6a2q+4q2)

=− bc
2q2 [9bc(bc−q)+6q(bc−q)+4q2]

=
bc
2q2 (2q2 +3bcq−9b2c2)

=
bc
2q2 (q+3bc)(2q−3bc)

=− bc
2q2 (b− c)2(c−a)(a−b),

y+ax+q− bc
2

=−9p2

2q2 +
3ap
2q
− bc

2

=− bc
2q2 (9a2bc−3a2q+q2)

=− bc
2q2 [9bc(bc−q)−3q(bc−q)+q2]

=− bc
2q2 (4q2−12bcq+9b2c2),

=− bc
2q2 (2q−3bc)2

=− bc
2q2 (c−a)2(a−b)2

and then

∏(y−2ax+q−2bc) =−a2b2c2

8q6 (b−c)4(c−a)4(a−b)4,

∏

(
y+ax+q− bc

2

)
=−a2b2c2

8q6 (b−c)4(c−a)4(a−b)4.

Thus, the cubic of the pencil of the cubics with equation (1)
passes through the point S if one takes λ = 1 (Figure 1).

If that cubic of the allowable triangle ABC, which passes
through the intersections of the sides of its orthic triangle
with the sides of its complementary triangle, and through
the point S complementary to the Steiner point of the tri-
angle ABC (Figure 1), is called the Bouvaist cubic of that
triangle, then we have:

Theorem 1 The Bouvaist cubic B of the standard triangle
ABC has the equation:

(y−2ax+q−2bc)(y−2bx+q−2ca)

(y−2cx+q−2ab)−
(

y+ax+q− bc
2

)
(2)(

y+bx+q− ca
2

)(
y+ cx+q− ab

2

)
= 0.

Let us now find the intersection points of the cubic (2) and
the absolute line. We have to solve the equation

(y−2ax)(y−2bx)(y−2cx)− (y+ax)(y+bx)(y+ cx) = 0,

which can also be written in the following form:

−3(a+b+ c)xy2 +3(bc+ ca+ab)x2y−9abcx3 = 0,

and finally as 3qx2y− 9px3 = 0. We have the double so-

lution x = 0 and the solution y =
3p
q

x, which means that

the cubic has an asymptote with a slope
3p
q

, which is by

[2] a slope of the Lemoine line L of the triangle ABC. We
obtained:

Theorem 2 The non-isotropic asymptote of Bouvist cubic
of an allowable triangle is parallel to the Lemoine line of
a given triangle. Absolute point is an intersection point
of the Bouvaist cubic and absolute line with intersection
multiplicity 2.
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Figure 1: Bouvaist cubic of a triangle ABC in isotropic
plane
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ABSTRACT

The digital and the related technological evolution in re-
cent years have shifted to words such as Virtual Reality
and Artificial Intelligence. The wider use of these and
other technologies in architecture has been far limited by a
lack of IT tools with which architects could interface since
they have been made available in the last few years only.
The evolution of the tools used by the architect can be
condensed and simplified into a sequence of three stages:
Drawing Board, CAD systems, Game Engines. The frames
of this sequence, in addition to indicating instruments, are
representative of the historical context in which they have
been or are still being used. This study, based on a Mas-
ter thesis recently discussed at the Politecnico di Milano
[14], examines the role that Game Engines can play in the
graphic representation and design processes. More specif-
ically, it takes a closer look at the Unreal Engine as a tool
for creating a real-time design environment and using Arti-
ficial Intelligence (AI) technologies to represent user flows
in the space as valuable support and a relevant part of the
design strategies aiming at implementing and evaluating
design options. For this purpose, various simulations have
been carried out both considering users’ flows based on as-
signed spaces, and generating spaces based on the users’
flows.

Key words: artificial intelligence, flows, parametric mod-
eling, dynamic environment, game engines, simulations,
unreal engine
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Upotreba game enginea umjetne inteligencije u
svrhu predstavljanja protoka ljudi u arhitekton-
skim prostorima pomoću geometrije i grafike

SAŽETAK

Digitalna i njoj pripadajuća tehnološka evolucija posljed-

njih godina pretvorila se u riječi kao Virtualna stvarnost
i umjetna inteligencija. Šira upotreba ovih, ali i drugih

tehnologija u arhitekturi dosta je ograničena zbog ne-

dostatka IT alata s kojima su se arhitekti susretali s

obzirom na to da su bili dostupni jedino u posljednjih neko-

liko godina. Evolucija alata koju koriste arhitekti može

biti komprimirana i pojednostavljena promatrajući je u tri

faze: crtaća ploča, CAD sustavi, game enginei. Okviri ovih

faza predstavnici su povijesnog konteksta u kojem su se

koristili ili se još uvijek koriste. Ovo proučavanje koje

se temelji na diplomskom radu nedavno obradenom na

Politecnico di Milano [14], ispituje ulogu koju game en-
ginei mogu igrati u grafičkoj prezentaciji i procesu pro-

jektiranja. Konkretnije, bliže sagledava Unreal Engine kao

alat za stvaranje okoline projektiranja u stvarnom vremenu

i koristeći tehnologije Umjetne inteligencije predstavlja ko-

risničko razmǐsljanje u prostoru kao korisnu podřsku i

važan dio strategija projektiranja s ciljem implementacije

i evaluacije projektantskih opcija. Za ovu svrhu, brojne

simulacije su izvedene uzimajući u obzir i protoke korisnika

temeljene na konkretnom prostoru, ali i generiranje prosto-

ra temeljeno na protocima korisnika.

