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B. Odehnal: O algebarskim minimalnim plohama . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
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M. Glaurdić, J. Beban-Brkić, D. Tutić: O problemu bojanja grafova s primjenom u kartografiji . . . . . . . . . . . . . . . . 99



KoG•20–2016 In Memoriam

JELENA BEBAN-BRKIĆ, VLASTA SZIROVICZA

Vlasta Ščurić-Čudovan

(1931-2016)

U utorak 15. studenog 2016. napustila nas je sveučilišna
profesorica u miru dr. sc. Vlasta Ščurić-Čudovan, dugogo-
dišnja nastavnica Geodetskog fakulteta Sveučilišta u Za-
grebu, znanstvenica, kolegica i prijateljica, te autorica Uvod-
nika za prvi broj časopisa KoG. Kao vrsna i cijenjena pre-
davačica ostavila je prepoznatljiv trag generacijama stude-
nata. Njena predavanja i vježbe odlikovali su se jasnoćom i
sistematičnošću, a nije štedjela vremena i energije u želji da
studenti u potpunosti razumiju materiju, da ju mogu obja-
sniti, nacrtati i dati prostorno rješenje.

Vlasta Ščurić-Čudovan rođena je u Koprivnici 9. 5. 1931.
gdje je pohađala osnovnu školu i gimnaziju. Godine 1958.
diplomirala je na tadašnjem Matematičko-fizičkom odsjeku
Prirodoslovno-matematičkog fakulteta u Zagrebu, smjer te-
orijska matematika.

Na poslijediplomskom studiju PMF-a u Zagrebu je 1966.
stekla stupanj magistra matematičkih znanosti, obranivši rad
iz područja projektivne geometrije pod naslovom Pramenovi
polarnih prostora i njima određeni kompleksi koji je izradila
pod mentorstvom akademika, profesora Vilka Ničea. Pro-
fesor Niče bio joj je mentor i na doktorskoj disertaciji pod
naslovom Orijentirani kompleks određen pramenom ploha
2. stupnja koju je 1972. godine obranila te na Sveučilištu
u Zagrebu bila promovirana za doktora matematičkih zna-
nosti.

U radni odnos stupila je 1958. kao nastavnica matematike
na Građevinskoj tehničkoj školi u Zagrebu, gdje je radila do
kraja školske godine 1961. Za potrebe tog posla položila je
stručni ispit za profesora srednje škole.

Rad nastavlja na geodetskom odjelu AGG fakulteta, kasnije
Geodetskom fakultetu, kao asistentica za predmet Nacrtna
geometrija. Po stjecanju stupnja magistra matematičkih zna-
nosti, dvije akademske godine predaje Nacrtnu geometriju i
na Akademiji likovnih umjetnosti u Zagrebu. Nakon stje-
canja doktorata matematičkih znanosti i održanog habilita-
cijskog predavanja izabrana je 1973. u zvanje docentice za
predmet Numerički račun (kasnije nazvanog Praktična ma-
tematika i konačno Geodetsko računanje), a uz to i dalje drži
vježbe iz predmeta Nacrtna geometrija. 1978. unaprijeđena
je u zvanje izvanredne, a 1984. u znanstveno-nastavno zva-
nje redovite profesorice za znanstveno područje matematika
za predmete Nacrtna geometrija i Geodetsko računanje na
studiju VII/1 i Nacrtna geometrija na studiju VI/1. Osim za
redovne studente, održavala je i nastavu na Studiju uz rad, i
to u Zagrebu, Splitu i Osijeku. Na svim tim studijima, pred-
metima, sveučilištima, Vlasta je nastojala postići angažman
studenata već od početka studija, privikavati ih na kontinu-
irani rad kao i sažeto i pravilno izražavanje.
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Na geometrijskim je predmetima bilo važno naučiti stu-
dente kako kroz prostorne odnose među zadanim elemen-
tima predložiti tijek rješenja zadatka i u konačnici traženo
ispravno prikazati u ravnini. Sadržaj predmeta Geodetsko
računanje bio je goniometrija, trigonometrija u ravnini i
sferna trigonometrija, dakle klasični sadržaj jedne od najsta-
rijih matematičkih disciplina primijenjenih u praksi. Kako
sama Vlasta kaže u opisu predmeta...“obrada tog sadržaja
mijenjala se tokom vremena, od izrade logaritamskih tablica
pa sve do za geodetsku praksu upotrebljivih džepnih kalku-
latora odnosno kompjutora. Postavi li se, naime, problem
i program nekritički, kompjutor može izbaciti na stotine, za
geodetsku praksu posve neupotrebljivih podataka. Važno mi
je da studenti, osim što će savladati nužne pojmove, odnose
i relacije, već u početku studija shvate i nauče da formula
nije nešto “u što se uvrsti i dobije rezultat” već da ona
nosi mnoge poruke o zavisnosti njenih elemenata, te da nu-
merički rezultat valja uvijek podvrgnuti analizi.”

Možemo samo pretpostaviti koliko je truda i vremena
utrošila na sastavljanje zadataka iz navedenih predmeta,
njihovu kontrolu i razgovor sa studentima, kako bi posti-
gla svoje ciljeve kao nastavnik. Uz i dalje puno žara i
angažmana i nimalo promijenjen odnos prema studentima
održava nastavu i u akademskoj godini 1997./1998. nakon
koje odlazi u mirovinu.

Znanstveno okruženje u kojem je V. Ščurić-Čudovan
započela svoje djelovanje bilo je iznimno povoljno. Svakod-
nevni rad uz akademika Vilka Ničea, vrhunskog znanstve-
nika u području sintetičke projektivne geometrije, omogućio
joj je čestu verifikaciju znanstvenih rezultata. Koliko je uz
njega bila vezana možda najbolje govori tekst Sjećanje na
akademika prof. Vilka Ničea koji je kao dio Spomenice pre-
minulom članu, na godišnjicu smrti, izdala tadašnja JAZU.
Ovdje prenosimo dio teksta.

“Prošlo je već 13 mjeseci od smrti našeg profesora i prija-
telja, akademika Vilka Ničea. Zapao me je častan ali i vrlo
odgovoran zadatak da pomognem evociranju sjećanja sviju
nas na njegov život, znanstveni i nastavni rad, a posebno na
njega kao čovjeka. Oprostite mi što ću u tome pokatkad biti
subjektivna. Za to postoje mnogi razlozi, a osnovni je taj
što je profesor Niče neposredno utjecao na tok čitavog mog
života: od diplomskog rada pod njegovim vodstvom, poziva
na rad na fakultetu, uvođenja u znanstveni rad, mentorstva
magistarskog rada i doktorske disertacije do daljnjeg poti-
canja na znanstveni rad. To šturo nabrajanje krije u sebi
mnogo, mnogo više. U prvom redu beskrajnu zahvalnost
i poštovanje prema dr. Vilku Ničeu kao čovjeku i učitelju.

Bilo bi prelijepo kad bi svatko imao sreće da ima svog vodi-
telja u svim bitnim momentima života, posebno znanstvenog
rada. . . ”

Uz njega je imala veliku podršku profesorice Ljerke Dočkal
Krsnik, najprije joj nadređene, a kasnije kolegice i prijate-
ljice, s kojom je sudjelovala u radu brojnih kongresa i sim-
pozija, domaćih i stranih.

Do devedesetih godina prošlog stoljeća njeno je znanstveno
istraživanje rezultiralo nizom opširnih i iscrpnih radova iz
područja sintetičke pravčaste geometrije realnog trodimen-
zionalnog prostora. Ako imamo na umu da su te tvorevine
zvane kompleksi izučavane isključivo sintetičkom metodom,
jasno je koliko je truda, dubokog poznavanja sintetičke ge-
ometrije i snažnog prostornog zora bilo potrebno da bi se u
tom području došlo do novih rezultata.

Prenijet ćemo prikaz nekoliko radova iz izvještaja koji pot-
pisuje profesor dr. Dominik Palman prilikom njenog izbora
za redovitu profesoricu.

• Der orientierte Niče-sche Strahlkomplex eines
Flächenbüschels 2. Grades, Rad JAZU 370 (1975),
57-91.

U ovom radu V. Ščurić-Čudovan istražuje singularne točke
Ničeovog kompleksa i konstatira da takve točke leže na kri-
vulji središta k3 3. reda i na beskonačno dalekoj krivulji µ
koja je također 3. reda, a poznata je i kao Jacobijeva krivu-
lja. Nadalje definira involutorne zrake (VN) kompleksa na
kojima su izlazna I i zalazna Z točka involutorno povezane
i dokazuje da one čine kongruenciju 15. reda i 11. raz-
reda. Osobitu pažnju posvećuje involutornim zrakama koje
su pridružene točkama krivulja k3 i µ. Ovisno o načinu pri-
druživanja točaka tih krivulja dobiva plohe P1 6., P2 12. i P3

9. stupnja na kojima istražuje krivulje I i Z točaka.

• Das (F2
k ) Flächenbüschel und eine Möglichkeit des

Eintauchens des (MK) in den (V N) Komplex, Rad
JAZU 374 (1977), 57-91.

U radu Pramen ploha F2
k i jedna mogućnost uranjanja (MK)

u (Y N) kompleks promatra se pramen ploha koji sadrži ku-
glu. Ta činjenica znatno utječe na osobine (V N) kompleksa.
Dr. Vlasta Ščurić-Čudovan dokazuje da ovdje preuzima ci-
jela beskonačno daleka ravnina ulogu krivulje µ 3. reda. U
ovom se slučaju Ničeov kompleks raspada u dva kompleksa
3. i 5. stupnja, a Majcenov se kompleks podudara sa spome-
nutim kompleksom 3. stupnja. Kompleksni stožac se raspada
u stošce 5. i 3. stupnja, a analogni je i raspad kompleksnih
krivulja. Ispitane su i I− kao i Z−krivulje na njima. U tom
kompleksu su istražene i neke istaknute plohe i kongruencije.
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• Die Kongruenzen der Involutorstrahlen eines durch
das (F2

k ) Flächenbüschel bestimmten (V N) Kom-
plexes, Rad JAZU 382 (1978), 65-90.

Ovaj rad je nastavak istraživanja prethodnog rada. Utjecaj
kugle na tvorevine involutornih zraka očituje se u tome da
plohe P1, P2 i P3 prelaze u odgovarajuće kongruencije. Invo-
lutorno pridružene T −Z točke tvore u tim kongruencijama
plohe 6., 9. i 3. reda. ...

• Einige Probleme die durch die Einteilung eines
Bündels der Flächen 2. Grades in ∞1 Büschel solc-
her Flächen entstanden sind, I Teil, Rad JAZU 403
(1983), 33-55.

U ovom radu se promatra svežanj ploha kao skup prame-
nova ploha (MF2) sa zajedničkim stošcem. U uvodu se pod-
sjeća na osnovna svojstva prostorne krivulje 6. reda koja
sadrži vrhove svih stožaca svežnja. Istaknuvši na toj krivulji
po volji odabranu točku M, pridruženu trisekantu m i ko-
njugirani pravac mk Vlasta Ščurić-Čudovan istražuje zrake
kompleksa koje su pridružene točki M, točkama pravaca m i
mk te za svaku zraku kompleksa utvrđuje kojim je pramenom
iz skupa (MF2) određena i kojoj je točki pridružena. Na taj
način promatrane su tvorevine zraka tetraedarskih i Majce-
novih kompleksa pridruženih skupu pramenova (MF2).

Iz opisa navedenih radova izlazi da dr. sc. Vlasta Ščurić-
Čudovan vrlo temeljito poznaje i razrađuje opće i specijalne
pramenove ploha 2. stupnja. Dala je vrijedne doprinose
obradi tetraedarskog, Majcenovog i Ničeovog kompleksa
koji su pridruženi pramenovima ploha 2. stupnja. Iz posljed-
njeg (gore navedenog, op. a.) rada vidljivo je da je područje
istraživanja proširila na svežanj ploha 2. stupnja. Razloživši
taj svežanj ploha na niz pramenova sa zajedničkim stošcem,
došla je do vrijednih rezultata, te se može očekivati na tom
području i dalji uspješan rad. U svojim radovima dr. sc.
Vlasta Ščurić-Čudovan služi se sintetičkom metodom koja
danas nije u centru pažnje, no ona je pokazala da se tom
metodom još uvijek može doći do vrijednih rezultata. O svo-
jim radovima referirala je na domaćim i austrijskim kon-
gresima koji imaju karakter kongresa njemačkog govornog
područja, gdje je izazvala živ interes istaknutih stručnjaka
te problematike.”

Devedesetih godina prošlog stoljeća smatrala je da se treba
okrenuti istraživanjima u nekom njoj novom području sin-
tetičke geometrije, jer je prethodno bilo zaokruženo. Stje-
cajem okolnosti našla je u vrhunskom austrijskom geome-
tričaru, dr. Hansu Sachsu, profesoru sa Zavoda za primije-
njenu matematiku i geometriju - Montanuniversität Leoben,
Austrija, odgovarajućeg suradnika, te s njime otvorila nove

vidike iz područja izotropne geometrije, koju se dotada sma-
tralo prilično oskudnom.

Njezina je ideja bila istraživati pramenove krivulja 2. stup-
nja u izotropnoj ravnini, budući da u njoj postoji, za razliku
od euklidske, sedam vrsta neraspadnutih krivulja 2. stup-
nja. Njihovi su zajednički radovi najprije dali klasifikaciju
tih pramenova na temelju koje su izučavane pojedine vrste
s obzirom na realnost i položaj temeljnih točaka tih prame-
nova. S obzirom na opsežnost područja, V. Ščurić-Čudovan
je tu uključila svoje mlađe kolegice, Vlastu Szirovicza i Je-
lenu Beban Brkić. U ovom je trenutku teško nabrojati ra-
dove, te disertacije koje su u posljednjih dvadesetak godina
proizašle iz te suradnje.

Iako se odlično služila njemačkim jezikom, naglasimo da
nije bilo lagano održati predavanje iz geometrije prostora na
njemačkom jeziku bez pomoći računala. Upravo je to inten-
zivno radila V. Ščurić-Čudovan i bila izvrsno prihvaćana na
brojnim znanstvenim kongresima, savjetovanjima i drugim
skupovima: Austrijski kongres matematike (Linz 1968., Beč
1973., Salzburg 1977., Insbruck 1982., Graz 1985.), Balkan-
ski kongres matematičara (Beograd 1974.), Jugoslavensko-
austrijski seminar za geometriju (Seggauberg 1986., Plitvice
1988.), Internacionalni simpozij za geometriju (Seggauberg
1987., 1988., 1989.), Simpozij za geometriju i diferencijalnu
geometriju (Karlsruhe 1989.), Austrijsko-jugoslavenski ge-
ometrijski simpozij (Seggauberg 1990.), Kolokvij za kons-
truktivnu geometriju u spomen univ. red. prof. dr. H. Bra-
uner (Seggauberg 1991.), Međunarodni geometrijski semi-
nar (Seggauberg 1992.).

Tu treba dodati prisustvovanje V. Ščurić-Čudovan, u razdob-
lju od 1963. do 1990., svim Jugoslavenskim savjetovanjima
nastavnika i asistenata Nacrtne geometrije koji su se u pra-
vilu svake druge godine održavali u nekom drugom gradu
nekadašnje Jugoslavije, te njeno prisustvovanje Kongresima
matematičara, fizičara i astronoma Jugoslavije.

V. Ščurić-Čudovan bila je članica Društva matematičara,
fizičara i astronoma SRH, Austrijskog društva mate-
matičara, Jugoslavenskog udruženja za nacrtnu geometriju i
inženjersku grafiku, Hrvatskog društva matematičara te Hr-
vatskog društva za geometriju i grafiku.

Kad je 1990. godine pokrenut novi međunarodni znanstveni
časopis Mathematica Pannonica, čiji su osnivači bili akade-
mik Gy. Maurer (Miskolc, Mađarska) i prof. emeritus dr.
Hans Sachs (Leoben, Austria), u rad upravnog odbora, pored
predstavnika iz Austrije, Češke, Italije, Mađarske, Slovačke
i Poljske, bila je uključena i V. Ščurić-Čudovan kao pred-
stavnica iz Hrvatske.
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Tijekom niza godina V. Ščurić-Čudovan bila je aktivni su-
dionik u realizaciji pet znanstvenih projekata, od kojih su
najznačajniji “Matematičke strukture, modeli i primjene”
(1968. - 1975., 1976. - 1978.) i “Matematički modeli i
strukture u geodeziji” (1981. - 1985., 1986. - 1990.).

Također, ne možemo se ne osvrnuti na brojne aktivnosti i
funkcije koje je obnašala u stručnim i znanstvenim tijelima i
organizacijama tijekom rada na Geodetskom fakultetu. Na-
vedimo ovdje neke od njih: pored članstva u raznim komi-
sijama i odborima, u nekoliko je mandata obnašala dužnost
voditeljice Odjela za matematiku te predstojnice Zavoda za
višu geodeziju, bila je tajnica Sindikalne podružnice Ge-
odetskog fakulteta, i ono na čemu su joj svi bili niz godina
izuzetno zahvalni, bila je odlična satničarka.

Osvrnimo se sada na 1994. godinu. Za sve geometričare
s tehničkih fakulteta hrvatskih sveučilišta to je bila posebna
i izuzetno važna godina. Naime, 16. lipnja u Zagrebu je
održana Osnivačka skupština Hrvatskog društva za kons-
truktivnu geometriju i kompjutorsku grafiku (HDKGIKG),
kasnije preimenovanog u Hrvatsko društvo za geometriju i
grafiku (HDGG). Na istoj je sjednici Vlasta izabrana za prvu
predsjednicu.

Teško je uopće zamisliti koliko je truda uloženo u sastavlja-
nje svih potrebnih dokumenata kako bi Društvo zaživjelo i
započelo s radom. Na sreću, Vlasta je imala nekoliko izvrs-
nih suradnika, na prvom mjestu profesora B. Kučinića koji je
obnašao funkciju prvog potpredsjednika i docenticu Ivanku
Babić kao prvu i dugogodišnju tajnicu.

Zašto nam je svima Društvo toliko važno? Kao prvo, zato
što nam je dana prilika da se okupimo kao geometričari
s tehničkih fakulteta. To nam je pomoglo pri rješavanju
kadrovske problematike, razmjeni iskustava pri uvođenju i
primjeni Bolonjskog procesa, modernizaciji nastave, imple-
mentaciji e-učenja u nastavu geometrije, znanstvenoj surad-
nji, organiziranju studijskih boravaka i pozvanih predavanja,
prijavljivanju znanstvenih i razvojnih projekata, DAAD pro-
jekata, izradi zajedničkih repozitorija edukacijskog materi-
jala. Osim toga Društvo organizira znanstveno-stručne sku-
pove i izdaje znanstveno-stručni časopis KoG.

V. Ščurić-Čudovan je bila prva predsjednica HDGG-a i tu
je funkciju obnašala do 2000. godine. Navedeni ciljevi i
zadaće HDGG-a su ostali nepromijenjeni i kad je odstupila
s mjesta predsjednice.

Da je Vlasta bila veliki znalac i zaljubljenik u branje gljiva,
znali su gotovo svi u njenom okruženju. No, imala je ona
i skrivenih sklonosti koje ćemo si ovdje dozvoliti iznijeti, u

mladosti je učila svirati klavir i citru te je bila članica Aka-
demskog zbora “Ivan Goran Kovačić”.

Kako se na kraju zahvaliti i oprostiti od profesorice Ščurić-
Čudovan osim da citiramo dijelove teksta koji je ona posve-
tila profesoru Ničeu:

. . . Zapao nas je častan ali i vrlo odgovoran zadatak da po-
mognemo evociranju sjećanja sviju nas na život, znanstveni i
nastavni rad Vlaste Ščurić-Čudovan. Oprostite nam ako smo
u tome pokatkad bile subjektivne. Za to postoje mnogi raz-
lozi, a osnovni je taj što je profesorica Ščurić-Čudovan utje-
cala na tijek života mnogih geometričara: od poziva na rad
na fakultetu, uvođenja i poticanja na znanstveni rad, men-
torstva doktorske disertacije, otvaranjem novih znanstvenih
područja, do uloge koju je imala pri osnivanju Hrvatskog
društva za geometriju i grafiku i predsjedavanjem njime u
puna tri mandata.

Ovo šturo nabrajanje krije u sebi mnogo, mnogo više. U pr-
vom redu beskrajnu zahvalnost i poštovanje prema dr. sc.
Vlasti Ščurić-Čudovan kao čovjeku i učitelju.
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Kegelschnittbüschel der isotropen Ebene, I Teil, Rad
JAZU 450 (1990), 41–51.

[13] V. ŠČURIĆ-ČUDOVAN, Weitere Untersuchungen in
der Gesamtheit (MF2), II Teil, Komplex (V N), Rad
HAZU 456 (1991), 39–57.
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ABSTRACT

The metric in the quasi-hyperbolic plane is induced by
an absolute figure FQH = {F, f1, f2}, consisting of two real
lines f1 and f2 incident with the real point F. A curve of
class n is circular in the quasi-hyperbolic plane if it con-
tains at least one absolute line.
The curves of the 3rd class can be obtained by projec-
tive mapping, i.e. obtained by projectively linked pencil of
curves of the 2nd class and range of points. In this article
we show that the circular curves of the 3rd class of all
types, depending on their position to the absolute figure,
can be constructed with projective mapping.

Key words: projectivity, circular curve of the 3rd class,
quasi-hyperbolic plane

MSC2010: 51M15, 51N25

Cirkularne krivulje 3. razreda u kvazihiperboličnoj
ravnini dobivene projektivnim preslikavanjem

SAŽETAK

U kvazihiperboličnoj ravnini metrika je inducirana s apso-

lutnom figurom FQH = {F, f1, f2} koja se sastoji od dva

realna pravca f1 i f2 sa sjecǐstem u realnoj točki F. Za

krivulju razreda n kažemo da je cirkularna u kvazihiper-

boličnoj ravnini ako sadrži barem jedan apsolutni pravac.

Krivulje 3. razreda se mogu dobiti projektivnim pridruži-

vanjem izmed-u pramena krivulja 2. razreda i niza točaka.

U ovom ćemo članku pokazati kako se svi tipovi cirku-

larnih krivulja 3. razreda mogu konstruirati projektivnim

preslikavanjem.

Ključne riječi: projektivitet, cirkularna krivulja 3. razreda,

kvazihiperbolična ravnina

1 Introduction

In the 19th century F. Klein founded the basis of the mod-
ern approach to geometry by defining it as the study of
the properties of a space which are invariant under a given
group of transformations. Later on this was know as Erlan-
gen program according to the fact that Klein gave his first
lecture on this subject at the University of Erlangen, [5].
There exist nine plane geometries with projective metric on
a line and on a pencil of lines which can be parabolic, hy-
perbolic or elliptic. Due to Cayley’s influence on Klein the
geometries are denoted as Cayley-Klein projective metrics.
Furthermore, each of these projective metrics can be em-
bedded in the projective plane P2 = {P ,L ,I} where then
an absolute figure, given as a proper or singular conic, in-
duces the metric in the plane, [6, 7, 13] (for n-dimension
see [12]).

The quasi-hyperbolic plane, denoted as QH2, is a projec-
tive plane where the metric is induced by the absolute fig-
ure FQH = {F, f1, f2} consisting of a pair of real lines f1,

f2 intersecting at a real point F , [8, 10, 13]. The point F
is called the absolute point and lines f1, f2 are called the
absolute lines. In the Cayley-Klein model of the quasi-
hyperbolic plane only the geometric objects inside of one
projective angle between absolute lines are observed, while
the points, lines and line segments inside the other angle
are omitted. We observe the projectively extended quasi-
hyperbolic plane where all points and lines of the projec-
tive plane are included as in [10].

In the sense of the Erlangen program, for the fundamental
group of transformations in QH2 we use the 4-parameter
general quasi-hyperbolic group of similarities G4, [8].
Transformations are of the form

[u0,u1,u2] 7→ [α0u0,α1u0 +α2u1 +α3u2,α4u0±α3u1±α2u2],

αi ∈ R, i = {0 . . .4}, ±α
2
2±α

2
3 6= 0,

whereby the absolute figure FQH is determined by

F = (1,0,0), f1 = [0,1,1], f2 = [0,−1,1].
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Definition 1 A line passing through the absolute point F
is called isotropic line and a point incident with the abso-
lute line f1 or f2 is called isotropic point.

For some further results on the basic notions in QH2 see
[10].

Definition 2 If the intersection of the curve ζ of the class
n and the pencil (F), in QH2, is the absolute line f1 with
the intersection multiplicity t and the absolute line f2 with
the intersection multiplicity r, than ζ is said to be a (t+r)-
circular curve or circular curve of type (t,r). t + r is the
degree of circularity, and if t + r = n then the curve ζ is
entirely circular.

In further classification we will not distinguish circular
curve of the type (t,r) from the one of the type (r, t) since
the possibility of constructing one of them implies the pos-
sibility of constructing the other.

In accordance to the group G4, proper curves of the 2nd
class in QH2 are classified into nine types, see [1, 10].
They can also be classified in accordance to its degree and
type of circularity as following:

i) non-circular curves of the 2nd class: ellipses (e), hy-
perbolas (h1,h2,h3), parabolas (p);

ii) 1-circular curves of the 2nd class: special hyperbo-
las (hs1,hs2, type of circularity (1,0));

iii) 2-circular curves of the 2nd class: circles (c, type
of circularity (1,1)), special parabolas (ps, type of
circularity (2,0)).

F
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f
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f
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h
3

f
1

f
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F
h
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h
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p
i) ii)

iii)

Figure 1: Classification of the curves of the 2nd class in
QH2 according to their degree of circularity

Remark 1 In all figures of the article the class curves are
drawn as point objects as we are used to, although they are
line envelopes in the quasi-hyperbolic plane.

The circular curves of the 3rd class can be classified, ac-
cording to their position with respect to FQH, into the fol-
lowing types and subtypes:

• 1-circular curves of the 3rd class

– type of circularity (1,0)
a) the curve contains the absolute line f1

and two isotropic lines that are conjugate
imaginary;

b) the curve contains the absolute line f1 and
two isotropic lines that are real and dis-
tinct;

c) the curve contains the absolute line f1 and
two isotropic lines that coincide;

d) the curve contains the absolute line f1 and
an isotropic double line with two con-
jugate imaginary tangent points (isolated
double line);

e) the curve contains the absolute line f1
and an isotropic double line with two real
and distinct tangent points (double tangent
line);

f) the curve contains the absolute line f1 and
an isotropic double line with two tangent
points that coincide (inflection line);

F f
1

f
2

q
1

q
2

q
1
=q

2

f
1

f
2

F

q
1
=q

2

f
1

f
2

F

F f
1

f
2

q
1
=q

2

q
1
=q

2

f
1

f
2

F

a) b)

c) d)

e) f )

F f
1

f
2

Figure 2: Classification of the 1-circular curves of the 3rd
class in QH2
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• 2-circular of the 3rd class

– type of circularity (1,1)

a) the curve contains both absolute lines f1
and f2;

– type of circularity (2,0)

b) the curve contains the absolute line f1
where the absolute point F is the tangent
point;

c) the absolute line f1 is an isolated double
line of the curve;

d) the absolute line f1 is a double tangent line
of the curve;

e) the absolute line f1 is an inflection line of
the curve;

f
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f
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F

f
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F f
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f
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F

f
1

f
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F

a)

b) c)

d) e)

Figure 3: Classification of the 2-circular curves of the 3rd
class in QH2

• 3-circular curves of the 3rd class

– type of circularity (2,1)

a) the curve contains both absolute lines f1,
f2 and the absolute point F is the tangent
point of the line f1;

b) the curve contains both absolute lines f1,
f2 such that f1 is an isolated double line;

c) the curve contains both absolute lines f1,
f2 such that f1 is a double tangent line

d) the curve contains both absolute lines f1,
f2 such that f1 is an inflection line;

– type of circularity (3,0)

e) the absolute line f1 is a double tangent
with one tangent point at the absolute
point F ;

f) the absolute line f1 is an inflection line
with the tangent point at the absolute point
F ;

g) the curve contains the absolute line f1 and
has a cusp at the absolute point F .
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Figure 4: Classification of the 3-circular or entirely circular
curves of the 3rd class in QH2

The aim of this article is to construct every type of circu-
lar curves of the 3rd class in the quasi-hyperbolic plane
by using projective mapping. The classification of cir-
cular curves, according to their position with respect to
the absolute figure, obtained by projective mapping in
some other Cayley-Klein projective metrics can be found
in [2, 3, 4, 11].
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2 Projective mapping

Let points P1, P2 and curves of the 2nd class ζ1, ζ2 be
given. The associated symmetric bilinear form for the 2nd
class curves is given with

ζ1 . . . fζ1(u,v) := uTC1v = 0,

ζ2 . . . fζ2(u,v) := uTC2v = 0,

and in the following the the curves ζ1 and ζ2 will be iden-
tified with its corresponding matrix representation C1 and
C2. The result of a projective mapping

π : [C1,C2] 7→ [P1,P2],

π(C1 +λC2) = P1 +λP2, ∀λ ∈ R∪∞,

between the pencil of the 2nd class curves [C1,C2] and the
range of points [P1,P2] is a curve of the 3rd class k3

π given
by the equation

k3
π . . . F(u)≡ uTC1u ·PT

2 u−uTC2u ·PT
1 u = 0. (1)

The curve k3
π contains the following nine lines: four basic

lines of the pencil [C1,C2], basic line of the range [P1,P2],
two intersection lines of ζ1 and (P1), two intersection lines
of ζ2 and (P2). It is known that the number of lines re-
quired for determination of a curve of the 3rd class is nine,
but nine lines do not determine a single curve of the 3rd
class in every case, [9]. For defining the projectivity we
need three pairs of elements (ζ1,P1), (ζ2,P2) and (ζ3,P3).
Furthermore, we should point out that although the propor-
tional matrices C1, C2, P1, P2 and αC1, βC2, γP1, δP2 rep-
resent the same two curves of the 2nd class and two points,
the corresponding curves of the 3rd class are different, but
they properties of circularity stay the same.

Let us observe a line v ∈ k3
π, such that the curve k3

π is ob-
tained by a projective mapping π and without loss of gen-
erality we can assume v ∈C1, P1 ∈ v thus

vTC1v = 0, PT
1 v = 0

is valid. The behaviour of the line v can be studied by ob-
serving the intersection lines of curve k3

π and a pencil (X)
such that X ∈ v. Therefore an arbitrary point X on the line
v can be given as

X . . . v+ tw, t ∈ R∪∞,

hence intersection lines of k3
π and (X) are determined by

the roots of the following polynomial

F(v+ tw) = F1(v,w)+ t2F2(v,w)+ t3F3(v,w), (2)

where

F1(v,w) = 2PT
2 v ·vTC1w−PT

1 w ·vTC2v,

F2(v,w) = PT
2 v ·wTC1w+2PT

2 w ·vTC1w−2PT
1 w ·vTC2w,

F3(v,w) = PT
2 w ·wTC1w−PT

1 w ·wTC2w.

From (2) we can conclude the following statements:

• tangent point on the regular line v of the curve k3
π is

given by the equation
F1(v,w) = 0; (3)

• necessary condition to gain v as a double line of the
curve k3

π is
F1(v,w) = 0, ∀w; (4)

• tangent points on a double line v of the curve k3
π are

given by the equation
F2(v,w) = 0; (5)

• necessary condition to gain a cusp at X on the line
v for the curve k3

π is if the equation (5) is valid for
every line w such that X ∈ w.

Remark 2 Generally there are three possible positions for
a curve of the 2nd class ζ1 and its line v:

a) the curve ζ1 is a proper curve and the equation
vTC1w = 0 is its the tangent point on the line v;

b) the curve ζ1 is a singular curve, but v is not its sin-
gular line, i. e. ζ1 = (Z1)∪ (Ẑ1), Z1 ∈ v, Ẑ1 /∈ v. The
point Z1 is the tangent point at v and its equation is
vTC1w = 0;

c) the curve ζ1 is a singular curve and v is its singular
line, i. e. ζ1 = (Z1)∪ (Ẑ1), Z1, Ẑ1 ∈ v. The equation
vTC1w = 0 is valid for every line w.
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Figure 5: Positions of the 2nd class curve ζ1 and its line v

Furthermore, in respect to the basic elements of the map-
ping π there are four different positions for a line v of the
curve k3

π such that v ∈ ζ1, P1 ∈ v:
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• v /∈ ζ2, P2 /∈ v;

• v ∈ ζ2, P2 /∈ v;

• v /∈ ζ2, P2 ∈ v;

• v ∈ ζ2, P2 ∈ v.

Taking in consideration the remark 2 we could discuss all
these cases, but in the next section we will present only
some of them. By selecting different corresponding pairs
(ζ1,P1), (ζ2,P2) of the projective mapping π we can obtain
circular curves of the same type. Therefore, for every type
we will present one construction.

Figure 6 represents an example of the entirely circular
curve of the 3rd class obtained by the projective mapping π

where the corresponding pairs of the mapping are (ζ1,P1),
(ζ2,P2), (ζ3,P3), such that curves ζ1 = (Z1)∪ (Ẑ1) and
ζ2 = (Z2)∪ (Ẑ2) are singular. The red curve is obtained
as a set of tangent points of the curve k3

π calculated in the
software Wolfram Mathematica, and the figure is drawn in
dynamic software Geometer’s Sketchpad. As mentioned
earlier in Remark 1 it is customary to represent curves as
point objects, therefore on the remaining figures in the ar-
ticle curves will be presented in this way.
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Figure 6: Circular curve of the 3rd class with the circularity
type (2,1) in QH2

3 1-circular curves of the 3rd class in QH2

From the equation (1), as we already mentioned, the curve
k3

π obtained by projective mapping π : [C1,C2] 7→ [P1,P2]
contains nine specific lines, therefore only by picking cer-
tain pencils of the 2nd class curves or ranges of points we

can ensure the circularity of the curve k3
π. For instance, if

one basic line of the pencils of the 2nd class curves or the
basic line of the point range is the absolute line f1 then the
obtained curve k3

π is 1-circular curve of type (1,0).

Let us observe the case v ∈ ζ1, P1 ∈ v, v /∈ ζ2, P2 /∈ v when
the curve ζ1 is a proper curve of the 2nd class. From the
equation (3) we can conclude that if P1 is the tangent point
of the curve ζ1 then P1 is also a tangent point of the curve
k3

π.

Theorem 1 Let [C1,C2] be a pencil of 2nd class curves
and [P1,P2] a range of isotropic points in QH2. The result
of the projective mapping π : [C1,C2] 7→ [P1,P2] gives a 1-
circular curve of the 3rd class k3

π of type (1,0) or (0,1). If
the curve of the 2nd class corresponding to the absolute
point F is an ellipse, hyperbola or parabola then the re-
maining two isotropic lines of k3

π are conjugate imaginary,
real and distinct or coincide respectively.
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Figure 7: 1-circular curves of the 3rd class of type a, b
and c

Let us observe the case v ∈ ζ1,ζ2, P1 ∈ v, P2 /∈ v when the
curve ζ1 is a singular curve of the 2nd class with a singular
line v, ζ1 = (Z1)∪ (Ẑ1), Z1, Ẑ1 ∈ v. The curves of the pen-
cil [C1,C2] are touching at some point on the line v and the
condition (4) is fulfilled, hence the line v is a double line
of the curve k3

π. The tangent points of the double line are
given with the equation (5).

Theorem 2 Let [C1,C2] be a pencil of 2nd class curves
with a common tangent point on the isotropic line v,
[P1,P2] a range of isotropic points on the absolute line
f1 and the curve k3

π the result of the projective mapping
π : [C1,C2] 7→ [P1,P2] in QH2. If the absolute point F is the
corresponding point to the singular 2nd class curve with
the singular line v, then the curve k3

π is a 1-circular curve
of the 3rd class of type (1,0) with the double line v.

12
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Figure 8: 1-circular curves of the 3rd class of type d and e

Let us observe the case P1,P2 ∈ v, v ∈ ζ1,ζ2. The condi-
tion (4) is fulfilled, thus the line v is the double line of k3

π.
Tangent points on the line v are given with the equation (5)
which in this case is

PT
2 w ·vTC1w−PT

1 w ·vTC2w = 0. (6)

One tangent point at the line v of the curve k3
π coincides

with the tangent point of the curve ζ1 if and only if P1 is
the tangent point of ζ1 or curve ζ1 and ζ2 are touching.

If the latter case, if the curves ζ1,ζ2 are touching then the
whole pencil [C1,C2] has a common tangent point on the
line v. Furthermore, there exists a singular 2nd class curve
with the singular line v and with out loss of generality we
can assume it is the curve ζ1. The equation (6) is of the
form

PT
1 w ·vTC2w = 0,

hence one tangent point on the line v of the curve k3
π is

the common tangent point of [C1,C2] while the other one
is the point of the range that corresponds to the singular
2nd class curve of [C1,C2] with the singular v. These two
tangent points can coincide and in that case the line v is an
inflection line of the curve k3

π.

Theorem 3 Let [C1,C2] be a pencil of special hyperbolas
of type (1,0) with a common tangent point on the isotropic
line v, [P1,P2] a range of points on v and the curve k3

π the
result of the projective mapping π : [C1,C2] 7→ [P1,P2] in
QH2. If the corresponding point to the singular 2nd class
curve with the singular line v is the common tangent point
of the pencil [C1,C2], then the curve k3

π is 1-circular curve
of type (1,0) with the inflection line v.
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Figure 9: 1-circular curve of the 3rd class of type f

3.1 2-circular curves of the 3rd class

Theorem 4 Let [C1,C2] be a pencil of circles and [P1,P2]
a range of points in QH2. The result of the projective map-
ping π : [C1,C2] 7→ [P1,P2] gives a 2-circular curve of the
3rd class k3

π of type (1,1).
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Figure 10: 2-circular curve of the 3rd class of type a

If in the case P1 ∈ v, P2 /∈ v, v ∈ ζ1,ζ2 we assume that the
curve ζ1 is a proper curve, then the equation (3) is of the
form

PT
2 v ·vTC1w = 0.

Hence, the conclusion is that the tangent point at the line
v of the curve k3

π coincides with the tangent point of the
curve ζ1. Specially, if the curves of the pencil [C1,C2] are
touching at a point on the line v then this common tangent
point of the pencil [C1,C2] is also the tangent point of the
curve k3

π.

