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ABSTRACT

In Euclidean geometry we find three types of special con-
ics, which are distinguished with respect to the Euclidean
similarity group: circles, parabolas, and equilateral hyper-
bolas. They have on one hand special elementary geomet-
ric properties (c.f. [7]) and on the other they are strongly
connected to the “absolute elliptic involution” in the ideal
line of the projectively enclosed Euclidean plane. There-
fore, in a hyperbolic plane (h-plane) – and similarly in any
Cayley-Klein plane – the analogue question has to con-
sider projective geometric properties as well as hyperbolic-
elementary geometric properties. It turns out that the
classical concepts “circle”, “parabola”, and “(equilateral)
hyperbola” do not suit very well to the many cases of con-
ics in a hyperbolic plane (c.f. e.g. [10]). Nevertheless, one
can consider conics in a h-plane systematicly having one
ore more properties of the three Euclidean special conics.
Place of action will be the “universal hyperbolic plane” π,
i.e., the full projective plane endowed with a hyperbolic
polarity ruling distance and angle measure.

Key words: conic section, hyperbolic plane, Thales conic,
equilateral hyperbola
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Specijalne konike u hiperboličnoj ravnini

SAŽETAK

U euklidskoj ravnini s obzirom na euklidsku grupu simetrija

razlikujemo tri tipa specijalnih konika: kružnice, parabole

i specijalne hiperbole. S jedne strane, one imaju spe-

cijalno euklidsko svojstvo (vidi [7]), a s druge su strane

čvrsto vezane uz apsolutnu eliptičnu involuciju na ideal-

nom pravcu projektivno proširene euklidske ravnine. Zbog

toga, u hiperboličnoj ravnini (h-ravnini) – i slično u

svakoj Cayley-Kleinovoj ravnini – treba promatrati i projek-

tivna geometrijska svojstva i elementarno-hiperbolična ge-

ometrijska svojstva. Pokazuje se da u brojnim slučajevima

konika u hiperboličnoj ravnini klasični koncepti “kružnica”,

“parabola” i “(jednakostranična) hiperbola” nisu primje-

njivi (vidi npr. [10]). Unatoč tome, moguće je sustavno

promatranje konika u h-ravnini koje imaju jedno ili vǐse

svojstava triju euklidskih specijalnih konika. Proučavanje

će se vřsiti na “univerzalnoj hiperboličnoj ravnini” π, tj.

projektivnoj ravnini u kojoj su udaljenost i mjera kuta

definirani apsolutnim polaritetom.

Ključne riječi: konika, hiperbolična ravnina, Talesova

konika, jednakostranična hiperbola

1 Introduction

We consider conics in a hyperbolic plane (h-plane) hav-
ing one ore more properties of the three Euclidean special
conics “circle”, “parabola” and “equilateral hyperbola”.
In the projectively enclosed and complexified Euclidean
plane circles are conics passing through the (complex con-
jugate) absolute points I,J on the ideal line u of that plane,
parabolas touch this absolute line u, and equilateral hy-
perbolas intersect the absolute line u in points harmonic
to I,J. Besides these projective geometric properties, the
three special conics have many Euclidean properties and
generations.
Circles are e.g. generated as distance curves of a point, the
midpoint, but they are also generated by directly congruent
pencils of lines, what results in the remarkable inscribed
angle theorem and the theorem of Thales as its special case.

Parabolas are e.g. generated as envelope of a leg of a right
angle hook sliding along a line, while the other leg passes
through a point. The fixed line and point turns out to be
vertex tangent and focus of the generated parabola. As a
Euclidean conic, a parabola is of course also defined via
the Apollonius definition of a conic.

