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ABSTRACT

In this paper we study the Nil geometry that is one of the
eight homogeneous Thurston 3-geometries.

We determine the equation of the translation-like bisector
surface of any two points. We prove, that the isosceles
property of a translation triangle is not equivalent to two
angles of the triangle being equal and that the triangle
inequalities do not remain valid for translation triangles in
general. We develop a method to determine the centre
and the radius of the circumscribed translation sphere of
a given translation tetrahedron.

A further aim of this paper is to study lattice-like coverings
with congruent translation balls in Nil space. We intro-
duce the notion of the density of the considered coverings
and give upper estimate to it using the radius and the
volume of the circumscribed translation sphere of a given
translation tetrahedron. The found minimal upper bound
density of the translation ball coverings ∆ ≈ 1.42783. In
our work we will use for computations and visualizations
the projective model of Nil described by E. Molnár in [6].

Key words: Thurston geometries, Nil geometry,
translation-like bisector surface of two points, circum-
scribed sphere of Nil tetrahedron, Dirichlet-Voronoi cell
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Rešetkasto pokrivanje kongruentnim transla-
cijskim kuglama pomoću simetralnih ploha u Nil
geometriji

SAŽETAK

U radu proučavamo jednu od osam homogenih Thurstono-

vih 3-geometrija, Nil geometriju.

Odred-ujemo jednadžbu translacijske simetralne plohe za

bilo koje dvije točke. Dokazujemo da činjenica da je tro-

kut jednakokračan nije ekvivalentna činjenici da trokut

ima dva jednaka kuta, te da općenito nejednakosti trokuta

ne vrijede za translacijske trokute. Razvijamo metodu za

odred-ivanje sredǐsta i polumjera opisane translacijske sfere

danog translacijskog tetraedra.

Daljnji je cilj ovog rada proučavanje rešetkastih pokri-

vanja kongruentnim translacijskim kuglama u Nil prostoru.

Uvodimo pojam gustoće promatranog pokrivanja i da-

jemo njezinu gornju procjenu pomoću polumjera i obujma

opisane translacijske sfere danog translacijskog tetraedra.

Pokazujemo da je gornja granica pokrivanja translacijskim

kuglama ∆≈ 1.42783. U radu koristimo izračune i vizuali-

zaciju projektivnog modela Nil prostora opisane u radu [6]

E. Molnára.

Ključne riječi: Thurstonove geometrije, Nil geometrija,

translacijska simetralna ploha dviju točaka, opisana sfera

Nil tetraedra, Dirichlet-Voronoijeve ćelije

1 Introduction

The basic problems in the classical theory of packings and
coverings, the development of which was strongly influ-
enced by the geometry of numbers and by crystallogra-
phy, are the determination of the densest packing and the

thinnest covering with congruent copies of a given body.
At present the body is a ball and now we consider the
lattice-like covering problem with congruent translation
balls in Nil space.

These questions related to the theory of the Dirichlet-
Voronoi cells (brifly D−V cells). In 3-dimensional spaces
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of constant curvature the D−V cells are widely inves-
tigated, but in the further Thurston geometries S2×R,
H2×R, Nil, Sol, S̃L2R there are few results in this topic.
Let X be one of the above five geometries and Γ is one
of its discrete isometry groups. Moreover, we distinguish
two distance function types: dg is the usual geodesic dis-
tance function and dt is the translation distance function
(see Section 3). Therefore, we obtain two types of the
D−V cells regarding the two distance functions.

The firs step to get the D−V cell of a given point set of
X is the determination of the translation or geodesic-like
bisector (or equidistant) surface of two arbitrary points of
X because these surface types contain the faces of D−V
cells.

In [12], [13], [14] we studied the geodesic-like equidis-
tant surfaces in S2×R, H2×R and Nil geometries, and
in [25] we discussed the translation-like bisector surfaces
in Sol geometry, but there are no results concerning the
translation-like equidistant surfaces in Nil and S̃L2R ge-
ometries.

In the Thurston spaces can be introduced in a natural way
(see [6]) translations mapping each point to any point.
Consider a unit vector at the origin. Translations, pos-
tulated at the beginning carry this vector to any point by
its tangent mapping. If a curve t → (x(t),y(t),z(t)) has
just the translated vector as tangent vector in each point,
then the curve is called a translation curve. This assump-
tion leads to a system of first order differential equations,
thus translation curves are simpler than geodesics and dif-
fer from them in Nil, S̃L2R and Sol geometries. In E3,
S3, H3, S2×R and H2×R geometries the translation and
geodesic curves coincide with each other.

Therefore, the translation curves also play an important
role in Nil, S̃L2R and Sol geometries and often seem to
be more natural in these geometries, than their geodesic
lines.

In this paper we study the translation-like bisector surface
of any two points in Nil geometry, determine its equation
and visualize them. The translation-like bisector surfaces
play an important role in the construction of the D−V cells
because their faces lie on bisector surfaces. The D−V -
cells are relevant in the study of tilings, ball packing and
ball covering. E.g. if the point set is the orbit of a point
- generated by a discrete isometry group of Nil - then we
obtain a monohedral D−V cell decomposition (tiling) of
the considered space and it is interesting to examine its op-
timal ball packing and covering (see [21], [22]).

Moreover, we prove, that the isosceles property of a trans-
lation triangle is not equivalent to two angles of the triangle
being equal and that the triangle inequalities do not remain
valid for translation triangles in general.

Using the above bisector surfaces we develop a procedure
to determine the centre and the radius of the circumscribed
translation sphere of an arbitrary Nil tetrahedron. This is
useful to determine the least dense ball covering radius of a
given periodic polyhedral Nil tiling because the tiling can
be decomposed into tetrahedra. Applying the above proce-
dure we determine the minimal covering density of some
lattice types and thus we give an upper bound of the lattice-
like covering density related to the most important lattice
parameter k = 1.

