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ABSTRACT

We extend rational trigonometry to higher dimensions by
introducing rational invariants between k-subspaces of n-
dimensional space to give an alternative to the canonical or
principal angles studied by Jordan and many others, and
their angular variants. We study in particular the cross,
spread and det-cross of 2-subspaces of four-dimensional
space, and show that Pythagoras theorem, or the Diago-
nal Rule, has a natural generalization for such 2-subspaces.
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Racionalna trigonometrija u vǐsim dimenzijama
i dijagonalno pravilo za 2-ravnine u 4-dimenzio-
nalnom prostoru

SAŽETAK

Proširujemo racionalnu trigonometriju na vǐse dimenzi-
je tako da uvodimo racionalne invarijante izmed-u k-
podprostora n-dimenzionalnog prostora. Dajemo alterna-
tivu kanonskim ili glavnim kutovima, koje su proučavali
Jordan i mnogi drugi, te njihove varijante. Posebno
proučavamo križni produkt, raspon i det-križni produkt 2-
podprostora 4-dimenzionalnog prostora i pokazujemo da
Pitagorin teorem, ili dijagonalno pravilo, ima prirodnu ge-
neralizaciju za takve 2-podprostore.

Ključne riječi: racionalna trigonometrija, podprostori,
kanonski kutovi, dijagonalno pravilo, raspon, križni pro-
dukt

1 Introduction

The notion of “angles” between two subspaces of a Eu-
clidean space has seen many results going back to C. Jor-
dan’s foundational work in 1875 [7]. In the last fifty years,
this idea has also seen considerable interest from statisti-
cians and numerical analysts, who refer to “canonical or
principal angles”, as in [1], [2] and [3]. Applications of
these “canonical angles” can be found in, for example, [4],
[5], [8], [13] and [24].

Let us consider a general dot product space, by which we
mean a vector space together with a non-degenerate sym-
metric bilinear form, or dot product, u · v, although tradi-
tionally the topic involves only the classical case with the
Euclidean inner product. We will refer to a subspace of
dimension k as a k-subspace.

Then for example in Jordan’s theory, two 2-subspaces of
four dimensional space determine in general two “angles”
θ1 and θ2. The first is the smallest “angle” between non-
zero vectors in the two spaces, while the second is the
smallest “angle” between the orthogonal compliments in
each subspace to the vectors creating the first “angle”.
For example if P is the span of (1,0,0,0) and (0,1,0,0) ,
while R is the span of (1,0,0,a) and (0,1,0,b) for numbers
|a|< |b| , then the usual description amounts to “angles” θ1
and θ2 specified (somewhat loosely) by

cosθ1 =
1√

1+a2
and cosθ2 =

√
1+a2

√
1+a2 +b2

.

The work of Risteski and Trenčevski [14] suggests that if
we multiply the cosines of the “canonical angles”, then we
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may obtain the cosine of some new “geometrical angle”
θ between the two given subspaces. In the special case
where (u1,u2, · · · ,uk) and (v1,v2, · · · ,vk) are orthonormal
bases of k-dimensional subspaces P and R of Rn, their for-
mula reduces to

cos2
θ = det

(
MT M

)
(1)

in terms of the k× k matrix M = [ui · v j], although their
original more general formulation had an error which was
corrected by Gunawan, Neswan and Setya-Budhi in [6].

The reason that many of these concepts are put in quotes
here is that this author is skeptical about the current “the-
ory of real numbers” and most claims involving computa-
tions that require an “infinite amount” of computing time
or power. But we do acknowledge that finite truncations
of such procedures can have a very useful applied func-
tion. From our point of view even the usual definition of
the “angle” between vectors u and v given by

cosθ =
u · v
|u| |v|

is problematic in the realm of pure mathematics, on ac-
count of the “infinite amounts” of work needed to evaluate
the square roots implicit in |u| and |v|, and then to evaluate
an inverse circular function.

We are interested in investigating a framework for pure
mathematics that does not require us to pretend to obtain
outputs from unending algorithms or computer programs.