An equilateral hyperbola has orthogonal asymptotes. It
is (directly and indirectly) congruent to its conjugate hy-
perbola, it is generated by indirectly congruent pencils of
lines. But the most strange property is that each triangle
of points on the hyperbola has its orthocentre on this equi-
lateral hyperbola. The pencil of conics with the vertices of
a triangle and its orthocentre as base points consists only
of equilateral hyperbolas; (the singular conics are the pairs
consisting of the altitude and the corresponding side of the
given triangle).
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In Figure 1, these three Euclidean cases and their well-
known main properties are visualised symbolicly:

Figure 1: (Symbolic) visualisation of projective and met-
ric properties of a Euclidean circle, a parabola,
and an equilateral hyperbola

In the following, we shall study conics in a hyperbolic
plane being defined by one of the mentioned projective and
Euclidean properties. Place of action will be the “univer-
sal hyperbolic plane” π, i.e. the full real projective plane
endowed with a hyperbolic polarity, see e.g. [15]. This
“absolute (regular) hyperbolic polarity” is usually given by
the real conic ω and rules orthogonality, h-distance, and
h-angle measure. F. Klein’s point of view considers h-
geometry as a sub-geometry of projective geometry while
a puristical point of view allows only the inner domain of
ω for being a proper h-plane. In the following, we try to
have both points of view in mind, but we will use F. Klein’s
projective geometric model of a h-plane.
The standard graphic representation of ω is that of a Eu-
clidean circle and this allows us to use e.g. the graph-
ics software “Cinderella” (see [11]), which has the feature
“(planar) hyperbolic geometry”.
As a first and well-known example we consider circles: In
a hyperbolic plane with the (real) “absolute conic” ω a cir-
cle c is a conic touching ω twice in algebraic sense (what
means disregarding reality and coincidence of the touch-
ing points). This projective geometric approach results al-
ready in three types of hyperbolic circles: (1) proper cir-
cles touching ω in a pair of complex conjugate points, (2)
limit circles which hyperosculate ω, and (3) distance cir-
cles touching ω in a pair of real distinct points. While the
elementary Euclidean definition of a circle as the planar
set of points having equal distance from a centre point, the

analogue in hyperbolic geometry is true only for h-circles
of type (1) and can be modified for h-circles of type (3).
For h-circles of type (3) the radius length is not finite, a
property, which connects this type rather with Euclidean
parabolas than with circles. Euclidean circles can be gen-
erated via directly congruent pencils of lines, which ex-
presses the property of a constant angle at circumference
and especially the property of Thales. In an h-plane two
pencils of orthogonal lines with proper base points gener-
ate the so-called “Thales conic” (resp. “Thaloid”, as it is
called by N. J. Wildberger, see [15]), which is never an h-
circle of type (1) and (2), while h-circles of type (3) occur
if, and only if the vertices of the h-orthogonal pencils both
are ideal points on ω.
Conics with the properties of a Euclidean parabola are
treated in [1], where the place of action again is the “uni-
versal hyperbolic plane” π. But, for the sake of complete-
ness, we also repeat some of the details here.
A great part of this article will deal with h-conics derived
from properties of the Euclidean equilateral hyperbola fol-
lowing the above presented systematic treatment for cir-
cles. This results in two special sets of h-conics, the set
of “h-equilateral conics” having a harmonic quadrangle of
ideal points and the set of h-conics defined by the property
that each triangle of conic points has its h-orthocentre also
on this conic.

2 Projective geometric classification
of h-conics

A given conic c, together with ω, defines as well a pencil of
conics p · c+q ·ω as well as a dual pencil of (dual) conics
and we distinguish 5 different types of pencils according to
the sets of singular conics resp. the sets of common base
points and base tangents (see Figures 2 and 3).

Figure 2: Conic pencils I and II and its dual pencils I∗ and
II∗
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Figure 3: The self-dual pencils of conics III, IV, and V

If we take the reality of base points or base lines into ac-
count and consider the pencils I and I∗, then we have three
subcases each, the pencils of type II, II∗ and III have two
such subcases each and there is only one case of pencils
of type IV and V. A further distinction can be made con-
cerning the reality of the common polar triangle of c and
ω, which acts as the h-midpoint triangle of c: An h-conic
can have either one or three real midpoints.
An overview of all possible cases can be found in [5],
[6], [9], and [10]. This classification shows that the Eu-
clidean names “ellipse”, “parabola” and “hyperbola” need
strong modifications (as e.g. “semi-hyperbola”, “convex
resp. concave hyperbolic parabola” and so on) to express
the type of an h-conic, which becomes obvious by its visu-
alisation in some model of the h-plane π.
Pencils p ·c+q ·ω of the two subtypes III define h-circles c.
They have the well-known property of being distance loci
of either points or lines, see Figure 4. h-Conics to type V
have no finite radius lenght and are called “limit h-circles”
or “horocycles”. But as they have similar properties as Eu-
clidean parabolas they can also be considered as special
cases of h-parabolas, Figure 5.

