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ABSTRACT

It is well-known that, in a Euclidean plane, the product of
three reflections is again a reflection, iff their axes pass
through a common point. For this “Three reflections
Theorem” (3RT) also non-Euclidean versions exist, see
e.g. [4]. This article presents affine versions of it, con-
sidering a triplet of skew reflections with axes through a
common point. It turns out that the essence of all those
cases of 3RT is that the three pairs (axis, reflection direc-
tion) of the given (skew) reflections can be observed as
an involutoric projectivity. For the Euclidean case and its
non-Euclidean counterparts this property is automatically
fulfilled.

From the projective geometry point of view a (skew) re-
flection is nothing but a harmonic homology. In the affine
situation a reflection is an indirect involutoric transforma-
tion, while “direct” or “indirect” makes no sense in pro-
jective planes. A harmonic homology allows an interpreta-
tion both, as an axial reflection and as a point reflection.
Nevertheless, one might study products of three harmonic
homologies, which result in a harmonic homology again.
Some special mutual positions of axes and centres of the
given homologies lead to elations or even to the identity,
too.

A consequence of the presented results are further general-
isations of the 3RT, e.g. in planes with Minkowski metric,
affine or projective 3-space, or in circle geometries.

Key words: three reflections theorem, axial reflection, har-
monic homology, involutoric projectivity
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Nov pogled na teorem tri simetrije

SAŽETAK

U euklidskoj ravnini poznato je da je produkt tri simetrije
ponovo simetrija ako i samo ako se njihove osi sijeku u
jednoj zajedničkoj točki. Tako�er poznat je i neeuklid-
ski analogon “teorema tri simetrije” (3RT), vidi npr. [4].
U ovom članku predstavljene su afine verzije tog teorema
tako da se proučavaju tri mimosmjerne simetrije kojima se
osi sijeku u jednoj točki. Pokazat će se da je važno, u svim
verzijama 3RT-a, da se tri para (os, smjer simetrije) danih
(mimosmjernih)simetrija mogu proučavati kao involutivni
projektivitet. Za euklidski i neeuklidski slučaj ovo svojstvo
je automatski ispunjeno.

Sa stajalǐsta projektivne geometrije (mimosmjerna)
simetrija je harmonička homologija. U afinoj geometriji
simetrija je indirektna involutivna transformacija, dok u
projektivnoj geometriji nema smisla govoriti o “direktnoj”
i “indirektnoj” transformaciji. Harmonička homologija
dopušta interpretaciju i kao osnu simetriju i kao cen-
tralnu simetriju. Ipak, može se proučavati produkt triju
harmoničkih homologija koji je ponovno harmonička ho-
mologija. Nekim posebnim me�usobnim položajima cen-
tara i osi danih homologija može se dobiti elacija ili čak
identitet.

Posljedica danih rezultata su daljnje generalizacije 3RT-a,
npr. u ravninama s Minkowski metrikom, afinim ili pro-
jektivnim 3-dimenzionalnim prostorima ili u geometrijama
kružnice.

Ključne riječi: teorem tri simetrije, osna simetrija, har-
monička homologija, involutivni projektivitet

1 Introduction

According to F. Bachmann [2] reflections can be observed
as the basic transformations of a geometry, and the set
of these transformations defines at least a sub-geometry
of “classical” geometries. Thereby a general transforma-

tion of such a sub-geometry is the (finite) product of re-
flections, and so the question arises, under which condi-
tions is such a product again a reflection. For the product
of three reflections this leads to the conditions described
as “Three Reflections Theorem” (3RT) in a Euclidean or
(non-Euclidean) Cayley-Klein planes, see e.g. [4], [5].
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In the following chapter we will state the known facts
about the 3RT, providing the tools for further generali-
sations. Chapter 3 shortly refers to the non-Euclidean
case and to circle geometries, while the following chap-
ters present seemingly new generalisations of the 3RT in
affine and projective planes and spaces.