Ključne riječi: umjetna inteligencija, protoci, parametar-

sko modeliranje, dinamično okruženje, game enginei, sim-

ulacije, unreal engine

1 Play and serious game definition

To understand how real-time engines integrate in the Ge-
ometrical and Architectural context, we need to start from
upstream, as they fit into the digitization process, looking

at similarities and contact points with Geometry and Archi-
tecture, as well as at what architecture can get from these
digital engines. To this end it is necessary to remind mean-
ing and definition of Game and Play in relation to the topic.
The discipline behind this world is called Game Studies or
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Ludology. This sector studies games in general, the act of
playing, the player and the culture behind her/him, contex-
tualizing the historical playground. As we could expect,
the research fields falling within this sector are various and
vast, involving anthropology and sociology, as well as psy-
chology, over and above scientific and technical areas. All
these aspects contribute to define the design of a game con-
cerning both the player and the game itself and of course
in relation to the user. Not to be confused Game Studies or
Ludology, is about the study of video games, which is sim-
ply a branch of a much broader context dealing with Dig-
ital Games. In the playful context before the introduction
of the digital, a publication having a discreet influence and
still taken as a reference nowadays was Homo Ludens by
John Huizinga in 1944, as well as the subsequent discus-
sions, in which he highlighted the importance of the “Play”
element inside of a culture. Huizinga argued that play is a
factor of primary and fundamental importance for a soci-
ety. According to this point of view, he brings the highest
human achievements back as a product of the creativity of
the game.

The common perspective that play is only one form of cul-
ture among many is a modern deformation, and a concept
wrong in itself. On the point Huizinga expresses a sim-
ple contradiction: if the game were the product of human
culture there would be no play outside of it, but this is
not so since the game is much older and is already shown
in nature, as shown for example in the animals plays.
Therefore, since the Game exists before culture and before
mankind himself, one can think, opposite, that culture is
born through the Game. In the biological field, indeed, an
attempt has been made to give explanations and formulate
theories that try to define the game as a function of life,
explaining the game as something that serves biological
purposes. Even Huizinga asks: why do we play? What-
ever the answer, be it biological or not, in the end there
is always a relation with satisfaction, or with the pleasure
of playing that escapes any logical analysis, that is, pre-
cisely, what Huizinga says is the essence of the game. In
the Game there is an immaterial, conscious element of the
individual, which manifests itself in the physical existence
through the game itself. The Game is the door that con-
nects material and immaterial, real and virtual. From these
premises it is clear that the Game has a much higher value
than one would normally attribute to it, which transcends
both the biological and cultural activity of the individual
who performs it. It is an act having within itself an imma-
terial, archetypal and creative sense.

Moreover, at the time the author had already tried to free
the issue from another common but false opinion, which
saw the concept of Game as the opposite of seriousness.
Huizinga pointed out that this opposition of facts does not
hold up since the Game can be both serious and not se-
rious, and although there may be an oscillation between

these two opposites the Game still remains Game, show-
ing its own identity. On this subject in 1970 Clark C. Abt
introduced the phrase “serious games”, which he defined
as follows: “... these games have an explicit and carefully
thought-out educational purpose and are not intended to
be played primarily for amusement” [2, p. 9]. Today the
same idea is generally expressed as “games that aim at
training, educating, persuading or communicating values
and ideas” [5, p. 26]. In this context, according to the def-
inition above, “serious games” are no longer Game, or at
least they are not in their purest form, as they are exploited
for a certain purpose. In a Broader sense, quoting Juul,
“a rule-based formal system with a variable and quantifi-
able outcom” [9, p. 35]. Concerning the seriousness of a
Game, in support of the thesis that the words serious and
game are not necessarily two opposites of the same aspect,
a historical example can be taken as a reference from Von
Neumann and the Game Theory. Beyond the name, which
can make you mislead, contrary to what you might think,
he does not talk about Game in the common sense of the
term, although it is precisely from the observation of that
common context that Game is born. With the title: The-
ory of Games and Economic Behavior, he essentially put
mathematical aspects at the base of studying and analysing
the decisions of a subject in certain situations of conflict
with other rivals. In other words, he intended to predict
the behavior of individuals in situations that can lead to the
division or the winning of something in monetary terms
or more generally in utilitarian terms. The theory therefore
applies to an infinite number of scenarios, of various nature
and complexity, which can range from chess games to the
financial or economic market contexts. The most interest-
ing aspect of this story is that it shows a different definition
of Game. This point of view began to be used to evaluate
behaviors and choices of the “players”, no longer under-
stood as acts aimed at a mere fun or without a completely
defined purpose, but on the contrary, as actions having a
plan or a strategy behind, and aiming at specific purposes.