Figure 4: The different types of h-circles within concentric
pencils of h-circles

Figure 5: Pencil of “horocycles” showing the property
of Euclidean parabolas, which are translated
along their common axis

Conics c defining pencils of type II and IV can be con-
sidered as analogs to Euclidean parabolas and they will be
studied in Chapter 5 with respect to their h-metric proper-
ties.

Conics c defining pencils of type I are “h-hyperbolas”,
“semi-hyperbolas” or “h-ellipses” according to the reality
of the pencil’s base points, which furtheron will be called
the “ideal points” of c.

3 Classification with respect to
h-orthogonality

We start with an h-conic c, which, together with ω defines
a pencil p · c+ q ·ω of type I. The quadrangle of its ideal
points can be special with respect to the h-orthogonality
structure defined by the absolute polarity to ω. There
might be h-orthogonal pairs of opposite sides of this base
quadrangle (Figure 6). For dual pencils p · c∗+ q ·ω∗ one
can find similar special cases, see Figure 7. Quadrangles
(resp. quadrilaterals) with this special property are called
“harmonic quadrangles” (resp. “harmonic quadrilaterals”)
as their (non-trivial) symmetry group is generated by har-
monic homologies.

Figure 6: Pencils p ·c+q ·ω with h-orthogonality proper-
ties of the base quadrangle (and its degenerate
case pencil IV)
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Figure 7: Dual pencils p · c∗ + q ·ω∗ of type I∗ with h-
orthogonality properties of the base quadrilat-
eral

Figure 6 shows that there occur only h-hyperbolas and
semi-hyperbolas and, as a degenerate case, there are h-
parabolas, but no h-ellipses. The dual case (Figure 7) con-
tains h-ellipses c, when seen as point conics. It makes
sense to define an h-conic possessing a real harmonic ideal
quadrangle as “h-equilateral hyperbola” and we will have
a closer look to these h-conics in Chapter 6.

4 h-Conics with metric properties of
Euclidean circles

We start with the concept of a Euclidean circle and its dif-
ferent Euclidean generations. We have already mentioned
that projective h-conics of type III are also a h-distance cir-
cles (Figure 4). But they have neither the Thales-property
nor the property of the constant angle at circumference.
The generation of a conic by h-orthogonal pencils delivers
the “Thales conic” x over a segment [A,B], which turns out
to be one of the axes of the conic (Figure 8). There is one
exeption: Thales-conics over a segment [A,B], A,B ∈ ω,
are h-circles and their radius turns out to be 1/

√
2, (Fig-

ure 9).

Figure 8: Different cases of Thales-conics x generated by
two h-orthogonal pencils of lines

Figure 9: The exceptional case of a Thales-conic over a
segment with endpoints on the absolute conic ω

in a h-circle of radius 1/
√

2
Connecting the construction of a Thales-conic x with a
kinematic mechanism allows us to construct of points and
tangents of x, see [14] and Figure 10.

Figure 10: Kinematic generation of a Thales-conic x ap-
plied to construct its tangents

Arbitrarily chosen direct congruent pencils of lines gener-
ate a conic, too. It is simply the Steiner generation of a
conic by projective pencils, but this delivers no h-circles,
see Figure 11, and it has not the property of inscibed angle
theorem either!

Figure 11: Conic generated by two directly congurent pen-
cils of lines

Curves defined by a constant angle at circumference differ-
ent from a h-right angle, socalled “isoptics of a segment”,
turn out to be algebraic of degree four! To visualize this
one can consider the inverse motion, namely to keep the
angle and its legs fixed and move the segment. In the Eu-
clidean plane this motion is the well-known ellipse motion,
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as all points which are fixed connected with the moving
system and which are different from the points on the legs
of the fixed angle have ellipses as orbits. In the h-plane
these orbits turn out to be of order four, too, see Figure 12.