2 Basic facts about the 3RT

We start with the Euclidean plane Π as place of action. A
(line) reflection σ : Π→ Π is an indirect involutoric con-
gruence transformation of Π; the set of fixed points is a
line, the “axis” a of σ, the set of fixed lines consists of a
and a pencil of parallels orthogonal to a. For an arbitrary
congruence transformation yield the following two theo-
rems:

Theorem 1 Each direct congruence transformation is ei-
ther the identity ι, a translation τ, or a rotation ρ. Each
indirect congruence transformation is either a slide reflec-
tion λ, or a (line) reflection σ.

Theorem 2 Each direct resp. indirect congruence trans-
formation is the product of maximal 2 resp. 3 (line) reflec-
tions.

Special cases of direct congruence transformations are (1)
the identity ι, and (2) the rotation ρ having rotation angle π.
Such a rotation is called a “half turn” and it is a point reflec-
tion at the same time with a pencil of fixed lines through
the (single) fixed centre of the half turn ρ.

Remark 1 Given two reflections σ1, σ2 with axes a1, a2
forming an angle ]a1a2 =: α, then the product σ1σ2 = ρ

is a rotation with rotation angle δ = 2α and exactly one
fixed point. Reversely, the reflections σ1, σ2 to a given ro-
tation ρ are not uniquely determined. From this property
it can be deduced that the product σ1σ2 = ρ is a halfturn
⇔ ]a1a2 =: π

2 .

For indirect congruence transformations reflections are the
only special cases. Each slide reflection λ is product of
three reflections σi, which can be chosen such that two
have parallel axes a1, a2 and the third a3 is orthogonal to
the former two and acting as the “slide axis”. Thus the
question arises about the conditions for the ai leading to
a product reflection σ1σ2σ3 instead of just a general slide
reflection. The results are well-known:

Theorem 3 (the classical 3RT) σ1σ2σ3 =: σ4 is a reflec-
tion ⇐⇒ a1 ‖ a2 ‖ a3, or a1 ∩ a2 ∩ a3 = {A} . . . common
point.

As a key idea for a proof, which will be used also fur-
ther on, we assume σ1σ2σ3 =: σ4 to be a reflection. ⇒

σ1σ2σ3σ4 = σ4σ4 = id ⇒ (σ1σ2)(σ3σ4) = id ⇒ (σ1σ2)
and (σ3σ4) are inverse rotations or inverse translations.
In other words, σ3σ4 must be just another description
for σ2σ1. As a consequence, the angles ]a1a2 and
]a3a4 of their axes αi must be equal and the ∩ai = {A}
resp. dist(a1,a2) = dist(a3,a4) for parallel ai.

3 Non-Euclidean and circle-geometric ver-
sions of the 3RT

a) As this chapter still concerns known facts, we restrict
ourselves to presenting some examples starting with the
hyperbolic plane as a place of action. We use the Klein-
model, i.e. the full projective plane endowed with an ab-
solute hyperbolic polarity according to e.g. N. Wildberger
[7]. A hyperbolic reflection σ is a harmonic homology of
the (regular) absolute conic ω. This means that the axis a of
σ is not tangent to ω. Here again the product σ1σ2σ3 =: σ4
is a reflection⇔ a1∩a2∩a3 = {A}, see Figure 1. We omit
the discussion of special cases.

Figure 1: Visualisation of the hyperbolic version of the
3RT.

Figure 2: The product of three hyperbolic reflections in-
duces a projectivity in the absolute conic ω.
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The general case then means that the three given axes ai
form a trilateral. Figure 2 shows the case of an inner trilat-
eral (a1a2a3) of ω: The product σ1σ2σ3 induces a (hyper-
bolic) projectivity π at ω with projectivity axis p and fixed
points Uω, Vω.
The construction of the projectivity axis p turns out to be
an analogue to the construction of the Euclidean slide-
reflection axis (Figure 3): p passes through midpoints of
segments formed by pairs of homologuos points X , X

′
=

Xσ1σ2σ3 .