Now many readers may very well not share this orienta-
tion, but we do hope that they can see that it might nev-
ertheless be a legitimate logical position, and might ac-
tually steer us in natural and fruitful directions. This in
fact leads us to rational trigonometry [15], [16], [17], [18];
to chromogeometry and associated triangle geometry [9],
[10] and [19]; and to universal hyperbolic geometry, as in
[20], [21], [22] and [23], so there is plenty of evidence that
the approach has some merit.

To avoid “angles” therefore, we are going to re-frame the
separation between two k-dimensional subspaces in an n-
dimensional dot product space using an extension of a fun-
damental formula of rational trigonometry. Notice that we
restrict to this more specific situation here, with subspaces
of equal dimension. We will investigate some basic prop-
erties of rational invariants obtained from the characteristic
polynomial of a cross matrix determined by two such sub-
spaces, and in particular will prove a Pythagorean theorem,
or Diagonal Rule result, for the special but quite interesting
case of 2-subspaces in the four-dimensional Euclidean vec-
tor space V 4 of row vectors. The alternate new name for
this historically important result reflects the fact that the
Old Babylonian culture had a clear understanding of the
geometry of a right triangle, more than 1000 years before
Pythagoras was born, as discussed for example in [11].

1.1 The basic vector orientation of rational
trigonometry

We begin by reviewing the basics of rational trigonometry,
which was introduced in the planar situation in the author’s
book [15], and to more general situations in [16] and [19].
The main initial idea is to replace “transcendental metrical
quantities” in Euclidean geometry with purely algebraic
quantities. Thus the “distance” |A,B| between two points
A and B is replaced by the quadrance Q(A,B), which is
the sum of squares of the differences between the coordi-
nates, and the “angle” θ(l,m) between two lines l and m
is replaced by the spread s(l,m), which may be thought of
as the ratio of the opposite quadrance over the hypotenuse
quadrance for any right triangle formed by the two lines,
or the cross, which is the ratio of the adjacent quadrance
over the hypotenuse quadrance.

More generally and explicitly, if a vector space over a field
is given a symmetric bilinear form, or dot product, u · v,
then we define the quadrance of a vector v to be the num-
ber

Q(v)≡ v · v.

A vector v is null precisely when Q(v) = 0. The cross be-
tween non-null vectors u and v is defined to be the number

c(u,v)≡ (u · v)2

Q(u)Q(v)
.

The spread between u and v is

s(u,v)≡ 1− c(u,v) = 1− (u · v)2

Q(u)Q(v)
.

Since both the cross and spread are invariant under rescal-
ing of either or both of the vectors, these quantities ex-
tend to metrical invariants between one-dimensional sub-
spaces, just by considering spanning or direction vectors.
So given one-dimensional subspaces l and m with respec-
tive spanning vectors u and v, we may define the respec-
tive cross and spread between them as c(l,m) ≡ c(u,v)
and s(l,m) ≡ s(u,v). These quantities are numbers in the
given field.

For the vector space of row vectors of a given dimension
n, the Euclidean symmetric bilinear form may be written
in linear algebraic terms as

u · v = uvT .

A more general symmetric bilinear form is given by

u · v = uMvT

48



KoG•21–2017 N J Wildberger: Rational Trigonometry in Higher Dimensions and a Diagonal Rule ...

for some symmetric n×n matrix M, which is usually also
assumed to be non-degenerate, meaning that detM 6= 0.

Let us make an important additional observation: that since
u · v = v · u, the (Euclidean) cross may be rewritten in this
linear algebraic notation as

c(u,v) =

(
uvT
)2

(uuT )(vvT )
= uvT (vvT )−1

vuT (uuT )−1
(2)

while the more general cross may be written as

c(u,v) =

(
uMvT

)2

(uMuT )(vMvT )

= uMvT (vMvT )−1
vMuT (uMuT )−1

. (3)

How do these rational trigonometric definitions relate to
the more familiar notions of distance and angle? One may
attempt to “introduce a square-root” of the quadrance Q(v)
and so define a length |v|, but this is problematic on at least
two counts; if working algebraically it generally requires
an extension field, but analytically, this is a computational
process that does not generally terminate, and so the os-
tensible outputs cannot be said to be well-defined (hence
the quotes). Furthermore for other bilinear forms, as in
Einstein’s special theory of relativity, the quadrance can be
negative, in which case we need also to introduce complex
extension fields.