Figure 12: The h-analog of the Euclidean ellipse motion
delivers orbits ci of degree 4

Another way to visualise this motion is to start with the
Thales-motion and consider the envelop of a line fixed to
Thales’s right angle hook and passing through its vertex,
Figure 13. In the Euclidean case, the envelope is a point of
the Thales-circle, in the h-case it is a curve of degree 6.

Figure 13: Moving a fixed angle hook along a Thales-conic
such that one leg passes through a bases point
A of Thales’s construction, the 2nd leg envelops
a curve of degree 6.

5 h-Conics with metric properties of
Euclidean parabolas

In this chapter, we strongly refer to [1]. From the pro-
jective geometric point of view, we have to distinguish h-
parabolas of type II, IV, and V, the latter having also prop-
erties of a circle. If one considers the analog of the Eu-
clidean slider crank, there occur h-conics, but they are (in
general) not projective h-parabolas, (Figure 14). The proof
for the fact that the envelop of the second leg t of the crank
slider is a h-conic x is trivial: The line t connects two pro-
jectively correlated point series, namely s and the absolute

polar line f of F . This line f is also the second vertex
tangent of the h-conic x.

Figure 14: The h-analog of the Euclidean crank slider mo-
tion, defines a conic x with focus F and vertex
tangent s.

Also the h-analog to the construction of a parabola accord-
ing to Apollonius’s definition does in general not deliver
h-parabolas in the projective geometric sense, see Figure
15. (Proof: x is Steiner-generated by two projective pen-
cils of lines with centre F , the focus of x, and the absolute
Pole L of the directrix line l of x.)

Figure 15: The h-analog of Apollonius’s definition of a Eu-
clidean parabola delivers a conic x.

Figure 15 also shows that x fulfills a “reflection property”
similar to the Euclidean parabola. But while, in the Eu-
clidean case, the diameters of the parabola c are reflected
at x, and then pass through the focus of x, in the hyperbolic
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case the lines through the absolute pole L of the directrix
line l are reflected at x and pass through a point, the h-focus
F1. The points L and F1 act, therefore, as a pair of foci of
x.
As all h-conics with two real focal points have the “reflec-
tion property”, it seems to be obvious that the projective
h-parabolas x have the “reflection property”, too, i.e., the
h-reflections of “diameters” at x pass through a point, the
focus of x. It turns out that this is true for all cases, Fig-
ure 16. For the limit case of pencil type V it seems to
be trivial, as the diameters intersect the “limit circle” x h-
orthogonally, a property, which we connect rather to circles
then to a parabola and which justifies to call that special h-
conic a limit circle (horocycle) and not a limit parabola.

Figure 16: Reflection property of h-parabolas of the projec-
tive types II and IV

6 h-Conics with properties of Euclidean
equilateral hyperbolas

6.1 h-equilateral conics

Here, we continue chapter 3: An “h-equilateral hyperbola”
x is an h-conic with a (real) harmonic quadrangle Ω of ideal
points, i.e. x∩ω = A,B,C,D and CR(A,B,C,D) = −1.
Similarly we call an h-equilateral conic x with two real
and two conjugate imaginary ideal points an “h-equilateral
semi-hyperbola”, see Figure 6. For both cases exactly one
real pair of sides of the ideal harmonic quadrangle Ω is
h-orthogonal and we will call this pair the “asymptotes”
a1,a2 of x, c.f. also [10]. The other two (real or conju-
gate imaginary) pairs of sides of the complete quadran-
gle Ω shall be named as “singular h-equilateral conics”
Σ1,Σ2. The vertices of the diagonal triangle of Ω are the
h-midpoints Mi of x, Figure 17.

Figure 17: Concentric h-equilateral hyperbolas x1, x2, x3
with their common asymptotes a1, a2, and h-
midpoints Mi

A h-equilateral semi-hyperbola can be visualized in the
classical, but projectively closed plane of visual perception
as a Euclidean pencil of circles, see Figure 18.