Figure 3: Construction of the slide-reflection axis p in the
Euclidean plane.

b) As an example for a circle geometry place of action we
will use the Euclidean Möbius case. “Reflection” σ now
represents an inversion at a Möbius circle a.
A “Möbius three reflections theorem” then reads as fol-
lows:

Theorem 4 (Möbius 3RT) σ1σ2σ3 =: σ4 is an inversion
⇐⇒ a1, a2, a3 ∈ common pencil of Möbius circles.

As before, σ1σ2σ3σ4 = σ4σ4 = id ⇔ σ3σ4 = σ2σ1, in-
verse to σ1σ2, which is a “Möbius rotation”. And, as in
the Euclidean case, the rotation angle is twice the (real or
imaginary) intersection angle between the two fixed circles
a1, a2. Figure 4, 5 and 6 visualise such Möbius rotations
generated by two inversions.
Recently E. Molnar [4] treated also non-Euclidean cir-
cle geometries according to F. Bachmann’s point of view,
namely generating a geometry via reflections, c.f. [2].
Projective geometric generalisations of the concept inver-
sion seem to trace back to Thomas Archer Hirst (1830 -
1892), even though there are hardly any references to be
found:

Definition 1 A “Hirst inversion” ι is an involutoric map-
ping of the n-dimensional projective space Pn where a cen-
tre point O and a polarity π : Pn → Pn is given, such that
(1) O, X, X ι are collinear, and (2) X, X ι are conjugate
points in π, (X 6= O).

Remark 2 This version of defining a Hirst inversion was
presented by H. Brauner (1928 - 1990) in his unfortunately
unpublished “Lectures on Geometry”. How to arrange
three Hirst inversions such that their product again is a
Hirst inversion seems to be an open problem.

Figure 4: a1, a2 span an elliptic pencil of Möbius circles.
The rotation angle of the product σ1σ2 is twice
the angle ]a1a2.

Figure 5: a1, a2 span a hyperbolic pencil of Möbius cir-
cles. The rotation angle of the product σ1σ2 is
imaginary, but still twice the angle ]a1a2.

Figure 6: The limit rotation case: a1, a2 span a parabolic
pencil of Möbius circles.

4 The affine 3RT

Place of action is now an affine plane. Let its coordinate
field be a commutative field F with charF 6= 2,3. As we
deal with (general) reflections, we consider affine transfor-
mations η of eSL(2,F ), i.e. they have coordinate repre-
sentations by matrices with det =±1.

Remark 3 A (skew) reflection σ is an involutoric perspec-
tive affine transformation with axis a and a pencil of paral-
lel fixed lines {b . . .} not containing a. Obviously, “skew”
without a concept of orthogonality does not make sense.
Again, we distinguish direct- and indirect-affine transfor-
mations η ∈ eSL(2,F ).
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We summarize the well-known facts

Theorem 5 Each direct transformation η ∈ eSL(2,F ) is
either (1) the identity, (2) a translation, (3) a shear
(transvection), or (4) an affine rotation. Each indi-
rect transformation η ∈ eSL(2,F ) is either (5) a shear-
reflection, or (6) a (line) reflection.

Theorem 6 Each η∈ eSL(2,F ) is the product of maximal
3 (line) reflections. Each coordinate representation matrix
of η can therefore be factorised by matrices of three reflec-
tions σ1, σ2, σ3.

Figure 7 shows the constructions of reflection axes ai and
reflection-directions bi to given direct-affine resp. indirect-
affine triangles T , T

′
having equal areas, while Figure 8

visualises the construction of a reflection σ1 and a shear δ

to two indirect-affine triangles.

Figure 7: Construction of two reflections σ1, σ2 to direct-
affine triangles T , T

′
such that σ1σ2 : T → T

′
.