2 On Nil geometry
Nil geometry can be derived from the famous real matrix
group L(R) discovered by Werner Heisenberg. The left
(row-column) multiplication of Heisenberg matrices1 x z

0 1 y
0 0 1

1 a c
0 1 b
0 0 1

=

1 a+ x c+ xb+ z
0 1 b+ y
0 0 1

 (1)

defines “translations” L(R)= {(x,y,z) : x, y, z∈R} on the
points of Nil = {(a,b,c) : a, b, c ∈ R}. These translations
are not commutative in general. The matrices K(z)C L of
the form

K(z) 3

1 0 z
0 1 0
0 0 1

 7→ (0,0,z) (2)

constitute the one parametric centre, i.e. each of its el-
ements commutes with all elements of L. The elements
of K are called fibre translations. Nil geometry of the
Heisenberg group can be projectively (affinely) interpreted
by “right translations” on points as the matrix formula

(1;a,b,c)→ (1;a,b,c)


1 x y z
0 1 0 0
0 0 1 x
0 0 0 1

=

= (1;x+a,y+b,z+bx+ c)

(3)

shows, according to (1). Here we consider L as projec-
tive collineation group with right actions in homogeneous
coordinates. We will use the Cartesian homogeneous coor-
dinate simplex E0(e0),E∞

1 (e1),E∞
2 (e2), E∞

3 (e3), ({ei}⊂V4

with the unit point E(e = e0 + e1 + e2 + e3)) which is dis-
tinguished by an origin E0 and by the ideal points of coor-
dinate axes, respectively. Moreover, y = cx with 0 < c ∈R
(or c ∈ R \ {0}) defines a point (x) = (y) of the pro-
jective 3-sphere P S 3 (or that of the projective space P 3

where opposite rays (x) and (−x) are identified). The
dual system {(ei)}, ({ei} ⊂ V 4), with eie j = δ

j
i (the Kro-

necker symbol), describes the simplex planes, especially
the plane at infinity (e0) =E∞

1 E∞
2 E∞

3 , and generally, v= u 1
c
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defines a plane (u) = (v) of P S 3 (or that of P 3). Thus
0 = xu = yv defines the incidence of point (x) = (y) and
plane (u) = (v), as (x)I(u) also denotes it. Thus Nil can be
visualized in the affine 3-space A3 (so in E3) as well [11].
In this context E. Molnár [6] has derived the well-known
infinitesimal arc-length square invariant under translations
L at any point of Nil as follows

(dx)2 +(dy)2 +(−xdy+dz)2 =

= (dx)2 +(1+ x2)(dy)2−2x(dy)(dz)+(dz)2 =: (ds)2
(4)

The translation group L defined by formula (3) can be ex-
tended to a larger group G of collineations, preserving the
fibres, that will be equivalent to the (orientation preserv-
ing) isometry group of Nil.
In [7] E. Molnár has shown that a rotation through angle
ω about the z-axis at the origin, as isometry of Nil, keep-
ing invariant the Riemann metric everywhere, will be a
quadratic mapping in x,y to z-image z as follows:

M = r(O,ω) : (1;x,y,z)→ (1;x,y,z);
x = xcosω− ysinω, y = xsinω+ ycosω,

z = z− 1
2

xy+
1
4
(x2− y2)sin2ω+

1
2

xycos2ω.

(5)

This rotation formula M , however, is conjugate by the
quadratic mapping α to the linear rotation Ω in (7) as fol-
lows

α
−1 : (1;x,y,z) α−1

−→ (1;x′,y′,z′) = (1;x,y,z− 1
2

xy) to

Ω : (1;x′,y′,z′) Ω−→ (1;x”,y”,z”) =

(1;x′,y′,z′)


1 0 0 0
0 cosω sinω 0
0 −sinω cosω 0
0 0 0 1

 ,

with α : (1;x”,y”,z”) α−→ (1;x,y,z) =

= (1;x”,y”,z”+
1
2

x”y”).

(6)

This quadratic conjugacy modifies the Nil translations in
(3), as well. Now a translation with (X ,Y,Z) in (3) instead
of (x,y,z) will be changed by the above conjugacy to the
translation

(1;x,y,z)−→ (1;x,y,z) =

= (1;x,y,z)


1 X Y Z− 1

2 XY
0 1 0 − 1

2Y
0 0 1 1

2 X
0 0 0 1

 ,
(7)

that is again an affine collineation.

2.1 Translation curves and balls

We consider a Nil curve (1,x(t),y(t),z(t)) with a given
starting tangent vector at the origin O = E0 = (1,0,0,0)

u = ẋ(0), v = ẏ(0), w = ż(0). (8)

For a translation curve let its tangent vector at the point
(1,x(t),y(t),z(t)) be defined by the matrix (3) with the fol-
lowing equation:

(0,u,v,w)


1 x(t) y(t) z(t)
0 1 0 0
0 0 1 x(t)
0 0 0 1

= (0, ẋ(t), ẏ(t), ż(t)).

(9)

Thus, the translation curves in Nil geometry (see [8], [10],
[11]) are defined by the above first order differential equa-
tion system ẋ(t) = u, ẏ(t) = v, ż(t) = v · x(t)+w, whose
solution is the following:

x(t) = ut, y(t) = vt, z(t) =
1
2

uvt2 +wt. (10)

We assume that the starting point of a translation curve is
the origin, because we can transform a curve into an arbi-
trary starting point by translation (3), moreover, unit initial
velocity translation can be assumed by “geographic” pa-
rameters φ and θ:

x(0) = y(0) = z(0) = 0;
u = ẋ(0) = cosθcosφ,

v = ẏ(0) = cosθsinφ,

w = ż(0) = sinθ;

−π≤ φ≤ π, −π

2
≤ θ≤ π

2
.