One may attempt to introduce an “inverse sine of a square
root” of the spread, or the “inverse cosine of a square root”
of the cross, to get an “angle”, but again the transcenden-
tal aspect of these operations and the functions involved
means that in practice only an approximation to an “ideal
angle” is obtained after terminating the program to get an
output in a finite amount of time. And in other geome-
tries, as in Einstein’s relativistic geometry, the quantities
that appear as crosses and spreads need not be in the famil-
iar interval [−1,1], so “applying inverse circular functions”
is not directly appropriate.

When we move to rational trigonometry as a framework
for metrical geometry, many new possibilities for preci-
sion, clarity and generality open up. The quantities and
their relations become algebraic and rational; we are not
forced to assume a “real number framework” involving an
algebraic structure that is rarely, if ever, set out logically
and correctly in its entirety. We may aspire to obtain com-
plete and correct results to metrical questions without the
need to invoke symbolic arithmetic involving un-evaluated
symbols such as π,

√
2, and cos5, or resorting to approxi-

mate values such as 3.1415, 1.4142 or 0.2837 etc.

1.2 The affine laws of rational trigonometry

To enunciate the main laws of rational trigonometry, a
first step is to extend the above notions from the vec-
tor space framework to the corresponding affine frame-
work. We may consider the affine space An, whose points
are n-tuples A = [a1,a2, · · · ,an] with entries from some
field, but now with a translational symmetry as well as
the linear transformational symmetry. To a pair of such
affine points A,B we may associate the displacement vector
v =
−→
AB = (b1−a1,b2−a2, · · · ,bn−an) in the usual fash-

ion by taking differences of coordinates.

Suppose now that the associated vector space V n of row
vectors v = (x1,x2, · · · ,xn) is given a non-degenerate sym-
metric bilinear form u · v as above. The quadrance be-
tween the affine points A1 and A2 is then correspondingly
defined to be

Q(A1,A2)≡
−−→
A1A2 ·

−−→
A1A2.

The affine line A1A2 determined by two points A1 and A2
is a null line precisely when Q(A1,A2) = 0, that is when a
direction vector for it is null.

The cross between non-null lines l ≡ A1A2 and m ≡ B1B2
is the number

c(l,m)≡

(−−→
A1A2 ·

−−→
B1B2

)2

Q(A1,A2)Q(B1,B2)

while the spread between l and m is

s(l,m)≡ 1− c(l,m) = 1−

(−−→
A1A2 ·

−−→
B1B2

)2

Q(A1,A2)Q(B1,B2)
.

These are just the cross and spread of the associated direc-
tion vectors, and are independent of the choice of points
lying on the two lines. If one or both of the lines involved
are null, then the cross and spread are undefined, and state-
ments involving them will be considered empty. Note also
that we do not require the two lines to be meeting in order
for these quantities to be defined.

Two non-null lines are perpendicular precisely when the
cross between them is 0, or equivalently when the spread
between them is 1. These conditions are just a restate-
ment of the orthogonality of corresponding direction vec-
tors with respect to the underlying bilinear form.

Here then are the five main laws of rational trigonom-
etry for this metrical affine situation, where we use the
convention that a triangle A1A2A3 is a set {A1,A2,A3}
of three distinct points with quadrances Q1 ≡ Q(A2,A3),
Q2 ≡ Q(A1,A3) and Q3 ≡ Q(A1,A2), and spreads
s1 ≡ s(A1A2,A1A3), s2 ≡ s(A2A1,A2A3) and s3 ≡
s(A3A1,A3A2).
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Theorem 1 (Diagonal Rule or Pythagoras’ theorem)
The lines A1A3 and A2A3 are perpendicular precisely when

Q1 +Q2 = Q3.

Theorem 2 (Triple quad formula) The points A1,A2 and
A3 are collinear precisely when

(Q1 +Q2 +Q3)
2 = 2

(
Q2

1 +Q2
2 +Q2

3
)
.

Theorem 3 (Spread law)

s1

Q1
=

s2

Q2
=

s3

Q3
.

Theorem 4 (Cross law)

(Q1 +Q2−Q3)
2 = 4Q1Q2 (1− s3) .