Figure 8: Construction of a reflection σ and a shear δ

to indirect-affine triangles T , T
′

such that σδ :
T → T

′
.

In the first, the direct case, one should find the second fixed
point of a projectivity with known first fixed point. In the
indirect case variation of σ such that δ becomes a shear
leads to a perspectivity. In both cases the construction
deals only with linear graphic operations.

Now we ask, when the product of three affine reflections
σ1, σ2, σ3, is a reflection σ1σ2σ3 =: σ4, too. Accord-
ing the key idea σ1σ2σ3σ4 = σ4σ4 = id the first two fac-
tors, σ1σ2, and the last two ones, σ3σ4, must define inverse
affine transformations.

General case: σ1, σ2 such that there exists exactly one
proper fixed point A, that means, σ1σ2 is an “affine ro-
tation”. (Note that for a reflection σ(a,b) the axis a and
direction of the reflection b are different.) Furthermore,
we consider three reflections σi, i = 1,2,3, with axes ai
and reflection-directions bi such that all six directions are
different.
As a necessary condition for σ1σ2σ3 =: σ4 being a reflec-
tion, too, we get that a3 must pass through A. The pairs
(a1,b1), (a2,b2) define an involutoric projectivity µ and
(a3,b3), (a4,b4) must define the same µ. This leads to
the sufficient condition that all three pairs (a1,b1), (a2,b2),
(a3,b3) are pairs of an involutoric projectivity µ. This gives

Theorem 7 Necessary and sufficient condition for an
“affine 3RT” (in the general case) is that the given three
reflections σ1, σ2, σ3 have axes ai and reflection-directions
bi fulfilling the conditions a1 ∩ a2 ∩ a3 = {A} ∧ (a1,b1),
(a2,b2), (a3,b3) are pairs of an involution µ.

In planar Cayley-Klein geometries the sufficient condition
“involution” µ is automatically fulfilled and therefore there
is no need to mention it.
Special case: σ1, σ2 have exactly one proper fixed point A
and a1 ∈ {b2}∧a2 ∈ {b1}. That means, σ1σ2 is a point re-
flection and the pairs (a1,b1), (a2,b2) are identical and do
not define an involution µ. In this case we could start with
σ4σ1σ2σ3 = σ4σ4 = id and have σ2σ3 as a proper affine
rotation defining an involution µ. Moreover, σ3σ4 is the
inverse point reflection to σ1σ2.
We omit the discussion of further cases.

5 A 3RT in normed planes

Real affine planes can also be endowed with a norm based
on a convex, centrally symmetric “unit circle” c. Such a
plane is called the Minkowski plane Πc and there exist sev-
eral possibilities to define an orthogonality in Πc. Most
common is the Birkhoff’s left-orthogonality, which is non-
symmetric. For Minkowski geometry see e.g. [1], [3], [6]
and [8].

Definition 2 A Minkowski (line) reflection is an involu-
toric affine reflection, whereby the reflection-direction b is
left-orthogonal to the axis a.

Note that a Minkowski reflection σ is, in general, not norm
preserving, as the unit circle c and its image cσ are, in gen-
eral, not translatoric congruent. Nevertheless, one could
study products of three Minkowski reflections:

Theorem 8 (Minkowski-3RT) The product of three
Minkowski reflections σ1, σ2, σ3 is a Minkowski reflec-
tion σ4⇐⇒ σ1, σ2, σ3 fulfill the affine 3RT conditions and
σ1σ2σ3 =: σ4 fulfills the left-orthogonality condition.
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For a general unit circle c and two given Minkowski reflec-
tions σ1, σ2 there will, in general, not exist a σ3 such that
σ1, σ2, σ3 fulfill the affine 3RT conditions. For an arbitrary
unit circle c there exists at least one pair of “conjugat” di-
ameters such that left-orthogonality is symmetric, see [6].
In case c has two such pairs, the first one can act as a1, a2
and the second one as a3, a4, similar to the special case de-
scribed in the former chapter. Figure 9 shows such a case
with a smooth unit circle c.