More recently Alessandro Baricco, in the book titled The
Game [3] describing the world in which we live in and the
digital revolution that underlies it, shows how this process
of gamification is definitely connected to our society, more
profoundly than we think. Baricco starts from a simple
similarity: Table football, Pinball, Video game. A simi-
larity that traces some historical stages of the technologi-
cal evolution of the digital. Well, starting from this path
he realizes that it reveals a substantial mutation behind the
use of more and more technologically evoluted Games. In
a Table football the feeling is natural, the noises are real,
you have to physically do a certain movement, a certain ef-
fort and even the ball is real. It is no more than a physical
game. If you switch to the Pinball (flipper) the situation
begins to change. Many of the noises become electrical,
and a screen appears that begins to take some importance.
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The ball is closed under a glass and the physical sensation
is reduced. There are only two keys, whose consistency
becomes much softer and different from the resistance of
table football. This passage is a sort of preparation for the
last passage, says Baricco, a kind of “limbo” to the final
step, which is the video game, of which Space Invaders
is the key reference and prototype. Here everything has
been transferred to the screen, physical remains are only
the keys that act as a link between the digital world and the
real world. The sounds have become completely artificial.
The rhythms change, much faster, with a different concept
of time, in a way more liquid. Everything has turned into
sequences of bits, numbers that are translated into images,
sounds, actions, etc. These games have an explicit and
carefully thought-out educational purpose and are not in-
tended to be played primarily for amusement. It slips into
a dematerialized world, with a different density, in other
words, as he says, in “the pure essence of the game”. In
this similarity the passage is not only in terms of digiti-
zation. If on the one hand you have loss in movement or
reality, on the other hand you have much in exchange. If
the table football, that is, just one physical device, offered
only one possibility of Game, the digital engine beyond
the screen potentially offered an infinite number of simu-
lated “realities”. What Baricco also points out is that the
same mentality that led to the evolution of the Game has
revolutionized and is still revolutionizing the companies.
According to the author this phenomenon exploded with
worldwide resonance in 2007 when Steve Jobs presented
the iPhone. In that context, a further transition to digiti-
zation was established. The keyboard characterizing the
fromer smartphones disappeared, and in its place a touch
screen with icons to press appeared. Well, in hindsight,
the iPhone itself is built like a Game device, and only the
purpose for which it is used changes, including games. In
addition to make phone calls (the original function still in
the name), from that moment on with one single device
you could send emails or write texts, take pictures or make
movies, and (of course) also play in the classic sense of
the term. Then on the one hand we have the Game with
the aim of having fun or, as Huizinga would say, without
any other necessary purpose if not that of the mere fun (let
us say funny game). On the other hand we have the Game
aimed at carrying out activities related to the everyday life
(let us say serious game). So far, the definition of Game
as it is intended in this discussion is not necessarily seen
as a playful aspect, but much more as a tool that through
the Play, intended as a productive factor, can lead into cre-
ative, and generative results, in the context in which it is
applied. A metaphor of that can be seen in terms of an
engine element that if inserted in a car results in allowing
motion, where the Play is movement for transporting pur-
poses, while, if applied to a children’s carousel generates
fun, and the Play is for entertainment and pastime.

2 Architecture and geometrical serious
games

Once you understand what is meant by Game, it is inter-
esting to note how this could be integrated into the geo-
metrical and architectural context and what are the com-
mon points between the two worlds. As you may have
already guessed for simplicity, we will no longer use the
words “serious game”, but simply: Game. Letting peo-
ple understand that it is neither our intent to trivialize the
matter in discussion, nor to diminish other related mat-
ters. It is for the pure sake of simplicity. Well, if we an-
alyze the structure of a Game, it is generally formed by
a visual, two-dimensional or three-dimensional part, man-
aged by the Game Designer, and by a structural, scripting,
computer-guided part precisely arranged by the Program-
mer. The same can be said for Architecture that comes
from the right dialogue between an aesthetic compositional
part, and a structural engineering part. And even Geome-
try can be seen as the result of a process and its ‘aesthetic’
representation. Therefore, Game, Architecture and Geom-
etry, share the same conformation processes. They, indeed,
share similar structural aspects concerning their ‘compo-
sition’. The similarity established by Baricco among ta-
ble football, pinball, and videogame in relation to how the
digital has historically changed, shows in time-lapse some
key moments of the digital evolution of the Game, which
in parallel could correspond to innovations in Architectural
design and in Geometry. To summarize, in all these three
fields we have gone on to an ever smaller physicality as
well as to a translation of graphic operations for visual pur-
poses into the form of codes, numbers, bits. Since even ar-
chitectural and geometrical are involved in the digital rev-
olution, the same time-lapse logic proposed by Baricco for
Games can be applied to these contexts, with special ref-
erence to the tools used, where an interesting comparison
would emerge. The similarity here proposed in relation to
digital graphics for architecture is the following: Drawing
Board, Cad Systems, Game Engine.