(11)

Definition 1 The translation distance dt(P1,P2) between
the points P1 and P2 is defined by the arc length of the
above translation curve from P1 to P2.

Definition 2 The sphere of radius r > 0 with centre at the
origin, (denoted by St

O(r)), with the usual longitude and al-
titude parameters φ and θ, respectively by (11), is specified
by the following equations:

St
O(r) :


x(φ,θ) = r cosθcosφ,
y(φ,θ) = r cosθsinφ,

z(φ,θ) = r2

2 cos2 θcosφsinφ+ r sinθ.

(12)

Definition 3 The body of the translation sphere of centre
O and of radius r in the Nil space is called translation ball,
denoted by Bt

O(r), i.e. Q ∈ Bt
O(r) iff 0≤ dt(O,Q)≤ r.

Remark 1 The translation sphere is a simply connected
surface without selfintersection in Nil space for any radius
0 < r ∈ R.
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We obtained in [20] the volume formula of the translation
ball Bt

O(r) of radius r by (4), (5) and (12):

Theorem 1 The volume of a translation ball of radius r is
the same as that of an Euclidean one:

Vol(Bt
O(r)) =

4
3

r3
π. (13)

The convexity of the translation ball play an important role
in the discussion of the ball covering therefore we recall
the following Theorem from the paper [20].

Theorem 2 A translation Nil ball Bt(St(r)) is convex in
the affine-Euclidean sense in our model if and only if
r ∈ [0,2].

2.2 The discrete translation group L(Z, k)

We consider the Nil translations defined in (1) and (3) and
choose first two non-commuting translations

τ1 =


1 t1

1 t2
1 t3

1
0 1 0 0
0 0 1 t1

1
0 0 0 1

 and τ2 =


1 t1

2 t2
2 t3

2
0 1 0 0
0 0 1 t1

2
0 0 0 1

 ,

(14)

now with upper indices for the coordinate variables.
Second, we define the translation (τ3)

k, (k ∈ N \
{0} k is fixed natural exponent), by the following commu-
tator:

(τ3)
k = (τ−1

2 τ
−1
1 τ2τ1)

k =


1 0 0 −t1

2 t2
1 + t1

1 t2
2

0 1 0 0
0 0 1 0
0 0 0 1


k

,

and so τ3 (k = 1)
(15)

is also defined. If we take integers as coefficients for
τ1,τ2,τ3, then we generate the discrete group 〈τ1,τ2,τ3〉,
denoted by L(τ1,τ2,k) or by L(Z,k). Here Z refers to the
integers.
We know (see e.g. [18] and [19]) that the orbit space
Nil/L(Z,k) is a compact manifold, i.e. a Nil space form.

Definition 4 The Nil point lattice ΓP(τ1,τ2,k) is a discrete
orbit of point P in the Nil space under group L(τ1,τ2,k)=
L(Z,k) with an arbitrary starting point P for every fixed
k ∈ N\{0}.

Remark 2 For simplicity we have chosen the origin as
starting point, by the homogeneity of Nil.

Remark 3 We may assume in the following that t2
1 = 0,

i.e. the image of the origin by the translation τ1 lies on the
plane [x,z].

We consider by (14-15) a fundamental “parallelepiped
complex” (see [20])

F̃ (k)=OT1T2T3T12T21T23T213T13, (see Fig. 1 for k = 1,2)

in the Euclidean sense, which is determined by translations
τ1,τ2,τ3. The images of F̃ (k) under L(Z,k) fill Nil with-
out gap. Overlaps occur only on the boundary.

Figure 1: The Nil parallelepipeds F̃ (1) (left) and F̃ (2)
(right).

Analogously to the Euclidean integer lattice and paral-
lelepiped, F̃ (k) (k ∈ N \ {0}) can be called a Nil par-
allelepiped, endowed by face pairing, as the upper ∼ hints
to it.
F̃ (k) is a fundamental domain of L(Z,k). We need only
its interior for its volume. The homogeneous coordi-
nates of the vertices of F̃ (k) can be determined in our
affine model by the translations (14-15) with the param-
eters t j

i , i ∈ {1,2}, j ∈ {1,2,3} (see (16) and Fig. 1).

T1(1, t1
1 ,0, t

3
1 ), T2(1, t1

2 , t
2
2 , t

3
2 ), T3(1,0,0,

t1
1 t2

2
k

),

T13(1, t1
1 ,0,

t1
1 t2

2
k

+ t3
1 ), T12(1, t1

1 + t1
2 , t

2
2 , t

3
2 + t3

1 ),

T21(1, t1
1 + t1

2 , t
2
2 , t

1
1 t2

2 + t3
1 + t3

2 ), T23(1, t1
2 , t

2
2 , t

3
2 +

t1
1 t2

2
k

),

T213 = T231(1, t1
1 + t1

2 , t
2
2 ,(k+1)

t1
1 t2

2
k

+ t3
1 + t3

2 ).

(16)

In [19] we have determined the volume of the Nil paral-
lelepiped F̃ (1). Analogously to that we get the volume
formula of F̃ (k) (k ∈ N) by the usual method:∫ ∫ ∫

F̃ (k)

√
det(gi j) dxdydz =Vol(F̃ (k)) =

=
1
k

∫ t2
2

0

∫ t1
1

0
|t1

1 · t2
2 | dxdy =

(t1
1 · t2

2 )
2

k
.