Theorem 5 Let [C1,C2] be a pencil of special parabolas
of type (2,0), [P1,P2] a range of points and the curve k3

π

the result of the projective mapping π : [C1,C2] 7→ [P1,P2]
in QH2. Then the curve k3

π is a 2-circular curve of type
(2,0) where the absolute point F is the tangent point at the
absolute line f1.
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Figure 11: 2-circular curve of the 3rd class of type b

From the observations before Theorem 2 follows also

Theorem 6 Let [C1,C2] be a pencil of special parabolas
of type (2,0), [P1,P2] a range of points and the curve k3

π

the result of the projective mapping π : [C1,C2] 7→ [P1,P2]
in QH2. If the isotropic point of the range [P1,P2] inci-
dent with the absolute line f1 corresponds to the singular
curve with the singular line f1 of the pencil [C1,C2], then
the curve k3

π is a 2-circular curve of the 3rd class of type
(2,0) with the double line f1.
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In this case the double line of the curve k3
π can only be an

isolated double line or a double tangent.
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Figure 12: 2-circular curves of the 3rd class of type c and d

From the observation before Theorem 3 we can ensure that
the double line of the curve k3

π is an inflection line:

Theorem 7 Let [C1,C2] be a pencil of special hyperbola
of type (1,0) with a common tangent point on the absolute
line f1, [P1,P2] a range of isotropic points on the absolute
line f1 and the curve k3

π the result of the projective mapping
π : [C1,C2] 7→ [P1,P2] in QH2. If the corresponding point to
the singular curve with the singular line f1 is the common
tangent point of the pencil [C1,C2], then the curve k3

π is a
circular curve of type (2,0) with the inflection line f1.
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Figure 13: 2-circular curve of the 3rd class of type e

3.2 3-circular curves or entirely circular curves

Generally, we already concluded that if there exists a point
of the range [P1,P2] which is the tangent point of its corre-
sponding curve of the 2nd class in the pencil [C1,C2], then
this point is also a tangent point for k3

π. Thus, the following
theorem is valid:

Theorem 8 Let [C1,C2] be a pencil of the 2nd class curves,
[P1,P2] a range of isotropic points on the absolute line
f1 and the curve k3

π the result of the projective mapping
π : [C1,C2] 7→ [P1,P2] in QH2. If the pencil [C1,C2] con-
tains a special parabola of type (0,2) whose correspond-
ing point is the absolute point F, then the curve k3

π is a
3-circular curve of type (1,2). The absolute point F is the
tangent point at the line f2 of the curve k3

π.
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Figure 14: 1-circular curve of the 3rd class of type a

From the observations before Theorem 3 follows also

Theorem 9 Let [C1,C2] be a pencil of circles, [P1,P2] a
range of isotropic points on the absolute line f1 and the
curve k3

π the result of the projective mapping π : [C1,C2] 7→
[P1,P2] in QH2. Then the curve k3

π is an entirely circular
curve of the circularity type (2,1), where the absolute line
f1 is a double isolated line or a double tangent line.
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Figure 15: 3-circular curves of the 3rd class of type b and c

Theorem 10 Let [C1,C2] be a pencil of circles with a com-
mon tangent point on the absolute line f1, [P1,P2] a range
of isotropic points on the absolute line f1 and the curve k3

π

the result of the projective mapping π : [C1,C2] 7→ [P1,P2]
in QH2. If the corresponding point to the singular 2nd
class curve with the singular line f1 is the common tangent
point, then the curve k3

π is a 3-circular curve of type (2,1),
where the absolute line f1 is a inflection line.
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Figure 16: 3-circular curve of the 3rd class of type d

Theorem 11 Let [C1,C2] be a pencil of special parabolas
of type (2,0), [P1,P2] a range of isotropic points on the ab-
solute line f1 and the curve k3

π the result of the projective
mapping π : [C1,C2] 7→ [P1,P2] in QH2. The curve k3

π is

14
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an entirely circular curve of the 3rd class of the circularity
type (3,0) with the double line f1. The absolute point F is
one tangent point on the double line f1, and the other tan-
gent point is the point of the range [P1,P2] that corresponds
to the singular curve of [C1,C2] with the singular line f1.
Specially, if this latter point coincides with F then line f1
is an inflection line.
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Figure 17: 3-circular curves of the 3rd class of type e and f

From the Theorem 5 and the observation before we can
also conclude

Theorem 12 Let [C1,C2] be a pencil of special parabolas
of type (2,0), [P1,P2] a range of points and the curve k3

π

the result of the projective mapping π : [C1,C2] 7→ [P1,P2]
in QH2. If the corresponding point to the singular curve
whose one pencil is (F) is the isotropic point of [P1,P2]
incident with the line f1, then the curve k3

π is a 3-circular
curve of type (3,0) with a cusp at the point F.
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Figure 18: 3-circular curve of the 3rd class of type g
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ABSTRACT

The quasi-elliptic plane is one of nine projective-metric
planes where the metric is induced by the absolute figure
FQE = { j1, j2,F} consisting of a pair of conjugate imagi-
nary lines j1 and j2, intersecting at the real point F. Some
basic geometric notions, definitions, selected constructions
and a theorem in the quasi-elliptic plane will be presented.

Key words: quasi-elliptic plane, perpendicular points, cen-
tral line, qe-conic classification, hyperosculating qe-circle,
envelope of the cental lines

MSC2010: 51A05, 51M10, 51M15

Uvod u planimetriju kvazieliptičke ravnine

SAŽETAK

Kvazieliptička ravnina jedna je od devet projektivno
metričkih ravnina. Apsolutnu figuru FQE = { j1, j2,F}
odred-uju dva imaginarna pravca j1 i j2 i njihovo realno
sjecǐste F.
U ovom radu definirat ćemo osnove pojmove, prikazati
odabrane konstrukcije i dokazati jedan teorem.

Ključne riječi: kvazieliptička ravnina, okomite točke,
centrala, klasifikacija qe-konika, hiperoskulacijska qe-
kružnica, omotaljka centrala

1 Introduction

This paper begins the study of the quasi-elliptic plane from
the constructive and synthetic point of view. We will see
although the geometry denoted as quasi-elliptic is dual to
Euclidean geometry it is a very rich topic indeed and there
are many new and unexpected aspects.
In this paper some basic notations concerning the quasi-
elliptic conic and some selected constructions and a the-
orem will be presented. It is known that there exist nine

geometries in plane with projective metric on a line and on
a pencil of lines which are denoted as Cayley-Klein projec-
tive metrics and they have been studied by several authors,
such as [2], [3], [4], [8], [9], [10], [13], [14], [15], [16].
The quasi-elliptic geometry, further in text qe-geometry,
has elliptic measure on a line and parabolic measure on
a pencil of lines. In the quasi-elliptic plane, further in
text qe-plane, the metric is induced by the absolute fig-
ure FQE = { j1, j2,F}, i.e. a pair of conjugate imaginary
lines j1 and j2, incident with the real point F . The lines
j1 and j2 are called the absolute lines, while the point F
is called the absolute point. In the Cayley-Klein model
of the qe-plane only the points, lines and segments inside
of one projective angle between the absolute lines are ob-
served. In this paper all points and lines of the qe-plane
embedded in the real projective plane P2(R) are observed.
It is suitable to obtain a line as a basic element, and a
point as a pencil of lines (for example a curve is an en-
velope of lines; quadratic transformation in the qe-plane
maps pencil of lines into the second class curve). Using
an elliptic involution on the pencil (F) the absolute triple
FQE = { j1, j2,F} can be given as follows:

• An elliptic involution on the pencil (F) is deter-
mined by two arbitrary chosen pairs of correspond-
ing lines a1, a2; b1, b2. An elliptic involution (F)
has the absolute lines j1 and j2 for double lines ([1],
p.244-245, [6], p.46).
Notice that the absolute point F can be finite (Figure
1a) or at infinity (Figure 1c).
In this paper the model were involutory pair of cor-
responding lines are perpendicular to each other in
Euclidean sense (Figure 1b) is used in a way that
only the absolute point F is presented.

• The absolute point F is inside the conic k. Pairs of
conjugate lines with respect to a conic k determine
aforementioned elliptic involution (F). The absolute
lines j1 and j2 are double lines for the involution (F)
and in this case they are a pair of imaginary tangent
lines to k from the absolute point F (Figure 1d).
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2 Basic notation and selected constructions
in the quasi-elliptic plane

For the points and the lines in the qe-plane the following
are defined:

• isotropic lines - the lines incident with the absolute
point F ,

• isotropic points - the imaginary points incident with
one of the absolute line j1 or j2,

• parallel points - two points incident with the same
isotropic line,

• perpendicular lines - if at least one of two lines is an
isotropic line,

• perpendicular points - two points A, A1 that lie on a
pair of corresponding lines a, a1 of an elliptic (abso-
lute) involution (F).

Remark. The perpendicularity of points in qe-plane is
determine by the absolute involution, therefore an elliptic
involution (F) is a circular involution in the qe-plane. ([7],
p.75)
Notice that the absolute point F is parallel and perpen-
dicular to each point in the qe-plane. Furthermore, in the
qe-plane there are no parallel lines.

A brief review of some basic construction

Example 1 Let the absolute figure FQE of the qe-plane be
given with the involutory pencil (F) (Figure 1b). Let A be
the point and p the line which is not incident with the point
A in the qe-plane (Figure 2). Construct the point A1 which
is perpendicular to the point A and incident with the given
line p.

Points A, A1 are perpendicular if they lie on a pair of corre-
sponding lines a, a1 of an absolute elliptic involution (F),

i.e. if they lie on a pair of perpendicular lines in a Eu-
clidean sense ([7], p.71-75).

 

p 1

F

F

A

p

A

a

a1

Figure 2

Example 2 Let the absolute figure FQE of the qe-plane be
given with the involutory pencil (F). Construct the mid-
points Pi and the bisectors si of a given line segment AB
(i = 1,2) (Figure 3).
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Figure 3
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The midpoint of a segment in the qe-plane is dual to an
angle bisector in the Euclidean plane, consequently a seg-
ment in a qe-plane has two perpendicular midpoints P1 and
P2 that are in harmonic relation with the points A and B.
A line segment AB in the qe-plane has two isotropic bi-
sectors s1 and s2 that are a common pair of corresponding
lines of two involutions (F) with the center F , denoted as
I1, I2 . In order to construct the midpoints and bisectors we
observe aforementioned involutions (F), a circular involu-
tion I1 is determined by perpendicular corresponding lines
in a Euclidean sense and the second hyperbolic involution
I2 is determined by isotropic lines a = AF , b = BF as its
double lines. The construction is based on the Steiner’s
construction ([6], p.26, [7], p.74-75). These two pencils
will be supplemented by the same Steiner’s conic s, which
is an arbitrary chosen conic through F . The involutions I1
and I2 determine two involutions on the conic s. Let the
points O1 and O2 be denoted as the centers of these invo-
lutions, respectively. The line O1O2 intersects the conic s
at two points. Isotropic lines s1 and s2 through these points
are a common pair of these two involutions (F). The inter-
section points P1 and P2 of bisectors s1 and s2 with the line
AB are midpoints of the line segment AB.

Example 3 Let the absolute figure FQE of the qe-plane be
given with the involutory pencil (F). Let two non-isotropic
lines a, b be given. Construct an angle bisector between
given rays a, b (Figure 4).

The angle bisector in the qe-plane is dual to a midpoint of
a segment in the Euclidean plane. Let V be the vertex of
an angle ∠(a,b). Let the isotropic line V F be denoted as
f . The angle bisector s is a line in a pencil (V ) that is in
harmonic relation with triple (a,b, f ). The isotropic line f
is an isotropic bisector.
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Figure 4

Example 4 Let the absolute figure FQE of the qe-plane be
given with the involutory pencil (F). Let the lines a, b, c

determine a trilateral ABC with the vertices A, B, C. Con-
struct the ortocentar line of the given trilateral (Figure 5).

The orthocentar line o of the trilateral in the qe-plane is
dual to the orthocenter of a triangle in the Euclidean plane.
The points A1, B1, C1 are incident with lines a, b, c and
perpendicular to the opposite vertices A, B, C, respectively.
The points A1, B1, C1 are collinear and determine a unique
ortocentar line.
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Example 5 Let the absolute figure FQE of the qe-plane be
given with the involutory pencil (F). Let the lines a, b, c
determine a trilateral ABC with the vertices A, B, C. Con-
struct the centroid line of a trilateral (Figure 6).

The centroid line o of a trilateral in the qe-plane is dual to
the centroid of a triangle in the Euclidean plane. The angel
bisectors sa, sb, sc of trilateral intersect opposite sides a,
b, c of the trilateral at the points SA, SB, SC, respectively.
The points SA, SB, SC are collinear and determine a unique
centroid line.
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3 Qe-conic classification

There are four types of the second class curves classified
according to their position with respect to the absolute fig-
ure (Figure 7):

• qe-hyperbola (h) - a curve of the second class that
has a pair of real and distinct isotropic lines.
Equilateral qe-hyperbola (hEQ) - a curve of the sec-
ond class that has isotropic lines as a corresponding
lines for the absolute involution (F).

• qe-ellipse (e) - a curve of the second class that has a
pair of imaginary isotropic lines.

• qe-parabola (p) - a curve of the second class where
both imaginary isotropic lines coincide.

• qe-circle (k) - is a special type of qe-ellipse for which
the isotropic lines coincide with the absolute lines j1
and j2. In a model of an absolute figure that is used
in this paper each qe-conic that has an absolute point
F as its Euclidean foci is a qe-circle.

In the projective model of the qe-plane every type of a qe-
conic can be represented with every type of Euclidean con-
ics without loss of generality.

F

e

k

p

h

Figure 7

The polar line of the absolute point F with respect to a
qe-conic is called the central line or the major diameter
of the second class conic in the qe-plane. The central line
of a conic in the qe-plane is dual to a center of a conic
in the Euclidean plane. All conics in the qe-plane, except
qe-parabolas, have a real non-isotropic central line. The
central line of a qe-parabola is isotropic tangent line at the
point F .
Dual to the Euclidean diameter of a conic is the point on
the central line that is the pole of the isotropic line with re-
spect to a qe-conic. A pair of points incident with the cen-
tral line that are perpendicular and conjugate with respect
to a qe-conic are called the qe-centers of the qe-conic. Qe-
centers are dual to an axis of Euclidean conic. A qe-ellipse
and a qe-hyperbola have two real and distinct qe-centers,
while both qe-center of a qe-parabola coincide with the ab-
solute point F .

Each pair of conjugate points incident with the central line
with respect to a qe-circle are perpendicular, consequently
a qe-circle has infinitely many pairs of qe-centers.
The isotropic (the minor) diameters are the lines joining
a qe-center to the absolute point F . A qe-ellipse and a qe-
hyperbola have two isotropic diameters.
The lines incident with qe-centers of a qe-conic are called
the vertices lines of a qe-conic in the qe-plane. A qe-
hyperbola has two real vertices lines, while a qe-ellipse
has four real vertices lines.
A hyperosculating qe-circle of a qe-conic can be con-
structed only at the vertices lines of a qe-conic.
The intersection points of a qe-conic and vertices lines are
called co-vertices points.

4 Some construction assignments

Exercise 1 Construct a qe-circle k determined with the
given central line c and the line p (Figure 8).

In order to construct the qe-circle as a line envelope, a per-
spective collineation that maps arbitrary chosen qe-circle
k1 into qe-circle k is used. The construction is carried out
in the following steps:
The absolute point F is selected for the center of the
collineation. Let k1 be an arbitrary chosen qe-circle with
the center F . A polar line c1 of F , is the central line for
chosen qe-circle k1. Notice that c1 is the line at infinity.
The lines c and c1 are corresponding lines for the perspec-
tive collineation with the center F . Let the point S be the
intersection point of the lines p and c. To determine an
axis o of the perspective collineation, the point R that is
perpendicular to the point S and incident with the line p
is constructed. A ray FR of the collineation intersect the
qe-circle k1 at the points R1 and R2. Let the line p1 touch
the qe-circle k1 at a point R1. The lines p and p1 are corre-
sponding lines for the perspective collineation with a cen-
ter F . The axis o passes through the intersection point S1
of the lines p1 and p, and it is parallel to c.

Figure 8
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Exercise 2 Construct the hyperosculating qe-circle of a
qe-hyperbola h1 (Figure 9).

Let the qe-hyperbola h1 be given and its central line be de-
noted as c. A hyperosculating qe-circle of the qe-hyperbola
h1 can be constructed only at the vertices lines. A qe-
hyperbola h1 has two real vertices lines t1 and t2. Let the
points T1 and T2 be co-vertices points. Let the line t2 and
the point T2 be observed. In order to construct a hyper-
osculating qe-circle, the point S2 that is perpendicular to
T2, and incident with the line t2 is constructed. The central
line ch of a hyperosculating qe-circle is incident with S2.
In order to construct ch, let the line y1 of the qe-hyperbola
h1 be arbitrary chosen. The intersection point of h1 and the
line y1 is denoted as Y1. The intersection point of lines t2
and y1 is denoted as K. The point K1 is perpendicular to
K and incident with joining line T2Y1. The line S2K1, de-
noted as ch, is a central line of a hyperosculating qe-circle.
The central line ch and the line t2 determine a hyperoscu-
lating qe-circle and to construct it the same principle as in
Exercise 1 is used.

Figure 9

Theorem 1 Let the lines {a,b,c,d} be the base of a pencil
of qe-conics in a qe-plane (Figure 10). Then, the envelope
of the central lines of all qe-conics in the pencil is a curve
of the second class.

Proof: It is known that the envelope of polar lines of con-
ics in a pencil of conics with respect to a common pole P
is a curve of the second class ([6]). Consequently, in the
qe-plane, if a common pole P coincides with the absolute
point F, than the envelope of its polar lines coincides with
the envelope of the central lines in the given pencil. �

In order to construct the envelope of the central lines of
all qe-conics in the pencil of qe-conics, denoted as δ1,
we observe involutory pencil (F) of a pairs of isotropic
lines of all qe-conics in a pencil. Each qe-conic in a pen-
cil of qe-conics has two real or imaginary isotropic lines.

In the given pencil of qe-conics there are three qe-conics
degenerated into three pairs of points, denoted as (1,1′),
(2,2′), (3,3′). Let the involution (F) be determined with
an isotropic lines of any two degenerated qe-conics in a
pencil i.e. (1,1′), (3,3′). The pencil of qe-conics contains
two, one or none real qe-parabola.
From the viewpoint of qe-geometry, the envelope δ1 is a
qe-hyperbola if the pencil contains two qe-parabolas. The
central lines of these qe-parabolas denoted as, p1 and p2
are double lines for the involution (F) and they coincide
with the isotropic lines of the envelope δ1. The envelope
is determinate with five lines; the lines p1, p2, and central
lines of three degenerated qe-conics c1, c2, c3.
The envelope δ1 is a qe-parabola if the pencil contain one
qe-parabola.
The envelope δ1 is an qe-ellipse if the pencil does not con-
tain qe-parabolas (Figure 10). Double lines for the elliptic
involution (F) are imaginary lines.
Pencil will be supplemented by the Steiner’s conic s, which
is an arbitrary chosen conic through F . Let the point O be
denoted as a center of the involution (F).
If the point O is outside the conic s, involutory pencil (F)
contains real double lines, and the envelope δ1 is a qe-
hyperbola. If the point O is on the conic s, double lines
of involution (F) coincide, and the envelope δ1 is a qe-
parabola.
If the point O is inside the conic s, involutory pencil (F)
contains imaginary double lines, and the envelope δ1 is an
qe-ellipse (Figure 10).
If the point O coincides with the center of conic s, double
lines of involution (F) coincides with the absolute lines j1
and j2, and the envelope δ1 is a qe-circle (circular involu-
tion).
If one of the base lines in a pencil is isotropic line, the
pencil of qe-conics contains qe-hyperbolas and one qe-
parabola, the envelope δ1 is a qe-parabola.
If two of the base lines in a pencil are isotropic lines, the
envelope δ1 degenerates into a point.

Figure10: Qe-ellipse - an envelope of the central lines
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KoG•20–2016 A. Sliepčević, I. Božić Dragun: Introduction to Planimetry of Quasi-Elliptic Plane

Corollary 1 Let any two degenerated qe-conics in a pen-
cil of qe-conics be given as a pair of perpendicular points
i.e. the pencil of equilateral qe-hyperbolas. Than the en-
velope of the central line is a qe-circle.
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[14] A. SLIEPČEVIĆ, I. BOŽIĆ, H. HALAS, Introduction
to the planimetry of the quasi-hyperbolic plane, KoG
17, (2013), 58-64;
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ABSTRACT

We look at the four-fold symmetry given by the Incenter
quadrangle of a triangle, and the relation with the cirum-
circle, which in this case is the nine-point conic of the
quadrangle. By investigating Euler lines of Incenter tri-
angles, we show that the classical Schiffler point extends
to a set of four Schiffler points, all of which lie on the
Euler line. We discover also an additional quadrangle of
Incenter Euler points on the circumcircle and investigate
its interesting diagonal triangle. The results are framed in
purely algebraic terms, so hold over a general bilinear form.
We present also a mysterious case of apparent symmetry
breaking in the Incenter quadrangle.

Key words: triangle geometry, Euclidean geometry, ra-
tional trigonometry, bilinear form, Schiffler points, Euler
lines, Incenter hierarchy, circumcircles

MSC2010: 51M05, 51M10, 51N10

“Upisana simetrija”, Eulerovi pravci i Schifflerove
točke

SAŽETAK

Proučavamo četverostruku simetriju odred-enu
četverovrhom, čiji su vrhovi sredǐsta upisanih (pri-
pisanih) kružnica danog trokuta, te vezu s opisanom
kružnicom trokuta koja je u ovom slučaju konika devet
točaka spomenutog četverokuta. Proučavajući Eulerove
pravce takozvanih upisanih trokuta, pokazujemo da je
poopćenje klasične Schifflerove točke skup od četiriju
točaka koje leže na Eulerovom pravcu. Promatra se
četverokut u čijim se vrhovima sijeku Eulerovi pravci
upisanih trokuta, te njegov dijagonalni trokut. Kako se
koristi algebarski pristup, dobiveni rezultati vrijede za
opću bilinearnu formu. Dajemo i primjer svojevrsnog
nestanka četverostruke simetrije.

Ključne riječi: geometrija trokuta, euklidska geometrija,
racionalna trigonometrija, bilinearna forma, Schifflerove
točke, Eulerovi pravci, hijerarhija sredǐsta upisanih
kružnica, opisane kružnice

1 Introduction

The following is a classical theorem which was first ob-
served by M. Bôcher in 1892. Special cases include the
nine-point circle of a triangle, and the nine point hyper-
bola.

Theorem 1 (Nine point conic) The six midpoints of a
quadrangle (four points) together with the diagonal points
lie on a conic.

This is called the Nine point conic of the quadrangle.
Bôcher observed that if one of the four points lies on the
circumcircle defined by the other three, then the conic is an
equilateral hyperbola. If one of the points is the orthocen-
ter of the other three, then the conic is a circle. In Figure
1 we see a general quadrangle P0P1P2P3, as well as the six
midpoints in dark blue, and the three diagonal points in
orange, with these last nine points on the red conic.

P

P

P

P

1

2

3

0

Figure 1: The Nine point conic of the quadrangle
P1P2P3P4

If we consider the above theorem in relation to the Incen-
ter quadrangle I0I1I2I3 of a Triangle A1A2A3, some addi-
tional interesting things happen, since this is an orthocen-
tric quadrangle.
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Theorem 2 The Nine point conic of the Incenter quadran-
gle I0I1I2I3 of a Triangle A1A2A3 is the Circumcircle c of
that triangle, and so also the nine-point circle of any three
Incenters. Each midpoint of the quadrangle I0I1I2I3 is the
center of a circle which passes through two Incenters as
well as two Points of the Triangle.

This last lovely fact finds its way routinely into Interna-
tional problem competitions, as has been compiled by E.
Chen, who calls it the Incenter/Excenter lemma (see [1]).
He gives a proof using angle chasing, we will give a more
powerful and general argument in the course of this paper.
In Figure 2 we see that the Incenter midpoint M = M02,
which is the midpoint of the segment I0I2, is the center of
a circle which passes through two points of the triangle, in
this case A1 and A3, as well as the two Incenters I0 and I2.

A

I

I
I

M

I

A

A

1

2

0
3

1

2

3

Figure 2: The Incenter quadrangle and its midpoints

It is worth noting that obviously each Incenter midpoint
lies on an angle bisector, or Biline, of the Triangle A1A2A3,
as these are the six lines of the complete quadrangle
I0I1I2I3.
In C. Kimberling’s celebrated list of triangle centers, see
[3] and [4], the Incenter I0 gets pride of place, as the first
point X1 in the entire list. Because his list contains only
uniquely defined centers, the other Incenters I1, I2 and I3,
which are more usually called excenters, do not get explicit
numbered names. In this paper we investigate the four-
fold symmetry surrounding Incenter midpoints within the
set-up of Rational Trigonometry ([11], [12]), valid for any
symmetric bilinear form, as described in [7]. So the theo-
rems in this paper hold also with other bilinear forms, as in
Lorentzian planar geometry.
Next to the Incenter, the most famous triangle centers are
the Centroid G = X2, the Circumcenter C = X3, and the Or-
thocenter H = X4, which famously all lie on the Euler line
e. In Figure 3 we see both the Euler line and the Incenter
quadrangle I0I1I2I3 for the Euclidean example that we will
exhibit frequently.

A

I

I
I

H

C

e

G

I

A

A

1

2

0
3

1

2

3

Figure 3: The Euler line and Incenter quadrangle of
A1A2A3

The Schiffler point S = X21 of the triangle A1A2A3 is
another remarkable triangle centre which was discovered
more recently by Kurt Schiffler (1896-1986) [9]. This
point is the intersection of the Euler lines of the three In-
center triangles A1A2I0, A1A3I0, A2A3I0. Pleasantly S lies
on the Euler line e of the original triangle A1A2A3.
This situation is illustrated in Figure 4 which shows the
Schiffler point S (in white) of A1A2A3, the meet of the four
Incenter Euler lines (in gray), passing through circumcen-
ters (blue) and centroids (green) of the Incenter triangles.
Clearly these circumcenters are exactly the midpoints that
we observed in the previous diagram. There are several in-
teresting and remarkable properties of the Schiffler point
which have been found over the years: see for example
([2], [8], [10]).

A

I

I
I

I

A

A

S 1

2

0
3

1

2

3

e

Figure 4: The Schiffler point S of A1A2A3

Since our philosophy, expounded in [7] and [6], is that we
ought to consider all four Incenters symmetrically, it is nat-
ural for us to expand this story to include Incenter Euler
lines from the other Incenter triangles obtained by com-
bining two vertices of the original triangle A1A2A3 and any
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one of the Incenters. If we agree that {i, j,k} = {1,2,3} ,
then such an Incenter triangle A jAkIl is determined by the
pair of indices (i, l), where i runs through 1,2,3 and l runs
through 0,1,2,3. So let us denote by eil the Incenter Eu-
ler line of the triangle A jAkIl . Notice that the Point label
comes first, followed by the Incenter label.
This way we get twelve Incenter Euler lines, not just three.
When we look at all of these, we meet some remarkable
new phenomenon. The first observation is that the stan-
dard Schiffler point S = S0 is now but one of four Schiffler
points.

Theorem 3 (Four Schiffler points) The triples S0 ≡
e10e20e30, S1 ≡ e11e21e31, S2 ≡ e12e22e32 and S3 ≡
e13e23e33 of Incenter Euler lines are concurrent. These
Schiffler points all lie on the Euler line e of the original
triangle A1A2A3.

The next result shows that there are other interesting con-
currences of the Incenter Euler lines. These are also visible
in Figure 5.

A

I

I

I

I

A

A

1

2

0

3

1

2

3

e

S3S0

S1

S2

Figure 5: The four Schiffler points S0,S1,S2 and S3 on the
Euler line e

Theorem 4 (Four Incenter Euler points) The triples
P0 ≡ e11e22e33, P1 ≡ e10e23e32, P2 ≡ e20e13e31 and
P3 ≡ e30e12e21 of Euler lines are concurrent. These points
all lie on the Circumcircle of the original Triangle.

These theorems will form the starting points of the inves-
tigations of this paper. We will see that the diagonal tri-
angle D1D2D3 of the quadrangle P0P1P2P3 has some re-
markable connections with the original triangle A1A2A3.
We call D1D2D3 the Diagonal Incenter Euler triangle.
At the end of the paper, we note a remarkable appearance
of symmetry breaking in the original Incenter quadrangle
I0I1I2I3 which is well worth further investigation.
Throughout the paper our emphasis is on explicit formu-
las that allow us to give general algebraic proofs. We will

give diagrams that illustrate the Euclidean case, but it is
an essential strength of this approach that the results hold
for a general bilinear form, and we will also include a few
pictures from the green geometry coming from Chromoge-
ometry (see [13] and [14]).

1.1 Quadrance and spread

In this section we briefly summarize the main facts needed
from rational trigonometry in the general affine setting (see
[11], [12]). We work in the standard two-dimensional
affine or vector space over a field, consisting of affine
points, or row vectors v = [x,y]. Sometimes it will
be convenient to represent such a vector projectively, as
the projective row vector [x : y : 1]; this makes dealing
with fractional entries easier. A line l is the proportion
l ≡ 〈p : q : r〉, or equivalently a projective column vector
[p : q : r]T , provided that p and q are not both zero. Inci-
dence between the point v and the line l above is given by
the relation

px+qy+ r = 0.

Our notation is that the line determined by two points A and
B is denoted AB, while the point where two non-parallel
lines l and m meet is denoted lm. If three lines k, l and
m are concurrent at a point A, we will sometimes write
A = klm.

A metrical structure is determined by a non-degenerate
symmetric 2× 2 matrix D: this gives a symmetric bilin-
ear form on vectors

v ·u≡ vDuT .

Non-degenerate means detD 6= 0, and implies that if v ·u =
0 for all vectors u, then v = 0.
Two vectors v and u are then perpendicular precisely
when v · u = 0. Since the matrix D is non-degenerate, for
any vector v there is, up to a scalar, exactly one vector u
which is perpendicular to v. Two lines l and m are perpen-
dicular precisely when they have perpendicular direction
vectors.
The bilinear form determines the quadrance of a vector v
as

Q(v)≡ v · v

and similarly the quadrance between points A and B is

Q(A,B)≡ Q
(−→

AB
)
.

A vector v is null precisely when Q(v) = v ·v = 0, in other
words precisely when v is perpendicular to itself. A line is
null precisely when it has a null direction vector.
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The spread between non-null vectors v and u is the number

s(v,u)≡ 1− (v ·u)2

Q(v)Q(u)
= 1− (v ·u)2

(v · v)(u ·u)

and the spread between any non-null lines l and m with
direction vectors v and u is defined to be s(l,m)≡ s(v,u).

1.2 Standard coordinates

This paper employs the novel approach to planar affine tri-
angle geometry initiated in [7] and continued in [6], which
allows us to frame the subject in a much wider and more
general algebraic fashion, valid over an arbitrary field, not
of characteristic two.
The basic idea with standard coordinates is to take any
particular triangle, and apply a combination of a transla-
tion and an invertible linear transformation to send it to the
standard Triangle A1A2A3 with

A1 ≡ [0,0] , A2 ≡ [1,0] and A3 ≡ [0,1] . (1)

Our convention is to use capital letters to refer to objects
associated to this standard Triangle. The Lines of the Tri-
angle are

l1 ≡ A2A3 = 〈1 : 1 :−1〉 ,
l2 ≡ A1A3 = 〈1 : 0 : 0〉 ,
l3 ≡ A2A1 = 〈0 : 1 : 0〉 .

The Midpoints of the Triangle are clearly

M1 =

[
1
2
,

1
2

]
, M2 =

[
0,

1
2

]
, M3 =

[
1
2
,0
]

while the corresponding Median lines are

d1 ≡ A1M1 = 〈1 :−1 : 0〉 ,
d2 ≡ A2M2 = 〈1 : 2 :−1〉 ,
d3 ≡ A3M3 = 〈2 : 1 :−1〉 .

The Centroid is the common meet of the Medians, namely

G = X2 =

[
1
3
,

1
3

]
.

These objects are defined independent of any metrical
structure: they are purely affine notions.
A metrical structure may be imposed by a general invert-
ible 2×2 matrix

D≡
(

a b
b c

)
. (2)

We note that the determinant of D is ac−b2. The quantity

d ≡ a+ c−2b

will also prove to be useful.
Because the effect of a linear transformation on a bilinear
form is the familiar congruence, it suffices to understand
the particular standard Triangle with respect to such a gen-
eral quadratic form. This is the basic, but powerful, idea
behind standard coordinates. The idea now is to find all
relevant information about the original triangle in terms of
the corresponding information about the standard Triangle
expressed in terms of the numbers a,b and c.
So we have moved from considering a general triangle
with respect to a specific bilinear form to the more gen-
eral situation of a specific triangle with respect to a gen-
eral quadratic form. This system of standard coordinates
allows a systematic augmentation of Kimberling’s Ency-
clopedia of Triangle Centers ([3], [4], [5]) to arbitrary
quadratic forms and general fields.
The Midlines m1,m2 and m3 of the Triangle are the lines
through the midpoints M1,M2 and M3 perpendicular to the
respective sides— these are usually called perpendicular
bisectors. They are also the altitudes of M1M2M3 and are
given by:

m1 = 〈2(b−a) : 2(c−b) : a− c〉 ,
m2 = 〈2b : 2c :−c〉 ,
m3 = 〈2a : 2b :−a〉 .

The Midlines m1,m2,m3 meet at the Circumcenter

C = X3 =
1

2(ac−b2)
[c(a−b) ,a(c−b)] . (3)

The Circumcircle c of A1A2A3 is the unique circle with
equation Q(X ,C) = R that passes through A1,A2 and A3,
and this turns out to be the equation in X = [x,y] given by

ax2 +2bxy+ cy2−ax− cy = 0. (4)

The Orthocenter of the Triangle is

H = X4 =
b

ac−b2 [c−b,a−b] .

The Euler line CG is

e =
〈
2b2−3ab+ac :−2b2 +3cb−ac : b(a− c)

〉
. (5)

The fact that this line passes through each of C,G and H
can be checked by making the following computations via
projective coordinates:[

c(a−b) : a(c−b) : 2
(
ac−b2)][

2b2−3ab+ac :−2b2 +3cb−ac : b(a− c)
]T

= 0,

[1 : 1 : 3]
[
2b2−3ab+ac :−2b2 +3cb−ac : b(a−c)

]T
= 0,[

b(c−b) : b(a−b) : ac−b2][
2b2−3ab+ac :−2b2 +3cb−ac : b(a− c)

]T
= 0.
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The existence of Incenters of our standard Triangle how-
ever is more subtle: this leads to number theoretic condi-
tions that depend on certain quantities being squares in our
field.

2 The four Incenters

A biline of the non-null vertex l1l2 is a line b which passes
through l1l2 and satisfies s(l1,b) = s(b, l2). The existence
of Bilines (and hence Incenters) of the standard Triangle
depends on number theoretical considerations of a particu-
larly simple kind which we recall from [7].

Theorem 5 (Existence of Triangle bilines) The Triangle
A1A2A3 has Bilines at each vertex precisely when we can
find numbers u,v,w in the field satisfying

ac = u2, ad = v2, cd = w2. (6)

In this case we can choose u,v,w so that acd = uvw and

du = vw cv = uw and aw = uv. (7)

We are interested in formulas for triangle centers of the
standard Triangle A1A2A3, assuming the existence of Bi-
lines. These formulas will then involve the entries a,b and
c of D from (2), as well as the secondary quantities u,v and
w. The quadratic relations (6 and 7) play a major role in
simplifying formulas.
The four Incenters are, from [7],

I0 =
1

d + v−w
[−w,v] , I1 =

1
d− v+w

[w,−v] ,

I2 =
1

d + v+w
[w,v] , I3 =

1
d− v−w

[−w,−v] .

It is important to note that I1, I2 and I3 may be obtained
from I0 by changing signs of: both v and w, just w, and
just v respectively. This four-fold symmetry will hold more
generally and it means that we can generally just record the
formulas for objects which are associated to I0. We refer to
this as the basic u,v,w symmetry.

2.1 Incenter midpoints

We now look at meets of Midlines and the Circumcircle.
Somewhat surprisingly, it turns out that the existence of
these meets is entirely aligned with the existence of Incen-
ters.

Theorem 6 (Incenter midpoints) The three Midlines
m1,m2 and m3 meet the Circumcircle c precisely when
Incenters exist, that is when we can find u,v and w satis-
fying the quadratic relations. In this case, the Midline m1
meets the Circumcircle in points

M01 ≡
1

2(b−u)
[c−u,a−u] , M23 ≡

1
2(b+u)

[c+u,a+u]

which are the midpoints of I0I1 and I2I3 respectively; the
Midline m2 meets the Circumcircle in points

M13 ≡
1

2(b−a+v)
[c,v−a] , M02 ≡

1
2(a−b+v)

[−c,v+a]

which are the midpoints of I1I3 and I0I2 respectively; and
the Midline m3 meets the Circumcircle in points

M03≡
1

2(b−c+w)
[w−c,a] , M12≡

1
2(c−b+w)

[w+c,−a]

which are the midpoints of I0I3 and I1I2 respectively.

Proof. The proofs of these are straightforward, as we have
the equations of the Midlines and the Circumcircle c, and
finding midpoints of a segment just involves taking the av-
erages of the coordinates. However we must be prepared
to use the quadratic relations to make simplifications. �

This theorem motivates us to call the points Mi j the Incen-
ter midpoints of the Triangle.

2.2 Incenter Euler lines

For each Incenter triangle A jAkIl we may now compute its
Euler line, which we call an Incenter Euler line of the
original triangle A1A2A3. This may be done by joining the
circumcenter of the Incenter triangle, which is an Incenter
midpoint, to the centroid of that Incenter triangle, whose
coordinates are just formed by taking affine averages of
the points of the given triangle.
For example the Euler line e30 of A1A2I0 is the join of the
Incenter midpoint

M03 =
1

2(b− c+w)
[w− c,a] = [w− c : a : 2(b− c+w)]

and the centroid

1
3

[
d + v−2w
d + v−w

,
v

d + v−w

]
= [d+v−2w : v : 3(d+v−w)] .

Using a Euclidean cross product and simplifying using the
quadratic relations, we find that

e30 =〈 6ab−3ac+2au−3av−4bu+3aw+2bv+2cu−2cv−3a2 :
au−2bc−2ab−2bu+aw−2bv+cu+2bw−cv+4b2 :

ac−2ab−au+av+2bu−2aw− cu+ cv+a2

〉
.

Note that we can obtain ei1,ei2,ei3 from ei0 by changing
the signs of (v,w), (u,w) and (u,v) respectively. So for ex-
ample by applying the basic u,v,w symmetry we find that

e31 =〈 6ab−3ac+2au+3av−4bu−3aw−2bv+2cu+2cv−3a2 :
au−2bc−2ab−2bu−aw+2bv+cu−2bw+cv+4b2 :

ac−2ab−au−av+2bu+2aw− cu− cv+a2

〉
.
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So it suffices if we exhibit also

e20 =〈 au−2bc−2ab−2bu+aw−2bv+cu+2bw−cv+4b2 :
6bc−3ac+2au−4bu+2aw+2cu−2bw−3cv+3cw−3c2 :

ac−2bc−au+2bu−aw− cu+2cv− cw+ c2

〉

and

e10 =

〈 8ab−3ac+2bc+au−3av−2bu+2aw
+4bv+cu−2bw−cv−3a2−4b2 :

3ac−2ab−8bc−au+2bu−aw−2bv
−cu+4bw+2cv−3cw+4b2+3c2 :

(a− c)(a−2b+ c+ v−w)

〉
.

3 Schiffler points

The Incenter Euler lines also figure prominently in the clas-
sical Schiffler point. We will now see that there is in fact a
four-fold symmetry inherent here.

Theorem 7 (Four Schiffler points) The triples S0 ≡
e10e20e30, S1 ≡ e11e21e31, S2 ≡ e12e22e32 and S3 ≡
e13e23e33 of Incenter Euler lines are concurrent. These
points all lie on the Euler line.

Proof. The concurrences of the lines e10,e20,e30 is

S0 =



(
2a2−5ab+6ac+2b2−7bc+2c2

)
u

−c(5a−5b+2c)+
(
5ac−3ab−2bc+2a2

)
w

−c
(
−10ab+5ac−2bc+5a2 +2b2

)
:(

2a2−7ab+6ac+2b2−5bc+2c2
)

u
+
(
2ab−5ac+3bc−2c2

)
v+a(5c−5b+2a)w

+a
(
2ab−5ac−2b2 +10bc−5c2

)
:(

6a2−15ab+16ac+2b2−15bc+6c2
)

u
+
(
4b2 +9bc−6c2−13ac

)
v

+
(
6a2−9ab+13ca−4b2

)
w

+
(
4ab2−13a2c+22abc−13ac2−4b3 +4b2c

)


.