Figure 9: The Minkowski unit circle c consisting of circu-
lar bi-arcs possesses a discrete number of con-
jugate diameters, which can be used as axes for
a valid Minkowski-3RT.

Special cases can occur for affine regular 2n-gons as unit
circles c, see Figure 10.

Figure 10: For an affine-regular hexagon as Minkowski
unit circle c and Minkowski reflections σ1, σ2,
σ3 with symmetry axes of c as axes ai the prod-
uct reflection σ4 coincide with σ2.

To conclude we can find cases of normed planes, where a
Minkowski-3RT is valid for specially chosen Minkowski
reflections σ1, σ2, σ3.

6 The 3RT in affine 3-spaces

Place of action is now a three-dimensional affine space Π3

with a commutative coordinate field F and charF 6= 2,3.
As we deal with (plane) reflections, we consider affine
transformations η ∈ eSL(3,F ), i.e. they have coordinate
representations by matrices with det =±1.

If F ∼= R and Π3 is a Euclidean 3-space, then from Chap-
ters 3 and 4 follows immediately

Theorem 9 The necessary and sufficient condition for the
3RT in a Euclidean 3-space is that σ1, σ2, σ3 have axis
planes a1, a2, a3 which span a pencil of planes.

For an affine reflection σ in a general affine 3-space Π3 the
reflection-direction b is not parallel to the fixed plane a. As
a consequence of Theorem 5 the following theorem, which
describes the general case, is obvious:

Theorem 10 Necessary and sufficient conditions for an
affine 3RT in an affine 3-space Π3 are: The three reflec-
tions σ1, σ2, σ3 have axes ai and reflection-directions bi
fulfilling

(1) a1∩a2∩a3 =: a . . . axis of a pencil of planes,

(2) b1, b2, b3 are parallel to a plane γ∧ γ ∦ a,

(3) γ∩ai =: ci, (c1,b1), (c2,b2), (c3,b3) are pairs of an
involution µ.

For some special cases of the given reflections σ1, σ2, σ3
the Theorems 7 and 8 have to be modified. We omit a com-
plete discussion of such cases.
One could also extend the original question, when the
product of three reflections σ1, σ2, σ3 is a reflection to
a product being a special affine transformation. For exam-
ple, in the Euclidean 3-space, the reflections at pairwise
orthogonal planes ai lead to a point reflection. We will
meet such cases in Chapter 8.
The general direct-affine transformation η ∈ eSL(3,F ) is
the product of 4 reflections, while indirect-affine transfor-
mations can be factorised by 3 reflections. The construc-
tive treatment of these factorisations is a problem of its
own.

7 Projective geometric interpretation of the
planar 3RT: the 3HHT

Place of action is a projective plane Π. Let its coordinate
field be a commutative field F , charF 6= 2,3, for example
F ∼= R . “Reflections” σi now represents harmonic ho-
mologies of PGL(Π,F ) with axis ai and centre Bi. Note
that the concepts “direct” or “indirect” do not make sense
anymore. Harmonic homologies are point reflections and
line reflections at the same time.
Applying the key idea that from the assumption σ1σ2σ3 =:
σ4 is a harmonic homology it follows σ1σ2σ3σ4 = σ4σ4 =
id. This means that σ1σ2 and σ3σ4 must be inverse
collineations, and therefore we will, at first, study the prod-
uct of two harmonic homologies:
We start with the general case of σ1(a1,B1), σ2(a2,B2)
represented by Figure 11. The line s connecting the centres
Bi of σi is a fixed line of the product collineation σ1σ2 =: κ,
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the intersection point S of the axes ai is a fixed point of
κ. The other (real or imaginary) fixed points R, T are
fixed points of the involution µ defined by the two pairs
(B1,A1 := s∩a1) and (B2,A2 := s∩a2). By mapping con-
secutively a point X to X ′ and Y := X ′ to Y ′ . . . we obtain
a series of points of a conic. This justifies to call κ a “pro-
jective rotation”.