(17)
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If the parameter k is given, from this formula it can be seen
that the volume of a Nil parallelepiped depends on two pa-
rameters, i.e. on its projection into the [x,y] plane.

3 Translation-like bisector surfaces

Our further goals are to examine and visualize the
Dirichlet-Voronoi cells and the packing and covering prob-
lems of Nil geometry. In order to study the above questions
have to determine the “faces” of the D−V cells that are
parts of bisector (or equidistant) surfaces of given point
pairs. The definition below comes naturally:

Definition 5 The equidistant surface SP1P2 of two arbi-
trary points P1,P2 ∈ Nil consists of all points P′ ∈ Nil, for
which dt(P1,P′) = dt(P′,P2).

It can be assumed by the homogeneity of Nil that the start-
ing point of a given translation curve segment is E0 = P1 =
(1,0,0,0) and the other endpoint will be given by its ho-
mogeneous coordinates P2 = (1,a,b,c). We consider the
translation curve segment tP1P2 and determine its parame-
ters (φ,θ,r) expressed by the real coordinates a, b, c of P2.
We obtain directly by equation system (12) the following:

Lemma 1 1. Let (1,a,b,c) (a,b ∈ R \ {0}, c ∈ R) be
the homogeneous coordinates of the point P ∈ Nil.
The parameters of the corresponding translation
curve tE0P are the following

φ = arccot
(a

b

)
, θ = arccot

(√a2 +b2

c− ab
2

)
, r =

∣∣∣c− ab
2

sinθ

∣∣∣.
(18)

2. Let (1,a,0,c) (a,c ∈ R \ {0}) be the homogeneous
coordinates of the point P ∈ Nil. The parameters of
the corresponding translation curve tE0P are the fol-
lowing

φ = π ·n, (n ∈ {0,1}), θ = arccot
(a

c

)
, r =

∣∣∣ a
cosθ

∣∣∣.
(19)

3. Let (1,a,0,0) (a ∈R\{0}) be the homogeneous co-
ordinates of the point P∈Nil. The parameters of the
corresponding translation curve tE0P are the follow-
ing

φ = π ·n, (n ∈ {0,1}), θ = π ·n, (n ∈ {0,1}), r = |a|.
(20)

4. Let (1,0,b,0) (b ∈R\{0}) be the homogeneous co-
ordinates of the point P∈Nil. The parameters of the

corresponding translation curve tE0P are the follow-
ing

φ =±π

2
, θ = π ·n, (n ∈ {0,1}), r = |b|. (21)

5. Let (1,0,0,c) (c ∈R\{0}) be the homogeneous co-
ordinates of the point P∈Nil. The parameters of the
corresponding translation curve tE0P are the follow-
ing

θ =±π

2
, r = |c|. (22)

�

In order to determine the translation-like bisector surface
SP1P2(x,y,z) of two given point E0 = P1 = (1,0,0,0) and
P2 = (1,a,b,c) we define the translation TP2 as elements
of the isometry group of Nil, that maps the origin E0 onto
P2 (see Fig. 2).
This isometrie TP2 and its inverse (up to a positive deter-
minant factor) can be given by:

TP2 =


1 a b c
0 1 0 0
0 0 1 a
0 0 0 1

, T−1
P2

=


1 −a −b ab− c
0 1 0 0
0 0 1 −a
0 0 0 1

,

(23)

and the images T−1
P2
(Pi) of points Pi (i ∈ {1,2,3}) are the

following (see also Fig. 2):

T−1
P2
(P1 = E0) = P2

1 = (1,−a,−b,ab− c),

T−1
P2
(P2) = E0 = (1,0,0,0),

T−1
P2
(P3) = P2

3 = (1,(x−a),(y−b),a(b− y)− c).

(24)

It is clear that P3 = (1,x,y,z) ∈ SP1P2 iff dt(P1,P3) =

dt(P3,P2)⇒ dt(P1,P3) = dt(E0,P2
3 ) where P2

3 = T−1
P2
(P3)

(see (23), (24)).
This method leads to

Lemma 2 The equation of the equidistant surface
SP1P2(x,y,z) of two points P1 = (1,0,0,0) and P2 =
(1,a,b,c) in Nil space (see Fig. 2, 3):

1. a,b,c 6= 0,

z =
1
4

(8x
(
a2 +b2

)
−4
(
a3−ab+4bc

)
a(b(a+ x)−ay−2c)

−b(a(a+ x)+8)
a

+ y(a+2x)+2c
)
,

(25)

2. a,b 6= 0, c = 0

z =−
a2
(
b2−2by+ y2 +4

)
+2ax

(
b2−2by+ y2−4

)
4(a(b− y)+bx)

−
b
(
x2 +4

)
(b−2y)

4(a(b− y)+bx)
,

(26)

10
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3. a,c 6= 0, b = 0

z =
a2
(
y2 +4

)
+2a

(
2cy+ x

(
y2−4

))
+4c(c+ xy)

4ay+8c
,

(27)

4. b,c 6= 0, a = 0

z =
b2
(
x2 +4

)
−2b

(
2cx+

(
x2 +4

)
y
)
+4c(c+ xy)

8c−4bx
,

(28)

5. b,c = 0, a 6= 0

z =
a
(
y2 +4

)
+2x

(
y2−4

)
4y

. (29)

6. a,c = 0, b 6= 0

z =−
(
x2 +4

)
(b−2y)

4x
. (30)

7. a,b = 0, c 6= 0

z =
1
2
(c+ xy). (31)

�

P
1

P
1

P
2

P
2

Figure 2: Translation-like bisectors (equidistant sur-
faces) of point pairs (P1,P2) with coordinates
((1,0,0,0),(1,1/2,1/2,3/2)) (left) and
((1,0,0,0),(1,0,0,2)) (right).