Note that the Cross law includes as special cases both the
Triple quad formula and the Diagonal Rule when s3 = 0
and s3 = 1 respectively. The next result is the algebraic
analog to the sum of the angles in a triangle formula.

Theorem 5 (Triple spread formula)

(s1 + s2 + s3)
2 = 2

(
s2

1 + s2
2 + s2

3
)
+4s1s2s3.

This last relation may be restated in terms of the corre-
sponding crosses c1 ≡ c(A1A2,A1A3), c2 ≡ c(A2A1,A2A3)
and c3 ≡ c(A3A1,A3A2) as follows.

Theorem 6 (Triple cross formula)

(c1 + c2 + c3)
2 = 4c1c2c3.

With these laws we need no longer be restricted to Eu-
clidean geometry metrically, but can apply our compu-
tations for example to relativistic geometries, since the
main laws of rational trigonometry are valid independent
of the particular bilinear form chosen (provided it is non-
degenerate). And the computations work over a general
field, notably the rational numbers with finite field exten-
sions introduced as needed. Rational trigonometry extends
also to finite fields, and indeed current work of Michael
Reynolds is developing powerful software for such inves-
tigations.

Another very important advantage is that the above notions
of quadrance and spread, introduced over a vector space
over a field, have projective analogs when we consider the
projective space associated to such a space. In this way we
may assign notions of projective quadrance and projective
spread to hyperbolic geometry in the Cayley Klein sense,
yielding a more algebraic and general form of Universal

hyperbolic geometry in which many new phenomenon are
visible, and which has closer connections to relativistic
physics on account of the fact that we can work uniformly
inside or outside the light cone, as described in [20]. The
essential projective nature of this approach means that el-
liptic geometry is captured by the same laws as for hyper-
bolic geometry – not just analogs where circular transcen-
dental functions are replaced by hyperbolic ones as in the
classical situation.

So we have enlarged geometry many-fold by moving to ra-
tional trigonometry for our metrical computations: we can
work over the rational numbers; or over a finite field; we
can consider arbitrary bilinear forms, including relativistic
geometries; and we can create projective analogs of both
elliptic and hyperbolic geometries simultaneously in the
same general arena.

But another vista still beckons by more explicitly adopting
a linear algebraic point of view. How might we extend ra-
tional trigonometry to higher dimensions, to consider met-
rical relations in the spirit of Jordan’s “canonical or prin-
cipal angles”, between higher dimensional objects in such
spaces? For example how does a symmetric bilinear form
allow us to define rational metrical relations between k-
dimensional subspaces of an n-dimensional vector V n or
an associated affine space? And what theorems can we
hope to find in these larger settings?

Cross matrices, cross and det-cross

Suppose that we have two k× n matrices P and R, both
of rank k, representing k-subspaces of the vector space V n

over some field (with the rational numbers being the de-
fault choice), in the sense that the rows of each matrix are a
basis of the corresponding k-subspace. Our aim is to intro-
duce metrical invariants of the corresponding k-subspaces.
The matrices PPT and RRT are both also of rank k, and so
invertible k× k matrices. Then motivated by (2) and (3),
we define the cross matrix of P and R to be

C =C (P,R)≡ PRT (RRT )−1
RPT (PPT )−1

.

This is also a k× k matrix.

Now define the cross between P and R to be the normalized
trace

c = c(P,R)≡ 1
k

tr C

and define the spread between P and R to be

s = s(P,R)≡ 1− c.

Define the det-cross between P and R to be the number

d (P,R)≡ det(C (P,R)) .
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The det-cross agrees with the square of the “cosine of the
geometrical angle” of Risteski and Trenčevski as in (1),
which we can see by considering the special case when P
and R contain orthonormal vectors, so that PPT =RRT = I.
But our introduction of the cross matrix yields a richer in-
variant that potentially gives us all the coefficients of the
characteristic polynomial as invariants. These are some
kinds of analogs of the canonical angles of Jordan.

The cross, spread and det-cross are numbers in the under-
lying field that depend on the matrices P and R. We now
demonstrate that they really depend only on the subspaces
determined by P and R. We first show that if we rearrange
the rows of P by an invertible linear transformation, then
the new cross matrix is similar to the original, where two
matrices X and Y are similar precisely when there is an
invertible matrix M with

X = MY M−1.