The other three Schiffler points S1,S2 and S3 may be com-
puted to be exactly the corresponding points when we per-
form the three basic u,v,w symmetries, namely negating v
and w to get S1, negating u and w to get S2, and negating u
and v to get S3. �

The Euler line e we know is (5), so we can check directly
that eS0 = 0 identically, without use of the quadratic re-
lations. The statement also holds for the other Schiffler
points.
In Figure 6 we see an example from green geometry with
the bilinear form x1y2 + x2y1, showing the four Schiffler
points of the triangle A1A2A3 on the green Euler line e
(for more about chromogeometry and geometry in Lorentz
spaces see for example [13], [14]).
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Figure 6: Green Schiffler points lying on the green Euler
line of A1A2A3

4 Incenter Euler points

Theorem 8 (Four Incenter Euler points) The triples
P0 ≡ e11e22e33, P1 ≡ e10e23e32, P2 ≡ e20e13e31, and
P3 ≡ e30e12e21 of Euler lines are concurrent. These points
all lie on the Circumcircle c of the original triangle.

Proof. The proof requires using the quadratic relations in-
volving u,v and w. For example to show the concurrency
P0 ≡ e11e22e33 we create the determinant of the 3×3 ma-
trix with rows given by the Euler lines. This expression
is a polynomial of degree six in a,b,c and u,v and w. By
successive applications of the quadratic relations involving
u,v and w we can step by step reduce this polynomial until
it eventually equals 0. Alternatively we can use the cross
product to determine the common meets of these lines:
here is the formula for P0:

P0=



(
2b2−5bc−ab+2c2 +2ac

)
u+
(
ac−3bc+2c2

)
v

+(3ac−ab−2bc)w+c
(
a2−4ab+3ac+2b2−2bc

)
:

b(2b− c−a)u+ c(a−b)v+a(c−b)w
+a
(
2b2−ac−2bc+ c2

)
:

b(2b− c−a)u+ c(a−b)v+
(
5ac−ab−4b2

)
w

+
(
a2c−6abc+5ac2 +4b3−4b2c

)

.

The formulas for P1,P2 and P3 follow by the basic u,v,w
symmetry. The Circumcircle c of the standard Triangle we
know has equation ax2+2bxy+cy2−ax−cy = 0. By sub-
stitution, we find, after using the quadratic relations, that
P0 satisfies this equation, and the other points are similar.

�
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We will call the points P0,P1,P2 and P3 the Incenter Euler
points of the triangle.

4.1 Lines of the Incenter Euler quadrangle P0P1P2P3

The lines of the Incenter Euler quadrangle have the follow-
ing equations:

P0P1 =〈 c
(
ab−a2−2ac+2b2)v+a

(
ab−3ca+2b2)w :

c
(
2b2 +bc−3ac

)
v+a

(
2b2−2ac+bc− c2)w :

c
(
a2 +3ac−3ba−bc

)
v+a

(
3ac−ba+ c2−3bc

)
w

〉
,

P2P3 =〈 3a2cw−2ac2v−a2bw−a2cv−2ab2w+2b2cv+abcv :
ac2w−3ac2v−2ab2w+bc2v+2a2cw+2b2cv−abcw :

3ac2v+a2bw+a2cv−ac2w−bc2v−3a2cw−3abcv+3abcw

〉
,

P0P2 =

〈 4b3u−4ab2u+a2bu+2ac2u+2a2cu+2ab2w
+a2bw−2b2cu−3a2cw−3abcu :

−(c−2b)
(
abu−2b2u+abw+bcu−acw

)
:

−(a− c)
(
abu−2b2u+abw+bcu−acw

)
〉
,

P1P3 =

〈 4b3u−4ab2u+a2bu+2ac2u+2a2cu−2ab2w
−a2bw−2b2cu+3a2cw−3abcu :

−(c−2b)
(
abu−2b2u−abw+bcu+acw

)
:

−(a− c)
(
abu−2b2u−abw+bcu+acw

)
〉
,

P0P3 =

〈 (a−2b+2c+2w)
(
abu−2b2u−acv+bcu+bcv

)
:

(a−2b+ c)
(
2ac−13bc+2b2 +10c2)u+

c
(
−4ab+7ac−23bc+10b2 +10c2)v :
(a− c)(2b2u+2c2u+2c2v−abu+

2acu+acv−5bcu−3bcv)

〉
,

P1P2 =

〈 (a−2b+2c−2w)
(
abu−2b2u+acv+bcu−bcv

)
:

(a−2b+ c)
(
2ac−13bc+2b2 +10c2)u+

c
(
4ab−7ac+23bc−10b2−10c2)v :
(a− c)(2b2u+2c2u−2c2v−abu+

2acu−acv−5bcu+3bcv)

〉
.

4.2 Diagonal points of the Incenter Euler quadrangle
P0P1P2P3

Remarkably, the diagonal points of the Incenter Euler
quadrangle P0P1P2P3 have a particularly simple form, and
in fact generally lie on the lines of the original triangle!

Theorem 9 If a2c−ab2−2abc+ac2+2b3−b2c 6= 0 and
c− 2b 6= 0 and a− 2b 6= 0 and a 6= c, then the diagonal
points of the quadrangle P0P1P2P3 are

D1 ≡ (P0P1)(P2P3) =

[
a−2b
a− c

,
2b− c
a− c

]
,

D2 ≡ (P0P2)(P1P3) =

[
0,

a− c
2b− c

]
,

D3 ≡ (P0P3)(P1P2) =

[
a− c

a−2b
,0
]
,

which lie on the lines L1,L2 and L3 respectively.

Proof. These are calculations that rely on the previous
formulas for the Incenter Euler quadrangle lines, and in-
volve simplifications using the quadratic relations, as well
as cancellation of the terms that appear in the conditions of
the theorem. �

We call D1,D2 and D3 the Diagonal Incenter Euler
points of the Triangle, and D1D2D3 the Diagonal Incen-
ter Euler triangle of the Triangle A1A2A3. These two tri-
angles, shown in Figure 7, have a remarkable relationship!
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Figure 7: The Diagonal Incenter Euler triangle D1D2D3
of the Triangle A1A2A3

Theorem 10 The signed area of the oriented Diagonal In-
center Euler triangle

−−−−−→
D1D2D3 is negative two times the

signed area of the oriented original Triangle
−−−−→
A1A2A3.

Proof. This is a consequence of the formulas above for
D1,D2 and D3, together with the identities

det

 a−2b
a−c

2b−c
a−c 1

0 a−c
2b−c 1

a−c
a−2b 0 1

=−2

and

det

0 0 1
1 0 1
0 1 1

= 1. �

Theorem 11 The orthocenter of the Diagonal Incenter
Euler triangle D1D2D3 is the Circumcenter C of the origi-
nal Triangle A1A2A3.

Proof. It is a straightforward calculation to show that the
Circumcenter of A1A2A3 given by (3) is indeed also the
orthocenter of D1D2D3. �
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5 The Incenter Euler transformation

We may now define a transformation Γ at the level of trian-
gles, where Γ

(
A1A2A3

)
is the Diagonal Incenter Euler tri-

angle D1D2D3. This gives a canonical second triangle as-
sociated to a given triangle, with one vertex of the new tri-
angle on each of the lines of the original, where the signed
area is multiplied by −2, and where the Circumcenter of
the original Triangle becomes the orthocenter of the new
triangle.
But now this transformation Γ allows one to transfer
whole-scale triangle centers from A1A2A3 to D1D2D3 .
Generally every triangle center of A1A2A3 will then play
a distinguished triangle center role for D1D2D3. Conceiv-
ably there are some particular exceptions, such as when
one of the factors a2c− ab2− 2abc+ ac2 + 2b3− b2c or
c−2b 6= 0 or a−2b 6= 0 or a 6= c is zero.
This implies that Kimberling’s list may well have a hall-
of mirrors aspect, where once we identify a triangle center
say Xi we consider the corresponding point for A1A2A3 to
be a possibly new X j of D1D2D3. This gives a natural map-
ping of Kimberling’s list to itself. It seems an interesting
question to identify what points go to what points. Could
a computer be programmed to answer this question?

6 Incenter Euler line meets on the Lines

We have seen that the Incenter Euler lines meet at Incen-
ter Midpoints (six) , at Incenter Euler points (four) and at
Schiffler points (four). But there is more.

Theorem 12 The Incenter Euler lines also meet at twelve
points on the original Lines of the triangle, with four such
meets on each Line.

Proof. The calculation of these points are straightforward,
the meets are, using projective coordinates:

e10e13 =

 0 : (a− c)(du+(b− c)v) :
3(b− c)(a−2b+ c)u+(
2b2−6bc+3c2 +ac

)
v

 ,
e10e12 =

 (a− c)(du+(a−b)w) : 0 :
3a2u+6b2u+3a2w+2b2w−9abu+3acu

−6abw−3bcu+acw

 ,
e11e12 =

 0 :−(a− c)(du− (b− c)v) :
6b2u+2b2v+3c2u+3c2v−3abu+3acu

+acv−9bcu−6bcv

 ,
e11e13 =

 (a− c)(du− (a−b)w) : 0 :
3a2u+6b2u−3a2w−2b2w−9abu+3acu

+6abw−3bcu−acw

 ,

e20e21 =
[
c(aw−bv+bw− cv) : 0 : 2b2w+acw−3bcv

]
,

e22e23 =
[
c(aw+bv+bw+ cv) : 0 : 2b2w+acw+3bcv

]
,

e20e23 =

 −c(au−3bu+bv+2cu−2cv) :
(c−2b)(bu− cu+ cv) :

−
(
2b2u+3c2u−3c2v+acu−6bcu+3bcv

)
 ,

e21e22 =

 c(au−3bu−bv+2cu+2cv) :
(c−2b)(cu−bu+ cv) :

2b2u+3c2u+3c2v+acu−6bcu−3bcv

 ,

e30e31 =
[
0 : a(aw−bv+bw−cv) :−2b2v+3abw−acv

]
,

e32e33 =
[
0 : (aw+bv+bw+ cv) : 2b2v+3abw+acv

]
,

e31e33 =

 (a−2b)(bu−au+aw) :
−a(2au−3bu−2aw+ cu+bw) :

−
(
3a2u+2b2u−3a2w−6abu+acu+3abw

)
 ,

e30e32 =

 (a−2b)(au−bu+aw) :
a(2au−3bu+2aw+ cu−bw) :

3a2u+2b2u+3a2w−6abu+acu−3abw

 .
�

7 The mystery of apparent symmetry break-
ing

There is another very intriguing aspect of this entire story
that invites further exploration. The lines of the Diago-
nal Incenter Euler triangle D1D2D3 of the Triangle A1A2A3
with Incenters I0, I1, I2 and I3 can be easily computed to be

D1D2 = [a+2b−2c : 2b− c : c−a]

D2D3 = [a−2b : 2b− c : c−a]

D1D3 = [2b−a : 2b−2a+ c : a− c] .

It is first of all remarkable that the formulas for these lines
are simple linear expressions in the numbers a,b and c of
the matrix for the bilinear form. In Figure 7 we notice that
the line D2D3 appears to pass through I3, but the other two
lines D1D2 and D1D3 do not pass through any of the other
Incenters. If this were true, it would imply a completely
remarkable, even seemingly impossible, symmetry break-
ing.
Why should the Incenter I3 be singled out in this fashion?
This very curious situation may at first confound the ex-
perienced geometer, as it did us when we first observed it.
The reader might enjoy creating such a diagram and deter-
mining to what extent this phenomenon holds, and trying
to find an explanation of it. We will address this challenge
in a future paper.
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Special Conics in a Hyperbolic Plane

ABSTRACT

In Euclidean geometry we find three types of special con-
ics, which are distinguished with respect to the Euclidean
similarity group: circles, parabolas, and equilateral hyper-
bolas. They have on one hand special elementary geomet-
ric properties (c.f. [7]) and on the other they are strongly
connected to the “absolute elliptic involution” in the ideal
line of the projectively enclosed Euclidean plane. There-
fore, in a hyperbolic plane (h-plane) – and similarly in any
Cayley-Klein plane – the analogue question has to con-
sider projective geometric properties as well as hyperbolic-
elementary geometric properties. It turns out that the
classical concepts “circle”, “parabola”, and “(equilateral)
hyperbola” do not suit very well to the many cases of con-
ics in a hyperbolic plane (c.f. e.g. [10]). Nevertheless, one
can consider conics in a h-plane systematicly having one
ore more properties of the three Euclidean special conics.
Place of action will be the “universal hyperbolic plane” π,
i.e., the full projective plane endowed with a hyperbolic
polarity ruling distance and angle measure.

Key words: conic section, hyperbolic plane, Thales conic,
equilateral hyperbola

MSC2010: 51M09

Specijalne konike u hiperboličnoj ravnini

SAŽETAK

U euklidskoj ravnini s obzirom na euklidsku grupu simetrija

razlikujemo tri tipa specijalnih konika: kružnice, parabole

i specijalne hiperbole. S jedne strane, one imaju spe-

cijalno euklidsko svojstvo (vidi [7]), a s druge su strane

čvrsto vezane uz apsolutnu eliptičnu involuciju na ideal-

nom pravcu projektivno proširene euklidske ravnine. Zbog

toga, u hiperboličnoj ravnini (h-ravnini) – i slično u

svakoj Cayley-Kleinovoj ravnini – treba promatrati i projek-

tivna geometrijska svojstva i elementarno-hiperbolična ge-

ometrijska svojstva. Pokazuje se da u brojnim slučajevima

konika u hiperboličnoj ravnini klasični koncepti “kružnica”,

“parabola” i “(jednakostranična) hiperbola” nisu primje-

njivi (vidi npr. [10]). Unatoč tome, moguće je sustavno

promatranje konika u h-ravnini koje imaju jedno ili vǐse

svojstava triju euklidskih specijalnih konika. Proučavanje

će se vřsiti na “univerzalnoj hiperboličnoj ravnini” π, tj.

projektivnoj ravnini u kojoj su udaljenost i mjera kuta

definirani apsolutnim polaritetom.

Ključne riječi: konika, hiperbolična ravnina, Talesova

konika, jednakostranična hiperbola

1 Introduction

We consider conics in a hyperbolic plane (h-plane) hav-
ing one ore more properties of the three Euclidean special
conics “circle”, “parabola” and “equilateral hyperbola”.
In the projectively enclosed and complexified Euclidean
plane circles are conics passing through the (complex con-
jugate) absolute points I,J on the ideal line u of that plane,
parabolas touch this absolute line u, and equilateral hy-
perbolas intersect the absolute line u in points harmonic
to I,J. Besides these projective geometric properties, the
three special conics have many Euclidean properties and
generations.
Circles are e.g. generated as distance curves of a point, the
midpoint, but they are also generated by directly congruent
pencils of lines, what results in the remarkable inscribed
angle theorem and the theorem of Thales as its special case.

Parabolas are e.g. generated as envelope of a leg of a right
angle hook sliding along a line, while the other leg passes
through a point. The fixed line and point turns out to be
vertex tangent and focus of the generated parabola. As a
Euclidean conic, a parabola is of course also defined via
the Apollonius definition of a conic.

An equilateral hyperbola has orthogonal asymptotes. It
is (directly and indirectly) congruent to its conjugate hy-
perbola, it is generated by indirectly congruent pencils of
lines. But the most strange property is that each triangle
of points on the hyperbola has its orthocentre on this equi-
lateral hyperbola. The pencil of conics with the vertices of
a triangle and its orthocentre as base points consists only
of equilateral hyperbolas; (the singular conics are the pairs
consisting of the altitude and the corresponding side of the
given triangle).
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In Figure 1, these three Euclidean cases and their well-
known main properties are visualised symbolicly:

Figure 1: (Symbolic) visualisation of projective and met-
ric properties of a Euclidean circle, a parabola,
and an equilateral hyperbola

In the following, we shall study conics in a hyperbolic
plane being defined by one of the mentioned projective and
Euclidean properties. Place of action will be the “univer-
sal hyperbolic plane” π, i.e. the full real projective plane
endowed with a hyperbolic polarity, see e.g. [15]. This
“absolute (regular) hyperbolic polarity” is usually given by
the real conic ω and rules orthogonality, h-distance, and
h-angle measure. F. Klein’s point of view considers h-
geometry as a sub-geometry of projective geometry while
a puristical point of view allows only the inner domain of
ω for being a proper h-plane. In the following, we try to
have both points of view in mind, but we will use F. Klein’s
projective geometric model of a h-plane.
The standard graphic representation of ω is that of a Eu-
clidean circle and this allows us to use e.g. the graph-
ics software “Cinderella” (see [11]), which has the feature
“(planar) hyperbolic geometry”.
As a first and well-known example we consider circles: In
a hyperbolic plane with the (real) “absolute conic” ω a cir-
cle c is a conic touching ω twice in algebraic sense (what
means disregarding reality and coincidence of the touch-
ing points). This projective geometric approach results al-
ready in three types of hyperbolic circles: (1) proper cir-
cles touching ω in a pair of complex conjugate points, (2)
limit circles which hyperosculate ω, and (3) distance cir-
cles touching ω in a pair of real distinct points. While the
elementary Euclidean definition of a circle as the planar
set of points having equal distance from a centre point, the

analogue in hyperbolic geometry is true only for h-circles
of type (1) and can be modified for h-circles of type (3).
For h-circles of type (3) the radius length is not finite, a
property, which connects this type rather with Euclidean
parabolas than with circles. Euclidean circles can be gen-
erated via directly congruent pencils of lines, which ex-
presses the property of a constant angle at circumference
and especially the property of Thales. In an h-plane two
pencils of orthogonal lines with proper base points gener-
ate the so-called “Thales conic” (resp. “Thaloid”, as it is
called by N. J. Wildberger, see [15]), which is never an h-
circle of type (1) and (2), while h-circles of type (3) occur
if, and only if the vertices of the h-orthogonal pencils both
are ideal points on ω.
Conics with the properties of a Euclidean parabola are
treated in [1], where the place of action again is the “uni-
versal hyperbolic plane” π. But, for the sake of complete-
ness, we also repeat some of the details here.
A great part of this article will deal with h-conics derived
from properties of the Euclidean equilateral hyperbola fol-
lowing the above presented systematic treatment for cir-
cles. This results in two special sets of h-conics, the set
of “h-equilateral conics” having a harmonic quadrangle of
ideal points and the set of h-conics defined by the property
that each triangle of conic points has its h-orthocentre also
on this conic.

2 Projective geometric classification
of h-conics

A given conic c, together with ω, defines as well a pencil of
conics p · c+q ·ω as well as a dual pencil of (dual) conics
and we distinguish 5 different types of pencils according to
the sets of singular conics resp. the sets of common base
points and base tangents (see Figures 2 and 3).

Figure 2: Conic pencils I and II and its dual pencils I∗ and
II∗
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Figure 3: The self-dual pencils of conics III, IV, and V

If we take the reality of base points or base lines into ac-
count and consider the pencils I and I∗, then we have three
subcases each, the pencils of type II, II∗ and III have two
such subcases each and there is only one case of pencils
of type IV and V. A further distinction can be made con-
cerning the reality of the common polar triangle of c and
ω, which acts as the h-midpoint triangle of c: An h-conic
can have either one or three real midpoints.
An overview of all possible cases can be found in [5],
[6], [9], and [10]. This classification shows that the Eu-
clidean names “ellipse”, “parabola” and “hyperbola” need
strong modifications (as e.g. “semi-hyperbola”, “convex
resp. concave hyperbolic parabola” and so on) to express
the type of an h-conic, which becomes obvious by its visu-
alisation in some model of the h-plane π.
Pencils p ·c+q ·ω of the two subtypes III define h-circles c.
They have the well-known property of being distance loci
of either points or lines, see Figure 4. h-Conics to type V
have no finite radius lenght and are called “limit h-circles”
or “horocycles”. But as they have similar properties as Eu-
clidean parabolas they can also be considered as special
cases of h-parabolas, Figure 5.

Figure 4: The different types of h-circles within concentric
pencils of h-circles

Figure 5: Pencil of “horocycles” showing the property
of Euclidean parabolas, which are translated
along their common axis

Conics c defining pencils of type II and IV can be con-
sidered as analogs to Euclidean parabolas and they will be
studied in Chapter 5 with respect to their h-metric proper-
ties.

Conics c defining pencils of type I are “h-hyperbolas”,
“semi-hyperbolas” or “h-ellipses” according to the reality
of the pencil’s base points, which furtheron will be called
the “ideal points” of c.

3 Classification with respect to
h-orthogonality

We start with an h-conic c, which, together with ω defines
a pencil p · c+ q ·ω of type I. The quadrangle of its ideal
points can be special with respect to the h-orthogonality
structure defined by the absolute polarity to ω. There
might be h-orthogonal pairs of opposite sides of this base
quadrangle (Figure 6). For dual pencils p · c∗+ q ·ω∗ one
can find similar special cases, see Figure 7. Quadrangles
(resp. quadrilaterals) with this special property are called
“harmonic quadrangles” (resp. “harmonic quadrilaterals”)
as their (non-trivial) symmetry group is generated by har-
monic homologies.

Figure 6: Pencils p ·c+q ·ω with h-orthogonality proper-
ties of the base quadrangle (and its degenerate
case pencil IV)
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Figure 7: Dual pencils p · c∗ + q ·ω∗ of type I∗ with h-
orthogonality properties of the base quadrilat-
eral

Figure 6 shows that there occur only h-hyperbolas and
semi-hyperbolas and, as a degenerate case, there are h-
parabolas, but no h-ellipses. The dual case (Figure 7) con-
tains h-ellipses c, when seen as point conics. It makes
sense to define an h-conic possessing a real harmonic ideal
quadrangle as “h-equilateral hyperbola” and we will have
a closer look to these h-conics in Chapter 6.

4 h-Conics with metric properties of
Euclidean circles

We start with the concept of a Euclidean circle and its dif-
ferent Euclidean generations. We have already mentioned
that projective h-conics of type III are also a h-distance cir-
cles (Figure 4). But they have neither the Thales-property
nor the property of the constant angle at circumference.
The generation of a conic by h-orthogonal pencils delivers
the “Thales conic” x over a segment [A,B], which turns out
to be one of the axes of the conic (Figure 8). There is one
exeption: Thales-conics over a segment [A,B], A,B ∈ ω,
are h-circles and their radius turns out to be 1/

√
2, (Fig-

ure 9).

Figure 8: Different cases of Thales-conics x generated by
two h-orthogonal pencils of lines

Figure 9: The exceptional case of a Thales-conic over a
segment with endpoints on the absolute conic ω

in a h-circle of radius 1/
√

2
Connecting the construction of a Thales-conic x with a
kinematic mechanism allows us to construct of points and
tangents of x, see [14] and Figure 10.

Figure 10: Kinematic generation of a Thales-conic x ap-
plied to construct its tangents

Arbitrarily chosen direct congruent pencils of lines gener-
ate a conic, too. It is simply the Steiner generation of a
conic by projective pencils, but this delivers no h-circles,
see Figure 11, and it has not the property of inscibed angle
theorem either!

Figure 11: Conic generated by two directly congurent pen-
cils of lines

Curves defined by a constant angle at circumference differ-
ent from a h-right angle, socalled “isoptics of a segment”,
turn out to be algebraic of degree four! To visualize this
one can consider the inverse motion, namely to keep the
angle and its legs fixed and move the segment. In the Eu-
clidean plane this motion is the well-known ellipse motion,

34



KoG•20–2016 G. Weiss: Special Conics in a Hyperbolic Plane

as all points which are fixed connected with the moving
system and which are different from the points on the legs
of the fixed angle have ellipses as orbits. In the h-plane
these orbits turn out to be of order four, too, see Figure 12.

Figure 12: The h-analog of the Euclidean ellipse motion
delivers orbits ci of degree 4

Another way to visualise this motion is to start with the
Thales-motion and consider the envelop of a line fixed to
Thales’s right angle hook and passing through its vertex,
Figure 13. In the Euclidean case, the envelope is a point of
the Thales-circle, in the h-case it is a curve of degree 6.

Figure 13: Moving a fixed angle hook along a Thales-conic
such that one leg passes through a bases point
A of Thales’s construction, the 2nd leg envelops
a curve of degree 6.

5 h-Conics with metric properties of
Euclidean parabolas

In this chapter, we strongly refer to [1]. From the pro-
jective geometric point of view, we have to distinguish h-
parabolas of type II, IV, and V, the latter having also prop-
erties of a circle. If one considers the analog of the Eu-
clidean slider crank, there occur h-conics, but they are (in
general) not projective h-parabolas, (Figure 14). The proof
for the fact that the envelop of the second leg t of the crank
slider is a h-conic x is trivial: The line t connects two pro-
jectively correlated point series, namely s and the absolute

polar line f of F . This line f is also the second vertex
tangent of the h-conic x.

Figure 14: The h-analog of the Euclidean crank slider mo-
tion, defines a conic x with focus F and vertex
tangent s.

Also the h-analog to the construction of a parabola accord-
ing to Apollonius’s definition does in general not deliver
h-parabolas in the projective geometric sense, see Figure
15. (Proof: x is Steiner-generated by two projective pen-
cils of lines with centre F , the focus of x, and the absolute
Pole L of the directrix line l of x.)

Figure 15: The h-analog of Apollonius’s definition of a Eu-
clidean parabola delivers a conic x.

Figure 15 also shows that x fulfills a “reflection property”
similar to the Euclidean parabola. But while, in the Eu-
clidean case, the diameters of the parabola c are reflected
at x, and then pass through the focus of x, in the hyperbolic
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case the lines through the absolute pole L of the directrix
line l are reflected at x and pass through a point, the h-focus
F1. The points L and F1 act, therefore, as a pair of foci of
x.
As all h-conics with two real focal points have the “reflec-
tion property”, it seems to be obvious that the projective
h-parabolas x have the “reflection property”, too, i.e., the
h-reflections of “diameters” at x pass through a point, the
focus of x. It turns out that this is true for all cases, Fig-
ure 16. For the limit case of pencil type V it seems to
be trivial, as the diameters intersect the “limit circle” x h-
orthogonally, a property, which we connect rather to circles
then to a parabola and which justifies to call that special h-
conic a limit circle (horocycle) and not a limit parabola.

Figure 16: Reflection property of h-parabolas of the projec-
tive types II and IV

6 h-Conics with properties of Euclidean
equilateral hyperbolas

6.1 h-equilateral conics

Here, we continue chapter 3: An “h-equilateral hyperbola”
x is an h-conic with a (real) harmonic quadrangle Ω of ideal
points, i.e. x∩ω = A,B,C,D and CR(A,B,C,D) = −1.
Similarly we call an h-equilateral conic x with two real
and two conjugate imaginary ideal points an “h-equilateral
semi-hyperbola”, see Figure 6. For both cases exactly one
real pair of sides of the ideal harmonic quadrangle Ω is
h-orthogonal and we will call this pair the “asymptotes”
a1,a2 of x, c.f. also [10]. The other two (real or conju-
gate imaginary) pairs of sides of the complete quadran-
gle Ω shall be named as “singular h-equilateral conics”
Σ1,Σ2. The vertices of the diagonal triangle of Ω are the
h-midpoints Mi of x, Figure 17.

Figure 17: Concentric h-equilateral hyperbolas x1, x2, x3
with their common asymptotes a1, a2, and h-
midpoints Mi

A h-equilateral semi-hyperbola can be visualized in the
classical, but projectively closed plane of visual perception
as a Euclidean pencil of circles, see Figure 18.

Figure 18: Left: Euclidean model of h-equilateral semi-
hyperbolas, Right: A more projective visualisa-
tion of these special h-conics

Figure 19 shows that even a Thales-conic can be an h-
equilateral hyperbola.

Figure 19: A Thales-conic can be an h-equilateral hyper-
bola
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Figure 20: Dual pencil of h-equilateral dual conics c∗

Figure 20 illustrates the case of a dual pencil of h-
equilateral dual conics c∗ touching a harmonic (ideal)
quadrilateral Ω∗. (“Dual conic” means the set of tangents
of a conic c, which is given as a point set.) The three pairs
of intersection points of the complete harmonic quadrilat-
eral Ω∗ act as the pairs of focal points Fi of the conics c.
Again, there exists one real pair of absolute conjugate fo-
cal points F1, F2, and we call these points the “asymptote
points” of c∗. The diagonal points of Ω∗ are the midpoints
of the conics c to c∗.
If one applies an h-reflection to an h-equilateral hyper-
bola c in one of its asymptotes, one receives another h-
equilateral hyperbola c, which is h-congruent to c. This re-
peats a property of Euclidean equilateral hyperbolas. In the
Euclidean case c and c are “conjugate hyperbolas”. This
gives a hint to define h-conjugate conics, too, see Figure
21:

Definition 1 The “h-conjugate conic” y to conic x is
concentric with x, has the same ideal points, and thus,
the same asymptotes a1, a2, and it has the same “axis-
quadrangle” Λ. The axis-quadrangle Λ of x has its ver-
tices in the intersection points of vertex tangents w1, w2, of
x with its asymptotes a1, a2.

Figure 21: The h-conjugate conics x and y in the case of x
being h-equilateral

Figure 22: The h-conjugate conics x and y in the case of x
being not h-equilateral

The special case visualised in Figure 21 also reveals the
construction of the hyper-osculating h-circles ci at the ver-
tices W1 of x and V1 of y, which is identical with the Eu-
clidean construction for equilateral hyperbolas. Figure 22
shows the general case of (real) h-conjugate conics. There,
too, the classical Euclidean construction of the hyperoscu-
lating circles at the vertices is possible. So, we can state
the following
Result: If in an arbitrary Cayley-Klein plane (CK-plane) π

a conic x has a well-definded real pair of asymptots a1, a2,
then it has a real CK-conjugate conic y. The CK-normals
in vertices of the “axis-quadrangle” of x (defined above)
to the asymptotes intersect the axes of x (and y) in the h-
centres Ci of the hyperosculating circles ci of x and y.

6.2 Special h-conics generated by h-congruent pencils
of lines

Euclidean equilateral hyperbolas have the property that
they can be Steiner-generated by two indirect congruent
pencils of lines. Obviously, the result of the analog con-
struction in the h-plane π delivers a conic x, but this conic
is, in general, not h-equilateral, see Figure 23. As also a
Thales conic can have four real ideal points, see e.g. Figure
19, the sense of the congruence between the two pencils of
lines is not essential for receiving a hyperbola as the result
of the Steiner-generation.

Remark 1 In Figure 23 the basis points of both Steiner-
generations, the direct and indirect one, are labelled with
P, Q. It turns out that the segment [P,Q] is a diameter
of the indirectly generated h-conic x as well as of the di-
rectly generated h-conic y. It is still an open question,
whether any arbitrary h-conic x can be Steiner-generated
by h-congruent pencils of lines. In the Euclidean case this
is not true.
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Figure 23: Generation of a conics x, y via h-congruent pen-
cils of lines. The h-congruence is given by the
sense (indirect or direct) and the pair of corre-
sponding lines t1, t2. The dotted conic y is the
result of directly congruent pencils while the x
stems from indirectly congruent pencils.

6.3 Special h-conics with the “triangle orthocenter
property”

It is well-known that Euclidean equilateral hyperbolas x are
characterised by the remarkable property that any triangle
∆ of hyperbola points has its orthocentre on x. We abbre-
viate this property as the “triangle orthocentre property” of
(Euclidean) equilateral hyperbolas and pose the question
whether there exist h-conics with this property, too.
We start with an arbitrary but not right-angled triangle
∆ = (APQ) with O being its h-orthocentre, and we add an
arbitrarily chosen fifth point X for defining an h-conic x
through these 5 points. We assume x to be regular, see
Figure 24.

Theorem 1 A h-conic x through A,O,P,Q,X, with O the
h-orthocentre of ∆ = (APQ) passes also through the h-
orthocentre OX of triangle ∆X = (XPQ).

Proof. Using the labelling of Figure 23 with a1 = PA,
a2 = QA, b1 = PX , b2 = QX and c1 = PO, c2 = QO,
d1 = POX , d2 = QOX , we have the following pairs of h-
orthogonal lines:

a1 ⊥ c2, b1 ⊥ d2, c1 ⊥ a2 and d1 7→ b2. (1)

The two ordered quadruples (a1,b1,c1,d1), (c2,d2,a2,b2)
belong to h-orthogonal pencils, which Steiner-generate the
Thales conic t over the segment [P,Q]. Therefore, we can
state that

CR(a1,b1,c1,d1) = CR(c2,d2,a2,b2). (2)

By applying permutation rules for cross ratios (see e.g. [2,
p. 34]), we infer

CR(a1,b1,c1,d1) = CR(c2,d2,a2,b2) = CR(a2,b2,c2,d2),

(3)

such that also the ordering a1 7→ a2, b1 7→ b2, c1 7→ c2,
d1 7→ d2 defines projective pencils, which Steiner-generate
the conic x through P,Q,A,X ,O. Since (2) holds, we also
have d1∩d2 = OX ∈ x. �

Figure 24: An h-conic x through A,O,P,Q,X, with O the h-
orthocentre of ∆ = (APQ) passes also through
the h-orthocentre OX of the triangle ∆X =
(XPQ).

Applying Theorem 1 to different points Xi ∈ x allows us
to go from the basic triangle (A,P,Q) to any other triangle
(X1,X2,X3) of conic points, and also this new triangle must
have its h-orthocentre on x. So we can state

Theorem 2 A (regular) h-conic x passing through
A,O,P,Q, with O being the h-orthocentre of triangle
(A,P,Q) has the triangle orthocentre property, i.e. any tri-
angle of points of x has its h-orthocentre on x.

One can extend Theorem 1 by the following statement, (see
Figure 25):

Theorem 3 Any conic x through points A,B,C,D and
passing through the h-orthocentre O1 of triangle (ABC)
passes also through the h-orthocentres Oi of (BCD),
(ABD), and (ACD). Especially, if A,B,C,D ∈ ω and
(A,B,C,D) is not harmonic, then the diagonal trian-
gle of the quadrangle (O1, ...,O4) coincides with that of
(A,B,C,D), which is the midpoint triangle of x.

Proof. The first part of theorem 3 is simply a conse-
quence of theorem 2. Now we consider a quadrangle
Ω = (A,B,C,D) of ideal points. Let O1,O2 be the h-
orthocentres of the triangles (ABC) and (ABD), see Fig-
ure 26. The quadrangle Ω admits the h-reflections in the
sides of its diagonal triangle (M1,M2,M3). Thereby, the
h-symmetry σ with centre Z := M3 and axis z := M1M2
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maps triangle (ABC) to the triangle (ABD) and, as σ is
an h-congruence, it maps also O1 to O2 which implies
that O1,O2,Z are collinear. Applying the other possible
h-symmetries with centres Mi and axes M jMk to the h-
orthocenters of the remaining partial triangles Ω completes
the proof. �

Figure 25: An h-conic x through A,B,C,D,O1 with O1 the
h-orthocentre of (ABC) also passes through the
h-orthocentres Oi of the remaining partial tri-
angles of (A,B,C,D).

Remark 2 The h-symmetry argument used in the proof
above suggests an extension of Theorem 3: Each quadran-
gle (A,B,C,D) admitting three h-symmetries would suit as
start figure such that the quadrangle of h-orthocentres of
the partial triangles has the diagonal triangle in common
with (A,B,C,D).

Figure 26: Applying the h-symmetry σ : (A,B,C,D) 7→
(A,B,D,C) proves that O1,O2,Z are collinear.

Remark 3 Both, the set of h-equilateral hyperbolas pos-
sessing one pair of h-orthogonal asymptotes and the set

of conics with the triangle orthocentre property (“top-
conics”) are four-parametric with a three-parametric fam-
ily of h-conics having both properties, while in Euclidean
geometry the two four-parametric families coincide.

7 Final remarks and conclusion

Conics in Euclidean and non-Euclidean geometries are al-
ready widely studied since decades, see e.g. [3], [5], [6]
and also the reference list in the monograph on conics [7].
Many references mainly deal with the classification and
normal form problem and less with explicite constructions
or properties of conics, see e.g. [10], [12]. Explicit con-
structions can be found e.g. in [1] and [14].
This article aims at a systematic treatment of what can be
called “special conics” in a hyperbolic plane. This means
that we have to base the investigation on usual classifica-
tions of conics from the (projective) universal hyperbolic
point of view as well as on the basis of special properties
which are non-Euclidean adaptions of properties one can
find at Euclidean conics. As one can interpret many of
these adaptions simply as Steiner-generations of conics (or
its dual), one can widely omit calculations and use syn-
thetic reasoning instead.
Because of the used projective geometric point of view, it
is an easy task to transfer the presented results resp. the
constructions also to elliptic geometry. In an elliptic plane
(or its Euclidean spherical model), there are no parabolas
even so the constructions for Euclidean parabolas can be
performed. Each general conic in the elliptic plane is an
ellipse, but a spherical conic allows both, the Apollonius-
definition of an ellipse and (seen from the complementary
side in the spherical model) also that of a hyperbola. As
special projective types of (real) conics, one finds one type
of “e-circles”. All the other metric definitions (as e.g. by
the triangle-orthocentre-property) deliver “e-ellipses” with
special properties or curves of higher degree.
We conclude with open questions:
It remains open, whether there exist additional special con-
ics in hyperbolic geometry, which have properties one did
not consider in Euclidean geometry. One such property
which makes no sense in Euclidean geometry but is mean-
ingful in hyperbolic and elliptic planes, is the dual to the
Apollonius definition of a conic:
“The tangents of a conic intersect two given lines in angles
of constant sum.”
For elliptic resp. spherical geometry, this results in a nice
application: Given two lines a,b intersecting in C, find
points B ∈ a, A ∈ b, such that the spherical triangle ABC
has a given area.
As a second open problem occurs, whether each h-conic
can be Steiner-generated via two congruent pencils of
lines. For h-special hyperbolas the generation via congru-
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ent pencils leads to pencil vertices on a diameter of the
hyperbola. As there is a 5-parametric set of h-conics in the
h-plane, and there is also a 5-parametric set of congruent
pencils, (namely 2 times two for the vertices and one for
the rotation given by start line t2 to a fixed start line t1),
this question might be answered with “yes”, even so it is
wrong in Euclidean geometry. But if “yes” is true, how can
one find these vertices and the angle of rotation to a given
h-conic?

A third question concerns the “h-isoptic curves of a seg-
ment”, which generalise the incribed angle theorem in Eu-
clidean geometry. Is it possible that the h-isoptic curve,
which is irreducible of degree 4 in geneneral, can be re-
ducible in some special cases? This would be similar to
the Euclidean case, where the resulting curve of degree 4
always splits into two circular arcs?

A fourth problem might concern the hyperbolic versions of
some generalisations of Euclidean Thales-constructions as
presented in [13].

Final remark. Even so the topic of dealing with special
conics a specific CK-plane only seems to be what can be
called “advanced elementary geometry”, it could stimu-
late research of conics - namely as curves of degree 2 - in
arbitrary metric planes, so-called Minkowski planes. Until
now “Minkowski conics” are defined only via the Apollo-
nius definition, see e.g. [4], [8].
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for hints and references and Prof. Norman Wildberger for
fruitful discussions.

References

[1] A. ALKHALDI, N. J. WILDBERGER, The Parabola
in Universal Hyperbolic Geometry I, KoG 17 (2013),
14–42.