3.1 On isosceles and equilateral translation triangles

We consider 3 points A1, A2, A3 in the projective model
of Nil space. The translation segments connecting the
points Ai and A j (i< j, i, j,k∈ {1,2,3}) are called sides of
the translation triangle A1A2A3. The length of its side ak
(k∈ {1,2,3}) is the translation distance dt(Ai,A j) between
the vertices Ai and A j (i < j, i, j,k ∈ {1,2,3},k 6= i, j).
Similarly to the Euclidean geometry we can define the no-
tions of isosceles and equilateral translation triangles.

A
1

A
3

A
2

A
3

A
2

A
1

Figure 3: Equidistant surfaces of the “edges”
of the equilateral triangle A1A2A3
where the coordinates of the vertices
A1(1,0,0,0), A2(1,0.8,0.5,−0.131662),
A3(1,0.2,−0.058102,−0.983882).

An isosceles translation triangle is a triangle with (at least)
two equal sides and a triangle with all sides equal is called
an equilateral translation triangle (see Fig. 3) in the Nil
space.
We note here, that if in a translation triangle A1A2A3 e.g.
a1 = a2 then the bisector surface SA1A2 contains the vertex
A3 (see Fig. 3).
In the Euclidean space the isosceles property of a trian-
gle is equivalent to two angles of the triangle being equal
therefore has both two equal sides and two equal angles.
An equilateral triangle is a special case of an isosceles tri-
angle having not just two, but all three sides and angles
equal.

Proposition 1 The isosceles property of a translation tri-
angle is not equivalent to two angles of the triangle being
equal in the Nil space.

Proof. The missing coordinates y3 and z3 of the ver-
tices A1 = E0 = (1,0,0,0), A2 = (1,x2 = 1,y2 = 1/2,z2 =
−3/4) and A3 = (1,x3 = 0,y3,z3) can be determined by
the equation system dt(A1,A2) = dt(A1,A3) = dt(A2,A3).
We get the following coordinates: y3 ≈−0.6164636, z3 ≈
−1.367469 where (a3 = dt(A1,A2) = a2 = dt(A1,A3) =
a1 = dt(A2,A3) = 1.5).
The interior angles of translation triangles are denoted at
the vertex Ai by ωi (i ∈ {1,2,3}). We note here that the
angle of two intersecting translation curves depends on the
orientation of their tangent vectors.
In order to determine the interior angles of a translation
triangle A1A2A3 and its interior angle sum ∑

3
i=1(ωi), we

apply the method (we do not discuss here) developed in
[24] using the infinitesimal arc-lenght square of Nil geom-
etry (see (4)).
Our method (see [24]) provide the following results:

ω1 ≈ 1.08063, ω2 ≈ 0.84167, ω3 ≈ 1.22186,
3

∑
i=1

(ωi)≈

≈ 3.14416 > π≈ 3.14159.

11
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From the above results follows the statement. We note
here, that if the vertices of the translation triangle lie in
the [x,y] plane than the Euclidean isosceles property true
in the Nil geometry, as well. �

Using the above methods we obtain the following

Lemma 3 The triangle inequalities do not remain valid
for translation triangles in general.

Proof. We consider the translation triangle A1A2A3 where
A1 = (1,0,0,0), A2 = (1,−1,3,1), A3 = (1,1/4,1/2,1/2).
We obtain directly by equation systems (18-22) (see
Lemma 1 and [24]) the lengths of the translation segments
AiA j (i, j ∈ {1,2,3}, i < j):

dt(A1,A2)≈ 4.03113,
dt(A1,A3)≈ 0.70986,
dt(A2,A3)≈ 3.14307,

therefore dt(A2,A3)+dt(A1,A3)< dt(A1,A2). �

3.2 The locus of all points equidistant from three
given points

A point is said to be equidistant from a set of objects if
the distances between that point and each object in the set
are equal. Here we study that case where the objects are
vertices of a Nil translation triangle A1A2A3 and determine
the locus of all points that are equidistant from A1, A2 and
A3.
We consider 3 points A1, A2, A3 that do not all lie in the
same translation curve in the projective model of Nil space.
The translation segments connecting the points Ai and A j
(i < j, i, j,k ∈ {1,2,3},k 6= i, j) are called sides of the
translation triangle A1A2A3. The locus of all points that
are equidistant from the vertices A1, A2 and A3 is denoted
by C .
In the previous section we determined the equation of
translation-like bisector (equidistant) surface to any two
points in the Nil space. It is clear, that all points on
the locus C must lie on the equidistant surfaces SAiA j ,
(i < j, i, j ∈ {1,2,3}) therefore C = SA1A2 ∩SA1A3 and the
coordinates of each of the points of that locus and only
those points must satisfy the corresponding equations of
Lemma 2. Thus, the non-empty point set C can be de-
termined and can be visualized for any given translation
triangle (see Fig. 4 and 5). In the Fig. 4 we describe the
translation triangle A1A2A3 with vertices A1 = (1,0,0,0),
A2 = (1,0,0,1), A3 = (1,1,0,0) with the equidistant sur-
faces

SA1A2 : z=
1
8
(4xy+4), SA2A3 : z=

2xy2−8x+ y2 +4y+4
4y

of edges A1A2 and A2A3 and their intersection C = SA1A2 ∩
SA2A3 .