Figure 11: Product collineation of two harmonic homolo-
gies

The mentioned general case describes the classical situa-
tion for the Euclidean and affine 3RT, if s is interpreted as
the ideal line of the place of action. Therefore it follows

Theorem 11 (3HHT) Let two harmonic homologies σ1,
σ2 be in general position. The necessary and sufficient
conditions that the product with a third harmonic homol-
ogy σ3 is a harmonic homology σ4 again, is

(1) B3 ∈ s := B1B2 and ∩ai = {S}, i = 1,2,3, where Bi
are centers and ai axes of σi,

(2) (A1,B1), (A2,B2), (A3,B3) are pairs of an involution
µ in s, (Ai := ai∩ s).

Among the many special cases of mutual positions of
{(B1,a1),(B2,a2),(B3,a3)} we mention the following:

a) σ1,σ2 with B1 ∈ a2∧B2 ∈ a1.
In this case, the product σ1σ2 = σ is already a har-
monic homology with centre S = a1 ∩ a2 and axis
s = B1B2. If we choose σ3 = σ, then the product
σ1σ2σ3 = σ4 = ι is the identity. For B3 ∈ B1B2 and
a3 3 a1 ∩ a2 condition (1) is the only condition for
σ1σ2σ3 = σ4 being a harmonic homology.

b) σ1,σ2 with a1 = a2 and B1,B2 arbitrary.
In this case a3 must coincide with a1 = a2 and we
have a common fixed axis, while B3 can be chosen
arbitrarily, see fig. 12. This is the classical situation
for the product of three point-reflections in the Eu-
clidean plane and also in the affine plane. Obviously,
the following extension to higher dimensions holds
too:

Theorem 12 Three harmonic homologies σ1, σ2, σ3 in a
projective n-space with coinciding hyperplanes ai in a pro-
jective n-space have a harmonic homology σ4 =σ1σ2σ3 as
their product.

Figure 12: The product of three harmonic homologies with
coinciding axes is a harmonic homology.

The dual situation, namely coinciding centres Bi and arbi-
trarily chosen axes ai leads to the dual version of Theo-
rem 10.

8 Products of harmonic axial collineations
and axial reflections

Extending the Three Reflections Theorem to spaces of
higher dimensions, as e.g. formulated as Theorem 10, in-
duces an additional idea: Let us generalise σi to harmonic
axial collineations in n-dimensional projective spaces Πn.
We assume the fixed spaces ai, bi of σi to be skew and
complementary subspaces of Πn, i.e. dim ai = n− di− 1,
dim bi = di. We even might combine axial collineations
σi, σ j with dim bi 6= dim b j. But already for dimension
n = 4 we would not get an even remotely comprehensible
set of cases and subcases to deal with. Therefore, we re-
strict the place of action to a projective 3-space Π3 and its
coordinate field to R⊂ C. Furthermore, we will only treat
the case di = d j = 1, i.e. the pair of axes a, b of a har-
monic axial collineation σ that are skew lines. As such a
collineation is involutoric it is also called an “axial involu-
tion”.
As in the former chapters, we pose the question, under
which conditions the product σ1σ2σ3 =: σ4 turns out to
be an axial involution. Assuming σ1σ2σ3 =: σ4 to be a
reflection it leads to inverse collineations σ1σ2 and σ3σ4.
With this in mind, we first have to study the product κ of
two axial involutions σ1, σ2.
We start with the general case σ1(a1,b1), σ2(a2,b2) with
{a1,b1,a2,b2} spanning a 2D-set of lines, such a set is
called a line congruence), see Figure 13:
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Figure 13: Sketch visualizing two harmonic axial
collineations and the fixed point tetrahedron of
their product collineation.