Theorem 7 If P,R are both k × n matrices of rank k,
and M is an invertible k × k matrix, then C (MP,R) =
MC (P,R)M−1 so that c(MP,R) = c(P,R) and d (MP,R) =
d (P,R) .

Proof. If M is an invertible k× k matrix then

C (MP,R) = (MP)RT (RRT )−1
R(MP)T

(
(MP)(MP)T

)−1

= MPRT (RRT )−1
RPT MT (MPPT MT )−1

= MPRT(RRT )−1
RPT MT (MT )−1(

PPT )−1
M−1

= MPRT (RRT )−1
RPT (PPT )−1

M−1

= MC (P,R)M−1.

But since the trace and determinant of similar matrices are
equal, we deduce that c(MP,R) = c(P,R) and d (MP,R) =
d (P,R) . �

Since the definition of the cross matrix is not quite sym-
metric in P and R, a separate calculation is required to es-
tablish the effect of changing the basis for the row space of
R.

Theorem 8 If P,R are both k× n matrices of rank k, and
M is an invertible k× k matrix, then C (P,MR) = C (P,R)
so that c(MP,R) = c(P,R) and d (MP,R) = d (P,R).

Proof. If M is an invertible k× k matrix then

C (P,MR) = P(MR)T
(
(MR)(MR)T

)−1
(MR)PT (PPT )−1

= PRT MT (MRRT MT )−1
MRPT (PPT )−1

= PRT (RRT )−1
RPT (PPT )−1

=C (P,R) .

So clearly c(P,MR) = c(P,R) and d (P,MR) = d (P,R) . �

There is one more important invariance with respect to
these quantities: that they are unchanged under isome-
tries of the Euclidean space with symmetric bilinear form
u · v = uvT . Such an isometry is given by an n×n orthog-
onal matrix Q, with the property that QQT = I, acting on
the right on row vectors and so also on k×n matrices.

Theorem 9 If P,R are both k×n matrices of rank k, and Q
is an orthogonal n× n matrix, then C (PQ,RQ) = C (P,R)
so that c(MP,R) = c(P,R) and d (MP,R) = d (P,R).

Proof. If Q is an orthogonal n×n matrix then

C (PQ,RQ) =

=(PQ)(RQ)T((RQ)(RQ)T)−1
(RQ)(PQ)T((PQ)(PQ)T)−1

= PQQT RT (RQQT RT )−1
RQQT PT (PQQT PT )−1

= PRT (RRT )−1
RPT (PPT )−1

=C (P,R) .

As before it follows that c(PQ,RQ) = c(P,R) and
d (PQ,RQ) = d (P,R). �

2 The case of 2-subspaces of V 4

Let us illustrate the above general notions in the specific
case of 2-subspaces in V 4, the linear space of row vec-
tors v=

(
x1 x2 x3 x4

)
whose elements belong to some

field, which is typically the rational numbers. A two-
dimensional subspace, or 2-subspace, is the span of two
linearly independent vectors, and may be specified by the
2×4 matrix with these vectors as the rows. So for example

P =

(
2 −1 5 2
1 1 1 7

)
represents the 2-subspace spanned by the two row vectors(
2 −1 5 2

)
and

(
1 1 1 7

)
.

Clearly if we perform invertible elementary row operations
on P, which is equivalent to multiplying on the left by an
invertible matrix M, then we get another representative for
the same subspace, for example

P′ =
(

1 0 2 3
0 1 −1 4

)
=

( 1
3

1
3

− 1
3

2
3

)(
2 −1 5 2
1 1 1 7

)
which is the span of

(
1 0 2 3

)
and

(
0 1 −1 4

)
.

We may write this relationship as P′ = MP ∼ P and ob-
serve that the two matrices represent the same subspace.