A
1

A
2

A
3

Figure 4: Translation triangle with vertices A1 =
(1,0,0,0), A2 = (1,0,0,1), A3 = (1,1,0,0)
with translation-like bisector surfaces SA1A2 and
SA2A3 and a part of the locus C = SA1A2 ∩SA1A3

of all points equidistant from three given points
A1, A2, A3.

If the vertices of the translation triangle A1A2A3 lie in e.g.
coordinate plane [y,z] or [x,z] we obtain the following lem-
mas:

Lemma 4 If the vertices of a translation triangle A1A2A3
lie on the [y,z] plane A1 = (1,0,0,0), A2 = (1,0,b2,b3),
A3 = (1,0,c2,c3) (b2 6= 0, b3 6= 0, c2 6= 0, c3 6= 0) then
the parametric equation (x ∈ R) of C is the following (see
Lemma 2 and Fig. 5):

C (x) :
{

x,
f

16(b2c3−b3c2)
,

g
32(b3c2−b2c3)

}
where

f =−2b3

(
−2c2x(b2x+2c3)+4c3(b2x+ c3)+ c2

2

(
x2 +4

))
+b2

(
b2

(
x2 +4

)
(2c3− c2x)+ x

(
c2

2

(
x2 +4

)
−4c2c3x+4c2

3

))
+b2

3(8c3−4c2x),

and

g = b2
2(x

2 +4)(c2(x2 +4)−2c3x)

−b2(4c2x(x2+4)(b3−c3)+4c3(c3(x2+4)−2b3x2)+c2
2(x

2+4)2)

+2b3(2b3(c2(x2 +4)−2c3x)+ x(c2
2(x

2 +4)−4c2c3x+4c2
3)).

Lemma 5 If the vertices of a translation triangle A1A2A3
lie on the [x,z] plane A1 = (1,0,0,0), A2 = (1,b1,0,b3),
A3 = (1,c1,0,c3) (b1 6= 0, b3 6= 0, c1 6= 0, c3 6= 0) then
the parametric equation (y ∈ R) of C is the following (see
Lemma 2 and Fig. 5):

C (y) :
{

f
16(b1c3−b3c1)

,y,
g

16(b3c1−b1c3)

}
where

f =−2b3

(
−2c1y(b1y−2c3)+4c3(c3−b1y)+ c2

1

(
y2 +4

))
+b1

(
b1

(
y2 +4

)
(c1y+2c3)− y

(
c2

1

(
y2 +4

)
+4c1c3y+4c2

3

))
+4b2

2(c1y+2c3),

12
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and

g =−b2
1c1y3−4b2

1c1y−2b2
1c3y2−8b2

1c3−4b1b3c1y2

−8b1b3c3y+b1c2
1y3 +4b1c2

1y+4b1c1c3y2 +4b1c2
3y−4b2

3c1y

−8b2
3c3 +2b3c2

1y2 +8b3c2
1 +8b3c1c3y+8b3c2

3.

A2

A3

A3

A2

A1

A1

Figure 5: Translation triangle with vertices
A1 = E0 = (1,0,0,0), A2 = (1,1/2,0,7/10),
A3 = (1,1,0,2/5) with translation-like bisector
surfaces SA1A2 and SA1A3 (left) and Translation
triangle with vertices A1 = E0 = (1,0,0,0),
A2 = (1,0,−1/5,4/5), A3 = (1,0,1,6/5) with
translation-like bisector surfaces SA1A2 and
SA1A3 (right).

3.3 Translation tetrahedra and their circumscribed
spheres

We consider 4 points A1, A2, A3, A4 in the projective model
of Nil space (see Section 2). These points are the ver-
tices of a translation tetrahedron in the Nil space if any
two translation segments connecting the points Ai and A j
(i < j, i, j ∈ {1,2,3,4}) do not have common inner points
and any three vertices do not lie in a same translation curve.
Now, the translation segments AiA j are called edges of the
translation tetrahedron A1A2A3A4.

The circumscribed sphere of a translation tetrahedron is a
translation sphere (see Definition 2, (12)) that touches each
of the tetrahedron’s vertices. As in the Euclidean case the
radius of a translation sphere circumscribed around a tetra-
hedron T is called the circumradius of T , and the center
point of this sphere is called the circumcenter of T .

Lemma 6 For any translation tetrahedron there exists
uniquely a translation sphere (called the circumsphere) on
which all four vertices lie.

Proof. The Lemma follows directly from the properties
of the translation distance function (see Definition 1 and
(12)). The procedure to determine the radius and the cir-
cumcenter of a given translation tetrahedron is the folow-
ing:

The circumcenter C =(1,x,y,z) of a given translation tetra-
hedron A1A2A3A4 (Ai = (1,xi,yi,zi), i ∈ {1,2,3,4}) have
to hold the following system of equation:

dt(A1,C) = dt(A2,C) = dt(A3,C) = dt(A4,C), (32)

therefore it lies on the translation-like bisector surfaces
SAi,A j (i < j, i, j ∈ {1,2,3,4}) which equations are deter-
mined in Lemma 2. The coordinates x,y,z of the circum-
center of the circumscribed sphere around the tetrahedron
A1A2A3A4 are obtained by the system of equation derived
from the facts:

C ∈ SA1A2 ,SA1A3 ,SA1A4 . (33)

Finally, we get the circumradius r as the translation dis-
tance e.g. r = dt(A1,C).
We apply the above procedure to two tetrahedra deter-
mined their centres and the radii of their circumscribed
balls that are displayed in Fig. 6 and 7. �

Figure 6: Translation tetrahedron with vertices A1 =
(1,0,0,0), A2 = (1,1.4,0,1), A3 = (1,0.5,1,1),
A4 = (1,0,0,1.5) and its circumscibed sphere of
radius r ≈ 0.92804.