[2] H. BRAUNER, Geometrie projektiver Räume II, BI-
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ABSTRACT

We study relations between the eight projective quadrangle
centroids of a quadrangle in universal hyperbolic geometry
which are analogs of the barycentric centre of a Euclidean
quadrangle. We investigate the number theoretical con-
ditions for such centres to exist, and show that the eight
centroids naturally form two quadrangles which together
with the original one have three-fold perspective symme-
tries. The diagonal triangles of these three quadrangles
are also triply perspective.

Key words: Universal hyperbolic geometry, projective ge-
ometry, centroids, quadrangles, diagonal triangles, per-
spectivities

MSC2010: 51M05, 51M10, 51N10

Težǐsta četverokuta u univerzalnoj hiperboličnoj
geometriji

SAŽETAK

Promatramo veze izmed-u osam projektivnih težǐsta
četverokuta u univerzalnoj hiperboličnoj geometriji koji su
analogoni baricentričnom sredǐstu euklidskog četverokuta.
Odred-ujemo teoretske uvjete postojanja tih sredǐsta i
pokazujemo da osam težǐsta tvore dva četverokuta koji
zajedno s danim četverokutom imaju trostruku perspek-
tivnu simetriju. I dijagonalni trokuti ovih četverokuta su
trostruko perspektivni.

Ključne riječi: Univerzalna hiperbolična geometrija,
projektivna geometrija, težǐsta, četverovrsi, dijagonalni
trokuti, perspektiviteti

1 Introduction: classical theories of the cen-
troid

In this paper we investigate quadrangle centroids in the
general setting of universal hyperbolic geometry (UHG)
using the novel algebraic orientation of standard quadran-
gle coordinates. We will associate to a hyperbolic quadran-
gle with midpoints two other perspectively related quad-
rangles of centroids as in Figure 1, and will identify a num-
ber of perspective relations between these quadrangles, and
also of their associated diagonal triangles.

Recall that the three median lines of a Euclidean or affine
triangle ABC are concurrent at the centroid G, which can
be viewed as either the centre of mass of the three points
of the triangle, or as the centre of mass of a uniform lam-
ina, or mass distribution, on the triangle – the two notions
coincide.
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q
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qg
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q
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q
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q

a
4

q
4

q
b

Figure 1: Three perspectively related quadrangles in
UHG
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Figure 2: The centroid of a triangle

For a Euclidean or affine quadrangle the story is a bit more
subtle; there are two notable centroid points. For simplic-
ity let’s assume temporarily that the Euclidean quadrangle
�≡ ABCD is convex, and consider the four subtriangles

4A≡BCD, 4B≡ACD, 4C≡ABD and 4D≡ABC

with respective centroids GA, GB, GC, and GD. If we con-
sider the quadrangle � to have a uniformly distributed
mass, then the type I centroid G1 is the point at which
this mass balances. The lines GAGC and GBGD are both
lines of balance of the uniform mass distribution, so their
meet

G1 = (GAGC)(GBGD)

is also a point of balance, as in Figure 3.

A

B
G

B
G

A
G

G
C

C
D

G
D

1

Figure 3: The type 1 centroid of a quadrangle

On the other hand the type II centroid, or barycenter, G2
is the center of mass of the four vertices. This is the com-
mon meet of the lines of balance AGA,BGB,CGC and DGD
as in Figure 4.

The barycenter G2 can also be found as the meet of the
three bimedian lines, which are the joins of the midpoints
of opposite sides, which we write as the triple concurrence

G2 = (MABMCD)(MADMBC)(MACMBD)

as in Figure 5.
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Figure 4: The type II centroid or barycenter of a quadran-
gle
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Figure 5: Bimedian line construction of type II centroid

Both these ideas extend to non-convex shapes, but on ac-
count of the dependence on the order of the points, there
are two other possible type I centroids, namely the points
(GAGB)(GCGD) and (GAGD)(GBGC), depending on the
quadrangle’s orientation. In contrast, the barycenter G2 has
a purely affine nature and is uniquely defined even in the
non-convex situation.

How do these notions extend to hyperbolic, elliptic and
other non-Euclidean geometries? Both the books of Som-
merville [13] and Coolidge [5], after constructing a projec-
tive metric in a Cayley Klein geometry (as in [10], [11]),
discuss how a side has two midpoints, a three-point system
has four centroids, and finally that a four-point system has
eight centroids. The absence of proofs suggests that this
was a reasonably well-known 19th century or early 20th
century configuration.

UHG is a broad algebraic generalization of hyperbolic ge-
ometry which stems from rational trigonometry ([15]) and
is related to, but distinctly different from, the more famil-
iar Cayley Klein geometry; and since we want this paper
to be largely self contained we will review this; the reader
can refer to papers [16], [17], [18], [19] and [20] for fur-
ther details. We then study quadrangle centroids using the
purely algebraic approach of UHG, which works over gen-
eral fields as well as arbitrary non-degenerate symmetric
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bilinear forms, and allows us to give concrete computa-
tional proofs of results. The generality of this theory is ac-
tually a powerful aspect to the arguments that we employ,
which require specific transformations to place particular
points in standard positions to simplify the algebra, and
then the structure constants of the general bilinear form
become ingredients in our formulas.

In this general situation there are either zero, one or two
midpoints of a side [4], and which case it is depends on
number theoretic considerations. So we need to under-
stand the explicit algebraic consequences of the assump-
tions that ensure existence of quadrilateral centroids. This
is highly dependent on the underlying field, so things be-
comes clearer if we do not assume an algebraically closed
field, where such subtleties are largely lost, and indeed
where there are serious logical hurdles. So our results are
meaningful over, for example, the rational numbers, and
also over finite fields, where additional combinatorial as-
pects arise that are largely invisible to classical synthetic
geometry.

Our goal is to prove theorems using explicit general formu-
las that may help future researchers to make further alge-
braic explorations in as wide a context as possible. While
hyperbolic triangles have seen some recent study, (see [14],
[19] and [20]), opportunities for investigation with hyper-
bolic quadrangles are also rich.

2 Universal hyperbolic geometry and quad-
rangles

We will now review briefly the projective metrical frame-
work of universal hyperbolic geometry (see [17], [20]) and
introduce basic notation for triangles and quadrangles. The
general projective linear algebraic setting covers both el-
liptic, hyperbolic and more general metrical geometries,
and works over a general field, not of characteristic two.
UHG shares the underlying framework of Cayley Klein
geometry—a projective plane with a distinguished conic
or its algebraic equivalent, namely a symmetric bilinear
form. But it utilises purely algebraic metrical notions,
namely projective quadrance and spread, instead of hyper-
bolic distance and angle.

Projective quadrance and spread can be introduced also in
a projective framework using cross ratios as described in
[17], but we will frame them in the context of a three-
dimensional (affine) vector space over a field not of char-
acteristic two. To differentiate between affine and projec-
tive linear algebra we will use the convention of writing
familiar affine vectors and matrices with round brackets,
and projective vectors and matrices, which are determined
only up to a (non-zero) multiple, with square brackets.

A (projective) point is a non-zero projective row vector a
shown in either of two ways:

a =
[
x y z

]
≡ [x : y : z]

while a (projective) line is a non-zero projective column
vector L shown in either of two ways:

L =

 l
m
n

≡ 〈l : m : n〉.

The point a = [x : y : z] and line L = 〈l : m : n〉 are incident
precisely when

0= aL≡
[
x y z

] l
m
n

= [x : y : z]〈l : m : n〉= lx+my+nz.

Note that the product of two projective matrices is only de-
termined up to scalars, but in particular the condition of
having a zero product is well-defined.

The join a1a2 of distinct points a1 ≡ [x1 : y1 : z1] and
a2 ≡ [x2 : y2 : z2] is then the line

a1a2 ≡ [x1 : y1 : z1]× [x2 : y2 : z2]

= 〈y1z2− z1y2 : z1x2− x1z2 : x1y2− y1x2〉

and the meet L1L2 of two distinct lines L1 = 〈l1 : m1 : n1〉
and L2 = 〈l2 : m2 : n2〉 is the point

L1L2 ≡ 〈l1 : m1 : n1〉×〈l2 : m2 : n2〉
= [m1n2−n1m2 : n1l2− l1n2 : l1m2−m1l2].

The cross product here is the usual Euclidean cross prod-
uct, which is well-defined on projective points and lines.

We’ll say a side a1a2 = {a1,a2} is a set of two points;
a vertex L1L2 = {L1,L2} is a set of two lines; a trian-
gle a1a2a3 ≡ {a1,a2,a3} is a set of three non-collinear
points; and a quadrangle a1a2a3a4 ≡ {a1,a2,a3,a4} is a
set of four points, where no three are collinear. The quad-
rangle a1a2a3a4 ≡ {a1,a2,a3,a4} has six distinct sides
a1a2, a3a4, a1a3, a2a4, a1a4, and a2a3, with correspond-
ing lines L12 ≡ a1a2, L34 ≡ a3a4, L13 ≡ a1a3, L24 ≡ a2a4,
L14 ≡ a1a4, and L23 ≡ a2a3.

a 1

a2

a3

a4

Figure 6: A projective quadrangle and its diagonal points
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The four subtriangles of the quadrangle a1a2a3a4 are

41 ≡ a2a3a4, 42 ≡ a1a3a4,

43 ≡ a1a2a4, 44 ≡ a1a2a3.

Two sides of a quadrangle are opposite if they have no
point in common. Each of the six sides of the quadrangle
are contained in exactly two distinct subtriangles, while
opposite sides are precisely the pairs of sides which don’t
belong to any one of the subtriangles.

The diagonal points of the quadrangle a1a2a3a4 are the
meets of the associated lines of opposite sides, that is

dα ≡ L12L34, dβ ≡ L13L24 and dγ ≡ L14L23. (1)

Then dαdβdγ is the diagonal triangle of the standard quad-
rangle. The indices α,β and γ correspond to the three ways
of dividing four points into two pairs, these play a distin-
guished role in the subject.

3 Projective bilinear forms and metrical
structure

We now impose metrical structure through a general sym-
metric bilinear form, possibly non-Euclidean, on an under-
lying three-dimensional vector space, as studied for exam-
ple in [12]. This generalises the notion of a dot product,
and is a standard notion in projective geometry, where a
bilinear form can be used to define objects such as con-
ics sections and quadrics, as described for example in [21]
and [11]. The bilinear form induces metrical structure to
the associated projective space, which can be viewed as
one-dimensional subspaces of the vector space. This gives
a far-reaching methodology for imbedding measurement
into purely algebraic geometry. For a given affine vec-
tor v we will denote the associated projective vector by
a = [v] = [λv] where λ 6= 0, and similarly for an affine
matrix A we denote the associated projective matrix as
A =[A] = [µA] where µ 6= 0.

Let us fix a general invertible symmetric 3×3 matrix A and
its adjugate B in the general form

A =

a d f
d b g
f g c

 and

B =

g2−bc dc− f g f b−dg
dc− f g f 2−ac ga−d f
f b−dg ga−d f d2−ab

 (2)

and denote by A and B the associated symmetric projective
matrices. By assumption the determinant

D≡ detA = abc+2 f dg−ag2−b f 2− cd2

is non-zero. The dual of a projective point a is then defined
to be the line a⊥ ≡AaT , and the dual of the projective line
L is the point L⊥ ≡ LT B. Since the projective matrices A
and B are inverses, and both are symmetric,

(aL)T = (aABL)T = LT BAaT = L⊥a⊥,

and so the point a is incident with the line L precisely when
their duals are incident, and in addition

(
a⊥
)⊥

= a and(
L⊥
)⊥

= L. Hence duality preserves projective theorems.

Two points a1 and a2 are perpendicular, written as a1 ⊥
a2, precisely when one is incident with the dual of the
other, that is when 0 = a1a⊥2 = a1AaT

2 . Symmetrically two
lines L1 and L2 are perpendicular, written as L1 ⊥ L2, pre-
cisely when one is incident with the dual of the other, that
is when 0 = L⊥1 L2 = LT

1 BL2.

A point a is null precisely when it is self perpendicular,
and a line L is null precisely when it is self perpendicular,
that is when respectively

aAaT = 0 and LT BL = 0.

The null conic (or absolute) then consists of null points,
and the null lines are the tangents to this conic. The above
notions of perpendicularity and duality are symmetric, and
algebraically capture the synthetic notion of polarity with
respect to the null conic in the projective plane.

The standard cases in UHG are those of hyperbolic and
elliptic geometries [19], which arise respectively from the
choices

A = J≡

1 0 0
0 1 0
0 0 −1

 and A = I≡

1 0 0
0 1 0
0 0 1

 .

A

E

Da

e

d

Figure 7: Polars of points and lines, interior and exterior

Figures in this paper come from the hyperbolic situation
where the null conic has equation x2 + y2− z2 = 0, which
meets the viewing plane z = 1 in the usual unit circle
x2 + y2 = 1 shown in blue in Figure 7. In this Figure we
see that the duals of the points a,d and e are the lines A,D
and E respectively, so this is just the classical pole/polar
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duality with respect to the circle. The points a and d are
perpendicular, as are a and e, and so are the dual lines.

The inverse pair of symmetric projective matrices A and B
coming from (2) that determine perpendicularity and dual-
ity in UHG also allow us to define the (projective) quad-
rance q(a1,a2) between the two points a1 and a2, and the
(projective) spread S (L1,L2) between the two lines L1
and L2 as the respective quantities

q(a1,a2)≡ 1−
(
a1AaT

2
)2(

a1AaT
1

)(
a2AaT

2

) and

S (L1,L2)≡ 1−
(
LT

1 BL2
)2(

LT
1 BL1

)(
LT

2 BL2
) .

By homogeneity these are well-defined numbers, even if
the various ingredients are only defined up to non-zero
multiplicative scalars. It should be noted that in ratio-
nal trigonometry, the notions of quadrance and spread are
affine versions of the above definitions: but they are differ-
ent.

In the special case of hyperbolic geometry, these metri-
cal measurements are closely related to the hyperbolic dis-
tance d (a1,a2) and the angle θ(L1,L2) as described in [17]
provided we restrict our attention to the interior of the null
conic, and the relations are

q(a1,a2) =−sinh2 (d (a1,a2)) ,

S (L1,L2) = sin2 (θ(L1,L2)) .

With the algebraic orientation of UHG, the avoidance of
all transcendental functions means that calculations can be
performed with full precision, that we can work over a gen-
eral field, that quadrance and spread really mirror the fun-
damental projective duality between points and lines, and
that metrical theorems extend to arbitrary non-degenerate
symmetric bilinear forms. These are very serious advan-
tages! As explained in [17] and [18], projective quadrance
and spread may also be defined in terms of cross ratios, in-
dependent of the relative positions of the points and lines
with respect to the null conic. This is also related to the
approach of Brauner in [3].

A hyperbolic circle with fixed center a and quadrance k is
the locus of points x which satisfy q(a,x) = k. This is a
conic. In Figure 8 we see circles centered at the external
point a and their quadrances; these are conics which are
tangential to the null conic and include what in the classi-
cal literature are called “equi-distant curves”. This notation
is not really necessary, as these conics are just circles.

a

a

T

k

k

k

k

=1.5

=10

=-2

=0.5

Figure 8: Hyperbolic circles with center a and different
quadratnces

4 Midpoints

As defined in [17], the point m is a midpoint of the side
a1a2 precisely when m is a point incident with the line a1a2
which satisfies

q(a1,m) = q(m,a2) .

A midline M of the side a1a2 is a line passing through
a midpoint m which is perpendicular to a1a2. In Figure
9 we see two midpoints of the side a1a2, and a synthetic
construction of them, along with the associated midlines.
Note that such a construction does not always work: the
relative positions of the side a1a2 and the null conic deter-
mine when this happens.

a
1

a
2

mm

M

M

Figure 9: Midpoints and midlines of a side

The following theorem was given by Wildberger [17] in the
purely hyperbolic case. Since midpoints are at the heart of
this paper, we give a more general proof which applies to
an arbitrary bilinear form.

Theorem 1 (Side midpoints) Suppose that a1 and a2 are
non-null, non-perpendicular points, forming a non-null
side a1a2. Then a1a2 has a non-null midpoint m precisely
when 1−q(a1,a2) is a square (within the field), and in this
case there are exactly two perpendicular midpoints m.

45



KoG•20–2016 S. Blefari, N J Wildberger: Quadrangle Centroids in Universal Hyperbolic Geometry

Proof. We prove the theorem first for specific points and
a general bilinear form. Let a1 ≡ [u1] = [1 : 1 : 1] and
a2 ≡ [u2] = [−1 :−1 : 1] where u1 ≡ (1,1,1) and u2 ≡
(−1,−1,1) are affine row vectors, and the general bilinear
form be given by the invertible pair of symmetric projec-
tive matrices A and B with affine representatives given by
(2). By the definition of quadrance

1−q(a1,a2) =

(
a1AaT

2
)2(

a1AaT
1

)(
a2AaT

2

) = (c−b−a−2d)2

A1A2

where

A1 ≡ u1AuT
1 = a+b+ c+2(d + f +g)

A2 ≡ u2AuT
2 = a+b+ c+2(d− f −g) .

Since a1 and a2 are non-null points, each of A1 and A2
are nonzero. An arbitrary point m on the line a1a2 ≡
〈1 :−1 : 0〉 has the form m = [x−y : x−y : x+y], which is
null precisely when

mAmT =(a+b+2d)(x−y)2+c(x+y)2+2( f+g)(x2−y2)=0

in which case the quadrance between m and any other point
is undefined. Thus we assume that m is non-null, which
gives the quadrances

q(a1,m) =

4y2
(

c(a+b+d)− ( f +g)2
)

A1 ((a+b+2d)(x− y)2 + c(x+ y)2 +2( f +g)(x2− y2))

q(a2,m) =

4x2
(

c(a+b+d)− ( f +g)2
)

A2 ((a+b+2d)(x− y)2 + c(x+ y)2 +2( f +g)(x2− y2))
.

By assumption a1a2 is non-null, and so the above expres-
sions are equal precisely when y2A2 = x2A1 or

1
A1A2

=
y2

A2
1x2

.

This occurs precisely when 1− q(a1,a2) is a square. In
such a case if we define a number σ12 by

1
A1A2

= σ
2
12

then we get solutions x = 1 and y = ±σ12A1, so the mid-
points are

m≡ [u1±σ12A1 ·u2] = [1±σ12A1 : 1±σ12A1 : 1∓σ12A1] .

These two points are perpendicular since m+AmT
− = 0 by

a computation.

Despite the proof being for a specific side, the general bi-
linear form allows us to use the Fundamental theorem of
projective geometry to transform this side to a general side
with any specific bilinear form. This gives us the result. �

What we have shown in the proof is that for points a1 and
a2 if we can find affine vectors v and u such that a1 = [v],
a2 = [u] and vAvT = uAuT , then the midpoints are [v+u]
and [v−u]. This is a particularly useful observation.

We point out an important variant of midpoint introduced
in [20]: the point s is a sydpoint of the side a1a2 precisely
when s is a point incident with the line a1a2 which satisfies

q(a1,s) =−q(s,a2) .

Alkhaldi and Wildberger have shown that the side a1a2
has sydpoints precisely when the number q(a1,a2)− 1 is
a square. Thus over the rationals a side approximately has
two midpoints or two sydpoints [20]. Over a finite field
things can behave rather differently, depending on the field.
For example over F5 a side has midpoints precisely when
it has sydpoints, as the only squares are 1 and −1. It is
remarkable that virtually everything in this paper can be
extended to the situation where the sides of a quadrangle
have either midpoints or sydpoints, but we will leave that
to a future discussion.

4.1 Centroids and Circumcenters

We now review familiar facts about medians and centroids
of triangles from Cayley Klein geometry and classical hy-
perbolic geometry, as described for example in [13] and
[6], but in the setting of UHG. This way we get a seamless
extension of these notions also to points outside the tra-
ditional hyperbolic disk; in Cayley Klein geometry it can
be awkward to smoothly make this extension on account
of the more limited nature of distance and angle, and their
dependence on transcendental functions.

We assume that we have a (hyperbolic) triangle a1a2a3 all
of whose sides have midpoints m as in Figure 10.

The median lines (or just medians) D of a1a2a3 are then
the joins of corresponding midpoints of sides with oppo-
site points of the triangle. There are six medians, two pass-
ing through each point ai. The following results are well-
known, although the terminology is somewhat novel, see
for example the above references and [19].

Theorem 2 (Centroids) The median lines D of the trian-
gle a1a2a3 are concurrent three at a time, meeting at four
distinct centroid points g.

We note that each centroid is associated with a distinct set
of three midpoints used to construct it, one from each side.
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Figure 10: Centroids of a triangle a1a2a3

Theorem 3 (Circumcenters) The six midpoints m of the
triangle a1a2a3 are collinear three at a time, lying on four
distinct circumlines C. The six midlines M of a1a2a3 are
concurrent three at a time, meeting at four distinct circum-
centers c which are dual to the circumlines C. The circum-
centers are the centers of the four hyperbolic circles which
go through the points of the triangle.

a
1

a
3

a
2

m

m

mm

C

C

C

C

Figure 11: Circumlines of a triangle a1a2a3

The centroid and circumcenter configurations are closely
related through perspectivities. As noted in [5], the me-
dian/centroid configuration is that of a quadrangle, as there
are four points, and six lines concurrent at the points in
threes, giving a Desargues configuration.

The quadrangle of centroids has the original triangle as its
diagonal triangle. So if we look at a subtriangle of this
centroid quadrangle, then it is perspective with the orig-
inal triangle at the fourth centroid point, as illustrated in
Figure 12.

a
1

a
3

a
2

m
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mm
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C

g

g

g

g

Figure 12: The triangle a1a2a3 is perspective with a subtri-
angle of centroids from a Circumline C.

From Desargues’ theorem we know that these two triangles
are perspective from a line which is precisely a circumline.
This can be done for each centroid, giving a unique corre-
spondence between centroids and circumcenters (through
the circumlines). In this paper we will concentrate on the
centroid story, as it is quite rich and interesting in its own
right, and leave the circumcenter picture for another occa-
sion.

5 Standard quadrangles

The fundamental theorem of projective geometry states
that any two projective frames in a projective plane can
be mapped onto each other by exactly one invertible pro-
jective linear transformation. This allows us to transform
the study of a general quadrangle under a fixed bilinear
form to that of a fixed standard quadrangle with a general
bilinear form. This powerful technique for tackling metri-
cal structure was employed in [19] and [20] in the context
of hyperbolic triangle geometry, in [1] and [2] to study hy-
perbolic parabolas, and used in the papers [9] and [8], as
well as the thesis of Nguyen Le [7] in the Euclidean case.

In this paper the standard quadrangle � ≡ a1a2a3a4 is
given by the four points

a1 ≡ [1 : 1 : 1] , a2 ≡ [−1 :−1 : 1] ,
a3 ≡ [1 :−1 : 1] , a4 ≡ [−1 : 1 : 1]

with corresponding affine vectors

u1 ≡ (1,1,1) , u2 ≡ (−1,−1,1) ,
u3 ≡ (1,−1,1) , u4 ≡ (−1,1,1) .

After a suitable projective transformation, any given quad-
rangle can be transformed to the standard quadrangle, and
since the metrical structure will change correspondingly by
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a congruence, we may assume that this is then given by the
general pair of matrices A and B of (2). We will also use
a consistent notational convention throughout this paper,
which will emphasize the quadrangle point(s) used to con-
struct an object, so that for example whenever an object
has a 1 in its label, it relates to the point a1 in some way.

We make some assumptions to avoid degenerate situations.
The first is that none of the points a1,a2,a3,a4 or lines

L12 ≡ a1a2 = 〈1 :−1 : 0〉, L13 ≡ a1a3 = 〈1 : 0 :−1〉,
L14 ≡ a1a4 = 〈0 : 1 :−1〉, L34 ≡ a3a4 = 〈1 : 1 : 0〉,
L24 ≡ a2a4 = 〈1 : 0 : 1〉, L23 ≡ a2a3 = 〈0 : 1 : 1〉

of � are null. The second is that the four points of the
quadrangle do not lie on a single hyperbolic circle. The
reason for this will be explained in the last section.

Let us also record that the diagonal points of the quadran-
gle are

dα ≡ L12L34 = [0 : 0 : 1], dβ ≡ L13L24 = [0 : 1 : 0],

dγ ≡ L14L23 = [1 : 0 : 0]. (3)

It will be useful to define the numbers

A1 ≡ u1AuT
1 = a+b+ c+2(d + f +g) ,

A2 ≡ u2AuT
2 = a+b+ c+2(d− f −g) ,

A3 ≡ u3AuT
3 = a+b+ c+2(−d + f −g) ,

A4 ≡ u4AuT
4 = a+b+ c+2(−d− f +g)

which by assumption are all non-zero. We are going to ex-
press things in terms of the entries a,b,c,d, f and g of the
matrix A of (2) which determines the metrical structure.

Theorem 4 (Quadrangle quadrances) The quadrances
of the standard quadrangle a1a2a3a4 are

q(a1,a2) = 4
c(a+b+2d)− ( f +g)2

A1A2
,

q(a3,a4) = 4
c(a+b−2d)− ( f −g)2

A3A4
,

q(a1,a3) = 4
b(a+ c+2 f )− (d +g)2

A1A3
,

q(a2,a4) = 4
b(a+ c−2 f )− (d−g)2

A2A4
,

q(a1,a4) = 4
a(b+ c+2g)− (d + f )2

A1A4
,

q(a2,a3) = 4
a(b+ c−2g)− (d− f )2

A2A3
.

These satisfy

1−q(a1,a2) =
(c−b−a−2d)2

A1A2
,

1−q(a3,a4) =
(c−b−a+2d)2

A3A4
,

1−q(a1,a3) =
(a−b+ c+2 f )2

A1A3
,

1−q(a2,a4) =
(a−b+ c−2 f )2

A2A4
,

1−q(a1,a4) =
(b−a+ c+2g)2

A1A4
,

1−q(a2,a3) =
(b−a+ c−2g)2

A2A3
.

Proof. Computations yield these results. �

5.1 Conditions for midpoints, or sigma relations

Now we also want to impose the conditions that ensure that
all six sides aia j for i 6= j have midpoints, so that each of
the subtriangles of a1a2a3a4 has centroids. To find elegant
proofs of our theorems we will require some careful book-
keeping with regards to the labelling of midpoints. There
is an interesting combinatorial aspect to this.

From the Side midpoint theorem we know that the non-
null side aia j has midpoints precisely when 1−q(ai,a j) is
a square. From the second half of the previous theorem, the
condition for all six sides having midpoints is equivalent to
the existence of six non-zero sigma values

σ12,σ34,σ13,σ24,σ14,σ23

in the chosen field, satisfying the following quadratic re-
lations

1
A1A2

= σ
2
12,

1
A1A3

= σ
2
13,

1
A1A4

= σ
2
14,

1
A3A4

= σ
2
34,

1
A2A4

= σ
2
24,

1
A2A3

= σ
2
23.

We can further take the product of these quadratic relations
in threes, say

1
A1A2

= σ
2
12,

1
A1A3

= σ
2
13 and

1
A2A3

= σ
2
23

and by possibly changing the sign of any or all of the sigma
values to arrange the following four cubic relations

1
A1A2A3

= σ12σ23σ13 ≡ σ4,
1

A1A2A4
= σ12σ24σ14 ≡ σ3,

1
A1A3A4

= σ13σ34σ14 ≡ σ2,
1

A2A3A4
= σ23σ34σ24 ≡ σ1.
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There are three ways of expressing each Ai using the
quadratic and cubic relations, given by

A1 =
σ23

σ12σ13
=

σ24

σ12σ14
=

σ34

σ13σ14
,

A2 =
σ13

σ12σ23
=

σ14

σ12σ24
=

σ34

σ23σ24
,

A3 =
σ12

σ13σ23
=

σ14

σ13σ34
=

σ24

σ23σ34
,

A4 =
σ12

σ14σ24
=

σ13

σ14σ34
=

σ23

σ24σ34
.

These show how each point is in exactly three subtriangles.
For example A1 has three representations, each relating to
the subtriangles42,43 and44 which contain a1.

From this point on most (if not all) of the expressions and
formulas involve these sigma values and relations defined
in this section, so it is valuable to appreciate the symme-
tries involved, which boil down to the following relations

σ23

σ13
=

σ24

σ14
,

σ23

σ12
=

σ34

σ14
,

σ24

σ12
=

σ34

σ13

or simply

σ12σ34 = σ13σ24 = σ14σ23 ≡ η.

Let’s also introduce

σ234 ≡ σ12σ13σ14, σ134 ≡ σ12σ23σ24,

σ124 ≡ σ13σ23σ34, σ123 ≡ σ14σ24σ34.

5.2 Midpoints of the quadrangle

By the Side midpoint theorem, for a side aia j with mid-
points, where ai = [vi] and a j = [v j], we are able to nor-
malize the affine vectors vi and v j such that the midpoints
have the simple forms

m(i j) ≡ [vi + v j] and m( ji) ≡ [vi− v j].

Despite the arbitrariness of the ordering we will use the
convention that the side corresponding to the points ai
and a j for i < j will be given as aia j and not as a jai,
and so the midpoint m(i j) = [vi + v j] can be seen as hav-
ing positive (or ascending) orientation and the midpoint
m( ji) = [vi− v j] as having negative (or descending) orien-
tation.

In the end of the proof of the Side midpoints theorem we
saw that the midpoints for the side a1a2 could also be writ-
ten as

m≡ [v1±σ12A1v2] = [1±σ12A1 : 1±σ12A1 : 1∓σ12A1] .

In light of the above discussion, we’ll say that m(12) =
[v1 +σ12A1v2] has ascending orientation and m(21) =
[v1−σ12A1v2] has descending orientation.

But these aren’t the only forms of the midpoints; the η

sigma relations allow us to rewrite the midpoints in two
different forms. For example the side a1a2 midpoints can
be rewritten as

m = [σ13±σ23 : σ13±σ23 : σ13∓σ23]

= [σ14±σ24 : σ14±σ24 : σ14∓σ24] .

There are exactly two sigma representations for every mid-
point, as every side is in exactly two subtriangles. For ex-
ample the side a1a2 is in the subtriangles43 and44 which
have corresponding midpoint representations

[σ14±σ24 : σ14±σ24 : σ14∓σ24] and

[σ13±σ23 : σ13±σ23 : σ13∓σ23]

respectively. For this reason we will list the remaining mid-
points of the sides in direct reference to the subtriangles in
the next section.

6 Subtriangles and their centroids

We now give some precise notational conventions and list-
ings for the subtriangles and their centroids.

6.1 Subtriangle 1

Subtriangle41 has lines

L34 ≡ a3a4 = 〈1 : 1 : 0〉 , L24 ≡ a2a4 = 〈1 : 0 : 1〉 ,
L23 ≡ a2a3 = 〈0 : 1 : 1〉

which correspond to the three sides of the quadrangle as-
sociated with the points a2, a3 and a4. Note that the sub-
scripts here really describe sets, although we write them
as lists for brevity. As stated before, each midpoint of the
sides of the quadrangle has exactly two sigma represen-
tations corresponding to the two subtriangles that a side
belongs to.

In this light the sigma representations for the midpoints of
these sides corresponding to the subtriangle41, are given
as follows;

m(34) ≡ [σ23−σ24 : σ24−σ23 : σ23 +σ24] ,

m(43) ≡ [σ23 +σ24 :−σ24−σ23 : σ23−σ24] ,

m(24) ≡ [−σ23−σ34 : σ34−σ23 : σ34 +σ23] ,

m(42) ≡ [σ23−σ34 : σ34 +σ23 : σ34−σ23] ,

m(23) ≡ [σ34−σ24 :−σ24−σ34 : σ34 +σ24] ,

m(32) ≡ [σ34 +σ24 : σ24−σ34 : σ34−σ24] .
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The corresponding medians are

D(34)
1 ≡ a2m(34) = 〈−σ24 : σ23 : σ23−σ24〉 ,

D(43)
1 ≡ a2m(43) = 〈σ24 : σ23 : σ23 +σ24〉 ,

D(24)
1 ≡ a3m(24) = 〈σ34 : σ23 +σ34 : σ23〉 ,

D(42)
1 ≡ a3m(42) = 〈σ34 : σ34−σ23 :−σ23〉 ,

D(23)
1 ≡ a4m(23) = 〈σ24 +σ34 : σ34 : σ24〉 ,

D(32)
1 ≡ a4m(32) = 〈σ24−σ34 :−σ34 : σ24〉 .

These medians are concurrent three at a time giving the
four subtriangle centroids for41 :

g1
1 ≡ D(34)

1 D(24)
1 D(23)

1 =

 σ23σ24−σ23σ34 +σ24σ34 :
σ23σ24 +σ23σ34−σ24σ34 :
σ23σ24−σ23σ34−σ24σ34

,
g2

1 ≡ D(34)
1 D(42)

1 D(32)
1 =

 σ23σ24 +σ23σ34−σ24σ34 :
σ23σ24−σ23σ34 +σ24σ34 :
−σ23σ24 +σ23σ34 +σ24σ34

,
g3

1 ≡ D(43)
1 D(24)

1 D(32)
1 =

 σ23σ24 +σ23σ34 +σ24σ34 :
σ23σ24−σ23σ34−σ24σ34 :
−σ23σ24 +σ23σ34−σ24σ34

,
g4

1 ≡ D(43)
1 D(42)

1 D(23)
1 =

 σ23σ24−σ23σ34−σ24σ34 :
σ23σ24 +σ23σ34 +σ24σ34 :
−σ23σ24−σ23σ34 +σ24σ34

.
In Figure 13 we see how these centroids appear.

a
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a
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a
2

a4

g
1

g
1

g
1

g
1

m

m

m

m

m

m

m

m

m

m

(12)

(34)

(43)

(23)

(32)

(24)

(42)

(13)

(31)

(14)

1

2

3

4

Figure 13: Labelling for the centroids of41 = a2a3a4

The labelling of a centroid reflects both the subtriangle it
is associated with and the three distinct midpoints used in
its construction, at least one of which is of positive ori-
entation. The centroid g2

1 for example is associated with
the midpoints m(32), m(42) and m(34) used to construct it,
exactly one of which is positively oriented, namely m(34),
which lies on the median D(34)

1 = a2m(34). Thus the su-
perscript of the centroid g2

1 comes from the point a2 which

is incident with the median through the positively oriented
midpoint.

Similarly the centroids g3
1 and g4

1 are associated with pre-
cisely one positively oriented midpoint m(24) and m(23) re-
spectively, which lie on the medians D(24)

1 = a3m(24) and
D(23)

1 = a4m(23) respectively, and so are associated with
the points a3 and a4 respectively. Finally the centroid g1

1 is
distinct from the other centroids in the sense that it is asso-
ciated with three positively oriented midpoints, and is thus
associated with the point a1. This method for labelling the
centroids can be extended to the rest of the subtriangles in
the natural way. So our centroid labelling depends on and
is consistent with the prior labelling of midpoints. We now
proceed to the other subtriangles, where the pattern is the
same. But it is useful to see all of these laid out explicitly.

6.2 Subtriangle 2

Subtriangle42 has lines

L14 ≡ a1a4 = 〈0 : 1 :−1〉 ,
L13 ≡ a1a3 = 〈1 : 0 :−1〉 ,
L34 ≡ a3a4 = 〈1 : 1 : 0〉 ,

with midpoints

m(14) ≡ [σ13−σ34 : σ13 +σ34 : σ13 +σ34] ,

m(41) ≡ [σ13 +σ34 : σ13−σ34 : σ13−σ34] ,

m(13) ≡ [σ14 +σ34 : σ14−σ34 : σ14 +σ34] ,

m(31) ≡ [σ14−σ34 : σ14 +σ34 : σ14−σ34] ,

m(34) ≡ [σ13−σ14 : σ14−σ13 : σ13 +σ14] ,

m(43) ≡ [σ13 +σ14 :−σ13−σ14 : σ13−σ14] ,

medians

D(14)
2 ≡ a3m(14) = 〈σ13 +σ34 : σ34 :−σ13〉 ,

D(41)
2 ≡ a3m(41) = 〈σ34−σ13 : σ34 : σ13〉 ,

D(13)
2 ≡ a4m(13) = 〈σ34 : σ14 +σ34 :−σ14〉 ,

D(31)
2 ≡ a4m(31) = 〈σ34 : σ34−σ14 : σ14〉 ,

D(34)
2 ≡ a1m(34) = 〈σ13 :−σ14 : σ14−σ13〉 ,

D(43)
2 ≡ a1m(43) = 〈σ13 : σ14 :−σ14−σ13〉 ,
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and centroids

g2
2 ≡ D(14)

2 D(13)
2 D(34)

2 =

 σ13σ14 +σ13σ34−σ14σ34 :
σ13σ14−σ13σ34 +σ14σ34 :
σ13σ14 +σ13σ34 +σ14σ34

,
g1

2 ≡ D(41)
2 D(31)

2 D(34)
2 =

 σ13σ14−σ13σ34 +σ14σ34 :
σ13σ14 +σ13σ34−σ14σ34 :
σ13σ14−σ13σ34−σ14σ34

,
g4

2 ≡ D(41)
2 D(13)

2 D(43)
2 =

 σ13σ14 +σ13σ34 +σ14σ34 :
σ13σ14−σ13σ34−σ14σ34 :
σ13σ14 +σ13σ34−σ14σ34

,
g3

2 ≡ D(14)
2 D(31)

2 D(43)
2 =

 σ13σ14−σ13σ34−σ14σ34 :
σ13σ14 +σ13σ34 +σ14σ34 :
σ13σ14−σ13σ34 +σ14σ34

.
6.3 Subtriangle 3

Subtriangle43 has lines

L12 ≡ a1a2 = 〈1 :−1 : 0〉 , L24 ≡ a2a4 = 〈1 : 0 : 1〉 ,

L14 ≡ a1a4 = 〈0 : 1 :−1〉

with midpoints

m(12) ≡ [σ14−σ24 : σ14−σ24 : σ14 +σ24] ,

m(21) ≡ [σ14 +σ24 : σ14 +σ24 : σ14−σ24] ,

m(24) ≡ [−σ12−σ14 : σ14−σ12 : σ12 +σ14] ,

m(42) ≡ [σ12−σ14 : σ14 +σ12 : σ14−σ12] ,

m(14) ≡ [σ12−σ24 : σ12 +σ24 : σ12 +σ24] ,

m(41) ≡ [σ12 +σ24 : σ12−σ24 : σ12−σ24] ,

medians

D(12)
3 ≡ a4m(12) = 〈σ24 : σ14 : σ24−σ14〉 ,

D(21)
3 ≡ a4m(21) = 〈σ24 :−σ14 : σ24 +σ14〉 ,

D(24)
3 ≡ a1m(24) = 〈σ12 :−σ12−σ14 : σ14〉 ,

D(42)
3 ≡ a1m(42) = 〈σ12 : σ14−σ12 :−σ14〉 ,

D(14)
3 ≡ a2m(14) = 〈σ12 +σ24 :−σ12 : σ24〉 ,

D(41)
3 ≡ a2m(41) = 〈σ24−σ12 : σ12 : σ24〉 ,

and centroids

g3
3 ≡ D(12)

3 D(24)
3 D(14)

3 =

 σ12σ14−σ12σ24−σ14σ24 :
σ12σ14−σ12σ24 +σ14σ24 :
σ12σ14 +σ12σ24 +σ14σ24

,
g4

3 ≡ D(12)
3 D(42)

3 D(41)
3 =

 σ12σ14−σ12σ24 +σ14σ24 :
σ12σ14−σ12σ24−σ14σ24 :
σ12σ14 +σ12σ24−σ14σ24

,
g1

3 ≡ D(21)
3 D(24)

3 D(41)
3 =

 σ12σ14 +σ12σ24 +σ14σ24 :
σ12σ14 +σ12σ24−σ14σ24 :
σ12σ14−σ12σ24−σ14σ24

,
g2

3 ≡ D(21)
3 D(42)

3 D(14)
3 =

 σ12σ14 +σ12σ24−σ14σ24 :
σ12σ14 +σ12σ24 +σ14σ24 :
σ12σ14−σ12σ24 +σ14σ24

.
6.4 Subtriangle 4

Finally subtriangle44 has lines

L23 ≡ a2a3 = 〈0 : 1 : 1〉 , L13 ≡ a1a3 = 〈1 : 0 :−1〉 ,

L12 ≡ a1a2 = 〈1 :−1 : 0〉 ,

with midpoints

m(23) ≡ [σ13−σ12 :−σ12−σ13 : σ12 +σ13] ,

m(32) ≡ [σ12 +σ13 : σ12−σ13 : σ13−σ12] ,

m(13) ≡ [σ12 +σ23 : σ12−σ23 : σ12 +σ23] ,

m(31) ≡ [σ12−σ23 : σ12 +σ23 : σ12−σ23] ,

m(12) ≡ [σ13−σ23 : σ13−σ23 : σ13 +σ23] ,

m(21) ≡ [σ13 +σ23 : σ13 +σ23 : σ13−σ23] ,

medians

D(23)
4 ≡ a1m(23) = 〈−σ12−σ13 : σ12 : σ13〉 ,

D(32)
4 ≡ a1m(32) = 〈σ12−σ13 :−σ12 : σ13〉 ,

D(13)
4 ≡ a2m(13) = 〈−σ12 : σ12 +σ23 : σ23〉 ,

D(31)
4 ≡ a2m(31) = 〈σ12 : σ23−σ12 : σ23〉 ,

D(12)
4 ≡ a3m(12) = 〈σ13 : σ23 : σ23−σ13〉 ,

D(21)
4 ≡ a3m(21) = 〈−σ13 : σ23 : σ23 +σ13〉 ,

51



KoG•20–2016 S. Blefari, N J Wildberger: Quadrangle Centroids in Universal Hyperbolic Geometry

and centroids

g4
4 ≡ D(12)

4 D(13)
4 D(23)

4 =

 σ12σ13−σ12σ23 +σ13σ23 :
σ12σ13−σ12σ23−σ13σ23 :
σ12σ13 +σ12σ23 +σ13σ23

 ,
g3

4 ≡ D(12)
4 D(31)

4 D(32)
4 =

 σ12σ13−σ12σ23−σ13σ23 :
σ12σ13−σ12σ23 +σ13σ23 :
σ12σ13 +σ12σ23−σ13σ23

 ,
g2

4 ≡ D(21)
4 D(13)

4 D(32)
4 =

 σ12σ13 +σ12σ23 +σ13σ23 :
σ12σ13 +σ12σ23−σ13σ23 :
σ12σ13−σ12σ23 +σ13σ23

 ,
g1

4 ≡ D(21)
4 D(31)

4 D(23)
4 =

 σ12σ13 +σ12σ23−σ13σ23 :
σ12σ13 +σ12σ23 +σ13σ23 :
σ12σ13−σ12σ23−σ13σ23

 .
7 Finding the quadrangle centroids

What we would like to do is use centroids of subtriangles to
construct centroids of the quadrangle a1a2a3a4. In Figure
14 we see some of the sixteen subtriangle centroids, us-
ing different colours for each subtriangle. It turns out that
these sixteen centroids enjoy some interesting relations.
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Figure 14: Subtriangle centroids of the quadrangle
a1a2a3a4

7.1 Midpoint consistencies

Define the set of associated midpoints (or associated
midpoints) Si

j for a centroid point gi
j of a Triangle 4i to

be the (unique) set of three distinct midpoints used to con-
struct it. For example the centroid g4

4 of the subtriangle
44 is constructed from the median lines D(12)

4 , D(13)
4 , and

D(23)
4 , and hence

S4
4 ≡

{
m(12),m(13),m(23)

}
.