Figure 18: Left: Euclidean model of h-equilateral semi-
hyperbolas, Right: A more projective visualisa-
tion of these special h-conics

Figure 19 shows that even a Thales-conic can be an h-
equilateral hyperbola.

Figure 19: A Thales-conic can be an h-equilateral hyper-
bola
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Figure 20: Dual pencil of h-equilateral dual conics c∗

Figure 20 illustrates the case of a dual pencil of h-
equilateral dual conics c∗ touching a harmonic (ideal)
quadrilateral Ω∗. (“Dual conic” means the set of tangents
of a conic c, which is given as a point set.) The three pairs
of intersection points of the complete harmonic quadrilat-
eral Ω∗ act as the pairs of focal points Fi of the conics c.
Again, there exists one real pair of absolute conjugate fo-
cal points F1, F2, and we call these points the “asymptote
points” of c∗. The diagonal points of Ω∗ are the midpoints
of the conics c to c∗.
If one applies an h-reflection to an h-equilateral hyper-
bola c in one of its asymptotes, one receives another h-
equilateral hyperbola c, which is h-congruent to c. This re-
peats a property of Euclidean equilateral hyperbolas. In the
Euclidean case c and c are “conjugate hyperbolas”. This
gives a hint to define h-conjugate conics, too, see Figure
21:

Definition 1 The “h-conjugate conic” y to conic x is
concentric with x, has the same ideal points, and thus,
the same asymptotes a1, a2, and it has the same “axis-
quadrangle” Λ. The axis-quadrangle Λ of x has its ver-
tices in the intersection points of vertex tangents w1, w2, of
x with its asymptotes a1, a2.

Figure 21: The h-conjugate conics x and y in the case of x
being h-equilateral

Figure 22: The h-conjugate conics x and y in the case of x
being not h-equilateral

The special case visualised in Figure 21 also reveals the
construction of the hyper-osculating h-circles ci at the ver-
tices W1 of x and V1 of y, which is identical with the Eu-
clidean construction for equilateral hyperbolas. Figure 22
shows the general case of (real) h-conjugate conics. There,
too, the classical Euclidean construction of the hyperoscu-
lating circles at the vertices is possible. So, we can state
the following
Result: If in an arbitrary Cayley-Klein plane (CK-plane) π

a conic x has a well-definded real pair of asymptots a1, a2,
then it has a real CK-conjugate conic y. The CK-normals
in vertices of the “axis-quadrangle” of x (defined above)
to the asymptotes intersect the axes of x (and y) in the h-
centres Ci of the hyperosculating circles ci of x and y.

6.2 Special h-conics generated by h-congruent pencils
of lines

Euclidean equilateral hyperbolas have the property that
they can be Steiner-generated by two indirect congruent
pencils of lines. Obviously, the result of the analog con-
struction in the h-plane π delivers a conic x, but this conic
is, in general, not h-equilateral, see Figure 23. As also a
Thales conic can have four real ideal points, see e.g. Figure
19, the sense of the congruence between the two pencils of
lines is not essential for receiving a hyperbola as the result
of the Steiner-generation.

Remark 1 In Figure 23 the basis points of both Steiner-
generations, the direct and indirect one, are labelled with
P, Q. It turns out that the segment [P,Q] is a diameter
of the indirectly generated h-conic x as well as of the di-
rectly generated h-conic y. It is still an open question,
whether any arbitrary h-conic x can be Steiner-generated
by h-congruent pencils of lines. In the Euclidean case this
is not true.
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Figure 23: Generation of a conics x, y via h-congruent pen-
cils of lines. The h-congruence is given by the
sense (indirect or direct) and the pair of corre-
sponding lines t1, t2. The dotted conic y is the
result of directly congruent pencils while the x
stems from indirectly congruent pencils.