Figure 7: Translation tetrahedron with vertices A1 =
(1,0,0,0), A2 = (1,4,2,1), A3 = (1,1,3,0),
A4 = (1,0,−2,1) and its circumscibed sphere
of radius r ≈ 7.96825.
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4 The lattice-like translation ball coverings

In [21] we investigated the lattice-like geodesic ball cover-
ings with congruent geodesic balls and in this section we
study the similar problem of the translation ball coverings.
In the following, we shall consider lattice coverings, each
of them consisting of congruent translation balls of Nil.
Let Bc

Γ
(R) denote a translation ball covering of Nil space

with balls Bc(R) of radius R where their centres give rise
to a Nil point lattice Γ(τ1,τ2,k) (k ∈ N+). F̃ (k) is an ar-
bitrary Nil parallelepiped of this lattice (see Section 2.2).
The images of F̃ (k) by our discrete translation group
L(τ1,τ2,k) = L(Z,k) cover the Nil space without gap.

Remark 4 In the Nil geometry, similarly to the Euclidean
space Ed , (d ≥ 1), an arbitrary lattice Γ gives a lattice-
like covering of equal balls if the radius R of the balls is
large enough. For the geodesic ball packings it is not true
because the geodesic balls should have a radius R∈ [0,2π]
(see [19]).

If we start with a translation-like lattice covering Bc
Γ
(R)

and shrink the balls until they finally do not cover the space
any more, then the minimal radius defines the least dense
covering to a given lattice Γ(τ1,τ2,k). The thresfold value
Rc

Γ
is called the minimal covering radius of the point lattice

Γ(τ1,τ2,k):

Rc
Γ :=min{R : where Bc

Γ(R) lattice covering by Γ(τ1,τ2,k)}.
(34)

For the density of the packing it is sufficient to relate the
volume of the minimal covering ball to that of the solid
F̃ (k).
Analogously to the Euclidean case it can be defined the
density ∆(Bc

Γ
(R)) of the lattice-like geodesic ball covering

Bc
Γ
(R):

Definition 6

∆(Bc
Γ(R)) :=

Vol(Bc
Γ
(R))

Vol(F̃ (k))
, (35)

and its minimum ∆(Bc
Γ
(Rc

Γ
)) for radius Rc

Γ
in (34).

The main problem is that to which lattice Γ(τ1,τ2,k) be-
longs the optimal minimal density where k ∈N+ is a given
parameter.

∆opt(Bc) = inf
Γ

{
∆(Bc

Γ(R
c
Γ))
}
. (36)

and Γc
opt denotes any optimal lattice, if it exists at all.

Remark 5 The covering radius is the radius of the cir-
cumsphere of the lattice’s Dirichlet-Voronoi cell i.e. the
largest distance between the midpoint and the vertices of
its Dirichlet-Voronoi cell, whose description deserves sep-
arate studies (see [15]).

In the following we study the most important case related
to parameter k = 1.

4.1 Method to determination of densest lattice-like
translation ball covering of a given lattice

We develop an algorithm to determine the lattice-like
thinnest ball covering of a given lattice Γ(τ1,τ2,1).
The lattice is generated by the translations τ1 and τ2 where
their coordinates in the model are t j

i (i = 1,2; j = 1,2,3)
(see (16)).

The Nil parallelepiped F̃ (1)=E0T opt
1 T2T3T12T21T23T213T13

is a fundamental domain of L(Z,1). The homogeneous co-
ordinates of its vertices can be derived from the coordinates
of τ1 and τ2 (see Fig. 1 and (3) with (16)). We examine the
minimal covering radius Rc to the given lattice Γ(τ1,τ2,1).

Rc
Γ :=min{R : where Bc

Γ(R) lattice covering by Γ(τ1,τ2,1)}.

It is sufficient to investigate such ball arrangements Bc
Γ
(R)

where the balls cover F̃ (1) .
From (14-16) follows, that the fundamental paral-
lelepiped F̃ (1) can be decomposed into Euclidean tetra-
hedra {E0,T1,T2,T3}, {T3,T1,T23,T13}, {T3,T1, T23,T2},
{T12,T1,T23, T2}, {T12,T1, T23, T13}, {T12,T21,T23,T13}
which fill it just once. The radius Ri (i = 1,2 . . .6) of each
circumscribed ball to the above point sets can be deter-
mined by the procedure described in the previous section.
It is clear, that the lattice-like ball arrangement Bc

Γ
(Rc

Γ
) of

radius Rc
Γ
=max{Ri} cover the fundamental parallelepiped

F̃ (1) and thus the Nil space if the translation ball of radius
Rc

Γ
is convex in Euclidean sense i.e. Rc

Γ
∈ [0,2] (see Theo-

rem 2).

4.1.1 Upper bound for the covering density

To have a comparison, first we consider our optimal
lattice-like arrangement B p

Γ
(Rp) for the conjectured dens-

est lattice-like translation ball packing in the Nil space (see
[24]). These balls will be blown up to a covering. This op-
timal lattice is given in [20] with parameters

t1,p
1 ≈1.31225; t3,p

1 =
t3,p
3
2

; t1,p
2 ≈0.65613; t2,p

2 ≈1.13644;

t3,p
2 ≈1.11847; rp ≈ 0.74565; t3,p

3 = 2rp.