A set
{

gi1
1 ,g

i2
2 ,g

i3
3 ,g

i4
4

}
containing one centroid from each

subtriangle of the quadrangle a1a2a3a4 is said to be mid-
point consistent if the union of the associated midpoint
sets

Sm ≡ ∪k Sik
k

contains exactly one midpoint from each of the six sides of
the quadrangle. For example the set

S =
{

g1
1,g

2
2,g

3
3,g

4
4
}

is midpoint consistent since the union of associated mid-
points is

Sm =
{

m(12),m(34),m(13),m(24),m(14),m(23)
}

which has exactly six elements, one from each side.
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Figure 15: A midpoint consistent set of subtriangle cen-
troids with six associated midpoints

On the other hand the set

S =
{

g1
1,g

2
2,g

4
3,g

3
4
}

is not midpoint consistent, since the union of associated
midpoints

Sm =
{

m(12),m(34),m(13),m(31),m(42),m(14),m(41),m(32)
}

contains both midpoints for the sides a1a3 and a1a4, and in
addition contains eight points.
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Figure 16: A set of subtriangle centroids which are not mid-
point consistent

Theorem 5 (Midpoint consistent centroids) There are
exactly eight distinct sets of subtriangle centroids

S =
{

gi1
1 ,g

i2
2 ,g

i3
3 ,g

i4
4

}
which are midpoint consistent.

Proof. We can see this by trying to construct a
midpoint consistent set of subtriangle centroids S ={

gi1
1 ,g

i2
2 ,g

i3
3 ,g

i4
4

}
. First let’s choose i1 = 1, that is let g1

1

be in the set. The centroid g1
1 has associated midpoints

S1
1 ≡

{
m(23),m(24),m(34)

}
, and so for any other centroid in

S, the midpoints m(32),m(42), and m(43) cannot be in their
respective set of associated midpoints.

So looking at the centroids gi2
2 of the subtriangle 42 and

their associated midpoints

g2
2 : S2

2 ≡
{

m(13),m(14),m(34)
}
,

g1
2 : S1

2 ≡
{

m(31),m(41),m(34)
}
,

g4
2 : S4

2 ≡
{

m(31),m(14),m(43)
}
,

g3
2 : S3

2 ≡
{

m(13),m(41),m(43)
}
,

we see that the centroids g2
2 and g1

2 are the only options for
S. If we choose i2 = 2, then the set{

m(34),m(13),m(24)m(14),m(23)
}
⊆ Sm

which forces i3 = 3, and i4 = 4, as S3
3 ≡{

m(12),m(14),m(24)
}

and S4
4 ≡

{
m(12),m(13),m(23)

}
. Else

if i2 = 1, then the set{
m(34),m(31),m(24),m(41),m(23)

}
⊆ Sm

which forces i3 = i4 = 1, as S1
3 ≡

{
m(21),m(31),m(24)

}
and S1

4 ≡
{

m(21),m(31),m(23)
}

. Therefore there are two
distinct midpoint consistent sets of subtriangle centroids
which contain the centroid g1

1. The above method can be
used for any choice of i1 ∈ {1,2,3,4}. Hence there are
in total exactly eight distinct sets of subtriangle centroids
which are midpoint consistent which can be constructed in
this manner. Each of these sets are distinct and this con-
struction in fact covers all the cases of midpoint consistent
sets. �

Corollary 1 The complete list of midpoint consistent sets
is given below:

S : Sm :

Sι≡
{

g1
1,g

2
2,g

3
3,g

4
4
} {

m(12),m(34),m(13),m(24),m(14),m(23)
}

Sα≡
{

g2
1,g

1
2,g

4
3,g

3
4
} {

m(12),m(34),m(31),m(42),m(41),m(32)
}

Sβ≡
{

g3
1,g

4
2,g

1
3,g

2
4
} {

m(21),m(43),m(13),m(24),m(41),m(32)
}

Sγ≡
{

g4
1,g

3
2,g

2
3,g

1
4
} {

m(21),m(43),m(31),m(42),m(14),m(23)
}

S1≡
{

g1
1,g

1
2,g

1
3,g

1
4
} {

m(21),m(34),m(31),m(24),m(41),m(23)
}

S2≡
{

g2
1,g

2
2,g

2
3,g

2
4
} {

m(21),m(34),m(13),m(42),m(14),m(32)
}

S3≡
{

g3
1,g

3
2,g

3
3,g

3
4
} {

m(12),m(43),m(31),m(24),m(14),m(32)
}

S4≡
{

g4
1,g

4
2,g

4
3,g

4
4
} {

m(12),m(43),m(13),m(42),m(41),m(23)
}
.

These midpoint consistent sets of subtriangle centroids are
quite pleasant. Indeed the labels almost chose themselves.
The Sα, Sβ, and Sγ sets represent the α, β, and γ pairings
of the subtriangle centroids respectively, while the Sι set
represents the ι pairing or identity pairing of subtriangle
centroids. The S1, S2, S3 and S4 sets contain the subtrian-
gle centroids associated with the points a1, a2, a3 and a4
respectively.

It turns out that these sets of midpoint consistent subtrian-
gle centroids behave in a very similar way as do quadrangle
barycentres in the Euclidean case.

7.2 Quadrangle centroids

Define the g-lines to be the join aigi of the points ai
with the centroids gi of the corresponding subtriangle 4i.
Thus a quadrangle has sixteen distinct g-lines, four passing
through each point ai.

Theorem 6 (Quadrangle centroids) The four g-lines as-
sociated with a midpoint consistent set of subtriangle cen-
troids are concurrent, producing eight distinct quadrangle
centroids q.
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Proof. Consider the midpoint consistent set of subtriangle
centroids

Sι =
{

g1
1,g

2
2,g

3
3,g

4
4
}
.

The set Sι has the four associated g-lines

a1g1
1=〈σ23 (σ24 +σ34):−σ24 (σ23+σ34) : σ34 (σ24−σ23)〉,

a2g2
2=〈σ14 (σ13+σ34):−σ13 (σ14+σ34) : σ34 (σ14−σ13)〉,

a3g3
3=〈σ14 (σ12+σ24) : σ24 (σ12 +σ14) : σ12 (σ24−σ14)〉,

a4g4
4=〈σ23 (σ12+σ13) : σ13 (σ12 +σ23) : σ12 (σ23−σ13)〉.

Now let qι ≡
(
a1g1

1
)(

a2g2
2
)
, then we find that

qι =

〈
σ23 (σ24 +σ34) :
−σ24 (σ23 +σ34) :

σ34 (σ24−σ23)

〉
×

〈
σ14 (σ13 +σ34) :
−σ13 (σ14 +σ34) :

σ34 (σ14−σ13)

〉

=


σ24σ34 (σ13−σ14)(σ23 +σ34)
−σ13σ34 (σ23−σ24)(σ14 +σ34) :

σ23σ34 (σ13−σ14)(σ24 +σ34)
−σ14σ34 (σ23−σ24)(σ13 +σ34) :

σ14σ24 (σ23 +σ34)(σ13 +σ34)
−σ13σ23 (σ24 +σ34)(σ14 +σ34)


=

−σ34 (η(σ13−σ14−σ23 +σ24−2σ34)+σ3 +σ4) :
−σ34 (η(σ13−σ14−σ23 +σ24 +2σ34)−σ3−σ4) :
−σ34 (η(σ13−σ14 +σ23−σ24)+σ3−σ4)


where η = σ12σ34 = σ13σ24 = σ14σ23. Now as σ34 6= 0 we
can use the fact that η = σ12σ34 and divide by (σ34)

2 to get
the representation

qι=

σ12 (σ13−σ14−σ23+σ24−2σ34)+σ13σ23+σ14σ24 :
σ12 (σ13−σ14−σ23+σ24+2σ34)−σ13σ23−σ14σ24 :

σ12 (σ13−σ14 +σ23−σ24)+σ13σ23−σ14σ24

.
Recalling that A3 and A4 have representations
σ12/(σ13σ23) and σ12/(σ14σ24) respectively, divide by
σ12 to get the alternate expression

qι =

 σ13−σ14−σ23 +σ24−2σ34 +1/A3 +1/A4 :
σ13−σ14−σ23 +σ24 +2σ34−1/A3−1/A4 :

σ13−σ14 +σ23−σ24 +1/A3−1/A4

.
It is then a calculation that qι is also incident with the g-
lines a3g3

3 and a4g4
4, so that the four g-lines are concurrent

at the point qι. The representation of qι above seems to
be more associated with the points a3 and a4 when look-
ing at the subscripts of the sigma values, and in particular
the terms A3 and A4 are involved in the equation. This is
due in part to the two g-lines we chose at the start, and so
since there are six ways to choose two from four there are
also six equal representations for the centroid qι. The five
remaining representations of qι are

(
a3g3

3

)(
a4g4

4

)
=

 σ13−σ14−σ23+σ24−2σ12+1/A1+1/A2 :
−σ13+σ14+σ23−σ24−2σ12+1/A1+1/A2 :

σ13 +σ14−σ23−σ24 +1/A1−1/A2

,

(
a1g1

1

)(
a3g3

3

)
=

 σ12 +σ14 +σ23 +σ34−2σ24−1/A2−1/A4 :
σ12 +σ14−σ23−σ34−1/A2 +1/A4 :

σ12+σ14+σ23+σ34+2σ24+1/A2+1/A4

,
(

a2g2
2

)(
a4g4

4

)
=

 −σ12−σ14−σ23−σ34+2σ13+1/A1+1/A3 :
−σ12 +σ14−σ23 +σ34 +1/A1−1/A3 :
σ12+σ14+σ23+σ34+2σ13+1/A1+1/A3

,
(

a1g1
1

)(
a4g4

4

)
=

 σ12 +σ13−σ24−σ34−1/A2 +1/A3 :
σ12+σ13+σ24+σ34−2σ23−1/A2−1/A3 :

σ12 +σ13 +σ24 +σ34 +2σ23 +1/A2 +1/A3

,
(

a2g2
2

)(
a3g3

3

)
=

 −σ12 +σ13−σ24 +σ34 +1/A1−1/A4 :
−σ12−σ13−σ24−σ34+2σ14+1/A1+1/A4 :

σ12+σ13+σ24+σ34+2σ14+1/A1+1/A4

.
These can be transformed from one to another through an
appropriate multiplication of a non-zero scalar.

We can similarly do this for each of the other midpoint con-
sistent sets of subtriangle centroids producing eight distinct
quadrangle centroids. �
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Figure 17: Concurrent g-lines associated with a midpoint
consistent set of subtriangle centroids

The six different representations of a quadrangle centroid
give an equal weighting between all the four points of
the quadrangle. Despite this, we will break this symme-
try to save space, and write all the quadrangle centroids
in the representation derived from the meet of the g-lines
a1gi1

1 and a2gi2
2 which are associated with the points a1 and

a2. These representations have a bias associated with the
points a3 and a4.

The eight distinct quadrangle centroids are then

qι ≡

 σ13−σ14−σ23 +σ24−2σ34 +1/A3 +1/A4 :
σ13−σ14−σ23 +σ24 +2σ34−1/A3−1/A4 :

σ13−σ14 +σ23−σ24 +1/A3−1/A4

,
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qα ≡

 σ13−σ14−σ23 +σ24 +2σ34−1/A3−1/A4 :
σ13−σ14−σ23 +σ24−2σ34 +1/A3 +1/A4 :

σ13−σ14 +σ23−σ24−1/A3 +1/A4

,
qβ ≡

 σ13 +σ14 +σ23 +σ24 +2σ34 +1/A3 +1/A4 :
σ13 +σ14 +σ23 +σ24−2σ34−1/A3−1/A4 :

σ13 +σ14−σ23−σ24 +A3−A4

,
qγ ≡

 σ13 +σ14 +σ23 +σ24−2σ34−1/A3−1/A4 :
σ13 +σ14 +σ23 +σ24 +2σ34 +1/A3 +1/A4 :

σ13 +σ14−σ23−σ24−1/A3 +1/A4

,
q1 ≡

 σ13−σ14 +σ23−σ24 +2σ34−1/A3−1/A4 :
σ13−σ14 +σ23−σ24−2σ34 +1/A3 +1/A4 :

σ13−σ14−σ23 +σ24−1/A3 +1/A4

,
q2 ≡

 σ13−σ14 +σ23−σ24−2σ34 +1/A3 +1/A4 :
σ13−σ14 +σ23−σ24 +2σ34−1/A3−1/A4 :

σ13−σ14−σ23 +σ24 +1/A3−1/A4

,
q3 ≡

 σ13 +σ14−σ23−σ24−2σ34−1/A3−1/A4 :
σ13 +σ14−σ23−σ24 +2σ34 +1/A3 +1/A4 :

σ13 +σ14 +σ23 +σ24−1/A3 +1/A4

,
q4 ≡

 σ13 +σ14−σ23−σ24 +2σ34 +1/A3 +1/A4 :
σ13 +σ14−σ23−σ24−2σ34−1/A3−1/A4 :

σ13 +σ14 +σ23 +σ24 +1/A3−1/A4

.
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Figure 18: The quadrangle centroids produced by g-lines

From the list of midpoint consistent sets of subtriangle
centroids and from the Quadrangle Centroid theorem we
see that each g-line passes through exactly two quadran-
gle centroids. Moreover each g-line that passes through
each of the quadrangle centroids qι,qα,qβ and qγ is inci-
dent with one of the quadrangle centroids q1,q2,q3, and
q4 and not any of the other quadrangle centroids qι,qα,qβ

and qγ. This is a symmetric relation, and so it is useful to
consider the eight centroids as two quadrangles

�a ≡ qιqαqβqγ =
{

qι,qα,qβ,qγ

}

and

�b ≡ q1q2q3q4 = {q1,q2,q3,q4} .

We record this in a theorem.

Theorem 7 (Quadrangle centroid perspectivities) The
three quadrangles �, �a and �b are pair-wise perspective
in four ways, where the points of perspectivity are exactly
the points of the third quadrangle.

This is seen in Figure 19. The grey lines, which show the
perspectivities, are exactly the g-lines of the quadrangle
�= a1a2a3a4.
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Figure 19: Three perspective quadrangles �, �a and �b

8 Bimedian Lines

Just as in the Euclidean case, there is more than one way to
find the barycentric centroid of a quadrangle; we can also
look at meets of the bimedian lines of the quadrangle.

A bimedian line B{i j,k`} is the join of two midpoints m(i j)

and m(k`) from opposite sides aia j and aka` of the quadran-
gle, where {1,2,3,4} = {i, j,k, `}. By calculation, the bi-
median lines B{i j,k`} of the quadrangle a1a2a3a4 are given
as follows- note the pleasant linear aspect of these expres-
sions.

The bimedian lines corresponding to the α opposite sides
are:

B{12,34} ≡ 〈σ13−σ24 : σ23−σ14 : σ23 +σ14−σ13−σ24〉,
B{12,43} ≡ 〈σ13 +σ24 : σ23 +σ14 : σ23−σ14−σ13 +σ24〉,
B{21,34} ≡ 〈σ13 +σ24 :−σ23−σ14 : σ14−σ23−σ13 +σ24〉,
B{21,43} ≡ 〈σ24−σ13 : σ23−σ14 : σ23 +σ14 +σ13 +σ24〉.
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The bimedian lines corresponding to the β opposite sides
are:

B{13,24} ≡ 〈σ34−σ12 : σ14 +σ34 +σ23 +σ12 : σ23−σ14〉,
B{13,42} ≡ 〈σ34 +σ12 : σ14−σ23 +σ34−σ12 :−σ14−σ23〉,
B{31,24} ≡ 〈σ34 +σ12 : σ23−σ14 +σ34−σ12 : σ14 +σ23〉,
B{31,42} ≡ 〈σ12−σ34 : σ23 +σ14−σ34−σ12 : σ23−σ14〉.

The bimedian lines corresponding to the γ opposite sides
are:

B{14,23} ≡ 〈σ12 +σ34 +σ13 +σ24 : σ34−σ12 : σ24−σ13〉,
B{14,32} ≡ 〈σ12−σ34 +σ24−σ13 :−σ34−σ12 : σ24 +σ13〉,
B{41,23} ≡ 〈σ34−σ12 +σ24−σ13 : σ34 +σ12 : σ24 +σ13〉,
B{41,32} ≡ 〈σ34 +σ12−σ24−σ13 : σ34−σ12 : σ13−σ24〉.

Theorem 8 (Quadrangle bimedian centroids) The bi-
median lines B{i j,k`} of the quadrangle are concurrent
three at a time at the quadrangle centroids.

Proof. Given that we have equations of all the bimedian
lines and the quadrangle centroids, this is a calculation in-
volving the various sigma relations. �
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Figure 20: The bimedian lines of a quadrangle determine
the quadrangle centroids

To record which triples of bimedian lines are concurrent,
we once again can look at midpoint consistent sets of sub-
triangle centroids, and then look at the bimedian lines in-
duced from the union of the associated midpoints.

Returning to the example previous we have the mid-
point consistent set of subtriangle centroids Sι ={

g1
1,g

2
2,g

3
3,g

4
4
}

, where the union of associated midpoints is{
m(12),m(34),m(13),m(24),m(14),m(23)

}
. By definition of a

midpoint consistent set, this union of the sets of associated

midpoints contains precisely one midpoint for every side.
Hence the set naturally corresponds to the bimedian lines
B{12,34}, B{13,24}, and B{14,23}. These are in fact concur-
rent at the point qι.

As each subtriangle centroid is in precisely two midpoint
consistent sets, we get that each bimedian line is incident
with precisely two quadrangle centroids, namely if a bime-
dian is incident with a quadrangle centroid from �a then
it is not incident with a quadrangle centroid from �b. So
the twelve bimedian lines of the quadrangle a1a2a3a4 are
exactly the lines of the sides of the quadrangles �a and �b.

More precisely the relations are

qιqα = B{12,34}, qβqγ = B{21,43},

qιqβ = B{13,24}, qαqγ = B{31,42},

qιqγ = B{14,23}, qαqβ = B{41,32}

and

q1q2 = B{21,34}, q3q4 = B{12,43},

q1q3 = B{31,24}, q2q4 = B{13,42},

q1q4 = B{14,32}, q2q3 = B{41,23}.

We can once again recognise the α, β and γ pairings in
these relations. For example in �a the line qιqα is a bi-
median line from the α opposite sides, while the line qαqγ

is a bimedian line from the β opposite sides. The sides
of �a correspond to the bimedian lines constructed from
midpoints with the same orientation. In contrast the sides
of �b correspond to the bimedian lines constructed from
the midpoints with opposite orientations.

9 Diagonal triangles and perspectivities

We have observed that from the quadrangle a1a2a3a4 we
can find eight centroids, which separate into two distinct
quadrangles, and that these three quadrangles have a three-
fold perspective relation. There is in addition a strong cor-
relation between diagonal triangles of these three quadran-
gles which manifests itself algebraically in a very elegant
way.

Recall that the diagonal triangle of the quadrangle
a1a2a3a4 is given by (1). Now from the equations of the bi-
median lines, we can determine that the diagonal triangles
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of the quadrangles �a and �b are given by the points

da
α ≡ B{12,34}B{21,43} =

 (σ13 +σ24)(σ14−σ23) :
(σ13−σ24)(σ14 +σ23) :
(σ13−σ24)(σ14−σ23)

 ,
da

β
≡ B{13,24}B{31,42} =

 (σ12 +σ34)(σ14−σ23) :
(σ12−σ34)(σ14−σ23) :
(σ12−σ34)(σ14 +σ23)

 ,
da

γ ≡ B{14,23}B{41,32} =

 (σ12−σ34)(σ13−σ24) :
(σ12 +σ34)(σ13−σ24) :
(σ12−σ34)(σ13 +σ24)


and

db
α ≡ B{21,34}B{12,43} =

 (σ13−σ24)(σ14 +σ23) :
(σ13 +σ24)(σ14−σ23) :
(σ13 +σ24)(σ14 +σ23)

 ,
db

β
≡ B{31,24}B{13,42} =

 (σ12−σ34)(σ14 +σ23) :
(σ12 +σ34)(σ14 +σ23) :
(σ12 +σ34)(σ14−σ23)

 ,
db

γ ≡ B{41,23}B{14,32} =

 (σ12 +σ34)(σ13 +σ24) :
(σ12−σ34)(σ13 +σ24) :
(σ12 +σ34)(σ13−σ24)

 .
There is no abuse of notation as the α, β, and γ diagonal
points are constructed from the bimedian lines of the α, β,
and γ opposite sides respectively.

We start with this first theorem concerned with the
collinearity of diagonal points from different diagonal tri-
angles.

Theorem 9 The diagonal points, d,da and db are
collinear, on six distinct lines, called d-lines.

Proof. By computations we see that the following diago-
nal points from the quadrangles �,�a and �b respectively
are collinear on the lines

〈σ34−σ12 : σ12 +σ34 : 0〉 through dα,da
β
,db

γ ,

〈σ12 +σ34 : σ34−σ12 : 0〉 through dα,da
γ ,d

b
β
,

〈σ13 +σ24 : 0 : σ24−σ13〉 through dβ,d
a
γ ,d

b
α,

〈σ24−σ13 : 0 : σ13 +σ24〉 through dβ,d
a
α,d

b
γ ,

〈0 : σ23−σ14 : σ14 +σ23〉 through dγ,da
α,d

b
β
,

〈0 : σ14 +σ23 : σ23−σ14〉 through dγ,da
α,d

b
β
. �

It is quite pleasant that the equations of these six lines re-
duce to something so elementary, in our view.

Figure 21: Collinearity of diagonal triangles

It is apparent that there is a strong relation between these
three triangles, this is emphasized in the next couple of
theorems which are concerned with perspectivity.

p

p
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Figure 22: The diagonal triangles are pairwise perspec-
tive.

Theorem 10 The three diagonal triangles of the quadran-
gles �,�a and �b are pair-wise perspective.

Proof. We can see this by computing the lines through
corresponding diagonal points, for example

dαda
α=〈(σ13−σ24)(σ14+σ23) : (σ13+σ24)(σ23−σ14) : 0〉,

dβda
β
=〈(σ12−σ34)(σ14+σ23) : 0 : (σ12+σ34)(σ23−σ14)〉,

dγda
γ =〈0: (σ12−σ34)(σ13+σ24) : (σ12+σ34)(σ24−σ13)〉

are all concurrent at the point

p1 ≡

 (σ12 +σ34)(σ13 +σ24)(σ14−σ23) :
(σ12 +σ34)(σ13−σ24)(σ14 +σ23) :
(σ12−σ34)(σ13 +σ24)(σ14 +σ23)

 .
Similarly the lines dαdb

α, dβdb
β
, and dγdb

γ and the lines da
αdb

α,
da

β
db

β
, and da

γ db
γ are concurrent respectively at the points

p2 ≡

 (σ12−σ34)(σ13−σ24)(σ14 +σ23) :
(σ12−σ34)(σ13 +σ24)(σ14−σ23) :
(σ12 +σ34)(σ13−σ24)(σ14−σ23)
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and

p3 ≡

 σ234−σ134−σ124 +σ123 :
σ234−σ134 +σ124−σ123 :
σ234 +σ134−σ124−σ123

 . �

The points that correspond in the different diagonal trian-
gles are the α, β, and γ diagonal points respectively. We
also have that these points of perspectivity are collinear,
and we can find an attractive equation for this common
line.

Theorem 11 The points of perspectivity p1,p2 and p3 for
each pair of diagonal triangles are collinear.

Proof. The points p1,p2 and p3 lie on the line

L1 ≡

〈 (
σ2

14−σ2
23
)(

σ2
12−σ2

13−σ2
24 +σ2

34
)

:(
σ2

24−σ2
13
)(

σ2
12−σ2

14−σ2
23 +σ2

34
)

:(
σ2

12−σ2
34
)(

σ2
13−σ2

14−σ2
23 +σ2

24
)
〉

=

〈
(A2A3−A1A4)(A3A4−A2A4−A1A3 +A1A2) :
(A1A3−A2A4)(A3A4−A2A3−A1A4 +A1A2) :
(A3A4−A1A2)(A2A4−A2A3−A1A4 +A1A3)

〉

=

〈 (
d2− f 2

)
(ag+bg+ cg−2d f ) :(

g2−d2
)
(a f +b f + c f −2dg) :(

f 2−g2
)
(ad +bd + cd−2 f g)

〉
. �
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Figure 23: A common Desargues line

As discussed in [11], a corollary of Desargues’ theorem
is that if three triangles are pair-wise perspective and their
points of perspectivity are collinear, then the correspond-
ing sides of the three triangles are concurrent and hence the
Desargues line is shared. We can verify this in this partic-
ular situation as follows

Corollary 2 The perspective diagonal triangles share the
same Desargues line which is

L2 ≡ 〈d f : dg : f g〉 .

Proof. The lines dαdβ, da
αda

β
, and db

αdb
β

are all concurrent
at the point

[0 :−σ4 +σ3−σ2 +σ1 : σ4 +σ3−σ2−σ1]

= [0 : f :−d]

while the lines dαdγ, da
αda

γ , and db
αdb

γ are concurrent at the
point

[σ4−σ3−σ2 +σ1 : 0 : σ4 +σ3−σ2−σ1]

= [g : 0 :−d]

and the lines dβdγ, da
β
da

γ , and db
β
db

γ are concurrent at the
point

[σ4−σ3−σ2 +σ1 : σ4−σ3 +σ2−σ1 : 0]
= [g :− f : 0] .

These give the same Desargues line

L2 ≡ 〈d f : dg : f g〉

for each pair of perspective triangles. �

The dual of L2 is the point

L⊥2 = LT
2 B =

 (b f −dg)(cd− f g) :
(ag−d f )(cd− f g) :
(ag−d f )(b f −dg)

 .

p

p

p

1

2

3

Figure 24: Shared Desargues line (yellow) of the perspec-
tive triangles

The situation here is richer than that of Desargues’ corol-
lary, as the points of the triangles are also collinear in
threes.

The final representation of the formulas in the last two
theorems deserve a mention. These are only dependent
on variables of the general bilinear form and are indepen-
dent of sigma values. This suggests that these lines have
other roles to play in the geometry of the hyperbolic quad-
rangle, independent of centroid considerations. It would
also be interesting of course to have synthetic projective
arguments for these results that we have described alge-
braically.
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10 Connections with desmic systems and
tetrahedra, and final remarks

Both the books of Sommerville [13] and Coolidge [5], af-
ter constructing a projective metric, discuss how a side has
two midpoints, a three-point system has four centroids, and
finally that a four-point system has eight centroids. Their
construction of the centroids for a four-point takes place
in a three-dimensional space and is referred to as a desmic
system. A desmic system is concerned with ‘strongly’ re-
lated tetrahedra, where these relations are the same as those
described in the Quadrangle centroids subsection of this
chapter. Namely each centroid lies on a line joining one
point with the center of the other three (g-lines,) and that
the produced tetrahedra are pair-wise perspective in four
different ways, where the points of perspectivity are ex-
actly the points of the other tetrahedra. They also state
that the corresponding planes of perspective tetrahedra of
a desmic system intersect at four lines which are coplanar,
the four planes (one for each point of perspectivity) are the
faces of the third tetrahedra. This last fact is unseen in the
planar quadrangle case, as the third dimension is needed
for this type of perspectivity. Yet it might be possible to
view the planar quadrangle case that we go through above
as some sort of projection of this desmic system onto a
plane.

A major point of departure with the planar case is that tetra-
hedra do not have an analogue of a diagonal triangle. So
the relations we described between the diagonal triangles
of the quadrangles are unique and separate from what is
described in these books. Furthermore, since classically
only the interior points of the absolute were used for basic
geometry these eight centroids were not visible, and thus
the relations unseen.

The observant reader might have noticed that at no point
do we prove that the sets of centroids

{
qι,qα,qβ,qγ

}
and

{q1,q2,q3,q4} are in fact quadrangles. They are quadran-
gles except when the points of the original quadrangle lie
on a hyperbolic circle.

If this happens it means that the subtriangles share a cir-
cumcenter, or equivalently they share a circumline. Recall
that a circumline is the line through three collinear mid-
points of a triangle. By a simple counting exercise, the
number of collinear midpoints must be six. This is for the
number of collinear midpoints must be more than 3, as dif-
ferent subtriangles have different midpoints, and less than
7 as there are six sides and seven or more collinear mid-
points would imply that the points of the quadrangle are
collinear. Finally the number of collinear midpoints must
be a multiple of 3, giving the only possible choice as 6.

Thus, the three bimedian lines produced from these mid-
points coincide, producing three collinear quadrangle cen-
troids. In this case the diagonal triangle degenerates to

three collinear points, coinciding with the three collinear
quadrangle centroid points. All the remaining theorems
still hold but one of the perspective triangles is degenerate,
as in Figure 25.

Figure 25: Three quadrangle centroids are collinear on the
blue line.

If furthermore the points of the quadrangle lie on two cir-
cles, then the situation completely degenerates as two sets
of six midpoints, and three centroids are collinear. This
configuration results in two midpoints coinciding, and fur-
thermore reduces to seven quadrangle centroids. The di-
agonal theorems in this case do not hold, as one diagonal
triangle degenerates into two points, as seen in Figure 26.

Finally, apart from these theorems relating to the quadran-
gle centroids, there appear to be many other notable re-
lations between subtriangle centroids and some structures
concerning the circumlines of the subtriangles. And more
generally we can look at other quadrangle structures that
are analogous to the triangle centre investigations in [14],
[17] and [20] in hyperbolic geometry.

Figure 26: Two quadrangle centroids coincide at the inter-
section of the blue lines.
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ABSTRACT

We give an overiew on various constructions of algebraic
minimal surfaces in Euclidean three-space. Especially low
degree examples shall be studied. For that purpose, we
use the different representations given by WEIERSTRASS

including the so-called Björling formula. An old result
by LIE dealing with the evolutes of space curves can
also be used to construct minimal surfaces with rational
parametrizations. We describe a one-parameter family of
rational minimal surfaces which touch orthogonal hyper-
bolic paraboloids along their curves of constant Gaussian
curvature. Furthermore, we find a new class of algebraic
and even rationally parametrizable minimal surfaces and
call them cycloidal minimal surfaces.

Key words: minimal surface, algebraic surface, rational
parametrization, polynomial parametrization, meromor-
phic function, isotropic curve, Weierstraß-representation,
Björling formula, evolute of a spacecurve, curve of con-
stant slope
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O algebarskim minimalnim plohama

SAŽETAK

Dajemo pregled različitih konstrukcija algebarskih mini-
malnih ploha u euklidskom trodimenzionalnom prostoru.
Posebice se promatraju primjeri niskog stupnja. U tu
svrhu koristimo različite prikaze koje daje WEIERSTRASS,
uključujući takozvanu Björlingovu formulu. LIJEV stari
rezultat pokazuje da se evolute prostornih krivulja mogu
koristiti za konstruiranje minimalnih ploha s racional-
nim parametrizacijama. Mi opisujemo jednoparametarsku
familiju racionalnih minimalnih ploha koje diraju ortogo-
nalne hiperboličke paraboloide duž njihovih krivulja s kon-
stantnom Gaussovom zakrivljenošću. Štovǐse, nalazimo
novu klasu algebarskih i čak racionalno parametrizirajućih
minimalnih ploha i nazivamo ih cikloidnim minimalnim plo-
hama.

Ključne riječi: minimalna ploha, algebarska ploha,
racionalna parametrizacija, polinomialna parametrizacija,
meromorfična funkcija, izotropna krivulja, Weierstraßov
prikaz, Björlingova formula, evoluta prostorne krivulje,
krivulja konstantnog nagiba

1 Introduction

Minimal surfaces have been studied from many different
points of view. Boundary value problems, uniqueness re-
sults, stability, and topological problems related to mini-
mal surfaces have been and are still topics for investiga-
tions. There are only a few results on algebraic minimal
surfaces. Most of them were published in the second half
of the nine-teenth century, i.e., more or less in the begin-
ning of modern differential geometry. Only a few pub-
lications by LIE [30] and WEIERSTRASS [50] give gen-
eral results on the generation and the properties of alge-
braic minimal surfaces. This may be due to the fact that
computer algebra systems were not available and classi-
cal algebraic geometry gained less attention at that time.
Many of the computations are hard work even nowadays
and synthetic reasoning is somewhat uncertain. Besides
some general work on minimal surfaces like [5, 8, 43, 44],
there were some isolated results on algebraic minimal sur-
faces concerned with special tasks: minimal surfaces on
certain scrolls [22, 35, 47, 49, 53], minimal surfaces re-

lated to congruences of lines [25, 28, 34, 38] minimal
surfaces with a given geodesic [23], minimal surfaces of
a certain degree, class, or genus (whether real or not)
[1, 10, 11, 19, 20, 21, 31, 41, 42, 48], minimal surfaces
touching surfaces along special curves [22], minimal sur-
faces showing special symmetries [14, 15, 16, 17], or min-
imal surface which allow isometries to special classes of
surfaces [4, 6, 18, 52].
The famous algebraic minimal surface by ENNEPER which
is of degree 9 and class 6 attracted intensive investiga-
tion. Consequently, researchers have found different gen-
erations of this surface: as the envelope of the planes of
symmetry of all points on the pair of focal parabolas

p1(u) = ( 4
3 u,0, 2

3 u2− 1
3 ),

p2(v) = (0, 4
3 v, 1

3 −
2
3 v2)

or as the unique minimal surface (22) through the rational
curve

γ(t) =
(
t− 1

3 t3, t2,0
)
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having γ’s normals for its surface normals. Since γ is pla-
nar, the surface normals of the uniquely defined minimal
surface form a developable surface (to be precise, a plane),
and thus, γ is a planar geodesic on ENNEPER’s minimal
surface. The plane of γ is a plane of symmetry of EN-
NEPER’s surface. This is a manifestation of a more general
result by HENNEBERG, see [21, 24, 30, 33]:

Theorem 1. A minimal surface M carries a planar and
not straight curve c as a geodesic. If M is algebraic, then
the involutes of c have to be algebraic or c is the evolute of
a planar algebraic curve.

We shall make use of this fact later in Sec. 7 when we con-
struct cycloidal minimal surfaces.
A further result due to HENNEBERG (see [21, 24, 30, 33])
is the following

Theorem 2. Let a minimal surface M be tangent to a
cylinder Z. If M is algebraic, then the orthogonal cross-
section c of Z is the evolute of an algebraic curve. If c
is the evolute of a transcendental curve, then M is also
transcendental.

However, according to a theorem by RIBAUCOUR, EN-
NEPER’s surface, like many other minimal surfaces, ap-
pears as the central envelope of isotropic congruences of
lines, see [25, 28, 34, 38, 45].
Among the real algebraic minimal surfaces, ENNEPER’s
surface has lowest possible degree 9. But there are alge-
braic minimal surfaces that can be found in [12, 13, 21, 30]
which are of degree 3 and 4 having the equations

G : (x− iy)4 +3(x2 + y2 + z2) = 0

and

L : 2(x−iy)3−6i(x−iy)z−3(x+iy)=0

with respect to a properly chosen Cartesian coordinate sys-
tem. The surfaces G and L have no real equation (polyno-
mial equation with real coefficients exclusively) and do not
carry a single real point.
G is usually called GEISER’s surface and L is named af-
ter LIE. GEISER’s minimal surface is a minimal surface of
revolution with an isotropic axis. Obviously, it is of degree
4 and some computation tells us that the equation of its
dual surface G?, i.e., the surface of its tangent planes has
the equation

G? : 9w2
0(w1−iw2)

4−(w2
1+w2

2+w2
3)

3=0

which is, therefore, of degree 6, and thus, G is of class 6.
Whereas LIE’s surface is of degree 3 and also of class 3
since the implicit equation of the dual surface L? reads

L?: 27w0(w2+iw1)
2+9i(w2

1+w2
2)w3−4iw3

3=0.