Figure 1: Timeline of frames and functionalities of tools
used by architects
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Each step of the sequence symbolically represents a frame
of a wider context, in which there is a change of both
the tools or the software and above all the potential that
the technological evolution offers. From the analogue of
the Drawing Board we have moved on to the CAD Sys-
tems in which the space is digitized in its two and three-
dimensional forms, up to the last step in which beyond the
digital space also the temporal component is simulated. It
is interesting to note some fundamental mutations if you
switch between the chain frames. When designing with
pencils, ink pen, paper and tracing paper on drawing tables,
everything was physical. You paid for the mistakes with
ink at the time, and all the instruments had a certain con-
sistency, certain smells and noises, and thicknesses. At the
time you got your hands dirty and there was a certain slow-
ness in all the processes, from pulling a line of which you
made sure its sweetness, to its cancellation. With Cad soft-
ware the situation has changed: pencils and ink no longer
exist, lines are produced by a command as well as their
cancellation, the tracing papers are called layers, you don’t
have to pour or remove them on the drawing, now they
are activated and deactivated with a click. The physical
drawing board no longer exists, or rather exists the digital
counterpart, which has become usually black. Not only the
graphic model developed is no longer limited to the two di-
mensions of the drawing board but it also acquires the third
dimension, the extrusion along the Z axis. The only con-
nection left with the drawing board is the paper, still used
to print on what is digitally produced, while nowadays also
3D printers started to take off. Much has been lost with
Cad Software, but in return it has also achieved quite a
bit: production speed, graphic cleaning, management of
every aspect of the design, etc. The last step in this chain is
about Game Engines. Not so much for their current level
of use but more for the potential they offer compared to
the Cad frame. Game Engines allow to work with an ele-
ment not well managed by Cad software: time. That brings
two main important features: the visualization and repre-
sentation of the scene in real time, with the possibility of
integrating the model in Virtual Reality, and the possibil-
ity of creating, through computer codes or scripts, possible
interactions between the user the element of a scene or the
scene itself. In other words, all the information as well as
the process that governs them will be condensed into a sin-
gle three-dimensional model accessible with any screen or
with a viewer, and controlled by visual interfaces. Good-
bye to paper. Because the information moves towards digi-
talization a further aspect needs to take into account called
Gameplay, in other words: the experience that comes from
the act of playing. Since there is a more and more explicit
dialogue between the spatial and the geometrical compo-
nents, the rules and processes behind it (Game) and the
temporal components (Play) it would be crucial consider

also this interaction between the game’s response and the
user, which “can generate outcomes that never could have
been imagined beforehand”. [12]

Game Engine choices and mapping

The choice of the Game Engine as a design and repre-
sentation tool was based on different factors. First of all,
together with Unity it is the most used software program
among game engines for architectural purposes. A re-
search conducted by CGarchitects shows that it is the most
used among Real Time Engines. Responses were gath-
ered between November 30 2017 and February 3 2018 via
CGarchitect’s community (social media & email newslet-
ter) and through Facebook groups associated with real-
time engines and architectural visualization. 997 Re-
sponses came from Social media and 1,066 responses came
from email newsletter subscribers. Second reason for the
choice is due to a series of characteristics that other com-
petitor software programs considered do not offer yet, or
they do not offer with the same quality. As you can see
in the Fig. 2 [Top Left] shows that Unreal is between the
most used in the architectural field as a visualization tool
and also the most used for experimental purposes among
general renderer software [Top Right]. What’s also inter-
esting is the use of Unreal Engine in the real time research
field [Down].

Although the programming is not the architect’s own disci-
pline, the software comes in handy giving the possibility to
program through a visual scripting editor called Blueprint.
This type of interaction with the software partly recalls
Grasshopper, however it should be noted that the two soft-
ware programs work on different contexts, from which a
different type of programming in the two cases follows.
In particular, Grasshopper is largely based on geometric
properties of which the architect has knowledge and s/he
is more familiar with, indeed Grasshopper is a plug-in of a
well-known NURBS modeler, Rhinoceros. It is not so for
Unreal Engine, a much more eclectic software that must in-
terface with software programs developed in a wide spec-
trum of disciplinary fields, and therefore is a much purer
kind of programming software in its essence. This aspect,
while on the one hand broadens the range of its program-
ming possibilities, on the other hand clearly complicates
the process, especially from those who are not accustomed
to these approaches, or at least to this specific software.
Another fundamental difference lies in being a software
that mainly pertains to the temporal aspects, although it
effectively integrates the spatial part with which it must in-
terface. This aspect shifts the context of its use more to the
simulative and experiential side of the represented space,
on which the work that follows is based.
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Figure 2: [Top Left] Percentage of use of rendering engines for visualization purposes. [Top Right] Percentage of
experimental use of rendering engines. [Down] Percentage of use of Real Time Engines between differ-
ent contexts. (Images above taken from https://www.unrealengine.com/en-US/blog/cgarchitect-survey-shows-
shift-to-real-time-rendering) (Image below taken from http://www.cgarchitect.com/2018/02/2018-architectural-
visualization-rendering-engine-survey)