(37)

This packing can be generated by the translations
Γp(τ

p
1 ,τ

p
2 ,1) where τ

p
1 and τ

p
2 are given by the above co-

ordinates t j,p
i i = 1,2; j = 1,2,3 (see (36)). Thus we ob-

tain the neighbouring balls around an arbitrary ball of the
packing B p

Γ
(Rc

Γp) by the lattice Γp(τ
p
1 ,τ

p
2 ,1). We have ball

14
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“columns” in z-direction and in regular hexagonal projec-
tion onto the [x,y]-plane. From the structure of this lat-
tice follows that in this case the corresponding lattice point
sets {0,T p

1 ,T p
2 ,T p

3 }, {T
p

3 , T p
1 ,T p

23, T p
13}, {T

p
3 , T p

1 ,T p
23, T p

2 },
{T p

12,T
p

1 ,T p
23, T p

2 }, {T
p

12,T
p

1 , T p
23, T p

13}, {T
p

12,T
p

21,T
p

23,T
p

13}
are congruent by Nil isometries. The radius Rp of each cir-
cumscribed ball to the above point sets can be determined
by the following system of equations:

dt(O,C) = dt(C,T p
3 ) = dt(C,T p

1 ) = dt(C,T p
2 ),

where C(1,c1,c2,c3) is the center of the circumscribed ball
of the point set {E0,T

p
1 , T p

2 ,T p
3 } (dt is the Nil translation

distance, see Definition 1):

c1 ≈ 0.45563,c2 ≈ 0.26306,c3 ≈ 0.80558,Rc
Γp ≈ 0.91257.

Figure 8: Locally optimal lattice-like translation ball cov-
ering related to lattice Γp(τ

p
1 ,τ

p
2 ,1).

Remark 6 C(1,c1,c2,c3) is a vertex of the Dirichlet-
Voronoi domain of the centre point E0.

Rc
Γp ∈ [0,2] thus by Theorem 2 the ball of radius Rc

Γp is
convex in affin-Euclidean sense. Their circumscribed con-
gruent Nil balls are convex thus they cover the tetrahedra
and so the ball arrangement Bc

Γp(Rc
Γp) cover the Nil space.

Thus the radius Rc
Γp of circumscribed ball give us the cov-

ering radius to the lattice Γp, indeed, and we get by (13),
(17) and by the Definition 6 the following results:

Vol(B(Rc
Γp))≈ 3.18341,Vol(P̃ ) =Vol(F̃ (1))≈ 2.22397,

∆(Rc
Γp ,τ

p
1 ,τ

p
2 ,1) :=

Vol(BΓ(Rc
Γp))

Vol(F̃ (1))
≈ 1.43141.

(38)

Remark 7 The density of the least dense lattice-like ball
covering in the the Euclidean space is

∆opt(Rc
opt ,τ

c
1,τ

c
2,1)< ∆E =

5
√

5π

24
≈ 1.46350.

This ∆E attains for the so-called inner centred cubic lattice
type of E3. That means a Nil-lattice-ball-covering can be
“looser” than a Euclidean one.

Similarly to the above computations we can apply our
method to any given Nil lattice. In the Table 1 we summa-
rize the data of some locally optimal lattice-like translation
ball coverings:

Table 1
Lattice parameters Rc

Γ
∆c

Γ

t j
i = 1, (i = 1,2, j = 1,2,3) ≈ 0.88666 ≈ 2.91980

t1
1 = t1,d

1 , t3
1 = t3,d

1 ,

t1
2 = t1,d

2 , t2
2 = t2,d

2 , t3
2 = t3,d

2

≈ 0.91257 ≈ 1.43141

t1
1 = 1.3, t3

1 = 0.74,

t1
2 = 0.65, t2

2 = 1.13, t3
2 = 1.12

≈ 0.90406 ≈ 1.43429

t1
1 = 1.29, t3

1 = 0.74,

t1
2 = 0.64, t2

2 = 1.13, t3
2 = 1.12

≈ 0.89997 ≈ 1.43692

t1
1 = 1.1, t3

1 = 0.5,

t1
2 = 0.5, t2

2 = 1, t3
2 = 1

≈ 0.77177 ≈ 1.59134

t1
1 = 1.1, t3

1 = 0.5,

t1
2 = 0.4, t2

2 = 1, t3
2 = 1

≈ 0.78667 ≈ 1.68533

t1
1 = 1.31, t3

1 = 0.74,

t1
2 = 0.65, t2

2 = 1.13, t3
2 = 1.12

≈ 0.90732 ≈ 1.42783

From the previous computations follows the following

Theorem 3 The density of the least dense lattice-like
translation ball covering is less or equal than the locally
thinnest covering with congruent tranlation balls related to
the lattice Γu(τu

1,τ
u
2,1) where the lattice is given by the pa-

rameters t1
1 = 1.31, t3

1 = 0.74, t1
2 = 0.65, t2

2 = 1.13, t3
2 =

1.12 (see Fig. 9).

∆opt(Rc
opt ,τ

c
1,τ

c
2,1)≤ ∆(Rc

Γu ,τu
1,τ

u
2,1)≈ 1.42783

(see Table 1 and Fig. 9).

The exact determination of the thinnest lattice-like ball
covering with congruent translation balls seems to be diffi-
cult, but we are working on refining the upper bound den-
sity and determine a “good” lower bound density.
Optimal sphere packings and coverings in other homoge-
neous Thurston geometries represent another huge class of
open mathematical problems. For Nil, Sol, S̃L2R, H2×R,
S2×R geometries only very few results are known [17],
[19], [20], [21], [22], [23].
Detailed studies are the objective of ongoing research.
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Figure 9: Locally optimal lattice-like translation ball cov-
ering related to lattice Γu(τu

1,τ
u
2,1) with density

≈ 1.42783.
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[6] E. MOLNÁR, The projective interpretation of the
eight 3-dimensional homogeneous geometries. Beitr.
Algebra Geom. 38 (2) (1997), 261–288.
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