6.3 Special h-conics with the “triangle orthocenter
property”

It is well-known that Euclidean equilateral hyperbolas x are
characterised by the remarkable property that any triangle
∆ of hyperbola points has its orthocentre on x. We abbre-
viate this property as the “triangle orthocentre property” of
(Euclidean) equilateral hyperbolas and pose the question
whether there exist h-conics with this property, too.
We start with an arbitrary but not right-angled triangle
∆ = (APQ) with O being its h-orthocentre, and we add an
arbitrarily chosen fifth point X for defining an h-conic x
through these 5 points. We assume x to be regular, see
Figure 24.

Theorem 1 A h-conic x through A,O,P,Q,X, with O the
h-orthocentre of ∆ = (APQ) passes also through the h-
orthocentre OX of triangle ∆X = (XPQ).

Proof. Using the labelling of Figure 23 with a1 = PA,
a2 = QA, b1 = PX , b2 = QX and c1 = PO, c2 = QO,
d1 = POX , d2 = QOX , we have the following pairs of h-
orthogonal lines:

a1 ⊥ c2, b1 ⊥ d2, c1 ⊥ a2 and d1 7→ b2. (1)

The two ordered quadruples (a1,b1,c1,d1), (c2,d2,a2,b2)
belong to h-orthogonal pencils, which Steiner-generate the
Thales conic t over the segment [P,Q]. Therefore, we can
state that

CR(a1,b1,c1,d1) = CR(c2,d2,a2,b2). (2)

By applying permutation rules for cross ratios (see e.g. [2,
p. 34]), we infer

CR(a1,b1,c1,d1) = CR(c2,d2,a2,b2) = CR(a2,b2,c2,d2),

(3)

such that also the ordering a1 7→ a2, b1 7→ b2, c1 7→ c2,
d1 7→ d2 defines projective pencils, which Steiner-generate
the conic x through P,Q,A,X ,O. Since (2) holds, we also
have d1∩d2 = OX ∈ x. �

Figure 24: An h-conic x through A,O,P,Q,X, with O the h-
orthocentre of ∆ = (APQ) passes also through
the h-orthocentre OX of the triangle ∆X =
(XPQ).

Applying Theorem 1 to different points Xi ∈ x allows us
to go from the basic triangle (A,P,Q) to any other triangle
(X1,X2,X3) of conic points, and also this new triangle must
have its h-orthocentre on x. So we can state

Theorem 2 A (regular) h-conic x passing through
A,O,P,Q, with O being the h-orthocentre of triangle
(A,P,Q) has the triangle orthocentre property, i.e. any tri-
angle of points of x has its h-orthocentre on x.

One can extend Theorem 1 by the following statement, (see
Figure 25):

Theorem 3 Any conic x through points A,B,C,D and
passing through the h-orthocentre O1 of triangle (ABC)
passes also through the h-orthocentres Oi of (BCD),
(ABD), and (ACD). Especially, if A,B,C,D ∈ ω and
(A,B,C,D) is not harmonic, then the diagonal trian-
gle of the quadrangle (O1, ...,O4) coincides with that of
(A,B,C,D), which is the midpoint triangle of x.

Proof. The first part of theorem 3 is simply a conse-
quence of theorem 2. Now we consider a quadrangle
Ω = (A,B,C,D) of ideal points. Let O1,O2 be the h-
orthocentres of the triangles (ABC) and (ABD), see Fig-
ure 26. The quadrangle Ω admits the h-reflections in the
sides of its diagonal triangle (M1,M2,M3). Thereby, the
h-symmetry σ with centre Z := M3 and axis z := M1M2
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maps triangle (ABC) to the triangle (ABD) and, as σ is
an h-congruence, it maps also O1 to O2 which implies
that O1,O2,Z are collinear. Applying the other possible
h-symmetries with centres Mi and axes M jMk to the h-
orthocenters of the remaining partial triangles Ω completes
the proof. �

Figure 25: An h-conic x through A,B,C,D,O1 with O1 the
h-orthocentre of (ABC) also passes through the
h-orthocentres Oi of the remaining partial tri-
angles of (A,B,C,D).

Remark 2 The h-symmetry argument used in the proof
above suggests an extension of Theorem 3: Each quadran-
gle (A,B,C,D) admitting three h-symmetries would suit as
start figure such that the quadrangle of h-orthocentres of
the partial triangles has the diagonal triangle in common
with (A,B,C,D).