Fig.3 shows a general mapping of the main functionali-
ties within UE4 (Unreal Engine release 4). This map was
based primarily on those features useful to architectural
and geometrical practice. Several other features are avail-
able, there are more than two hundred plugins available
and it is not excluded that combined together they could
generate other useful tools. However, it should be noted
that the true strength and effectiveness of what can be pro-

duced with this software, outside of mere visualizations
or architectural walkthroughs, lies in the combination of
these tools among them, thanks in particular to the func-
tionalities of scripting. A general classification can be done
within two categories: visualization and parameterization
but in a way it’s a simplification since there are other func-
tions in-between them.

Figure 3: General mapping of Unreal Engine: right block shows the set of functions we used
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Playing Architecture

For the Master dissertation, as well as for this paper, a
closer look at the Unreal Engine release 4 (UE4) has been
taken, as a tool for creating a real-time design environment
and for using Artificial Intelligence (AI) technologies to
represent users’ flows in the space, which can be adopted to
carry out design strategies and to evaluate design options.
For this purpose, several simulations have been developed,
either considering the pedestrian planar flows interlinked
with the form of space, either parametrically generating
spaces on the bases of the number of users. The first series
of tests is based on pre-assigned spatial contexts. In order
to test the AI programmed sets, different situations were
figured out and modeled in advance. Given the assigned
space, a series of points has been subsequently assigned,
working as ‘attractors’ according to possible users’ interest
locations, and a virtual robot (silhouette) has been placed
to explore the various possible paths, based on a random
sequences of movements towards the assigned attractor-
points. In order to graphically represent the visual sim-
ulations, the silhouette has been equipped with a tracing
video-camera system shoving at the same time its move-
ments and the scene from the camera point of view, and
allowing to reproduce in real-time the flows as graphic di-
agrams in the space. The AI system was also tested in a
3D spatial context characterized by differences in heights,
such as inclined corridors, vertical lifts, and so on, con-
necting the floors. A second series of tests has been carried
out considering the inverse process, that is, implementing a
generative system able to create new spaces, such as rooms
and paths, according to the needs emerged from the real-
time analysis of the parametrically assigned users’ flows.
Therefore, a generative algorithm was set, able to update
the geometry of space according to the number of peo-
ple supposed to ‘need space’: in other words, space ex-
panded according to the number of users. This generative
process is based on a preliminary evaluation of the entire
scenario, which essentially controls the generation itself
in order to match ‘rooms and paths’ with the number of
users. What we developed here with Unreal Engine would
only show the power and the potentiality of this typology
of software, which is still to be fully discovered, since it
has been available only few years ago, and the software
houses are only recently getting increasingly interested in
the architectural field. However, considering the present
state of art, we tried to propose some tests on if and how
it is possible to use the system outside of its native target
environment, adapting it to an architectural design spatial
context. In our case the Master thesis, which was at the
origin of this work, was confined to focusing on the use of

UE4 to realize an AI system helpful to represent and con-
trol - visually and parametrically - pedestrian flows in a
three-dimensional environment, either pre-existing or gen-
erated according to specific inputs. More generally, linking
analysis and project, especially in more complex scenarios,
it can serve as a tool for mapping and analyzing architec-
tural contexts, as well as for implementing, verifying, and
comparing design choices, that is, efficiently sustaining the
whole chain of the architectural design process.

Artificial Intelligence: NPC and Behaviour Tree

In order to develop the simulation mentioned above an AI
process has been set and programmed. The simulation is
mainly composed by three parts: the logic of how it works
(Behaviour Tree or BT), a virtual actor (Non-Player Char-
acter or NPC) that can represent visually the result of the
Ai logic process, and the basic physics (Collision Physics)
of the digital environment of the scene (Map or Level). The
First step has been about setting in the scene a NPC, shown
in Fig. 4 and formed by the components appearing in the
drop down menu placed on the top in the same figure.

Figure 4: [Above] NPC components list, [Below] NPC
visual representation (Camera remain hidden
during simulations)
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The mesh representing the body of the silhouette, em-
beds the physical information of the body including hu-
man joints and articulations and their possible movements
in space. (Fig. 5)

Figure 5: [Above] NPC partial skeleton composition list,
[Below] NPC with hidden overlapped collision
physics

The Arrow vector gives indication of the primary move-
ment direction, and a capsule component is also used to
trigger collision events or even understand where other
NPCs are located in the scene. This function has not been
used at the moment for the following tests, due to the par-
ticular induced behaviours when two or more NPC’s path
direction collide, and NPC simultaneously take the same
decision to avoid the other(s). A video camera allows to
record the AI movements, and finally a trail particle is set,
which allows to trace the movements in the space basically
linking the coding part with the representative graphic part.
A collision physics useful to avoid overlapping geometries
has been inserted in the scene by superimposing to all the
solids a hidden simplified mesh of their geometry itself
(see Fig. 5 in purple the simplified body mesh of the NPC)

Then, in order to represent flows in space, the first neces-
sary step was to program an AI system which simulates a
hypothetical logical process for which an individual tries
to reach a point or an array of interesting locations by trav-
eling in the fastest way and considering obstacles and areas
where the passage is prevented for various reasons. In UE4
it is possible to obtain this result by using two integrated
functions, the Bluprint Editor, that is, a visual scripting
tool used to code functions, and the Behavior Tree (BT),
which manages the programmed functions with a system
of structural nodes. The Fig. 6 [Top] shows the BT sys-
tem that simulates the user behavior, while in the Fig. 6
[Center and Down] some blueprints that manage specific
behaviours.