This generalizes the one-dimensional property of a one-
dimensional subspace being unchanged if a representative
vector is multiplied by a non-zero scalar (or 1×1 matrix).
To simplify notation we will often associate both the sub-
space and a defining matrix for it by the same letter.
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Example 1 Generalizing the first example in the Intro-

duction, suppose that P =

(
1 0 0 0
0 1 0 0

)
and R =(

1 0 x y
0 1 z w

)
. Then a computation shows that

C=(P,R) = PRT (RRT )−1
RPT (PPT )−1

=
(
(xw− yz)2 + x2 + y2 + z2 +w2 +1

)−1

(
w2 + z2 +1 −wy− xz
−wy− xz x2 + y2 +1

)
so that

c(P,R) =
1
2

tr(C) =
1
2

x2 + y2 + z2 +w2 +2

(xw− yz)2 + x2 + y2 + z2 +w2 +1

s(P,R)= 1−c(P,R)=
1
2

x2 + y2 + z2 +w2 +2(xw−yz)2

(xw−yz)2+ x2 + y2 + z2 +w2 +1

and

d (P,R) = detC =
1

(xw− yz)2 + x2 + y2 + z2 +w2 +1
.

3 Perpendicularity for 2-subspaces over the
rational numbers

In the vector case, two vectors u and v are perpendicular
precisely when s(u,v) = 1, or equivalently in terms of the
cross c(u,v) = 0. We now show that the same holds true
for 2-subspaces in V 4, assuming we are working over the
rational numbers. Note that the general situation, over a
different field, may be different! The computations in the
proof of this theorem are useful independently.

Theorem 10 (Perpendicular 2-subspace) Suppose that
the underlying field is the rational numbers. If P is a
2-subspace of V 4, then the only 2-subspace T for which
c(P,T ) = 0 is the orthogonal subspace T = P⊥.

Proof. Since the cross is unchanged if we perform an or-
thogonal transformation or perform row reduction on rep-
resentative vectors, the general case can be reduced to the

case when P =

(
1 0 0 0
0 1 0 0

)
. Then by row reduction,

any other 2-subspace T has a representative matrix of one
of the following kinds:

T12 =

(
1 0 x y
0 1 z w

)
, T13 =

(
1 0 0 y
0 0 1 w

)
,

T14 =

(
1 0 0 0
0 0 0 1

)
, T23 =

(
0 1 0 y
0 0 1 w

)
,

T24 =

(
0 1 0 0
0 0 0 1

)
, T34 =

(
0 0 1 0
0 0 0 1

)
.

We then compute that the various possibilities for the
crosses with P are:

c(P,T12) =
1
2

x2 + y2 + z2 +w2 +2

(xw− yz)2 + x2 + y2 + z2 +w2 +1

c(P,T13) =
1
2

w2 +1
w2 + y2 +1

c(P,T14) =
1
2

c(P,T23) =
1
2

w2 +1
w2 + y2 +1

c(P,T24) =
1
2

c(P,T34) = 0.

Over the rational numbers, because squares are always
positive, the only case when we can have c(P,T ) = 0 is
the case of

T = T34 =

(
0 0 1 0
0 0 0 1

)
.

This is the orthogonal subspace of P. �

A Diagonal Rule for 2-subspaces

The Diagonal Rule, or Pythagoras’ theorem, for vectors
may be stated as follows.

Theorem 11 (One-dimensional Diagonal Rule) If P and
R are perpendicular 1-subspaces of a two-dimensional
space, that is for which c(P,R) = 0, then for any 1-
subspace T we have

c(P,T )+ c(R,T ) = 1.

The reason why this somewhat unusual vector form for
Pythagoras’ theorem is equivalent to the usual affine one
for triangles is as follows. Since the spread, or cross be-
tween two affine lines depends only on the direction vec-
tors of those lines, they are unchanged if one or both of
the lines are translated. So if we have a right triangle con-
sisting of two 1-dimensional subspaces meeting perpen-
dicularly at the origin, and another affine subspace lying
in the same plane, the affine subspace may be translated
to the origin where it becomes a 1-dimensional subspace,
without any change to the respective spreads or crosses.
Now we show that the one-dimensional result has a two-
dimensional analog.
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Theorem 12 (Two-dimensional Diagonal Rule) If P and
R are perpendicular 2-subspaces of a four-dimensional
space, that is for which c(P,R) = 0, then for any 2-
subspace T we have

c(P,T )+ c(R,T ) = 1.