There are two (real, imaginary or coinciding) lines e, f
meeting all four lines a1, b1, a2, b2. Let us consider the
case, when e, f are real and distinct. The construction
of such lines is known as the H. E. Timerding problem.
Thereby, one intersects the quadric Φ defined by three lines
a1, b1, a2 with the additional line b2. The generators Φ

through the intersection points and not belonging to the
same regulus of Φ, as a1, b1, a2, are the lines e, f inter-
secting all four given lines.
The lines e, f are fixed lines of κ; we label their intersec-
tion points with the axes ai, bi by Ae

i , A f
i and Be

i , B f
i . The

pairs (Ae
1,B

e
1) and (Ae

2,B
e
2) define an involutoric projectiv-

ity µe in, the fixed points (over C) Xe, Y e which are fixed
points of κ. The analogue procedure for the line f results
in the remaining fixed points (over C) X f , Y f of κ. By
mapping an admissible point P 7→ Pσ1σ2 we finally receive
a well-defined collineation κ.
The conditions to be fulfilled by a third harmonic axial
collineation σ3(a3,b3) such that σ1σ2σ3 =: σ4 is again an
axial collineation are then obvious:

Theorem 13 (axial 3HHT) The product σ1σ2σ3 =: σ4 of
three generally positioned harmonic axial collineations
σ1, σ2, σ3 is again a harmonic axial collineation, if
and only if their axes ai, bi belong to a line congruence
(i.e. they span a 2D-set of lines) with axes e, f (over C)
and the intersection pairs (Ae

i ,B
e
i ) and (A f

i ,B
f
i ) with these

axes corresponds to involutions µe, µ f on e and f .

Note that the product collineation κ of two axial in-
volutions σ1, σ2 generates a subgroup {κn,n ∈ Z} ⊂
PGL(Π3,R ⊂ C), namely the one keeping the quadrics of
a pencil of quadrics fixed. This is an analogue to the planar
case of projective rotations, as we mentioned in Chapter 7.
Among the many cases of mutual positions of σ1(a1,b1),
σ2(a2,b2) the one with {a1,b1,a2,b2} spanning a 1D-set
of lines, (namely a regulus on a quadric Φ) shall at least be
mentioned. In this case the set of fixed lines is the comple-
mentary regulus and the product σ1σ2 =: κ already is an

axial collineation. A third harmonic axial collineation σ3
then must have axes belonging to the same regulus as a1,
b1, a2, b2 such that σ1σ2σ3 =: σ4 is again a harmonic axial
collineation.
Another very special case of mutual positions of
σ1(a1,b1), σ2(a2,b2) would be that lines a1, b1, a2, b2
form a skew quadrilateral. Interpreting the plane b1 ∨ b2
as the ideal plane of the Euclidean 3-space and a1, a2 as
(intersecting) orthogonal lines, we might speak of σ1, σ2
as axial reflections. The product σ1σ2 =: κ is then an ax-
ial reflection at an axis orthogonal to a1 ∨ a2 and passing
through a1 ∩ a2. Choosing κ as the third axial reflection
gives then the identity as the product σ1σ2σ3.
Finally, we consider the case of axial reflections σ1, σ2, σ3
whereby ai are skew edges of a cube. In this case the prod-
uct σ1σ2σ3 turns out to be a translation τ, see Figure 14.

Figure 14: The product of three axial reflections at pairwise
orthogonal axes is a translation.

Conclusion

The Three Reflections Theorem belongs to basic and well-
known geometric facts. But as is shown in the chap-
ters above, there are still surprising results to gain, when
we generalise the place of action. Leading idea is Bach-
mann’s point of view of generating a geometry via reflec-
tions, even when it in most cases defines only an important
sub-geometry of “classical” geometries. There is a unify-
ing treatment for all mentioned generalisations: we study
products of two reflections first and choose the third such
that it, together with a fourth, gives the inverse product.
This makes it possible to omit explicit calculations.
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