GEISER’s surface meets the ideal plane in the same ideal
line as LIE’s surface does. The ideal line x− iy = 0 is a
4-fold line on G and a 3-fold line on L . It is remark-
able that complex (non-real) algebraic minimal surfaces
have been undergoing detailed investigations, see, e.g.,
[1, 10, 12, 13, 48].
In [30], LIE gives a result dealing with the ideal curves of
algebraic minimal surfaces:

Theorem 3. The intersection of an algebraic minimal sur-
face with the plane at infinity consists of finitely many lines.

Some of the ideal lines on a minimal surface may have
higher multiplicities and pairs of complex conjugate lines
can also occcur.
For the coordinatization of ideal points and lines we refer
to Sec. 2.
The results on degrees, ranks, and classes of real algebraic
minimal surfaces differ from the results on complex alge-
braic minimal surfaces. For real algebraic minimal sur-
faces we have (see [30])

Theorem 4. The sum of the degree and class of a real al-
gebraic minimal surface is at least 15.

The two aforementioned examples of complex minimal
surfaces obviously show a different behaviour.
It is well-kown (cf. [30, 33]) that 5 is the lowest possible
class of a real algebraic minimal surface. HENNEBERG’s
surface with the parametrization

f (u,v) =

 c3uS3v−3cuSv

s3uS3v +3suSv

3c2uC2v

 (1)

is an example for that, since the implicit equation of its
dual surface equals

u0(u2
1 +u2

2)
2 ++u3(u2

1−u2
2)(3u2

1+3u2
2+2u2

3)=0. (2)

The algebraic degree of HENNEBERG’s surface equals 15.
ENNEPER’s surface is the only known example of a mini-
mal surface where the degree and class sum up to 15: the
degree equals 9 (cf. (23)), the class equals 6 (cf. (24)).
LIE gives also results on the class of an algebraic minimal
surface:

Theorem 5. The class of an orientable algebraic minimal
surface is always even.

HENNEBERG’s surface is of class 5 and non-orientable.
The rational minimal Möbius strip given in [35] is of class
15.
In Sec. 2, we introduce coordinates and define all necessary
abbreviations. Then, the different parametrization tech-
niques for minimal surfaces are collected. Proofs for these
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can be found in most of the standard monographs on mini-
mal surfaces or differential geometry such as [2, 33, 46].
Sec. 3 is dedicated to ENNEPER’s surface and its natu-
ral generalizations. In Sec. 4, BOUR’s minimal surfaces
gain attention. We show different ways to find these min-
imal surfaces and give estimates on the algebraic degrees
of these surfaces. Then, in Sec. 5, RICHMOND’s surface
appears as one in a one-parameter family. Sec. 6 gives ad-
ditional and apparently new results on a well-known kind
of minimal surface tangent to a hyperbolic paraboloid. Sec.
7 deals with an apparently new class of minimal surfaces.
The fact that cycloids (cycloidal curves with cusps) have
rational normals and are algebraic as well as their evolutes
and involutes are (see [32, 51, 55, 56]), allows us to con-
struct a family of algebraic minimal surfaces that admit
even rational parametrizations. We debunk their relations
to curves of constant slope on quadrics of revolution.
The reasons for the interest in algebraic and, espe-
cially in rational minimal surfaces are manifold: Rational
parametrizations can be converted into a geometrically fa-
vorable representation, namely into the Bézier represen-
tation. Moreover, rational parametrizations can easily be
handled with computer algebra systems. This allows the
computation of implicit equations of surfaces and their du-
als and makes them accessible for further study which is
then no longer restricted to the purely differential geomet-
ric approach. The behaviour at infinity as well as other
algebraic properties can be studied.
We have to confess that implicit equations of algebraic
minimal surfaces will hardly show up in this paper be-
cause they can be really long. The algebraic equation of
a d-dimensional algebraic variety of degree D has at most

q =
1

(d +1)!

d+1

∏
k=1

(D+ k)

coefficients. In the case of the classical low degree exam-
ples by ENNEPER, RICHMOND, HENNEBERG, and BOUR
with degrees 9, 12, 15, and 16 we could expect up to 220,
455, 816, and 969 terms provided that no special coordi-
nate system is chosen and that the equations are expanded
in full length.

2 Prerequisites

Since we are dealing with minimal surfaces in the Eu-
clidean three-space, Cartesian coordinates (x,y,z) are suf-
ficient. Vectors and matrices are written in bold characters.
The canonical innerproduct of two vectors u,v ∈ R3 is de-
noted by 〈u,v〉. The Euclidean length ‖v‖ of a vector v is
then given by ‖v‖=

√
〈v,v〉. The induced crossproduct of

two vectors u,v ∈ R3 is the vector u×v ∈ R3.

In the following, we shall use the abbreviations

cx := cosx, sx := sinx, . . .

Cx := coshx, Sx := sinhx, . . .

for the trigonometric and hyperbolic functions whenever
there is not enough space for the equations.
Sometimes, we deal with ideal points, lines, and the ideal
plane. Then, we shall homogenize the underlying Carte-
sian coordinates by

x→ X1X−1
0 , y→ X2X−1

0 , z→ X3X−1
0 .

When we compute the intersection of a (minimal) surface
with the ideal plane (plane at infinity), then we let X0 = 0
and obtain the equation of a curve (or, more generally
speaking, a cycle which is the union of finitely many al-
gebraic curves) in terms of the homogeneous coordinates
(X1 : X2 : X3) in the ideal plane. However, we shall not
write this down in detail and define coordinates in the ideal
plane by simply setting X1 = x, X2 = y, and X3 = z. It is
sufficient to do so, because substituting X0 = 0 into the ho-
mogeneous equation returns all monomials of the highest
degree of the inhomogeneous equation.
In the following, we collect some results and representa-
tions of minimal surfaces that will be useful for the gener-
ation of algebraic minimal surfaces. These representations
are well-known and proofs can be found in the literature,
see, e.g., [2, 27, 30, 33, 36, 46].

2.1 BJÖRLING’s problem

Let γ : I ⊂R→R3 be a smooth curve and let ν : I→ S2 be
a smooth unit vector field along γ with 〈γ′,ν〉 ≡ 0, i.e., ν is
perpendicular to γ in the entire interval I. Both are consid-
ered to have complex continuations. A real parametriza-
tion f : D⊂R2→R3 of the uniquely defined real minimal
surface M through γ with its normals along γ parallel to ν

is then given by

f(u,v)=Re

γ(t)−i
t∫

t0

ν(θ)×dγ(θ)

. (3)

We call the pair (γ,ν) a scroll and it is the envelope of the
one-parameter family of planes 〈ν(t),x− γ(t)〉 = 0. The
curve γ shall henceforth be called the spine curve of the
scroll.
Since γ and ν are considered to have complex continua-
tions, the parameter t in (3) is assumed to be a complex
parameter. Subsequent to the integration, t is replaced by
t = u+ iv and finally the real part of the vector function in
C3 is extracted. Formula (3) is called Björling formula, see
[2, 27, 33, 36], and was first published by H.A. SCHWARZ
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in [44]. Actually, the Björling formula is just the solution
of a problem posed by E.G. BJÖRLING in 1844.

The Björling formula can be a starting point for the con-
struction of algebraic minimal surfaces, but it has a big
disadvantage like all other integral formulae: Antideriva-
tives of rational or algebraic functions may sometimes be
not rational or even algebraic.

A remarkable application of the Björling formula (3) may
be its application to non planar curves. The following re-
sult is due to LIE, see [30]:

Theorem 6. The minimal surface that touches the evolute
c? of an algebraic space curve c exactly at the centers of
curvature of c is algebraic.

However, the algebraic degree of the surface generated ac-
cording Thm. 6 may not only be high, it may even be hard
to determine.

As an application of Thm. 6, we can give the following low
degree example: We choose the PH-curve (for details and
definition see [9])

c(t) = (6t,6t2,4t3), t ∈ R. (4)

Its evolute is then parametrized by

c?(t) =

 −12t3

3−12t4 +6t2

16t3 +6t

 , t ∈ R (5)

and the normals ν(t) are λc1 = (1,2t,2t2) with λ= 1+2t2.
The requirements for the application of the Björling for-
mula are met since 〈ċ?,c1〉 = 0. A real parametrization of
the real minimal surface on the scroll (γ,ν) = (c?,c1) is
found with (3) and reads

f(u,v)=12

 4uv(u2−v2)
6u2v2−u4−v4

0

+

+12

 3uv2−u3

v3−3u2v
4
3 u3−4uv2

+6

 2uv
u2−v2−v+1

2
u(2v+1)

. (6)

Figure 1 shows the minimal surface parametrized by (6)
together with the curves c and c?.

Figure 1: The minimal surface on the scroll (c?,c1) is deri-
ved from the evolute c? of a cubic PH-curve c.

Implicitization shows that the surface (6) is of degree 16
and the intersection with the ideal plane consists of the
ideal line of all planes parallel to x = 0 with multiplicity
16. Surprisingly, the class of this minimal surface equals
8 as we can see from the implicit equation of the dual sur-
face:

3ω
2
Ω

2+(4w0w2−15w2
1)ωΩ

2−2Ωω
3−ω

4

+4w2
1(3w2

1−4w02w2)Ω
2 +4w5

1(2w1+9w3)Ω

+w1(4w0w2(2w1+3w3)−9w2
1(5w1−6w3))Ωω (7)

+2w1(w0w2(w1+3w3)−6w2
1(w1+w3))ω

2

+(39w2
1+18w1w3−2w0w2)Ωω

2

+(12w2
1+6w1w3−w2

0−2w0w2)ω
3 +w5

1(w1+6w3)ω=0

where ω := w2
1 +w2

2 and Ω := w2
1 +w2

2 +w2
3.

We can summarize this in

Corollary 1. The minimal surface on the scroll (c?,c1)
with c? given in (5) (evolute of the polynomial cubic PH-
curve c from (4)) and with c1 being c’s unit tangent vector
field is a rational minimal surface of degree 16 and class
8.

The cubic curve (4) as well as its evolute (5) are non pla-
nar curves. In contrast to that, we can choose the planar
PH-cubic (semi-cubi parabola)

γ(t) = (4t3,0,6t2 +3) (8)

that lies in the xz-plane. Together with its unit normals

ν(t) =
1√

1+ t2
(−1,0, t) (9)
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a scroll (γ,ν) is defined and (3) yields the isotropic curve

ϕ(t)=(4t3,−4i
√

(t2+1)3,6t2+3). (10)

which is subsequently reparametrized by t = Sτ. Then,
τ = v+ iu (note that the real part equals v). Finally, the
extraction of the real part of (10) gives (1). Since the nor-
mals ν from (9) along γ from (8) form a developable ruled
surface (a plane), γ turns out to be a planar geodesic on
HENNEBERG’s minimal surface (1). The plane of γ is a
plane of symmetry for HENNEBERG’s minimal surface, cf.
Thm. 1. Figure 2 shows a part of HENNEBERG’s minimal
surface with the geodesic semi-cubic parabola (8).

Figure 2: HENNEBERG’s minimal surface with the
geodesic semi-cubic parabola γ.

A rational parametrization of HENNEBERG’s surface can
be obtained in two ways. The usual replacement of
trigonometric and hyperbolic functions by their well-
known rational equivalents delivers a parametrization in-
volving polynomials of degrees higher than necessary. The
substitution Sv = V yields a parametrization of bi-degree
(6,3), since C2v = 1+ 2Sv

2 = 1+ 2V 2 and S3v = 3Sv +
4Sv

3 = 3V +4V 3.
Implicitization shows that HENNEBERG’s surface is of al-
gebraic degree 15.
The dual surface, i.e., the set of tangent planes of HEN-
NEBERG’s surface, can be given either in parametric form
by

f? =


2cu

c2uS3v +3c2uSv
2su

c2uS3v +3c2uSv−1
C2vc2u +2c2u

 (11)

or by the implicit equation (2).

2.2 WEIERSTRASS’s formulae

2.2.1 The integral formula

There are some equivalent formulae which where first
given by WEIERSTRASS. These allow us to compute
parametrizations of minimal surfaces by prescribing a pair
of meromorphic functions: Let A : D ⊂ C → C and
B : D ⊂ C→ C be meromorphic functions, i.e., they are
holomorphic except at countably many points pi ∈ D⊂ C.
From A and B we find a real parametrization of a real min-
imal surface via

f(u,v)=Re

∫  A(1−B2)
iA(1+B2)

2AB

dw. (12)

Again, we assume that w= u+ iv is the complex parameter
in the domain D. The extraction of the real part of the com-
plex vector valued function gives the real parametrization
of the real minimal surface defined by A and B.
There is an alternative, but equivalent form for (12). Let
G and H be two meromorphic functions defined over the
same domain D⊂ C, then

f(u,v)=Re

∫  G2−H2

i(G2 +H2)
2GH

dw (13)

also yields a real parametrization of a real minimal surface.
(13) transforms into (12) by letting A=G2 and B=HG−1

provided that G 6≡0.
In many textbooks on differential geometry and in a huge
amount of publications, a further but equivalent integral
representation of minimal surfaces can be found. How-
ever, this third version is obtained from (12) by substitut-
ing B(w) = w and A(w) is an arbitray meromorphic func-
tion. This seems to be a restriction that presumes that A(w)
can globally and in a closed form be written as a function
A(B(w)) depending on B(w).

2.2.2 Recovering the functions A, B

From the parametrization f of a minimal surface we can re-
cover the meromorphic functions A and B, see [27, 33, 36]:
First, we compute F := ∂uf− i∂vf. Then, we use the coor-
dinate functions Fi of F and find

A =
1
2
(F1− iF2) and B =

F3

2A
. (14)

For example, the generating meromorphic functions of the
minimal surface given by (6) are

A = 3−12iw and B = 1+2iw.
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2.2.3 Integral free representation of minimal surfaces

Let A(w) : D⊂C→C be a meromorphic function and let
further A′ = dA

dw , A′′ = d2A
dw2 , and A′′′ = d3A

dw3 denote its first,
second, and third complex derivative. The vector

i=

 1−w2

i(1+w2)
2w

 (15)

is an isotropic vector in three-dimensional Euclidean space
R3 since 〈i, i〉= 0. Again, primes ′ indicate differentiation
with respect to the complex variable w. Now, we define

j = A′′i−A′i′+Ai′′. (16)

It is elementary to verify that 〈 j′, j′〉 = 0, and thus, j′ is
isotropic. Therefore, f =Re j is a real parametrization of a
real minimal surface. This parametrization is usually writ-
ten as

f(u,v)=Re

 (1−w2)A′′+ 2wA′− 2A

i(1+w2)A′′−2iwA′+2iA
2wA′′−2A′

 (17)

where A′′′ 6≡ 0 in D, see [2, 27, 33]. In case of a quadratic
polynomial A, (17) parametrizes a line. A cubic polyno-
mial A delivers an Enneper surface. The minimal surface
adjoint to HENNEBERG’s surface is uniquely determined
by the geodesic astroid α and its normals. The integral free
parametrization of minimal surfaces allows us to state:

Theorem 7. Each algebraic function A : D⊂C→C with
A′′′ 6≡0 (in the entire domain D) yields an algebraic mini-
mal surface parametrized by (17).

Moreover, it is clear that polynomials A ∈ C[w] deliver
polynomial parametrization. Further, each rational func-
tion A = P/Q with P,Q ∈ C[w] and gcd(P,Q) = 1 yields
rational parametrization of minimal surfaces. However,
just inserting rational or algebraic functions cannot guaran-
tee that the algebraic degree of the resulting minimal sur-
face is low. Sometimes a reparametrization turns a ratio-
nal parametrization of a minimal surface into a polynomial
one.

2.2.4 The associate family

The minimal surface adjoint to HENNEBERG’s surface is
uniquely determined by the geodesic astroid α and its nor-
mals. In any of the above cases, the real parametrization
f of a real minimal surface was found by computing the
real part f =Reϕ(w) of some complex vector valued func-
tion ϕ(w). The vector valued function ϕ(w) parametrizes
an isotropic curve in Euclidean three-space, i.e., a curve
with constant slope ±i. The computation of the real part
is equivalent to the addition of the complex conjugate

vector function and subsequent multiplication by 1
2 , i.e.,

f = 1
2 (ϕ+ϕ) = Reϕ. This is just the analytical formula-

tion of a fundamental result by LIE (see [27, 30, 33, 36]):

Theorem 8. Translating an isotropic curve ϕ (curve of
constant slope±i) along another isotropic curve ψ sweeps
a minimal surface. The minimal surface is real if, and only
if, ϕ and ψ are complex conjugate curves.

The curve ϕ(w) is an isotropic (minimal) curve of Eu-
clidean geometry. This property is not altered if we multi-
ply ϕ(w) by eiτ prior to the extraction of the real part. The
latter multiplication by a complex factor of absolute value
1 is, geometrically speaking, just a rotation of the complex
curve. The family of real minimal surfaces given by

f(τ)=Re(eiτ
ϕ(w))=cτReϕ(w)+sτImϕ(w) (18)

is called the associate family. Especially, f⊥ := f(π

2 ) is
called the adjoint minimal surface to f. The following the-
orem is obvious:

Theorem 9. The family of minimal surfaces associate to
an algebraic minimal surface consists only of algebraic
minimal surfaces.

Proof. From (18) we can see that the parametrizations of
the minimal surfaces in the associate family are linear com-
binations of Reϕ(w) and Imϕ(w) with coefficients cτ and
sτ. If f is obtained via (17), then both f(0) =Reϕ(w) and
f(π

2 ) = Imϕ(w) are algebraic and so is any of their linear
combinations.

It is elementary to verify that the meromorphic function A
from (12) changes to eiτA and B does not change during
the transition from the minimal surface defined by A and B
to the members of its associate family.
We shall have a look at the minimal surface adjoint to
HENNEBERG’s surface (1). A parametrization f⊥ of this
adjoint surface is found by multiplying (10) by ei π

2 = i,
reparametrizing by t = Sτ. Then, τ = v+ iu and we extract
the real part which gives

f⊥(u,v)=

 c3uS3v−3Svcu

s3uS3v+3Svsu

3C2vc2u

. (19)

The surface (19) has more symmetries than HENNEBERG’s
surface: It is symetric with respect to the planes

x = 0,y = 0,x± y = 0,z = 0.

The algebraic minimal surface f⊥ (19) is of degree 26 and
a part of it is shown in Fig. 3. Its intersection with the ideal
plane is the 18-fold ideal line of all planes parallel to z = 0
together with the four-fold pair of ideal lines of complex
conjugate isotropic planes.
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Figure 3: The minimal surface adjoint to HENNEBERG’s
surface is uniquely determined by the geodesic
astroid α and its normals.

The surface f⊥ intersects the plane z = 0 along the astroid

α(t) = (4ct
3,4st

3,0) (20)

that turns out to be a geodesic on the surface f⊥.
On the other hand, α can be taken as the spine curve of the
scroll (α,ν) with its unit normals

ν(t) = (−st ,−ct ,0). (21)

Inserting (20) and (21) into (3), we obtain a parametriza-
tion of f⊥ that is slightly different from (19) but equivalent
to that. Summarizing this, we can state (a known result,
see [22, 23, 33]) in

Theorem 10. The adjoint minimal surface to HEN-
NEBERG’s minimal surface carries a geodesic astroid
α. The adjoint to HENNEBERG’s minimal surface is the
uniquely determined minimal surface on the scroll (α,ν)
with ν being α’s unit normal vector field.

It is noteworthy that the astroid α (20) is a hypocycloid.
This will be of importance in Sec. 7.

3 ENNEPER’s surfaces

There is not just one Enneper surface even if we don’t
mention equiform copies of the standard form. The well-
known example

E1(u,v)=

−
1
3 u3 +uv2 +u
1
3 v3−u2v− v

u2− v2

 (22)

with its bi-cubic parametrization is one in a one-parameter
family of algebraic minimal surfaces that admit even poly-
nomial parametrizations. It can be found with (13) by let-
ting G = 1 and H = w or with (17) where A = 1

6 z3.

The algebraic degree of the classical Enneper surface
equals nine since an implicit equation can be given by

[9(y2−x2)+4z(z2+3)]3−
−27z[9(y2−x2)− z(9(x2+y2)+8z2)+8z]2=0. (23)

The class of ENNEPER’s surface equals six as can be read
off from the implicit equation of its family of tangent
planes

w2
0(w

2
1+w2

2)
2−3(w2

1−w2
2)

2w2
3−4(w2

1−w2
2)

2(w2
1+w2

2)+

+2w0w3(w2
1−w2

2) · (3w2
1+3w2

2+2w2
3)=0. (24)

ENNEPER’s minimal surface is an example of a non-
orientable minimal surface with even class, cf. Thm. 5.
The term of degree nine in (23) equals z9 which shows that
the ideal line of all planes parallel to z = 0 comprises the
set of ideal points of ENNEPER’s surface.
According to LIE [30], the sum of the class and the de-
gree of an algebraic minimal surface is at least 15, and
thus, ENNEPER’s surface is the confirming example. Its
real self-intersection consists of the pair

s1 = (0, 3
8 t(3t2 +8), 9

8 t2 +3),

s2 = (−3
8

t(3t2 +8),0,−9
8

t2−3)

of polynomial cubic curves (semi-cubic parabolas) in the
symmetry planes x = 0 and y = 0.
The more general version of ENNEPER’s surface is given
by

En(u,v)=Re


w− w2n+1

2n+1

iw+
iw2n+1

2n+1
2wn+1

n+1

 (25)

where n ∈ N \ {0} is usually called the order of the En-
neper surface. These minimal surfaces are obtained from
(13) with

G(w) = 1 and H(w) = wn.

With n = 1 we obtain the classical minimal surface by EN-
NEPER parametrized by (22) first given in [8].
Dropping the restriction n ∈ N \ {0}, we obtain the plane
x = 0, i.e., a flat minimal surface if n = 0. The case n =−1
is still to be excluded if one is interested in algebraic mini-
mal surfaces. However, the case n=−1 yields the catenoid

2C z
2
=
√

x2 + y2.

Surprisingly, the case n = −2 yields RICHMOND’s sur-
face (31), which will be discussed in Sec. 5. The surface
E3(u,v) is displayed in Fig. 4.
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Figure 4: The Enneper surface of order 3 is of algebraic
degree 49, cf. Thm 11.

We can give an upper bound on the algebraic degree and
a precise value for the class of the Enneper surfaces of an
arbitrary order:

Theorem 11. Enneper surfaces of order n∈N\{0} are al-
gebraic minimal surfaces whose degree is at most (2n+1)2

and its class equals 2n(2n+1).

Proof. The polynomial parametrization of an Enneper sur-
face (25) of order n is of bi-degree (2n+1,2n+1). Elim-
ination of u and v from the coordinate functions means
computing resultants with respect to u and v. Thus, the
algebraic degree of En is at most (2n+1)2.
In order to show that the class equals 2n(2n+ 1), we use
a result by LIE (cf. [30, vol. 1, p. 315]): The rank of the
isotropic curve (25) equals r = 3n+ 1 and the multiplic-
ity of the absolute conic as a curve on the tangent devel-
opable this particular isotropic curve equals µ= n. Accord-
ing to LIE, the class of the minimal surface generated by
the isotropic curve (25) equals 2µ(r−µ)=2n(3n+1−n)=
2n(2n+1).

The computation of the implicit equations of the surfaces
En up to n = 7 shows that the bound degEn = (2n+1)2 is
sharp at least in these cases.

4 BOUR’s surfaces

The minimal surfaces by E. BOUR (see [4]) are character-
ized by allowing local isometries to surfaces of revolution.
Parametrizations of the surfaces in this one-parameter fam-
ily are obtained from (12) by inserting

A(w)=cwm−2, c∈C\{0},m∈R\{0} (26)

and B(w) = w. Alternatively, we can use

G =
√

cw
m
2 −1 and H =

√
cw

m
2

together with (13). With (26) and (12) we arrive at the
parametrization

Bm(u,v) =Rec ·


1

m−1 wm−1− 1
m+1 wm+1

i
m−1 wm−1 + i

m+1 wm+1

2
m wm

. (27)

We call m the order of the Bour surface Bm.
It means no restriction to assume |c| = 1, i.e., c = cτ + isτ

since the multiplication of A by c causes only a scaling of
the respective minimal surface with the scaling factor |c|.
On the other hand, the multiplication with any complex
number c = cτ + isτ (with τ ∈ S1) corresponding to a point
on the Euclidean unit circle chooses one certain member
of the family of minimal surfaces associate to Bm.
Well-known and non-algebraic minimal surfaces can be
found among the surfaces by BOUR: m = 0, c = 1 lead to
the catenoid; the choice m = 0, c = i results in the helicoid

2arctan
x
y
= z

which is adjoint to the catenoid. If m = ±1 the resulting
minimal surfaces are not algebraic independent of c, but
they seem to be worth a closer inspection. A part of this
non-algebraic minimal surface is displayed in Fig. 5.

Figure 5: The non-algebraic minimal surface B−1.

BOUR’s minimal surfaces are algebraic if, and only if,
m∈Q\{−1,0,−1}. The following result makes clear that
negative m can be excluded from our considerations:

Lemma 1. For any m ∈ Z \ {−1,0,1} we have B(m) =
S · ψ(B(−m)) where S = diag(1,−1,−1) is the ma-
trix describing the reflection in the x-axis and ψ is the
reparametrization

u =
U

U2 +V 2 , v =− V
U2 +V 2 , (28)
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or equivalently, ψ : w = u+ iv 7→W−1 (with W =U + iV )
which is the inversion in the Euclidean unit circle in the
parameter plane.

Proof. Let m<−1. We observe the changes

wm−1→w−n−1, wm+1→w−n+1

with m =−n. Then, we reparametrize with ψ according to
(28) and the latter powers of w change again:

w−n−1→(W−1)−n−1=W n+1,

w−n+1→(W−1)−n+1=W n−1,

both with positive n. Thus, the second and third coordi-
nate function change their sign and S = diag(1,−1,−1).
Finally, changing U→ u and V → v simplifies the compar-
ison of the parametrizations.

Especially, the surfaces for m = 2,3,4,5 are of relatively
low degree. ENNEPER’s minimal surface corresponds to
m =±2 with arbitrary c.

Figure 6: BOUR’s surface of order 3 is a Bézier minimal
surface of algebraic degree 16 and of class 8.

With m = 3 we find a minimal surface of degree 16 and
class 8 which is displayed in Fig. 6. The surface has three
planes of symmetry: y = 0 and 3x2 = y2 whose intersec-
tions with the plane z= 0 are three straight lines concurrent
in the point (0,0,0) which lie entirely in the surface. All
three lines turn out to be four-fold lines on the surface. The
Bour minimal surface of order 3 meets the ideal plane in
the ideal line of all planes parallel to z = 0 with multiplic-
ity 16. The planar rational (polynomial) quartic PH-curve
(cf. [9])

γ(t) =
(
−1

4
t4 +

1
2

t2,0,
2
3

t3
)

together with its normal vectors can be used to construct a
parametrization of this minimal surface with the Björling
formula (3). Therefore, γ is a geodesic on the surface.
If now m =±4, we obtain an algebraic minimal surface of
degree 25 and class 10. The four lines

(x2−2xy− y2)(x2 +2xy− y2) = 0

are five-fold lines on this minimal surface. With the
Björling formula (3) the two planar and congruent PH-
curves

γ1 =

(
0,−1

5
t5 +

1
3

t3,
1
2

t4
)
,

γ2 =

(
−1

5
t5 +

1
3

t3,0,
1
2

t4
)

in the planes x = 0 and y = 0 together with their rational
normals also define the Bour minimal surface of order 4.
Both curves, γ1 and γ2 are planar geodesics on the Bour
surface of order 4 and the plane z = 0 is a plane of sym-
metry. Again, the intersection with the ideal plane is a line
whose multiplicity equals the algebraic degree of the sur-
face.
The above given examples show that BOUR’s minimal sur-
faces can also be obtained as minimal surfaces on PH-
scrolls as a solution to Björling’s problem. In a more gen-
eral version, we have

Theorem 12. The minimal surfaces on the scroll (γ,ν)
with

γ(t)=
( −1

m+1 tm+1+ 1
m−1 tm−1, 2

m tm,0
)

(29)

where m≥ 2 and

ν(t) =
1

1+ t2 (−2t,1− t2,0) (30)

are BOUR’s minimal surfaces of order m up to equiform
transformations.

Proof. We insert (29) and (30) into (3) and arrive at (27).
Note that ν from (30) satisfies ν = wm−2γ′⊥.

We can give an upper bound on the algebraic degree and
class of BOUR’s minimal surfaces of order m in

Theorem 13. The algebraic degree and the class of
BOUR’s minimal surface of order m are equal to (m+1)2

and 2(m+1) provided that m≥ 2.

Proof. We use the same arguments as in the proof of Thm.
11.

Like the generalized Enneper surfaces (25), the Bour sur-
faces (27) are Bézier minimal surfaces (as long as they are
algebraic).
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5 RICHMOND’s surfaces

The original Richmond surface (as shown in Fig. 7) comes
along as one special example in a one-parameter family of
minimal surfaces. It has the simple parametrization

f(u,v) =


1
3 u3−uv2 + u

u2+v2

1
3 v3−u2v− v

u2+v2

2u

 . (31)

Figure 7: Richmond’s minimal surface of degree 12 and
class 12.

RICHMOND’s surface is the only real algebraic minimal
surface of degree 12 up to equiform transformations, see
[33]. The class of RICHMOND’s surface equals 12, not 17
as RICHMOND stated in [39] (This was corrected in [40].)
The minimal surfaces associated to RICHMOND’s surface
(31) are just similar copies of that surface, see [39].
When using (12) in order to parametrize the surface, we
have to insert

A(w) =
1

w2 , B(z) = w2.

RICHMOND’s minimal surface can also be constructed as
a minimal surface on a scroll: Use the planar curve

γ(t) =
(

1
3

t3 +
1
u
,0,2t

)
(32)

for the spine curve with unit normals

ν(t) =
1

1+ t2

(
−2t,0, t2−1

)
(33)

along γ and insert both into (3). The unit normal vector
field of the curve γ from (32) is not precisely that given
by (33) but can be transformed by the reparametrization
t →
√

t into (33). Note that the plane y = 0 that contains
γ is a plane of symmetry of RICHMOND’s minimal surface
and γ is a planar geodesic of the surface.
More generally speaking, associated to the family of
curves

γa(t) =
(

t3 +
a2

2t
,0,2at

)

with a ∈ R\{0} and the unit normal vector field

νa(t) =
(
−6at2

a2 +9t4 ,0,
a2−9t4

a2 +9t4

)
there is a one-parameter family of rational, and thus,
algebraic minimal surfaces of Richmond type whose
parametrizations read

R (a,u,v)=

 u3−3uv2 + 1
12

a2u
u2+v2

3u2v− v3 + 1
12

a2v
u2+v2

au

.
The generalization is straight forward. We choose

A(w) =
1

w2 and B(w) = wm+1 (34)

with m ∈ N \ {0} which yields a one-parameter family of
minimal surfaces when inserted into (12). We shall call m
the order of the Richmond surface Rm.
Figure 8 shows two Richmond surfaces: one of order 3, the
other one of order 4.
Note that A has a pole of degree 2 at w = 0. Especially,
the surface with m = 1 is given by (31). Again, we observe
that replacing m by−m results in the same surface. So it is
sufficient to consider only positive m.
It is no surprise that the family of generalized Richmond
minimal surfaces contains members of other families. For
example R1 = B1 with c = 1.
Alternatively, we could use the representation (13) with

G(w) =
1
w
, H(z) = wm.

The parametrizations of the generalized Richmond sur-
faces read

Rm(u,v)=Re


− 1

w
− w2m+1

2m+1

− i
w
+

iw2m+1

2m+1

−2wm

m

 (35)

and they make clear that these are algebraic surfaces that
admit even a rational parametrization.
We can give an upper bound for the algebraic degree of the
generalized Richmond surfaces:

Theorem 14. The generalized Richmond surfaces of order
m∈N\{0} are at most of algebraic degree 2(m+1)(2m+
1). The class of the generalized Richmond surfaces equals
exactly 2(m+1)(2m+1).
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Proof. For the proof of the upper bound of the degree, we
use similar arguments as in the proofs of Thm. 11 and Thm.
13.
In order to verify the formula for the class of the gener-
alized Richmond surfaces, we use the results from [30,
vol. 1, p. 315] and compute, like in the proof of Thm. 11:
r=3m+2 and µ=m+1 which yields the class 2µ(r−µ)=
2(m+1)(3m+2−m−1)=2(m+1)(2m+1).

The regular reparametrization

u = rcs, v = rss

changes (35) to

Rm(r,s)=

−
r2m

m+1 c(m+1)s− 1
(m−1)r c(m−1)s

− r2m

m+1 s(m+1)s− 1
(m−1)r s(m−1)s

2rcs

 (36)

which is not just favorable for plotting the surface. It also
enables us to show

Theorem 15. The Richmond minimal surfaces (35) with
m ∈ Q \ {−1,0,1} carry a one-parameter family of har-
monic oscillation curves of order two.

Proof. Let the first and the second coordinate function be
the real and the imaginary part of a complex number and
build w = x+ iy. Then, apply EULER’s formula and find

w(s)=− r2m

m+1
ei(m+1)s− 1

m−1
ei(m−1)s.

If r ∈ R \{0} is fixed, then, according to [55, 56], w(s) is
a complex parametrization of an ordinary cycloidal curve.
Finally, we observe that the third coordinate function z =
2r coss is periodic for any r ∈ R. Thus, the s-lines on the
surface (36), i.e., the curves with fixed r are higher oscilla-
tion curves in the sense of [37].

By assumption, m ∈Q, and thus, the curves are closed.

Figure 8: Minimal surfaces of Richmond type: Left: m =
3 of algebraic degree 56; right: m = 4 of alge-
braic degree 90.

6 Minimal surfaces tangent to orthogonal
hyperbolic paraboloids

We consider the one-parameter family of hyperbolic
paraboloids

P : (1−b2)xy = 2bz (37)

with b ∈ R\{−1,0,1} and the cylinder of revolution

Z : x2 + y2 = 1. (38)

The cylinder intersects the paraboloids (37) along the ra-
tional quartic space curves

γ(t) =
(

ct ,st ,
1−b2

4b
s2t

)
. (39)

In the following, we use the abbreviations

β1 :=1+b2, β2 :=1−b2, β3 :=b4+6b2+1.

Let now the normal vector field be given by

ν(t)=grad(P)|γ =
1
β1

(β2st ,β2ct ,−2b). (40)

Then, we insert γ and ν from (39) and (40) into (3) and
find the parametrizations of the minimal surfaces in the
one-parameter family of minimal surfaces touching the
paraboloids (37) along their intersection with Z. From
their parametrizations

f(u,v) =
1

12bβ1


β2

2c3uS3v+3cu(β3Sv+4bβ1Cv)

−β2
2s3uS3v+3su(β3Sv+4bβ1Cv)

3β2s2u(β1C2v+2bS2v)

,
(41)

we can immediately see that these surfaces admit rational
parametrizations of bi-degree (6,6). Figure 9 shows the
minimal surface parametrized by (41) together with the hy-
perbolic paraboloid, the curve γ from (39), and the unit nor-
mal vector field ν as given in (40). Moreover, Fig. 9 gives
an idea how the minimal surface tangent to a hyperbolic
paraboloid deviates from the paraboloid.

71



KoG•20–2016 B. Odehnal: On Algebraic Minimal Surfaces

Figure 9: The minimal surface (41) on the scroll (γ,ν).
The curve γ is a curve along which the Gaus-
sian curvature on the hyperbolic paraboloid P
is constant.

The rational representation of these minimal surfaces al-
lows us to compute an implicit equation of each surface in
the family. Hereby, we find that all minimal surfaces (41)
are algebraic surfaces of degree 30. They all have the cycle
z18(x2 + y2)6 = 0 in the ideal plane in common.
The curves of constant Gaussian curvature K on the hyper-
bolic paraboloid P given in (37) lie on cylinders of revolu-
tion coaxial with the one in (38). For any b∈R\{−1,0,1}
these cylinders have the equation

x2 + y2 =
1

β2
√
−K
− 4b2

β2
2

(42)

for any admissible value K < Kmax =−
β2

2
16b4 . From

r2 =
1

β2
√
−K
− 4b2

β2
2

we can determine the cylinder’s radius. Conversely, we
can choose b such that the radius r corresponds to a certain
value K. This gives rise to

Theorem 16. The minimal surfaces that touch an orthog-
onal hyperbolic paraboloid P along the curves of constant
Gaussian curvature on P are rational (and thus algebraic)
minimal surfaces and can be parametrized by (41). These
minimal surfaces are of degree 30 and of class 10.
The parameter curves v = const. are rational (and thus
algebraic and closed) oscillation curves of order two,
i.e., their orthogonal projections onto z = 0 are cycloidal
curves of order two and the z-coordinate function is har-
monic.

Proof. From the parametrization (41) we can derive an im-
plicit equation after a rational substitution of the trigono-
metric and hyperbolic functions. Thus, the rationality is

obvious and the degree turns out to be 30. From the
parametrization of the set of points (41), we can derive a
parametrization of the set of tangent planes. Eliminating
the paramters yields a polynomial of degree 10 and so the
class of the minimal surface equals 10.
The x- and the y-coordinate can be considered the real and
the imaginary part of a complex variable. Thus, for fixed
v ∈ R, we have w(u) = x+ iy which gives a complex rep-
resentation of the top view of the parameter curves:

w(u)=
β2

2S3v

12bβ1
e−3iu+

β3Sv+4bβ1Cv

4bβ1
eiu.

Comparing the latter with the formulae given in [55, 56],
we can see that these are the path curves of the end points
of open two-bar mechanisms. The ratio of the angular ve-
locities of the rotating bars equals −3 : 1 and the lengths
of the legs are the absolute values of the coefficients of the
exponential functions. The z-coordinate is a multiple of
sin2u, and thus, harmonic.

Finally, we shall mention that meromorphic functions A,B:
C→C in the Weierstraß-representation (12) are

A=
(1+b)2

8ibβ1

(
e3iw(1−b)2+e−iw(1+b)2

)
(43)

and the simple function

B = i
1−b
1+b

e−iw. (44)

Since b ∈ R\{−1,0,1}, the function B can never vanish.
The substitution t = eiw in (43) transforms A into a ratio-
nal function. Together with B from (44) which is linear
anyway, and thus, also rational, we can find the minimal
surfaces from Thm. 16 via (12) with rational generators A
and B.
The associate minimal surfaces show a surprising behav-
ior:

Theorem 17. The minimal surfaces associated to (41) are
congruent to f . Traversing the associate family of minimal
surfaces means rotating the original one about the z-axis.

Proof. Derive the parametrization or implicit equation of
the surfaces in the associate family. The congruence trans-
formation can easily be read of from the parametriza-
tion.