Proof. Without loss of generality, we can perform an or-
thogonal change of coordinates so that the first subspace P
is represented by the matrix

P =

(
1 0 0 0
0 1 0 0

)
.

The perpendicular subspace is then

R =

(
0 0 1 0
0 0 0 1

)
and we know that c(P,R) = 0. Over the rational numbers
we know that R is the only 2-subspace with the prop-
erty that c(P,R) = 0, but we do not require that here.
Now any 2-dimensional subspace T , after row reduc-
tion, can be represented by one of the general matrices
T12,T13,T14,T23,T24 or T34 displayed in the proof of the
Perpendicular 2-subspace theorem above. That proof al-
ready established the crosses between P and each of these
matrices. We now similarly calculate the crosses between
these matrices and the matrix R:

c(R,T12) =
1
2

2w2x2 +w2−4wxyz+ x2 +2y2z2 + y2 + z2

w2x2 +w2−2wxyz+ x2 + y2z2 + y2 + z2 +1

c(R,T13) =
1
2

w2 +2y2 +1
w2 + y2 +1

c(R,T14) =
1
2

c(R,T23) =
1
2

w2 +2y2 +1
w2 + y2 +1

c(R,T24) =
1
2

c(R,T34) = 1.

Then using the preceding computations, we get

c(P,T12)+ c(R,T12) =

1
2

w2 + x2 + y2 + z2 +2
w2x2 +w2−2wxyz+ x2 + y2z2 + y2 + z2 +1

+
1
2

2w2x2 +w2−4wxyz+ x2 +2y2z2 + y2 + z2

w2x2 +w2−2wxyz+ x2 + y2z2 + y2 + z2 +1
=1

c(P,T13)+c(R,T13)=
1
2

w2 +1
w2 + y2 +1

+
1
2

w2 +2y2 +1
w2 + y2 +1

=1

c(P,T14)+c(R,T14)=
1
2
+

1
2
=1

c(P,T13)+c(R,T13)=
1
2

w2 +1
w2 + y2 +1

+
1
2

w2 +2y2 +1
w2 + y2 +1

=1

c(P,T13)+c(R,T13)=
1
2
+

1
2
= 1

c(P,T13)+c(R,T13)=0+1 = 1

In all cases the sum of the two crosses is

c(P,T )+ c(R,T ) = 1. �

4 Two-dimensional subspaces of V 3

Theorem 13 The spread between two 2-subspaces of V 3

is one half of the spread between the direction vectors of
the subspaces perpendicular to their common meet.

Proof. Any two distinct 2-subspaces in V 3 meet in a one-
dimensional subspace. Let us assume, by performing an
orthogonal transformation, that this common 1-subspace
is the span of the vector (1,0,0) . By row reduction, the
two 2-subspaces may be taken to be

P =

(
1 0 0
0 a b

)
and R =

(
1 0 0
0 c d

)
.

Then

C =C (P,R)≡ PRT (RRT )−1
RPT (PPT )−1

=

(
1 0

0 (ac+bd)2

(a2+b2)(c2+d2)

)
with cross

c = c(P,R) =
1
2

trC (P,R) =
1
2

(
1+

(ac+bd)2

(a2 +b2)(c2 +d2)

)
and spread

s = s(P,R) = 1− c(P,R)

=
1
2

(ad−bc)2

(a2 +b2)(c2 +d2)
. (Spread formula in V 3)

This is one-half of the spread between the vectors u =
(0,a,b) and v = (0,c,d) . �

As an immediate corollary we obtain the following:

Proposition 1 For any 2-subspaces P and R of V 3 over the
rational numbers the cross c(P,R) and the spread s(P,R)
satisfy the inequalities

1
2
≤ c(P,R)≤ 1, 0≤ s(P,R)≤ 1

2
.
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Proof. Over the rational number field, squares are always
positive. So the inequality for c(P,R) follows immediately
from the formula for it in the previous proof, while the in-
equality for s(P,R) follows from that. �
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[4] Z. DRMAČ, On principal angles between subspaces
of Euclidean space, SIAM J. Matrix Anal. Appl. (elec-
tronic) 22 (2000), 173–194.
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