Figure 26: Applying the h-symmetry σ : (A,B,C,D) 7→
(A,B,D,C) proves that O1,O2,Z are collinear.

Remark 3 Both, the set of h-equilateral hyperbolas pos-
sessing one pair of h-orthogonal asymptotes and the set

of conics with the triangle orthocentre property (“top-
conics”) are four-parametric with a three-parametric fam-
ily of h-conics having both properties, while in Euclidean
geometry the two four-parametric families coincide.

7 Final remarks and conclusion

Conics in Euclidean and non-Euclidean geometries are al-
ready widely studied since decades, see e.g. [3], [5], [6]
and also the reference list in the monograph on conics [7].
Many references mainly deal with the classification and
normal form problem and less with explicite constructions
or properties of conics, see e.g. [10], [12]. Explicit con-
structions can be found e.g. in [1] and [14].
This article aims at a systematic treatment of what can be
called “special conics” in a hyperbolic plane. This means
that we have to base the investigation on usual classifica-
tions of conics from the (projective) universal hyperbolic
point of view as well as on the basis of special properties
which are non-Euclidean adaptions of properties one can
find at Euclidean conics. As one can interpret many of
these adaptions simply as Steiner-generations of conics (or
its dual), one can widely omit calculations and use syn-
thetic reasoning instead.
Because of the used projective geometric point of view, it
is an easy task to transfer the presented results resp. the
constructions also to elliptic geometry. In an elliptic plane
(or its Euclidean spherical model), there are no parabolas
even so the constructions for Euclidean parabolas can be
performed. Each general conic in the elliptic plane is an
ellipse, but a spherical conic allows both, the Apollonius-
definition of an ellipse and (seen from the complementary
side in the spherical model) also that of a hyperbola. As
special projective types of (real) conics, one finds one type
of “e-circles”. All the other metric definitions (as e.g. by
the triangle-orthocentre-property) deliver “e-ellipses” with
special properties or curves of higher degree.
We conclude with open questions:
It remains open, whether there exist additional special con-
ics in hyperbolic geometry, which have properties one did
not consider in Euclidean geometry. One such property
which makes no sense in Euclidean geometry but is mean-
ingful in hyperbolic and elliptic planes, is the dual to the
Apollonius definition of a conic:
“The tangents of a conic intersect two given lines in angles
of constant sum.”
For elliptic resp. spherical geometry, this results in a nice
application: Given two lines a,b intersecting in C, find
points B ∈ a, A ∈ b, such that the spherical triangle ABC
has a given area.
As a second open problem occurs, whether each h-conic
can be Steiner-generated via two congruent pencils of
lines. For h-special hyperbolas the generation via congru-
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ent pencils leads to pencil vertices on a diameter of the
hyperbola. As there is a 5-parametric set of h-conics in the
h-plane, and there is also a 5-parametric set of congruent
pencils, (namely 2 times two for the vertices and one for
the rotation given by start line t2 to a fixed start line t1),
this question might be answered with “yes”, even so it is
wrong in Euclidean geometry. But if “yes” is true, how can
one find these vertices and the angle of rotation to a given
h-conic?

A third question concerns the “h-isoptic curves of a seg-
ment”, which generalise the incribed angle theorem in Eu-
clidean geometry. Is it possible that the h-isoptic curve,
which is irreducible of degree 4 in geneneral, can be re-
ducible in some special cases? This would be similar to
the Euclidean case, where the resulting curve of degree 4
always splits into two circular arcs?

A fourth problem might concern the hyperbolic versions of
some generalisations of Euclidean Thales-constructions as
presented in [13].

Final remark. Even so the topic of dealing with special
conics a specific CK-plane only seems to be what can be
called “advanced elementary geometry”, it could stimu-
late research of conics - namely as curves of degree 2 - in
arbitrary metric planes, so-called Minkowski planes. Until
now “Minkowski conics” are defined only via the Apollo-
nius definition, see e.g. [4], [8].
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[8] Á. G. HORVÁTH, H. MARTINI, Conics in normed
planes, Extracta Math. 26/1 (2011), 29–43.
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