Consequently, all members of the associate family of the
minimal surface f given by (41) have the same algebraic
properties.
The minimal surfaces (41) intersect the hyperbolic
paraboloid P with equation (37) in the lines x = z = 0 and
y = z = 0, each with multiplicity 6 and along the curve γ

with multiplicity two (according to the construction).
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7 Minimal surfaces with geodesic cycloids

Thm. 1 and Thm. 10 give rise to a generalization of HEN-
NEBERG’s adjoint surface which was the minimal surface
on a scroll with an astroid (20) for its spine curve. Here,
we shall recall that there is a notion of cycloid that shall not
be of use here: Frequently, the word cycloid is used for a
curve that is generated by rolling a circle on a straight line,
see [29, 32, 51]. The minimal surface with this straight
cycloid as a planar geodesic is known as CATALAN’s min-
imal surface (see [27, 33, 36] and it is not algebraic.
The cycloidal curves that emerge from rolling a circle
along another one yields a one-parameter family of ratio-
nal, and thus, algebraic minimal surfaces. We have

Theorem 18. Let r,R ∈ R \ {0} be real constants with
R+ 2r 6= 0 and R+ r 6= 0. The minimal surfaces on the
scroll (ζ,ν) with ζ⊂ π3 : z = 0 and ν ∈ S1

ζ(t)=

 (R+ r)ct+rc (R+r)t
r

(R+ r)st+rs (R+r)t
r

0

,

ν(t)= 1
2c Rt

2r

−ct − c (R+r)t
r

−st − s (R+r)t
r

0


(45)

can be parametrized by

f(u,v)=


(R+r)cuCv+rc (R+r)u

r
C (R+r)v

r
(R+r)suCv+rs (R+r)u

r
C (R+r)v

r

− 4r(R+r)
R c Ru

2r
S Rv

2r

. (46)

These minimal surfaces are algebraic, rational, and closed
if, and only if, R,r ∈Q\{0}.
In any case, the cycloid ζ⊂ π3 is a geodesic on the minimal
surface.
The surfaces with R,r ∈ Q \ {0} contain at least one
straight line.

Proof. Insert γ and ν from (45) into (3). This gives (46).
The geodesic property of the cycloidal spine curves is a
direct consequence of Thm. 1.
The straight lines are part of the double curves in symmetry
planes.

In the case R+ 2r = 0, the cycloid ζ from (45) collapses
to a diameter of the circle (Rct ,Rst ,0). If R+ r = 0, the
polhodes of ζ are not just congruent, they are identical and
no rolling takes place.
The cycloids ζ parametrized by (45) are closed, rational,
and thus, algebraic, if, and only if, r : R ∈ Q \ {0}. They
have cusps of the first kind at

cos
tR
r

=−1 ⇐⇒ t = (2k+1)π
r
R
,

i.e., finitely many if r : R ∈Q\{0}, provided the admissi-
ble choice of r and R. Consequently, the minimal surfaces
(46) have branch points exactly at the cusps of the cycloids
ζ given by (45).
From the parametrization (46) it is clear that the u-lines
(curves with v = const.) on the cycloidal minimal surfaces
have a very special shape. We have

Theorem 19. The u-lines on the cycloidal minimal sur-
faces given by (46) are generalized oscillation curves.
Their orthogonal projections onto the planes z = c (with
c ∈ R) are cycloidal curves.

Proof. A closer look at the first and second coordinate
function of the parametrization (46) tells us that, for fixed
v ∈ R, we have the parameterization of cycloidal curves.
These curves can also be written in terms of complex co-
ordinates by letting w(u) = x+ iy and applying EULER’s
formula as

w(u) = (R+ r)Cveiu + rC (R+r)t
r

eiu R+r
r .

Comparing with [56], we find the lengths

A1 = (R+ r)Cv, A2 = rC (R+r)v
r

of the legs of a generating two-bar mechanism and the (ra-
tio of the) angular velocities of the bars are

ω1 : ω2 = 1 :
R+ r

r
.

From that we can compute the radii of the polhodes of the
motion that generates the orthogonal projections of u-lines
as path curves, see [55, 56].

The meromorphic functions A,B : D ⊂ C→ C from (13)
can also be given:

Lemma 2. The cycloidal minimal surfaces can be ob-
tained from the Weierstraß-representation (13). Therein,
the meromorphic functions A and B are:

A(w)=− i
2 (R+r)

(
e−iw+e−i R+r

r w
)
,

A(w) ·B(w)= i(R+r)c (R+r)w
2r

.
(47)

Proof. In order to find A and B from (46), we use (14).

More ore less surprisingly, there is a connection to the
curves of constant slope on quadrics of revolution and the
curves γ(u) = f(u,0) on the cycloidal minimal surfaces.
The family of minimal surfaces associated to (46) can be
given with (18) as

f(u,v,τ) = cτ · f+ sτ · f⊥ (48)
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where f is the parametrization (46) and f⊥ reads

f⊥=


(R+r)Svsu+rS (R+r)v

r
s (R+r)u

r

−(R+r)Svcu−rS (R+r)v
r

c (R+r)u
r

− 4r(R+r)
R s Ru

2r
C Rv

2r

. (49)

The spine curves of the scrolls are obtained by substituting
v = 0 in (48). These spine curves can be taken as the spine
curve γ of a scroll on which, according to the Björling for-
mula (3), minimal surfaces can be errected. Now, we have
the following

Theorem 20. The one-parameter family of curves f(u,0,τ)
with parametrization (48) and (49) are curves of constant
slope on quadrics of revolution. These curves are closed,
rational, and thus, algebraic spacecurves provided that
r : R ∈Q\{0}, R+2r 6= 0, and R+ r 6= 0. The slope angle
σ is independent of R and r and is related to τ (modulo 2π)
by

cσ =−sτ ⇐⇒ σ = τ+
π

2
. (50)

Proof. The top views of the curves b = f (u,0,τ), i.e., the
orthogonal projections of the curves f (u,0,τ) onto planes
parallel to z = 0 are cycloids (with cusps). It is well-
known (see, e.g., [3, 7]) that the curves of constant slope
on quadrics of revolution appear as epi-, hypo-, hyper, and
paracycloids in a top view (in the direction of the lead).
The case of paraboloids of revolution differs a little bit: In
the corresponding top views, we can see the involutes of
circles, cf. [26].

Figure 10: The spine curves of the cycloidal minimal sur-
faces are bent smoothly into curves of constant
slope on quadrics of revolution.

We compute b′ = d
du b. The lead is given by the unit vector

l = (0,0,1). Now, it is elementary to verify that

cσ =
〈b′, l〉
‖b′‖

=−sτ

which makes clear that the slope of the spine curves b =
f (u,0,τ) is constant and independent of the choice of R
and r and (50) is valid. It is easily verified that the coordi-
nate functions of b satisfy

Q :x2+y2+
k2R2z2

4r(r+R)
=(2r+R)2cτ

2 (51)

with k = cotτ which is the equation of quadrics Q of revo-
lution.
The rationality is clear if r : R ∈ Q\{0} since then cosnu
and sinnu can be expressed in cosu and sinu which can
subsequently be replaced with their rational equivalents
provided that (R+r)/r=n is an integer. If (R+r)/r=m/n
with gcd(m,n) = 1, we reparametrize by letting u′ = ru,
expand cosmu, . . . in sinu and cosu followed by the ratio-
nal reparametrization. Since cycloids are closed if r : R ∈
Q \ {0}, the curves of constant slope on the quadrics (51)
are also closed.

Figure 10 illustrates the contents of Thm. 20.
We shall note (51) can be the equation of an ellipsoid or
a one-sheeted hyperboloid as well. The latter appears if
r < 0. Two-sheeted hyperboloids will not be described by
(51) since then the coefficient of z2 as well as the right-
hand side of (51) have to be negative. This is not possible
since the right-hand side is a full square.
On the other hand, the top-views of the curves of con-
stant slope on a two-sheeted hyperboloid of revolution are
paracycloids, i.e., curves that belong to the class of spi-
raloids and are transcendental independent of r and R are,
cf. [29, 32, 51, 54]. In the case that (51) describes a one-
sheeted hyperboloid, k, and thus, the slope of the curves b
is always larger than that of the quadrics’ asymptotic cone.
Otherwise the curves of constant slope appear as hypercy-
cloids in the top-view. These curves are closely related to
paracycloids, and like these, they are always transcenden-
tal and belong to the class of spiraloids, see [29, 32, 51, 54].

7.1 A cardioid as a geodesic curve

The low degree minimal surfaces of cycloidal type can be
found by choosing small values for the radii R and r of the
polhodes of the cycloid ζ. The case of an astroid which
occurs with r : R =−1 : 4 is described in Sec. 2, especially
in Thm. 10.
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Figure 11: The cycloidal minimal surface with R = r = 1
and its geodesic cardiod ζ.

Figure 11 shows the algebraic minimal surface along the
cardiod ζ. This surface occurs with r : R = 1 : 1. The alge-
braic degree of the cardioidal minimal surface is 20 and the
class equals 36. The intersection µ of the minimal surface
with the plane at infinity has the equation z16(x2+y2)2 = 0
which tells us that the ideal line of all planes parallel to
z = 0 is the only real part of µ (with multiplicity 16). The
second factor corresponds to a pair of complex conjugate
ideal lines with multiplicity 2.
The x-axis of the underlying Cartesian coordinate frame is
a four-fold line on the surface and together with the car-
diod ζ and the six-fold isotropic pair of lines through the
origin of the underlying coordinate frame it completes the
surface’s intersection with z = 0. A rational parametriza-
tion can be achieved by substituting

cu =
1−U2

1+U2 , su =
2U

1+U2 (52)

and, surprisingly, with

Sv =V, Cv =
√

1+V 2 (53)

since the hyperbolic functions showing up in the coordi-
nate functions can be exressed in sinhv exclusively. Thus,
the cardioidal minimal surface admits a rational Bézier
representation of bi-degree (8,4).
The adjoint surface looks like a compressed helicoid, see
Fig. 12. Note that this surface cannot be a ruled surface,
because the transcendental helicoid is the only ruled mini-
mal surface. It is of algebraic degree 38. The intersection
with the ideal plane is the cycle z32(x2 + y2)3. The sur-
face carries the two eight-fold straight lines x = z = 0 and
x = y = 0.

Figure 12: A compressed helicoid as the adjoint to the car-
diodal minimal surface.

7.2 Steiner’s hypocyloid

Steiner’s hypocycloid appears in geometry in many ways.
However, it is also a cycloidal curve and we can obtain it
by choosing R = 3 and r =−1 in (45). The corresponding
cycloidal minimal surface (46) turns out to be of algebraic
degree 28 and of class 16. From the construction it is clear,
that the horizontal cross-section with the plane z = 0 con-
sists of the three-cusped hypocycloid. Moreover, the lines
of symmetry y = 0 and 3x2 = y2 (all three with multiplicity
four) are part of the cross-section. Sine y = z = 0 annihi-
lates the equation of this minimal surface, the x-axis of the
underlying coordinate frame is entirely contained in this
minimal surface.

The intersection of the hypocycloidal minimal surface with
the ideal plane is given by the equation z16(x2 + y2)6 = 0.
Thus, the ideal line of all planes parallel to z = 0 is a 16-
fold line on this surface. As is the case with any algebraic
minimal surface, the ideal curve degenerates completely
and splits into a finite number of lines.

Figure 13: The minimal surface on a geodesic hypocycloid
ζ with three cusps.
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A rational Bézier representation of bi-degree (8,4) can be
found by substituting (52) and (53). Figure 13 shows a part
of the surface with a geodesic hypocycloid.

7.3 A geodesic nephroid

A final low degree example shall be discussed: We choose
R = 2 and r = 1. This results in a minimal surface with
a geodesic nephroid. The surface is of algebraic degree
24 and of class 72. The intersection with the ideal plane
is the 18-fold ideal line of all planes parallel to z = 0 to-
gether with a three-fold pair of complex conjugate lines.
Figure 14 shows the minimal surface with a geodesic
nephroid.

Figure 14: The rational minimal surface with a geodesic
nephroid ζ.

The nephroidal minimal surface admits a rational Bézier
representation of bi-degree (6,6) since we have to substi-
tute

Cv =
1+V 2

1−V 2 , Sv =
2V

1−V 2 .

The z- and the y-axis are contained in the surface.

8 Final remarks

The curves of constant slope mentioned in Thm. 20 can
also be used as spine curves of scrolls on which minimal
surfaces can be errected. Unfortunately, the minimal sur-
face that touch the quadrics of revolution along curves of
constant slope are, in general, not algebraic. With Thm. 2
the following theorem is a natural consequence:

Theorem 21. The minimal surfaces that touch the vertical
cylinders (generators parallel to the lead) along the curves
of constant slope on quadrics of revolution are algebraic if
the curves of constant slope are algebraic too.

Note that the curves of constant slope on quadrics of rev-
olution are algebraic if they are closed. Thus, the min-
imal surfaces mentioned in Thm. 21 are algebraic if the
spine curves of the scrolls are closed curves of constant
slope. Since the normals of all minimal surfaces described
in Thm. 18 stay horizontal while the surfaces traverse the
associate family, and furthermore, since the vertical cylin-
ders’ (horizontal) normals are always orthogonal to the tan-
gents of the curves of constant slope, we can state

Theorem 22. The algebraic minimal surfaces that touch
the vertical cylinders along the curves of constant slopes
on quadrics of revolution are precisely the algebraic mini-
mal surfaces mentioned in Thm. 20.

The algebraic degrees are growing rapidly and there will
hardly be some low degree examples among the minimal
surfaces described in Thm. 21.
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[17] E. GOURSAT: Sur la théorie des surfaces minima.
C.R. CV (1888), 743–746.

[18] J. HAAG: Note sur les surfaces minima applica-
bles sur une surface de révolution. Darb. Bull. 30/2
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KoG•20–2016 S. B.-S. Béla, Márta Szilvási-Nagy: Adjusting Curvatures of B-spline Surfaces ...

Original scientific paper
Accepted 14. 12. 2016.

SZILVIA B.-S. BÉLA
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ABSTRACT

The knot vectors of a B-spline surface determine the ba-
sis functions hereby, together with the control points, the
shape of the surface. Knot manipulations and their in-
fluence on the shape of curves have been investigated in
several papers (see e.g. [4] and [5]). The computations
can be made very efficiently, if the basis functions and
the vector function of the B-spline surface are represented
in matrix form (see [1] and [6]). In our latest work [2]
we summarized the knot manipulation techniques and the
corresponding computations in matrix form. We also de-
veloped an algorithm for a direct knot sliding, how a knot
can be repositioned in one step instead of inserting a new
knot value, then removing an old one from the knot vector.

In this paper we analyse the effect of varying knot inter-
vals on the Gaussian curvature of a B-spline surface at a
given point. We present an algorithm for the deformation
of a B-spline surface, so that it should go through a given
point with a given Gaussian curvature. The result of this
deformation is, that a sphere with a given radius will fit
tangential the reshaped surface at the given point with
equal Gaussian curvatures. In applications the same situ-
ation arises, when a ball-end tool is pushed into a surface
during processing.

In our algorithm we use only linear interpolation equations
besides the repositioning of knot values, in order to get
numerically stable and effective solutions.

Key words: surface representations, geometric algorithms

MSC2010: 65D18, 68D05

Podešavanje zakrivljenosti B-splajn ploha ope-
racijama na čvor vektorima

SAŽETAK

Na ovaj način čvor vektori B-splajn ploha odred-uju

temeljne funkcije zajedno s kontrolnim točkama te ob-

lik plohe. U nekoliko članaka (vidi na primjer [4] i [5])

proučavale su se operacije na čvorovima i njihov utje-

caj na obilk krivulja. Izračuni mogu biti izvedeni vrlo

efikasno ako su temeljne funkcije i vektor funkcije B-splajn

plohe prikazane u matričnom obliku (vidi [1] i [6]). U

našem posljednjem radu [2] saželi smo metode operacija

na čvorovima i odgovarajućih izračuna u matričnom obliku.

Takod-er, razvili smo algoritam za izravno klizanje čvorova,

tj. pokazali smo kako čvor može biti premješten u jednom

koraku umjesto da uvodimo novu vrijednost čvora, a zatim

uklanjanjem starog iz čvor vektora.

U ovom članku analiziramo utjecaj mijenjanja intervala

čvorova na Gaussovu zakrivljenost u zadanoj točki B-

splajn plohe. Prikazujemo algoritam za deformaciju B-

splajn plohe tako da prolazi kroz zadanu točku sa zadanom

Gaussovom zakrivljenošsću. Rezultat ove deformacije kaže

da kugla zadanog radijusa dira preoblikovanu plohu u

zadanoj točki s jednakim Gaussovim zakrivljenostima. Ista

situacija dogad-a se u primjenama kad je alat kuglama ugu-

ran u plohu tijekom procesa.

S ciljem da postignemo numerički stabilna i efikasna

rješenja, osim premještanja vrijednosti čvora, u našem al-

goritmu koristimo samo jednadžbe linearne interpolacije.

Ključne riječi: prikazi plohe, geometrijski algoritmi

1 Problem solution in the symmetric case

The mathematical formulation of the problem

Our task is to push a given sphere into a B-spline surface
by reshaping a part of it around a given common interpola-
tion point such that, the surface and the sphere are in a tan-

gential position and they have equal Gaussian curvatures
at this point (Fig 1, Fig 2). We only address the geomet-
rical side of the problem, but not the mechanical aspects.
Furthermore, we do not set conditions on area or volume
preserving. We just focus on this geometrical design prob-
lem.
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KoG•20–2016 S. B.-S. Béla, Márta Szilvási-Nagy: Adjusting Curvatures of B-spline Surfaces ...

Figure 1: The sphere will be pushed into the interpolation
point given in the middle.

Figure 2: The deformed surface and the sphere have equal
Gaussian curvature at the common point.

The shape of the surface can be controlled by its control
points and by the parametrization of the basis functions,
that means, by the knot vectors. The interpolation problem
with a prescribed Gaussian curvature leads to quadratic ra-
tional expressions of the surface data, but our algorithm
avoids nonlinear numerical methods by choosing appro-
priate variables, interpolation conditions and by applying a
simple iteration method.
Let the B-spline surface of degree 3×3 be given with non-
uniform periodic knot vectors (u1 < u2 < · · · < un+4) and
(v1 < v2 < · · ·< vm+4), n,m≥ 4. The vector function rep-
resenting the B-spline surface is

b(u,v) = (u3,u2,u,1) ·
(
N4

u
)T ·Q ·M4

v · (v3,v2,v,1)T ,

where N4
u and M4

v are the corresponding coefficient matri-
ces of the basis functions and Q is the matrix of the control
points qi, j, (i = 1,2, . . . ,n, j = 1,2, . . . ,m).
We will restrict the computation to a region of 4×4 patches
of the B-spline surface because this part is influenced by
the second order curvature condition prescribed in the mid-
dle of this region. In this case n,m≥ 7. The other parts of
the surface outside of this region remain unchanged.
The input data of the B-spline surface are the knot vectors
(i.e. the parameter values) and the control points. The pa-
rameter grid with the actual region is shown in Fig 3, the

control net with the generated surface is shown in Fig 4.
In these examples the control net and the knot vectors are
symmetrical about the midpoint of the actual region, there-
fore, the generated surface is also symmetrical about this
point.

Figure 3: Parameter domain of the surface: 4×4 surface
patches are determined by the net of 11× 11
knot values, (h is constant).

Figure 4: 7×7 control points and the generated surface.

First phase of the deformation: interpolation
For the deformation of the surface we prescribe 9 interpo-
lation points and the Gaussian curvature at the interpola-
tion point P in the middle, where the sphere with the cor-
responding radius will touch the reshaped surface. Four
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KoG•20–2016 S. B.-S. Béla, Márta Szilvási-Nagy: Adjusting Curvatures of B-spline Surfaces ...

interpolation points are given in the corners of the B-spline
surface. Five interpolation points, namely P and the four
corner points are shown in Fig 1. The remaining four inter-
polation points are determined around P according to the
radius of the given sphere symmetrically with respect to P
(Fig 5). They are computed on the surface of the sphere.
The corresponding parameter values of the required sur-
face are estimated by the relative measurements of the sur-
face patches and the sphere. To the nine interpolation con-
ditions we choose nine variables, which are nine inner con-
trol points of the 7×7 control net (Fig 6).

Figure 5: The nine interpolation points

Figure 6: Nine variable control points in the 7×7 control
net

Each of the nine interpolation conditions is a linear vec-
tor equation in the nine control points, which are the un-
knowns of a system of linear equations.

pi = b(ui,vi), i = 1, . . . ,9

The knot vectors are now fixed, and the coefficient matri-
ces are computed accordingly. On the right hand side the
vector function b(u,v) is depending on the nine unknown
control points and it is evaluated at the parameter values
(ui,vi). The unknown nine control points are included in
the matrix Q. The pairs of the parameter values (ui,vi)
belong to the interpolation points, the position vectors of
which are denoted by pi. The solution results in a con-
trol net of the B-spline surface interpolating the nine given
points. Its Gaussian curvature at the midpoint P is now
determined. How can it be equal to the given value?

Second phase of the deformation: adjusting the Gaussian
curvature
Now we modify the knot vectors in order to deform the
shape of the surface around the interpolation point P. In
the knot vectors four knot intervals in the middle of the
knot vectors will be changed by repositioning (sliding) the
knot values u5 ∈ (u4,u6), u7 ∈ (u6,u8) and symmetrically
v5 ∈ (v4,v6), v7 ∈ (v6,v8), respectively. These knot values
are marked in Fig 3. The variables in the knot vectors are
du and dv. For smaller du, dv the generated B-spline sur-
face gets nearer to the control net, for larger du, dv it is
more flat, and lies farther from the control net.
If we change the knot intervals du = dv and analyse, how
the Gaussian curvature of the surface (denoted by κG) at
the point P changes, we get a monotone scalar function
κG(du). In Fig 7 the corresponding radius = (

√
κG)

−1 of
the sphere is shown depending on du = dv.

Figure 7: The radius of the sphere as function of the length
of the knot intervals du = dv

The Gaussian curvature is varying in a limited interval
while the chosen parameter values are repositioned in the
intervals (u4,u6), (u6,u8) and (v4,v6), (v6,v8) of a fixed
length h, respectively. To a given Gaussian curvature be-
tween these limits the corresponding knot intervals du =
dv are determined by a simple iteration from this scalar
function.
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Then the required surface is generated with the new knot
vectors. The result of this computation is shown in Fig 2.
The point P is an umbilical (a special elliptical) point of
the new surface due to the symmetrical data and symmet-
rical change of the knot vectors. After this deformation the
boundary curves of the surface consisting of 4×4 patches
do not change, as it is shown in Fig 8.

Figure 8: The original and the deformed surfaces have the
same boundary curves.

2 The asymmetric case

In the non-symmetrical case the deformation presented
above leads to an elliptic surface point P, where the main
curvature values are different, though the Gaussian curva-
ture is equal to that of the given sphere. This situation
is shown in Fig 9 by pushing the sphere a bit into the
deformed surface, where the intersection has an elliptical
form.

Figure 9: Elliptical surface point at P with different main
curvatures

Now we carry out a further deformation in order to get a
special elliptic, i.e. an umbilical point at P. We repeat
the second phase of the deformation by changing the knot
intervals, now only in one parameter direction, let us say,
on the v-knot vector. For the chosen values of dv within
the intervals (v4,v6) and (v6,v8) we compute the curva-
tures of the parameter curves at the surface point P. As-
suming that the parameter net is orthogonal, the Gaussian

curvature is the product of the curvatures of the u- and v-
parameter curves. In Fig 10 the dependence of the curva-
ture of the v-parameter curve, denoted by v− curvature,
on the knot interval dv is shown. Meanwhile the val-
ues of the u− curvatures are practically constant (they
are not shown). We determine the knot interval dv to the
v−curvature which is equal to the u−curvature from this
monotone discrete function by simple iteration. The com-
puted surface with this knot vector has an umbilical point
at P. That is visualized by the sphere pushed slightly into
the surface at the touching point (Fig 11).

Figure 10: The values of the v−curvatures at the values of
the knot interval dv

Figure 11: Umbilical surface point at P with equal main
curvatures

We remark that by this second deformation the Gaussian
curvature has been changed slightly. Analysing this vari-
ation, an appropriate correction could be carried out in a
similar way, repeating the computation for modified values
of du and dv, if the difference in the radii of the touching
spheres computed from the resulting Gaussian curvatures
is not acceptable. We have omitted this step.
We remark also that there are no equal values of u- and
v-curvatures on the considered interval, if the surface is
strongly asymmetric around the point P. In this case the
parameter values of the four inner interpolation points have
to be corrected accordingly.
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3 The mathematical tools

Matrix form of the basis functions
The B-spline surface in our algorithm is presented in ma-
trix form. This form allows to write the interpolation con-
ditions in the form of explicit vector equations. In [1] we
have given a short overview of the published papers about
the matrix form of B-spline functions, and we also have
given a method for generating the entries of the coefficient
matrices of any degree over periodic knot vectors.
In our algorithm we have changed the position of a knot
value within a given knot interval in order to analyse the
change of the Gaussian curvature at a given surface point.
In each step the corresponding coefficient matrices have
been generated for the vector function representing the B-
spline surface.
In order to represent the basis functions of non-uniform
B-splines in matrix form first we describe a reformula-
tion technique of the de Boor-Cox recursion. From this
recursion formula we can generate the representation ma-
trix of the basis functions in the not normalized Bernstein
basis. Then we can apply a simple transformation from
the not normalized Bernstein basis to the polynomial space
spanned by the power basis. Thus with the algebraic refor-
mulation of the B-spline recursion we gain the conversion
matrices of the B-spline functions to the power basis.
First we present here a simple reformulation of the de
Boor-Cox recursion. The basis functions of order k over
the knot vector {t1, . . . tn} are defined by the de Boor-Cox
formula as:

N1
i (t) =

{
1, t ∈ [ti, ti+1)
0, otherwise,

Nk
i (t) = α(ti, ti+k−1; t)Nk−1

i (t)+α(ti+k, ti+1; t)Nk−1
i+1 (t),

where the function α is defined as

α(A,B; t) =
t−A
B−A

(1)

for arbitrary parameters A,B, where A 6= B, and for all
t ∈ [A,B].
We can generate the pieces of the basis functions restricted
to one knot interval [t j, t j+1) by rewriting the recursion as

N1
i (t) =

{
1, t ∈ [ti, ti+1)
0, otherwise,

Nk
i (t) = α(t j, t j+1; t)

[
α(ti, ti+k−1; t j+1)Nk−1

i (t)

+ α(ti+k, ti+1; t j+1)Nk−1
i+1 (t)

]
+ α(t j+1, t j; t)

[
α(ti, ti+k−1; t j)Nk−1

i (t)

+ α(ti+k, ti+1; t j)Nk−1
i+1 (t)

]
, where t ∈ [t j, t j+1).

(2)

According to this form we transform all segments of the
basis functions from the knot span [t j, t j+1) and represent
them over the unit interval as follows:

N1
i (t(u)) =

{
1, i = j
0, otherwise,

Nk
i (t(u)) = u

[
α(ti, ti+k−1; t j+1)Nk−1

i (t(u))

+ α(ti+k, ti+1; t j+1)Nk−1
i+1 (t(u))

]
+ (1−u)

[
α(ti, ti+k−1; t j)Nk−1

i (t(u))

+ α(ti+k, ti+1; t j)Nk−1
i+1 (t(u))

]
, (3)

where u ∈ [0,1), t ∈ [t j, t j+1) and u(t) = α(t j, t j+1, t).
Over the knot spans, where j = k,k + 1, . . . ,n− k the
basis functions have k different, non-zero polynomial
segments. These segments can be represented by a
matrix equation in the not normalized Bernstein basis
{uk−1,uk−2(1−u), . . . ,(1−u)k−1} over the unit interval:


Nk

1(t(u))
Nk

2(t(u))
...

Nk
n−k(t(u))

=Ck ·


uk−1

uk−2(1−u)
...

(1−u)k−1

 ,
t ∈ [t j, t j+1),

u ∈ [0,1),

(4)

where Ck ∈ Rn−k×k, and it contains the coefficients of
um(1− u)k−1−m computed recursively from (4). For each
k = 2,3, . . . this matrix contains several rows, where all ele-
ments are zeros. These rows contain the coefficients of the
basis functions that are zero over the knot span [t j, t j+1).
The non-zero rows for each j (from row j+ 1− k to row
j), where j ≥ k, give the coefficients of the basis functions
with the support containing the interval [t j, t j+1).

If we represent the segments of the basis functions from a
given knot span [t j, t j+1) in the matrix equation form (4),
then it is easy to transform this representation to a matrix
representation in the power basis: {uk−1,uk−2, . . . ,u,1}. In
order to find the transformation matrix of the basis func-
tions to the power basis, it is sufficient to find the transfor-
mation matrix Pk from the not normalized Bernstein basis
to the power basis for polynomials of degree k−1:


Nk

1(t(u))
Nk

2(t(u))
...

Nk
n−k(t(u))

=Ck ·Pk ·


uk−1

uk−2

...
1

 ,
t ∈ [t j, t j+1),

u ∈ [0,1).

(5)
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The Pk matrix is a lower triangular matrix with the entries:

Pk[i, l] =


(−1)i−l+1 ·

(
i−1
l−1

)
, l ≤ i,

0, otherwise,

where l and i = 1, . . . ,k. This matrix can be easily derived
according to the Binomial-theorem. A conversion matrix
from the not normalized Bernstein basis to the power basis
can be also found in the literature [3].

Interpolation and iteration
These mathematical tools are well-known basic methods in
solutions of various numerical problems. In our algorithm
the linear interpolation problem formulated by a system of
linear vector equations has been separated from the non-
linear interpolation problem, where a scalar value (i.e. the
Gaussian curvature of the surface) has to be interpolated
with vector variables. We have solved this problem by sim-
ple iteration on a monotone, scalar function by computing
discrete values of this function in an appropriate interval.
This method is fast and numerical stable. In this way we
have avoided non-linear numerical problems.
The computations and the figures have been made by the
symbolical algebraic program package Wolfram Mathe-
matica.

4 Remarks

In our algorithm there are some basic assumptions. The
first one is that the local deformation of a B-spline surface
of degree 3× 3 has been computed on a region of 4× 4
patches, where the fixed point lies in the middle of this re-
gion. Though each control point and each basis function
has an effect on four knot intervals, the boundary curves
of this part of the surface have not changed under the used
interpolation conditions.
The next assumption is that the prescription of the four in-
ner interpolation points are computed from the data of the
given sphere. The setting of the parameter values for which
the surface interpolates these points has been made on the
base of experimental results, as usually in the solutions of
many practical problems.
A further simplification in the solution is that we have com-
puted with surfaces on orthogonal parameter grids. In this
way we have computed the Gaussian curvature as the prod-
uct of the curvatures of the u- and v-parameter curves. In
this way we have avoided the numerical computation of the
main curvatures in each step, because this computation is
not essential in our algorithm.

5 Conclusions

We have given an algorithm for the solution of a practical
problem: how to press a given sphere into a B-spline sur-
face at a prescribed position. We have shown a solution,
when the surface is symmetric around the given interpola-
tion point. Then in the non-symmetric case we have shown
a further deformation of the surface in order to transform
the elliptical surface point into an umbilical one. In this
case the given sphere osculates the deformed surface with
equal Gaussian curvatures at the given tangential point.
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ABSTRACT

In this article, it will be shown that the curve of foci of an
order conic pencil in the pseudo-Euclidean plane is gen-
erally a bicircular curve of 6th order. In some cases, de-
pending on a position of four base points of the pencil,
this curve is of 5th, 4th or 3rd order and in some cases it
is even a conic or only a line.

Key words: pseudo-Euclidean plane, conic sections, foci,
conic pencil
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Krivulje žarǐsta u pramenovima konika u pseudo-
euklidskoj ravnini

SAŽETAK

U ovom članku pokazat će se da je krivulja žarǐsta pramena
konika u pseudo-euklidskoj ravnini općenito bicirkularna
krivulja šestog reda. U nekim slučajevima, u ovisnosti o
položaju četiriju temeljnih točaka pramena, krivulja žarǐsta
može biti petog, četvrtog ili trećeg reda, a može biti i
konika ili samo pravac.

Ključne riječi: pseudo-euklidska ravnina, konike, žarǐsta,
pramenovi konika

1 Introduction

A pseudo-Euclidean plane (PE-plane) is a real projective
plane where the metric is induced by a real line a and
two real points A1 and A2 incident with it, see [10]. It
is one of nine plane geometries and according to [8], it
is parabolic-hyperbolic plane. The affine model of the
pseudo-Euclidean plane will be used, where the absolute
line a is determined by the equation x0 = 0 and the abso-
lute points A1, A2 by the coordinates (0,1,±1), like in [4],
[5], [6], [7], [11].
Further on, some basic, well-known definitions are given
([1], [2], [3], [7]).

Definition 1 Points incident with the absolute line a are
called isotropic points.

Definition 2 Lines incident with one of the absolute points
A1 or A2 are called isotropic lines.

Definition 3 Foci of a conic are intersection points of its
isotropic tangent lines.

Definition 4 Circular curve in PE-plane is a curve inci-
dent with at least one of two absolute points.

Definition 5 A curve k is said to be of (r, t)- type of cir-
cularity if the absolute point A1 is the intersection of the
curve k with the absolute line a of multiplicity r, and the
absolute point A2 is the intersection of the curve k with the
absolute line a of multiplicity t. The sum r + t is called
degree of circularity.

Definition 6 The curve of order n is said to be entirely cir-
cular if n = r + t, i.e. the order of the curve equals the
degree of circularity.

Conics in pseudo-Euclidean plane are divided into ([7],
[9]):

• hyperbola intersecting the absolute line in two real
and distinct points

• ellipse intersecting the absolute line in a pair of
conjugate-imaginary points

• parabola touching the absolute line
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• special hyperbola intersecting the absolute line in
two real and distinct points out of which one is an
absolute point

• special parabola touching the absolute line in an ab-
solute point

• circle intersecting the absolute line in both absolute
points.

A conic has four foci which can be real and distinct,
conjugate-imaginary, double real or even quadruple real.
An ellipse has four real foci. A hyperbola may have four
real or four conjugate-imaginary foci. A special hyper-
bola may have two double real or two double imaginary
foci. A parabola has one non-isotropic focus, another one
in the isotropic touching point of the parabola and the ab-
solute line, and one focus in each absolute point. A spe-
cial parabola has double focus in each absolute point. All
four foci of a circle are in the same point - quadruple focus
(which is also the center of the circle).

2 Curves of foci

A conic is uniquely determined by five of its points. Four
points, called base points determine infinitely many conics
which are called an order pencil of conics.
In the affine model of PE-plane, the coordinates of the
points are determined with

x =
x1

x0
,y =

x2

x0
, (1)

the absolute line a with the equation x0 = 0, and the abso-
lute points A1, A2 with coordinates (0,1,±1).
A conic is given by equation in homogeneous coordinates

a00x2
0+a11x2

1+a22x2
2+2a01x0x1+2a02x0x2+2a12x1x2 = 0,

(2)

and in the affine coordinates

a00 +a11x2 +a22y2 +2a01x+2a02y+2a12xy = 0. (3)

Some short calculations lead to the conclusions:

• c is a hyperbola iff a2
12−a11a22 > 0,

• c is a parabola iff a2
12−a11a22 = 0,

• c is an ellipse iff a2
12−a11a22 < 0,

• c is a special hyperbola iff a11 +a22 +2a12 = 0
or a11 +a22−2a12 = 0,

• c is a special parabola iff a11 = a22 =−a12 or
a11 = a22 = a12,

• c is a circle iff a12 = 0 and a11 =−a22,

as it is shown in [6].
Let the conic pencil be given with the points A(0,0),
B(1,0), C(0,2) and D(t1, t2). To avoid special cases, the
point D should not be incident with lines AB, BC or AC,
i.e. t1 6= 0, t2 6= 0 and t2 6=−2t1 +2.
Substituting the coordinates of points A, B, C and D into
(3) yields

a00 = 0,

a00 +2a01 +a11 = 0,

a00 +4a02 +4a22 = 0,

a00 +2a01t1 +a11t2
1 +2a02t2 +2a12t1t2 +a22t2

2 = 0.

So, the equation of the conic pencil is

a11x2+
(a11t1−a11t2

1 +2a22t2−a22t2
2 )xy

t1t2
+a22y2−a11x−2a22y = 0. (4)

Different form of the equation (4) is

a11(x2 +
1− t1

t2
xy− x)+a22(y2 +

2− t2
t1

xy−2y) = 0.

It is obvious that the conic pencil is a linear combination of
two degenerate conics of the pencil - the first one consists
of lines AC and BD, and the second one of lines AB and
CD. Introducing λ = a22

a11
into equation (4), the following

equation for the conic pencil with the base points A, B, C
and D is obtained

x2 +
2λxy

t1
+

xy
t2
− t1xy

t2
− λt2xy

t1
+λy2− x−2λy = 0, (5)

where each conic of the pencil is uniquely defined by pa-
rameter λ ∈ R ∪ ∞.
In line coordinates, the pencil (5) has the following equa-
tion

−λ
2u2 +λuv− v2

4
+λu− 2λ2u

t1
− λu

t2
+

λt1u
t2

+
λ2t2u

t1

+2λv− λv
t1
− v

2t2
+

t1v
2t2

+
λt2v
2t1

+
λ

2
− λ2

t2
1
+

λ

2t1
− 1

4t2
2

+
t1

2t2
2
− t2

1

4t2
2
+

λ

t2
− λ

t1t2
+

λ2t2
t2
1
− λ2t2

2

4t2
1

= 0. (6)

For an isotropic line u0x0 + u1x1 + u2x2 = 0 passing
through the absolute point A1(0,1,1) the following must
be true
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u1 +u2 = 0, (7)

i.e. in affine coordinates

v =−u, (8)

where u = u1
u0

and v = u2
u0

. Thus, such line in affine coordi-
nates has the equation 1+ux−uy = 0. From that equation
follows:

u =
1

y− x
. (9)

Analogously for an isotropic line passing through the ab-
solute point A2(0,1,−1) the following is true

v = u (10)

and

u =
−1

x+ y
. (11)

When v in (6) is replaced by using (8), and then u is re-
placed with (9), the following is obtained

− 1
(y− x)2 −

4λ

(y− x)2 −
4λ2

(y− x)2 −
2λ

y− x
+

4λ

t1(y− x)

− 8λ2

t1(y− x)
+

2
t2(y− x)

− 4λ

t2(y− x)
− 2t1

t2(y− x)

+
4λt1

t2(y− x)
− 2λt2

t1(y− x)
+

4λ2t2
t1(y− x)

−λ− 4λ2

t2
1

+
2λ

t1
− 1

t2
2

+
2t1
t2
2
− t2

1

t2
2
+

4λ

t2
− 4λ

t1t2
+

4λ2t2
t2
1
− λ2t2

2

t2
1

= 0. (12)

The intention is to isolate only those lines passing through
the absolute point A1 out of all lines from the pencil (6).
Solving the equation (12) for λ, the following two solu-
tions are obtained

λ1,2 =−
1

t2
2 (−2x+ t2x+2y− t2y+2t1)2

[2t1t2x2−2t2
1 t2x2− t1t2

2 x2

− t2
1 t2

2 x2−4t1t2xy+4t2
1 t2xy+2t1t2

2 xy+2t2
1 t2

2 xy+2t1t2y2

−2t2
1 t2y2− t1t2

2 y2− t2
1 t2

2 y2−2t2
1 t2x+2t3

1 t2x+2t1t2
2 x−2t2

1 t2
2 x

− t1t3
2 x+2t2

1 t2y−2t3
1 t2y−2t1t2

2 y+2t2
1 t2

2 y+ t1t3
2 y+2t2

1 t2
2

±2
√
−t3

1 t3
2 (−2+2t1+t2)(−1+x−y)(x−y)(2+x−y)(t1−t2−x+y)].