In simplified terms the AI operation is based on the fol-
lowing logic: recalling by function the NPC; loading in
memory the NPC location point and his destination point,
previously set; imposing the creation of one or more vec-
tors that connects the two points; making the NPC move
towards the first point previously set, along the generated
vector. Once at destination, a certain waiting time has been
set (it can be avoided) before the following command is
activated. At this point the AI must be activated to under-
stand which is the next destination point, in order to repeat
the process a number of times up to the end point of the ar-
ray. Once it gets the last point, it would be possible to de-
cide whether (or not) to reverse the preset points or make
them repeat in loop. Another alternative is to randomize
the system of the preset points, so that there is no prede-
fined path by increasing the number of possible displace-
ments, then without binding the movement to a predeter-
mined sequence. This last option has been chosen in order
to replicate a hypothetical not predetermined behaviour.

About the physics, it has been set what is called collision
physics that gives to the elements in the scene the property
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of “solidity” as in the real world, in order avoid geometries
and element in the scene to interpenetrate, passing through
each other. Also the gravity force has been set. Finally,
closely linked to the collisions, and in order to be able to
make the AI understand if there are obstacles along the
path that the NPC will have to travel, a volume called “Nav
Mesh Bounds Volume” has been added to the scene. It al-
lows to create a mesh calculated on the basis of the objects
to which a collisions physic was applied and which reside

within this volume. The generated mesh will be parallel
to the surfaces of the scene, considering also the angles
of the slopes. If they are slower than the established one
it will be walkable. If higher it will be interpreted as ob-
stacles. Therefore, this process will determine the space
within which the AI can move, after eliminating the ob-
stacles, and on which the AI logic will calculate the route
towards the preset points.

Figure 6: [Above] Behavior Tree programmed to simulate user flows. [Center and Below] Examples of blueprints that
manage some nodes of the BT.
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Figure 7: [Sequence Left] Simulation with collision physics applied only to the body of the NPCs. If they collide they
change their trajectory due only to physics. [Sequence Right] Collision physics applied to a larger area and
calculated dynamically by the Nav Mesh Bounds Volume frame by frame. The AI that manages the NPC trying
to find a way not to collide, since they see each other as obstacles.

Form to flows

In order to test the AI programmed, a hypothetical residen-

tial interior space has been modeled, to which the volumes

of some furnishings have been added. A series of points

were subsequently assigned, within the housing hypothe-

sis, in places of possible interesting areas. (Fig. 8)

The sequence of movement of the silhouette towards these

points has been randomized so that it does not follow a pre-

determined sequence, but once the simulation has started it

can move freely and randomly to any of the preset points

inside the Nav Mesh Bound Volume. (Fig. 9)
Figure 8: Hypothetical residential plan with the location

of the ‘PathPoints’
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Figure 9: Model with indicated in green the ‘Nav Mesh
Bounds Volume’

Once the first point is reached, the sequence will be shuf-
fled again so that from any point the silhouette can reach
all the others, even the ones visited before. This prevents
a previously reached point from being ignored at a later
stage. It also prevents the same route from being traveled
over time, and consequently allows to increase the num-
ber of possible routes that can be considered. Moreover,
the choice to randomly determine the path of the NPC al-
lows to evaluate the simulation from other points of view
as a privileged point of view it is not predetermined. This
choice, although it may seem simplistic, gives the AI a cer-
tain unpredictability that partly mimics human behavior. In
order to be able to graphically represent the simulation, the
silhouette has been equipped with a system that traces its
movement during the displacement, and allows to visual-
ize the flows in space for the time of the simulation. Since
the simulation would go on to infinity, it was programmed
to suspend it as soon as all the points in the scene were
reached from each position. It should be noted that if the
AI is set on the random proceeding of the points, each sim-
ulation is different from the other even though sharing sim-
ilar patterns, while the most traveled areas, as well as those
that are not, are graphically highlighted. In the residential
housing hypothesized it can be seen that both in relation to
the fastest routes and in relation to obstacles such as walls
and furnishings, the corridor is one of the most crossed ar-
eas by the silhouette, as it is supposed to be in a real similar
spatial situation. Fig. 10-13

Figure 10: AI calculated flows without considering furni-
ture

Figure 11: AI calculated flows considering furniture

Figure 12: Perspective view of the AI calculated flows
without considering furniture

Figure 13: Perspective view of the AI calculated flows
considering furniture

In another simulation, the AI was tested in a context with
differences in heights reached through inclined corridors,
or vertical lifts. Even in this case the movements’ se-
quence was randomized for the same reasons as in the pre-
vious case. The representation of the flows appears here in
three dimensions, according to the differences in high, then
we have a properly said three-dimensional dynamic spatial
scenario. The AI is able to calculate the hypothetical flows
given any form of space. The (Fig. 14) show the model on
which the test was carried out, (Fig. 15) the set of points
that allowed the AI to address the Silhouette on the basis
of the Nav Mesh Bounds Volume (Fig. 16) and finally the
graphic representation of the resulting flows, represented
both in perspective (Fig. 17) and in top view (Fig. 18).
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Figure 14: Hypothetical model designed with different
levels

Figure 15: Model set with ‘Path Points’

Figure 16: Model with indicated in green the ‘Nav Mesh
Bounds Volume’

Figure 17: Model with the AI calculated flows repre-
sented

Figure 18: Zenithal view of the model with the AI calcu-
lated flows represented

Flows to form

Considering the inverse process that can be described as
the determination of form given the flows, a generative sys-
tem has been programmed to create, on the basis of vari-
ous parameters (Fig. 19), a spatial system based on several
floor levels, where some spaces are connected by ramps.
The generation of spaces is based on a system of nodes
(Fig. 20) which corresponds to hypothetical spaces of in-
terest and which subsequently correspond to the points that
the AI identifies as areas to be reached.

Figure 19: Parameters: generation settings

Room

Node connector to 

the next !oor

Node

Node connector to 

the next !oor

Figure 20: Node based generation system
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The number of nodes also corresponds to the number of
people who are supposed to reach a certain level or the
probability of this happening. Knowing the points from
where people start, up to where and in what number they
have to arrive, is the information based on which the form
of rooms and connections is generated and subsequently
the AI is asked to determine the generation of the flows.
Once the inputs have been set, we have to make sure that
the generation will take place within the Nav Mesh Bounds
Volume previously placed in the scene. Then, after start-
ing the simulation, based on the parameters previously set
the system calculates the forms, which automatically and
dynamically will be read by the Nav Mesh Bounds Vol-
ume, that will adapt to the geometry of the spaces just
created. This system, however abstract and partly limited,
allows for the creation of forms and spaces in relation to
the needs. The code that allowed the generation was pro-
grammed to create the various elements in sequence and
then repeat the process on each floor but varying the gen-
eration points depending on what was previously created.
Starting by the planes and volumes visible in Fig. 21 and
on the basis of the number of nodes set the forms could be
generated. (Fig. 22) The code (Fig. 23) that forms the basis
for creating a floor is essentially the same as the one that
generates the next floor, except for the variation of the gen-
eration coordinates, since also the elevation is considered.

Figure 21: Basic geometric settings at the starting point

Figure 23: Code scheme for the generation process
Figure 22: Generation sequence

51



KoG•23–2019 S. Porro, L. Cocchiarella: Use of a Game Engine Artificial Intelligence. . .

So, each subsequent floors can be repeated and extended
to the number of floors desired, which are placed as a se-
ries by adding the appropriate variables for each new floor.
Fig. 24-25 show some generative examples obtained by
varying the settings programmed, in synergy with the AI
which automatically identifies the destination points gen-
erated.

Figure 24: Forms generation with indicated the dynamic
Nav Mesh Bounds Volume and AI flows calcu-
lation

Figure 25: Forms generation with indicated the dynamic
Nav Mesh Bounds Volume and AI flows calcu-
lation

A further development on the generative theme, based on
linking users and flows, was in programming a system that
is generated according to the number of people who are
supposed to need space. In other words, space expands ac-
cording to the number of users. The generative process that
led to the realization of the architectural elements is based
on the same script as in Fig. 23 placed in series but adding
a piece of script that allows to indicate to the system if and
when there is a need to add a new floor. In other words it
activates (or not) the generation of new floors on the basis
of an evaluation. This evaluation is managed by a function
placed at the beginning of the entire generative process and
which essentially sets the number of floors and the num-
ber of nodes desired for each floor based on the number of
users. The generative sequence acts to always match the
total number of nodes with a certain limit number of users
preset. Fig. 26 shows in a graphic sequence the relation
between users and the expansion of the space.

Figure 26: Simulation of the sequences generating
spaces in relation to the number of users
added to the scene with subsequent simula-
tion of flows through AI calculation

Campus Leonardo’s main square at the Politecnico di
Milano: flows simulation

The experimentations presented until now have been car-
ried out either starting from pre-existing spatial situa-
tions or moving toward the hypothetical generation of new
spaces, on a reduced scale. We present now a test of the AI
system carried out on a real case and on a wider scale. Pi-
azza Leonardo da Vinci, that is, the main square in front of
the Campus Leonardo of the Politecnico di Milano (head-
quarter) is taken as a test area. Several simulations have
been made to test the AI in this context. As in the previous
cases, a series of points have been set which are visible in
Fig. 27 which corresponds to the main access points of the
Politecnico and to all the possible roads that can be fol-
lowed to exit or enter the square. The digital model of the
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space has been developed integrating data from the munic-
ipal vector maps, Google Maps and with a real life sur-
vey by photo modelling. The first simulation was done by
controlling the flows, and directing them to predetermined
points of interest without moving the silhouettes towards
other points. Then a further simulation was done making
people move from one point to another in Piazza Leonardo.
In this case the NPC could reach a point and then randomly
choose another one to go to, in this way the same NPC

could simulate a variety of user behaviours. Several situa-
tions were considered: first silhouettes moving from some
designated points to other designated points, and finally to-
wards any points at random. All the simulations were then
repeated increasing the level of restrictions in the paths:
considering green areas, benches, and driveways as obsta-
cles. A summary of some results of these simulations can
be seen in Fig. 28.

Figure 27: Leonardo Square model with the set of ‘Path Points’ for the simulation flows through the AI

Figure 28: [From Top to Down] Flows simulation on Leonardo Square: from the headquarter accesses to the access/exit
points of the square, from the subway to the access/exit points and randomly. [From Left To right] Considering
both the flower beds and the streets as not viable, considering only the roads as viable, completely free.
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Finally, a hypothetical movement of a NPC was repro-
duced by superimposing the virtual animated walk of the
NPC and the corresponding graphic track of the path in-
side a video, previously recorded in the Piazza Leonardo
da Vinci. To do this, additional software programs have
been used, together with Unreal Engine. Once the video in
the real place was made, the camera movement was traced
through a software called Boujou (Fig. 29), which allows
to track the movement performed by the operator and rep-
resenting it three-dimensionally in a virtual space. Subse-
quently, the track made by the camera at the time of record-
ing was exported in 3ds Max in which the viewpoint was
positioned at the desired height and orientation (Fig 30).
Finally the file was exported in .fbx format and imported
into the UE4. In the UE4 a camera was set and it was given
the same movement in the space traced by the Boujou soft-
ware. Moreover, the parameters of light and sunshine were
set on the basis of those detectable in the real space at the
time of video recording. Subsequently, the desired move-
ment of the silhouette was recorded on a green background
(Fig. 31), and finally, the final sequence was composed us-
ing the software program After Effect, by combining the
original video with the one created in the UE4, appropri-
ately cropped to eliminate the green background (Fig. 32).
The result can be seen in Fig. 33.

Figure 29: Boujou interface, used to track camera the
movement of a video

Figure 30: Tracing camera movement exported in 3ds
Max in order to set the right camera height,
and for exporting the .fbx format loadable
into Unreal Engine

Figure 31: Video screenshot with a green background
rendered in Unreal Engine using the traced
movement of the camera

Figure 32: Overlay of the original video and green
screen video using After Effect

Figure 33: Overlapping level and final result

Possible future developments

In the area of AI research, further developments can be ex-
pected in different directions, either focusing on the sim-
ulation of contexts and their uses, either on types and be-
haviour of the users, as well as on the complexity of their
interactions. Many of these are already at work in the
world of Video Games. Concerning the path point they
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could be set in a probability reach state, in other words
each point would have a probability chance to be reached
by the NPC, which could even change in relation to certain
external factors. In the architectural field, a welcome de-
velopment can of course deal with more advanced aspects,
like patterns referring to perceptual senses (sight, hearing,
or tactile, also including external events, and so on), and on
their translation into the virtual environment, based on sim-
ilar parametric operations. The integration of senses could
suggest to the based subjects (NPC) changes of direction,
path or any other behavioral reaction according to the con-
text topic. Additional forms of AI can arise from the com-
bination of more senses, as well as from other external fac-
tors generally attributable to virtual atmospheric events or
other AI behaviours which could integrate the possibility
for the AI to predict hypothetical future events and scenar-
ios and take decision based on that. Strictly linked with
this last topic is the psychological behavioral factor both
related to the movement of the individuals in relation to
the masses and vice versa. This point introduces a rele-
vant and very actual subject linked to the “realism” of the
context of the AI environment. In this case, given the dif-
ficulty of translating behavioral psychological aspects into

appropriate descriptive codes because of their probabilistic
nature, it would be appropriate to introduce neural network
technologies based on machine learning and deep learning
systems, which we are aiming to do in the future.

Conclusions

What this study has brought to light is the possibility of us-
ing tools currently used in the video game world for archi-
tectural analysis, design or teaching purposes, bringing a
series of potentials that are still almost rarely found among
the tools currently used in the architectural design contexts.
It has been shown how through the use of UE4 it was possi-
ble to realize an artificial intelligence-based process able to
represent three-dimensional flows both in pre-existing and
in generative models according to design needs, as well
as to expand a space in relation to an increasing number of
users. More extensively this system can be used for analyz-
ing, comparing and even introducing new design choices,
resulting very useful in contexts characterized by high lev-
els of complexity and in the advanced stages of the design
development.
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