(13)

This corresponds to the fact that each isotropic line passing
through A1 is tangent line of two conics of the pencil, and
those lines are precisely two lines defined by parameters λ1

and λ2. Analogously, separating from the whole pencil (6)
only isotropic lines passing through the absolute point A2
(by substituting v in (6) using (10), and then substituting u
using (11)) and solving that equation for λ, the following
is obtained

λ3,4 =−
1

t2
2 (2t1−2x+ t2x−2y+ t2y)2

[2t1t2x2−2t2
1 t2x2− t1t2

2 x2

− t2
1 t2

2 x2 +4t1t2xy−4t2
1 t2xy−2t1t2

2 xy−2t2
1 t2

2 xy+2t1t2y2

−2t2
1 t2y2− t1t2

2 y2− t2
1 t2

2 y2−2t2
1 t2x+2t3

1 t2x−2t1t2
2 x+6t2

1 t2
2 x

+ t1t3
2 x−2t2

1 t2y+2t3
1 t2y−2t1t2

2 y+6t2
1 t2

2 y+ t1t3
2 y−2t2

1 t2
2

±2
√
−t3

1 t3
2(−2+2t1+t2)(t1+t2−x−y)(−2+x+y)(−1+x+y)(x+y)].

(14)

The solutions are the parameters λ3 and λ4 which uniquely
determine two conics of the pencil.
Foci of a conic are four intersections of its two tangent
lines from the absolute point A1 with its two tangent lines
from the absolute point A2. Hence, the conics determined
by parameters λ1 and λ2 must be equal to the conics deter-
mined by parameters λ3 and λ4, i.e. λ1 = λ3 or λ2 = λ3 or
λ1 = λ4 or λ2 = λ4 are valid. So, the equation of the curve
of foci is obtained by using

(λ1−λ3)(λ2−λ3)(λ1−λ4)(λ2−λ4) = 0. (15)

Introducing (13) and (14) into (15), the equation of the
curve of foci F(x,y) = 0 is obtained, where

F(x,y) = F60(t1, t2)x6 +F51(t1, t2)x5y+F42(t1, t2)x4y2

+F33(t1, t2)x3y3 +F24(t1, t2)x2y4 +F15(t1, t2)xy5

+F06(t1, t2)y6+F50(t1, t2)x5+F41(t1, t2)x4y+F32(t1, t2)x3y2

+F14(t1, t2)xy4+F05(t1, t2)y5+F40(t1, t2)x4+F31(t1, t2)x3y

+F22(t1, t2)x2y2 +F13(t1, t2)xy3 +F04(t1, t2)y4

+F30(t1, t2)x3 +F21(t1, t2)x2y+F12(t1, t2)xy2+F03(t1, t2)y3

+F20(t1, t2)x2 +F11(t1, t2)xy+F02(t1, t2)y2 +F10(t1, t2)x

+F01(t1, t2)y+F00(t1, t2), (16)

where Fi j(t1, t2) are polynomials in t1, t2 and i, j =
0,1,2,3,4,5,6. For example,

F06 = 16t4
1 t4

2 +16t3
1 t5

2 +4t2
1 t6

2 −64t4
1 t3

2 −96t3
1 t4

2 −40t2
1 t5

2

−4t1t6
2 +64t4

1 t2
2 +192t3

1 t3
2 +128t2

1 t4
2 +24t1t5

2 −128t3
1 t2

2

−160t2
1 t3

2 −48t1t4
2 +64t2

1 t2
2 +32t1t3

2 .

F(x,y) is a polynomial of degree 6, so it is proved that the
curve of foci is of order 6. The next goal is to calculate its
intersection points with the absolute line a. In order to do
that, since the absolute line has the equation x0 = 0, it is
necessary to write the polynomial F(x,y) in homogeneous
coordinates. The result is
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4t1t2(−1+ t1)(−2+ t2)(−2+2t1 + t2)(2t1 + t2)(x1− x2)
2

(x1 + x2)
2(−2t2x2

1 + t2
2 x2

1−2t1t2x1x2− t1x2
2 + t2

1 x2
2) = 0.

(17)

From the equation (17), it is clear that the absolute points
A1(0,1,1) and A2(0,1,−1) are double intersections of the
curve of foci with the absolute line. It is easy to calcu-
late that those points are not only double intersections, but
also double points of the curve of foci. Hence, the curve
of foci has type of circularity (2,2). The curve of foci has
two more intersections with the absolute line. They are
obtained calculating the equation

−2t2x2
1 + t2

2 x2
1−2t1t2x1x2− t1x2

2 + t2
1 x2

2 = 0. (18)

Those intersections are

X1,2(0,
t1t2±

√
−2t1t2 +2t2

1 t2 + t1t2
2

−2t2 + t2
2

,1). (19)

It is easy to calculate that those points are precisely the
points in which two parabolas of the pencil touch the ab-
solute line. So, if one of two parabolas of the pencil is
special parabola, then the curve of foci has type of circu-
larity (2,3) (or (3,2)). That is not a case in the Euclidean
plane. If both parabolas of the pencil are special parabolas,
then the curve of foci has type of circularity (3,3).

Two examples of curves of foci are given in Figures 1 and
2. Six lines connecting four base points of pencils are also
shown.

-4 -2 0 2 4

-4

-2

0

2

4

Figure 1: Curve of foci for D(2,3)

-4 -2 0 2 4

-6

-4

-2

0

2

Figure 2: Curve of foci for D(−1,−6)

The study given above is for the pencil determined by four
base points A(0,0), B(1,0), C(0,2) i D(t1, t2). In the same
way, the investigation may be done more generally, having
two base conics

c1(x,y) = a00 +a11x2 +a22y2 +2a01x+2a02y+2a12xy,

c2(x,y) = b00 +b11x2 +b22y2 +2b01x+2b02y+2b12xy.

Those two conics intersect in four points and it is assumed
that those four points are base points of the pencil. Such
conic pencil has the equation

c1(x,y)+λc2(x,y) = a00 +λb00 +(a11 +λb11)x2

+(a22 +λb22)y2 +2(a01 +λb01)x+2(a02 +λb02)y

+2(a12 +λb12)xy,

where λ ∈ R
⋃

∞.
Repeating the process shown in the proof before, the poly-
nomial of degree 6 (which is two long to show it here) is
obtained

F(x,y)=F60(apr,bst)x6+F51(apr,bst)x5y+F42(apr,bst)x4y2

+F33(apr,bst)x3y3 +F24(apr,bst)x2y4 +F15(apr,bst)xy5

+F06(apr,bst)y6 +F50(apr,bst)x5 +F41(apr,bst)x4y

+F32(apr,bst)x3y2 +F23(apr,bst)x2y3 +F14(apr,bst)xy4

+F05(apr,bst)y5 +F40(apr,bst)x4 +F31(apr,bst)x3y

+F22(apr,bst)x2y2 +F13(apr,bst)xy3 +F04(apr,bst)y4

+F30(apr,bst)x3 +F21(apr,bst)x2y+F12(apr,bst)xy2

+F03(apr,bst)y3 +F20(apr,bst)x2 +F11(apr,bst)xy

+F02(apr,bst)y2 +F10(apr,bst)x+F01(apr,bst)y

+F00(apr,bst),
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where Fi j are polynomials in apr, bst , i, j = 0,1,2,3,4,5,6
and pr, st = 00,11,22,01,02,12. For example,

F06 = a02a2
11a12b02b12b2

22−a01a11a2
12b02b12b2

22

−a2
02a11a12b11b12b2

22−a01a02a11a22b11b12b2
22

+2a2
01a12a22b11b12b2

22−a01a02a11a12b2
12b2

22

+a2
01a2

12b2
12b2

22−a02a2
11a12b01b3

22 +a01a11a2
12b01b3

22

+a01a02a11a12b11b3
22−a2

01a2
12b11b3

22.

Therefore, the curve of foci is of order 6.
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0

2

4

Figure 3: Entirely circular curve of foci for a pencil con-
taining two special parabolas

Another example is shown in Figure 3. This is the exam-
ple for entirely circular curve of foci containing two special
parabolas

ps1(x,y) = x2−2xy+ y2 + x−2,

ps2(x,y) = x2 +2xy+ y2− x−2,

which are both shown in Figure 3 together with the curve
of foci.
Hence, the following theorems are proved.

Theorem 1 A curve of foci of all conics of an order conic
pencil in PE-plane is a curve of order 6 with the type of
circularity (2,2).

Theorem 2 If one of two parabolas in the order conic pen-
cil is a special parabola, the curve of foci has the type of
circularity (3,2) (or (2,3)).

Theorem 3 If both parabolas of the pencil are special
parabolas, the curve of foci has the type of circularity
(3,3), i.e. it is entirely circular.

3 Curves of foci of order less than 6 - exam-
ples

Depending on a position of four base points of the pencil,
the curve of foci can be of order less than 6.

Example 1 For base points A(0,0), B(1,0), C(0,2) and
D(1,3), the line CD is isotropic. The curve of foci is of
order 5,

F(x,y) =−1620x4y+3240x3y2 +1620x2y3−3240xy4

+2025x4−9072x3y+1620x2y2 +10368xy3 +1620y4

+6480x3−5832x2y−12960xy2−5184y3 +1944x2

+10368xy+5184y2−5184x−2592y+1296.

Example 2 For base points A(0,0), B(1,0), C(0,2),
D(1,−2), intersections of the lines AC and BD as well as
of the lines AD and BC are isotropic points, i.e. the lines
AC and BD as well as the lines AD and BC are parallel.
The curve of foci is of order 4,

F(x,y)=2048x3y+5120x2y2+2048xy3−3072x2y−5120xy2

−1024y3+1024x2+2048xy+2304y2−1024x−512y+256.

Example 3 For base points A(0,0), B(1,1), C(0,3), D(1,2),
the line AB is isotropic line through the absolute point A1,
the line CD is isotropic line through the absolute point A2
and the lines AC and BD are parallel (i.e. they intersect in
an isotropic point). The curve of foci is of order 3.

F(x,y)= 16x3−16xy2−60x2+48xy+8y2+36x−24y−9.

Example 4 For base points A(0,0), B(1,0), C(0,1, t1) and
D = A2(0,1,−1) where C and D are written in homoge-
neous coordinates, the curve of foci is

F(x,y) = (2t1x2 +2t2
1 x2 + y2− t2

1 y2−2t1x−2t2
1 x+ t2

1 )
2,

i.e. the curve of foci is a conic. For 0 < t1 < 1 it is an
ellipse, and for t1 < 0 and t1 > 1 it is a hyperbola.

Example 5 For base points A(0,0), B(1,1), C(0,1, t1) and
D = A2(0,1,−1), the line AB is isotropic and the curve of
foci is a special hyperbola which does not exist in the Eu-
clidean plane.

Example 6 For base points A(0,0), B(1,0), C =
A1(0,1,1) and D = A2(0,1,−1), all conics in the pencil
are circles and the curve of foci is a line x = 1

2 .
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4 Conclusion

In this article, it is proved that the curve of foci of a conic
pencil in PE-plane is generally a curve of order 6 with the
type of circularity (2,2). It is also shown that, depending
on the type of parabolas in the pencil, the curve of foci may
have the type of circularity (2,3) or (3,2) which is not pos-

sible in the Euclidean plane. If both parabolas in the pencil
are special parabolas, the curve of foci is entirely circu-
lar, i.e. its type of circularity is (3,3). Some examples
are shown that the curve of foci may be of order less than
6, but there are some more cases which do not happen in
the Euclidean plane. They are possible themes for the next
article.
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[5] M. KATIĆ ŽLEPALO, E. JURKIN, Circular cubics
and quartics obtained as pedal curves of conics in
pseudo-Euclidean plane, 15th International Confer-
ence on Geometry and Graphics, Montreal, 2012.
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e-mail: mkatic@tvz.hr

University of Applied Sciences,
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ABSTRACT

In this paper, k-means algorithm is presented. It is a he-
uristic algorithm for solving NP-hard optimisation problem
of classifying a given data into clusters, with a number of
clusters fixed apriori. The algorithm is simple and it’s con-
vergence is fast, what makes it widely used, despite its
tendency of stoping in a local minimum and inability of
recognizing clusters not separated by hyper-planes.

The method of the first variation as a tool for escaping
from a local minimum is also presented in the paper.

Key words: k-means algorithm, clustering, first variation
method
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Algoritam k-sredina

SAŽETAK

U članku je objašnjen algoritam k-sredina (k-means al-
gorithm), heuristika koja rješava NP teški optimizacijski
problem razvrstavanja podataka (točaka) u skupine (klas-
tere) s unaprijed zadanim brojem skupina. Zbog jednos-
tavnosti i brzine konvergencije, algoritam je u širokoj pri-
mjeni, unatoč tendenciji zapinjanja u lokalnom minimumu,
te nemogućnosti prepoznavanja skupina koje nisu razdvo-
jive hiperravninama.

U članku je takod-er objašnjena i metoda prve varijacije,
heuristika lokalnog traženja kojom algoritam ”izvlačimo”
iz lokalnog minimuma.

Ključne riječi: algoritam k-sredina, klasteriranje, metoda
prve varijacije

1 Uvod

Osnovna ideja algoritma k-sredina je određivanje predstav-
nika k skupina, i pridruživanje svake točke skupini s naj-
bližim predstavnikom tako da zbroj kvadrata udaljenosti
točaka od predstavnika skupina kojima pripadaju bude mi-
nimalan. Drugim riječima, algoritam k-sredina generira

skupine s minimalnom totalnom varijancom (najkompakt-
nije moguće skupine).

Nedostatak algoritma je u tome što se na izlazu dobiva
samo stabilno, a ne nužno i optimalno rješenje. Odnosno,
rješenje bitno ovisi o početnoj k-torci predstavnika sku-
pina. Drugi nedostatak algoritma k-sredina je u tome što
može prepoznati samo skupine odvojive hiperravninama.

2 Algoritam k-sredina

Neka je zadan skup točaka X = {x1,x2, . . . ,xm} u n di-
menzionalnom Euklidskom prostoru Rn. Cilj algoritma
k-sredina je pronaći, za unaprijed zadani broj k ≥ 2, op-
timalnu k-particiju skupa X , π = {C1,C2, ...,Ck}, odnosno
razmjestiti m točaka skupa X u k skupina (podskupova,
klastera) C1,C2, ...,Ck. Svakoj skupini Ci, i = 1, . . . ,k, pri-
družena je točka

ci =
1
|Ci| ∑

x∈Ci

x (1)

koju nazivamo predstavnikom skupine (predstavnik sku-
pine ne mora biti element skupa X). Ovdje je |Ci| kardi-
nalnost od Ci, tj. broj točaka koje pripadaju skupini Ci.
Algoritam k-sredina se zasniva na jednostavnoj činjenici
da je optimalni izbor predstavnika skupine središte same
skupine.

Svakoj particiji π = {C1,C2, ...,Ck} skupa X pridružena je
vrijednost ciljne funkcije

J = J(π) =
k

∑
i=1

∑
x∈Ci

||x− ci||22,

gdje su ci, i= 1, . . . ,k, definirani s (1). Algoritam k-sredina
u nizu iteracija nastoji minimizirati vrijednost ciljne funk-
cije, odnosno pronaći particiju kojoj je pridružena najma-
nja vrijednost ciljne funkcije.

Ovdje je prikazana klasična verzija algoritma k-sredina
koja koristi Euklidsku metriku na Rn

d (x,y) = ||x−y||2 =

[
n

∑
i=1

(xi− yi)
2

] 1
2

, x,y ∈ Rn. (2)

Inače, algoritam za particioniranje može se lako prilago-
diti tako da koristi kosinusnu sličnost među vektorima kao
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metriku,

d (x,y) =
xT y

||x||2||y||2
, x,y ∈ Rn, (3)

što može biti prikladniji izbor za particioniranje podataka
od Euklidske metrike (vektori se prethodno normaliziraju,
pa se ovakav algoritam k-sredina naziva sfernim algorit-
mom k-sredina).

Prije pokretanja algoritma k-sredina potrebno je na neki
način zadati početne vrijednosti {ci} predstavnika skupina,
na primjer nasumičnim izborom k točaka iz zadanog skupa
točaka X .

Algoritam k-sredina je iterativni algoritam koji ponav-
lja dva osnovna koraka dok se ne zadovolji neki kriterij
konvergencije. U prvom koraku (“pridruživanje”) svaka
točka pridružuje se najbližem predstavniku (određuje se
particija). U drugom koraku (“prepravljanje”) skup pred-
stavnika se prepravlja - za nove predstavnike se uzimaju
središta skupina definiranih u koraku “pridruživanje”. Al-
goritam se zaustavlja kada se vrijednost ciljne funkcije
prestane smanjivati.

Algoritam 1 Algoritam k-sredina

1. Inicijalizacija.
Zadaj početni skup predstavnika {c0

i }k
i=1. Postavi

brojač l = 0;

2. Pridruživanje.
Za svaku točku x∈ X ⊂Rn odredi sk(x)∈ {1, . . . ,k}
(redni broj skupine točke x) takav da je

||cl
sk(x)−x||2 = min

j∈{1,2,...,k}
||cl

j−x||2.

Definiraj skupine

C(l+1)
i = {x : sk(x) = i}, i = 1, . . . ,k.

3. Prepravljanje.
Izračunaj predstavnike novih skupina definiranih u
2. koraku:

cl+1
i =

1
ni

∑
x∈C(l+1)

i

x,

gdje je ni = |C
(l+1)
i |.

Izračunaj vrijednost ciljne funkcije

J(l+1) =
k

∑
i=1

∑
x∈C(l+1)

i

||x− cl+1
i ||

2
2;

Stavi l = l + 1; Ponavljaj korake 2. i 3. sve dok se
vrijednost J ne prestane smanjivati.

Primjer 1 Na Slici 1 dan je primjer skupa od sedam
točaka X = {x1, . . . ,x7}= {(1,1),(1.5,2),(3,4),(3.5,4.5),
(3.5,5),(4.5,5),(5,7)}, s inicijalnim skupom predstavnika
{c1,c2} = {(4.5,7.5),(5,6)} za kojeg algoritam k-sredina
u pet iteracija daje optimalnu particiju π = {C1,C2},
C1 = {x1,x2} i C2 = {x3, . . . ,x7}.

Slika 1: Algoritam k-sredina pronalazi optimalnu par-
ticiju za zadane inicijalne predstavnike u 5 iteracija. Cr-
venim znakom ‘x’ označene su točke prve skupine, a pla-
vim znakom ‘+’ točke druge skupine. Kvadrati označavaju
predstavnike skupina.

Teorem 1 ([3]) Vrijednost J ciljne funkcije algoritma
k-sredina monotono se smanjuje.

Dokaz. Označimo s J(l) vrijednost ciljne funkcije u l-tom
ponavljanju. Vrijedi:

J(l) =
k

∑
i=1

∑
x∈C(l)

i

||x− cl
i ||22 ≥

k

∑
i=1

∑
x∈C(l)

i

||x− cl
sk(x)||

2
2 =

=
k

∑
i=1

∑
x∈C(l+1)

i

||x−cl
sk(x)||

2
2≥

k

∑
i=1

∑
x∈C(l+1)

i

||x−cl+1
i ||

2
2 = J(l+1).

Druga nejednakost slijedi iz činjenice da vektor središta
skupine minimizira kvadratnu devijaciju. �
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Algoritam se zaustavlja ako je J(l) = J(l+1).

Primijetimo da su rezultat algoritma k-sredina skupovi
(klasteri) odijeljeni hiperravninama. Na primjer, pogle-
dajmo slučaj za k = 2:

x ∈C1 akko ||x− c1||22 ≤ ||x− c2||22.

Skup točaka koje su jednako udaljene od c1 i c2 dijeli točke
na ovaj način. A taj skup točaka je hiperravnina okomita
na c1− c2 koja prolazi polovištem kojeg određuje c1− c2:

(x− c1)
T (x− c1) = (x− c2)

T (x− c2)

=⇒ 2(c1− c2)
T x+

(
cT

2 c2− cT
1 c1
)
= 0.

Općenito, algoritam k-sredina razdjeljuje točke skupom hi-
perravnina. Rezultirajuća particija prostora odgovara tzv.
Voronojevom dijagramu skupa predstavnika.

Definicija 1 Neka je zadan skup S = {pi ∈ Rn, i =
1, . . . ,q} za neki q ∈ N. Voronojeva ćelija (engl. Voronoi
cell) pridružena točki pi je skup

V (pi) = {x ∈ Rn : ||x−pi||2 ≤ ||x−p j||2,∀ j = 1, . . . ,q}.

Voronojev dijagram skupa S je unija Voronojevih ćelija,
odnosno

V (S) = ∪
i∈{1,...,q}

V (pi).

Primjer 2 Na Slici 1 zelenim crtama naznačeni su pravci
kojima algoritam k-sredina razdjeljuje zadane točke na
dvije skupine. Dvije rezultirajuće poluravnine predstav-
ljaju dvije Voronojeve ćelije pridružene predstavnicima
skupina.

Prilikom izvršavanja algoritma k-sredina može se dogoditi
da neki predstavnik ostane bez pridruženih mu točaka (ako
su sve točke bliže ostalim predstavnicima). Sama heuris-
tika k-sredina ne govori o tome kako postupiti u situaciji
kada skupina u nekom koraku ostane prazna. Uobičajene
strategije u praksi su:

- premiještanje predstavnika ispražnjene skupine
slučajnim izborom ili proizvoljno

- uzimanje točke koja je najudaljenija od svog pred-
stavnika za novu jednočlanu skupinu

- zadržavanje predstavnika (ostavlja se mogućnost da
skupina ponovo primi točke);

- brisanje predstavnika skupine koja je ostala prazna.

Primjer 3 Slika 2 prikazuje primjer particioniranja algo-
ritmom k-sredina u kojem jedan predstavnik ostaje bez
pridruženih točaka. Sam predstavnik je zadržan, i već u
sljedećem koraku točke su razdijeljene na dvije skupine.
Primijetimo da bi u ovom primjeru pomicanje predstavnika
u točku najudaljeniju od pridruženog predstavnika rezulti-
ralo većim brojem iteracija.

Slika 2: Primjer inicijalizacije algoritma k-sredina koja
rezultira praznom skupinom. Predstavnik je zadržan, i u
sljedećem koraku skupina prima točke.

3 Dvojnost ciljne funkcije algoritma
k-sredina

Pokazat ćemo da algoritam k-sredina smanjivanjem vrijed-
nosti ciljne funkcije automatski povećava prosječnu kva-
dratnu udaljenost među parovima predstavnika skupina, a
smanjuje prosječni zbroj kvadrata razlika udaljenosti pa-
rova točaka unutar skupina.

Za x ∈ Rn vrijedi

tr
(
∑xxT )= ∑xT x,

gdje je

trA =
n

∑
i=1

aii za A = [ai j] ∈ Rn×n.

Stoga se ciljna funkcija algoritma k-sredina može shvatiti
kao tr(SW ), gdje je

SW =
k

∑
i=1

∑
x∈Ci

(x− ci)(x− ci)
T .

Matrica SW naziva se matricom rasipanja unutar skupina
(engl. within-class scatter matrix).
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Matrica ukupnog rasipanja je dana izrazom

ST = ∑
x∈X

(x− c)(x− c)T ,

gdje je c srednja vrijednost cijelog skupa podataka. Može
se dokazati da je ST = SW +SB, gdje je SB matrica rasipanja
između skupina definirana izrazom

SB =
k

∑
i=1
|Ci|(ci− c)(ci− c)T .

Propozicija 1 Vrijedi

ST = SW +SB.

Dokaz. Definirajmo za proizvoljni vektor a

ST (a) = ∑
x
(x−a)(x−a)T

= ∑
i

∑
x∈Ci

(x−a+ ci− ci)(x−a+ ci− ci)
T

= ∑
i

∑
x∈Ci

((x− ci)+(ci−a))
(
(x− ci)

T +(ci−a)T
)

= ∑
i

∑
x∈Ci

(x− ci)(x− ci)
T +∑

i
∑

x∈Ci

(x− ci)(ci−a)T

+∑
i

∑
x∈Ci

(ci−a)(x− ci)
T +∑

i
∑

x∈Ci

(ci−a)(ci−a)T

Vrijedi

ST (a) = ∑
i

∑
x∈Ci

(x− ci)(x− ci)
T +∑

i
|Ci|(ci−a)(ci−a)T

= SW +SB (a) ,

jer je ∑
i

∑
x∈Ci

(ci−a)(x− ci)
T = 0 = ∑

i
∑

x∈Ci

(x− ci)(ci−a)T .

Prethodna relacija je točna za proizvoljni vektor a, pa je
točna i za a = c, što dokazuje tvrdnju. �

Možemo, također, pokazati da je

ST =
1

2m

m

∑
i=1

m

∑
j=1

(xi−x j)(xi−x j)
T

SW =
k

∑
i=1

1
2|Ci| ∑

x∈Ci

∑
y∈Ci

(x−y)(x−y)T

SB =
1

2m

k

∑
i=1

k

∑
j=1
|Ci||C j|(ci− c j)(ci− c j)

T .

Budući da je tr(SW ) ciljna funkcija algoritma k-sredina,
on nastoji minimizirati prosječni zbroj kvadrata razlika pa-
rova točaka unutar skupina.

Prema tome, budući da je tr(ST ) = tr(SW ) + tr(SB),
a tr(ST ) je fiksan, ciljnu funkciju algoritma k-sredina

možemo promatrati kao

maxtr(SB) = max∑
i
|Ci| · ||ci− c||22

= max
1

2m ∑
i

∑
j
|Ci||C j| · ||ci− c j||22,

što znači da algoritam k-sredina pokušava maksimizirati
prosječnu kvadratnu udaljenost među parovima predstav-
nika skupina.

4 O međama broja iteracija algoritma
k-sredina u jednodimenzionalnom modelu

Računsku složenost algoritma k-sredina po jednoj iteraciji
na m-članom skupu X ⊂Rn možemo razložiti po koracima:

- U koraku “pridruživanje” algoritam k-sredina mk
puta računa udaljenosti, za što mu treba 3mkn
osnovnih operacija (zbrajanja, množenja ili us-
poređivanja). Za pronalaženje najbližeg predstav-
nika treba mu mk operacija. Prema tome, složenost
pridruživanja je O(mkn).

- U koraku “prepravljanje” algoritam k-sredina
izvršava mn zbrajanja i kn dijeljenja. Složenost pre-
pravljanja je O(mn) (k ≤ m).

- Za računanje vrijednosti ciljne funkcije algoritmu k-
sredina treba m zbrajanja udaljenosti izračunatih u
prvom koraku, pa je složenost računanja vrijednosti
ciljne funkcije O(m).

Prema tome, složenost algoritma k-sredina je O(mknt),
gdje je t broj iteracija. Sam broj iteracija može varirati
od nekoliko do nekoliko tisuća, ovisno o broju i distri-
buciji točaka, te o broju skupina, i još uvijek nije u pot-
punosti teoretski razjašnjen broj iteracija koje algoritam
k-sredina može izvršiti u najgorem slučaju. U [4] je doka-
zano da različitih Voronojevih dijagrama zadanih s k cen-
tara, koji m-člani skup X ∈Rn dijele na k podskupova, ima
najviše O

(
mkn
)
, što predstavlja i trivijalnu gornju među

za broj iteracija algoritma k-sredina. Međutim, činjenica
da u uobičajenim aplikacijama k može biti veličine neko-
liko stotina, i da algoritam k-sredina u praksi relativno brzo
konvergira, čini ovu među beznačajnom.
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5 Prva varijacija - algoritam za profinjenje
rezultata algoritma k-sredina

Veliki nedostatak algoritma k-sredina je u tome što može
“zapeti” u lokalnom minimumu i rezultirati lošom par-
ticijom. Navest ćemo primjer kada loša inicijalizacija
algoritma rezultira particijom koja očigledno nije opti-
malna. Prva varijacija je metoda lokalnog traženja kojom
se omogućava izbjegavanje lokalnog minimuma.

Inače, u praksi se pokazalo da se nedostatci algoritma
k-sredina najčešće očituju kod malih skupova točaka (do
otprilike 200 točaka) [2].

Primjer 4 Neka je zadan skup X = {x1,x2,x3}, x1 = 0,
x2 =

2
3 , x3 = 1 i inicijalni par predstavnika c0

1 =
1
3 , c0

2 = 1
(Slika 3). To znači da je u početnoj particiji C0

1 = {x1,x2}
i C0

2 = {x3} i vrijedi

J
(
{C0

1 ,C
0
2}
)

=
2

∑
i=1

∑
x∈C0

i

||x− c0
i ||22

= ||x1− c0
1||22 + ||x2− c0

1||22 + ||x3− c0
2||22

=

(
1
3

)2

+

(
1
3

)2

+0 =
2
9

.

Algortam k-sredina neće promijeniti ovakvu početnu par-
ticiju jer je ||x2 − c0

1||22 = ||x2 − c0
2||22, iako za particiju

{C1
1 ,C

1
2}, C1

1 = {x1} i C1
2 = {x2,x3} , odnosno za c1

1 = 0,
c1

2 =
5
6 , vrijedi

J
(
{C1

1 ,C
1
2}
)

=
2

∑
i=1

∑
x∈C1

i

||x− c1
i ||22

= ||x1− c1
1||22 + ||x2− c1

2||22 + ||x3− c1
2||22

= 0+
(

1
6

)2

+

(
1
6

)2

=
1

18
.

Slika 3: Primjer početne particije koju algoritam
k-sredina ne mijenja, iako nije optimalna.

Problem zaustavljanja algoritma k-sredina u lokalnom mi-
nimumu može se djelomično riješiti algoritmom prve vari-
jacije, primjerom heuristike lokalnog traženja.

Definicija 2 Prva varijacija particije π = {C1, . . . ,Ck}
skupa X je particija π′= {C′1, . . . ,C′k}, koja se dobije pomi-
canjem jedne točke x ∈ X iz skupine Ci ∈ π u skupinu C j ∈
π. Skup svih prvih varijacija particije π = {C1, . . . ,Ck}
označavamo s V (π).

Među svim elementima skupa V (π) tražimo particiju s
najmanjom vrijednošću ciljne funkcije.

Definicija 3 Particija π∗ je prva varijacija particije π

skupa X takva da je za svaku prvu varijaciju π′ skupa X

J (π∗)≤ J
(
π
′) .

Particija π∗ zove se sljedeća prva varijacija.

Algoritam prve varijacije generira niz particija π(l) =

{C(l)
1 , . . . ,C(l)

k }, l≥ 0, takav da je π(l+1)= π(l)∗, l = 0,1, . . .

Promotrimo razliku između iteracije algoritma k-sredina i
iteracije algoritma prve varijacije. Neka je zadana biparti-
cija π = {Z,Y} skupa X ⊂Rn, pri čemu je Z = {z1, . . . ,zn}
i Y = {y1, . . . ,ym}. Želimo utvrditi treba li jedan vektor,
npr. zn, premjestiti iz Z u Y . Definirajmo potencijalne nove
skupine sa

Z− = {z1, . . . ,zn−1} i Y+ = {y1, . . . ,ym,zn}.

Algoritam k-sredina provjerava vrijednost

∆km = ||zn− c(Y ) ||22−||zn− c(Z) ||22. (4)

Ako je ∆km < 0, algoritam k-sredina pomiče zn iz Z u Y .
Inače zn ostaje u Z.
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Algoritam prve varijacije, međutim, provjerava stvarnu
promjenu u vrijednosti ciljne funkcije.

∆pv =
m

∑
i=1
||yi− c

(
Y+
)
||22 + ||zn− c

(
Y+
)
||22

+
n

∑
i=1
||zi− c

(
Z−
)
||22−||zn− c

(
Z−
)
||22

−
m

∑
i=1
||yi− c(Y ) ||22−

n

∑
i=1
||zi− c(Z) ||22

= m||c(Y )− c
(
Y+
)
||22 +n||c(Z)− c

(
Z−
)
||22

+||zn− c
(
Y+
)
||22−||zn− c

(
Z−
)
||22

= m||

m
∑

i=1
yi

m
−

m
∑

i=1
yi + zn

m+1
||22 +n||

n
∑

i=1
zi

n
−

n
∑

i=1
zi− zn

n−1
||22

+||zn−

m
∑

i=1
yi + zn

m+1
||22−||zn−

n
∑

i=1
zi− zn

n−1
||22

= m||

m
∑

i=1
yi−mzn

m(m+1)
||22 +n||

nzn−
n
∑

i=1
zi

n(n−1)
||22

+||
mzn−

m
∑

i=1
yi

m+1
||22−||

nzn−
n
∑

i=1
zi

n−1
||22

=

[
m

(m+1)2 +
m2

(m+1)2

]
||zn− c(Y ) ||22

+

[
n

(n−1)2 −
n2

(n−1)2

]
||zn− c(Z) ||22

=
m

m+1
||zn− c(Y ) ||22−

n
n−1

||zn− c(Z) ||22 (5)

Razlika između (4) i (5),

∆km−∆pv =
1

m+1
||zn−c(Y ) ||22+

1
n−1

||zn−c(Z) ||22≥ 0

je zanemariva kada su skupine Z i Y velike. Međutim,
∆km−∆pv može postati bitna kod malih skupina.

Primjer 5 Za zn = x2 iz primjera 4 je ∆km = 0, a ∆pv =
− 3

18 i to je razlog zašto algoritam k-sredina propušta opti-
malnu particiju {C1

1 ,C
1
2}.

Algoritam 2 Algoritam prve varijacije

1. Zadaj početnu particiju π(0) = {C(0)
1 , . . . ,C(0)

k }. Pos-
tavi brojač iteracija l = 0.

2. Generiraj sljedeću prvu varijaciju π(l)∗.
Ako je J

(
π(l)∗

)
− J

(
π(l)
)
< 0, postavi π(l+1) =

π(l)∗, povećaj l za 1, i vrati se na korak 2.

3. Stani.

Prilikom računanja sljedeće prve varijacije algoritam
izvršava 3mkn operacija za računanje udaljenosti, 3mk
operacija za računanje vrijednosti ciljne funkcije za sve
prve varijacije particije, te mk operacija za određivanje
sljedeće prve varijacije, pa je složenost jedne iteracije jed-
naka složenosti iteracije algoritma k-sredina (O(mkn)).
Međutim, promjene vrijednosti ciljne funkcije su u svakoj
iteraciji jako male jer se pomiče samo jedna točka, dok al-
goritam k-sredina daje značajnija poboljšanja po iteraciji.
Stoga pogledajmo kombinaciju algoritma k-sredina i algo-
ritma prve varijacije:

Algoritam 3 Algoritam k-sredina poboljšan algoritmom
prve varijacije

1. Zadaj početnu particiju π(0) = {C(0)
1 , . . . ,C(0)

k }. Pos-
tavi brojač iteracija l = 0.

2. Generiraj sljedeću particiju π(l)′ algoritmom k-
sredina.
Ako je J

(
π(l)′

)
−J
(

π(l)
)
< 0, postavi π(l+1) = π(l)′ ,

povećaj l za 1, i vrati se na korak 2.

3. Generiraj sljedeću prvu varijaciju π(l)∗.
Ako je J

(
π(l)∗

)
− J

(
π(l)
)
< 0, postavi π(l+1) =

π(l)∗, povećaj l za 1, i vrati se na korak 2.

4. Stani.

Algoritam 3 alternira između dviju faza:

(a) algoritma k-sredina

(b) algoritma prve varijacije.

U trećem koraku pomiče se samo jedna točka iz jedne sku-
pine u drugu ako to pomicanje rezultira smanjujem vrijed-
nost ciljne funkcije. Niz koraka prve varijacije omogućava
izbjegavanje lokalnog minimuma, nakon čega nove itera-
cije algoritma k-sredina mogu nastaviti brže smanjivati vri-
jednost ciljne funkcije. Ova ping-pong strategija daje algo-
ritam za profinjenje skupina, koji često poboljšava sam al-
goritam k-sredina, a računski nije prezahtjevan (složenost
je još uvijek O(mkn)). Naime, udaljenosti točaka od svih
predstavnika potrebne za generiranje sljedeće prve varija-
cije u trećem koraku već su izračunate u drugom koraku,
pa se ne moraju ponovo računati.

Međutim, ni ovako poboljšan algoritam ne daje uvijek op-
timalno rješenje.

U ovom radu je korištena MatLabova kmeans funkcija.
Ona se zasniva na dvofaznom iterativnom algoritmu čija
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prva faza odgovara klasičnom algoritmu k-sredina. U dru-
goj fazi se pojedinačno premještaju sve točke čije pre-
mještanje rezultira smanjenjem ciljne funkcije (zbroja uda-
ljenosti točaka od predstavnika skupina), nakon čega se
ponovo računa skup predstavnika. Svaka iteracija se u
drugoj fazi sastoji od jednog prolaska kroz sve zadane
točke. Ovo je varijanta algoritma prve varijacije. Pritom
se samo u prvoj iteraciji prve faze računaju sve udaljenosti
točaka od predstavnika. U ostalim iteracijama udaljenosti
se računaju samo za točke odnosno predstavnike koji su se
pomicali. Budući da se broj pomaknutih točaka relativno
mali nakon prvih par iteracija, ovim se bitno smanjuje vri-
jeme izvršavanja algoritma.

MatLabova kmeans funkcija dopušta unos vlastitog inici-
jalnog skupa predstavnika, ili ga sama računa na osnovi
ulaznog skupa točaka na jedan od tri ponuđena načina:

- “sample” - nasumičnim izborom bira k predstavnika
iz ulaznog skupa točaka (uobičajeni način)

- “uniform” - nasumičnim izborom bira k uniformno
distribuiranih predstavnika iz ulaznog skupa točaka

- “cluster” - particionira 10% nasumce izabranih
točaka i dobivene predstavnike uzima za inicijalne
predstavnike cijelog skupa točaka. U uvodnom par-
ticioniranju koristi ”sample” za inicijalizaciju.

Primjer 6 Na Slici 4 su dva primjera particioniranja al-
goritmom k-sredina. U prvom slučaju algoritam je u
100 pokretanja sa “sample” inicijalizacijom 70 puta dao
očiglednu optimalnu particiju. U primjeru s dva koncen-
trična prstena optimalne skupine nisu linearno odvojive, pa
algoritam k-sredina daje najbolje što može - dijeli svaki pr-
sten na dva dijela.

Primjer 7 Na Slici 5 (lijevo) je primjer skupa točaka koje
su prirodno podijeljene na četiri skupine, te početni skup
predstavnika. U ovom slučaju ni algoritam k-sredina ni al-
goritam prve varijacije ne daju optimalnu particiju.

Slika 4: Rezultat particioniranja točaka MatLabovom
kmeans funkcijom. Bojom je istaknuta pripadnost točaka
skupinama.

Slika 5: Primjer inicijalizacije skupa predstavnika (kva-
dratići) za koju i algoritam k-sredina i algoritam prve va-
rijacije daju lošu particiju. Lijevo su neparticionirane, a
desno particionirane točke. Bojom i znakom je istaknuta
pripadnost točaka skupinama.
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The problem of colouring geographical political maps
has historically been associated with the theory of graph
colouring. In the middle of the 19th century the follow-
ing question was posed: how many colours are needed
to colour a map in a way that countries sharing a border
are coloured differently. The solution has been reached by
linking maps and graphs. It took more than a century to
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neighbouring countries have different colours.

Key words: graph, graph colouring, map, map colouring,
the four colour theorem

MSC2010: 05C15, 05C90, 86A30, 68R10

O problemu bojanja grafova s primjenom u kar-
tografiji

SAŽETAK

Problem bojanja geografskih političkih karata povijesno je
vezan uz teoriju bojanja grafova. Polovicom 19. stoljeća
nametnulo se pitanje koliko je boja potrebno da bi se dana
geografska karta obojila tako da zemlje koje graniče budu
obojane različitim bojama. Do rješenja se došlo povezi-
vanjem karata i grafova. Bilo je potrebno vǐse od jednog
stoljeća kako bi se dokazalo da su četiri boje dovoljne za
obojiti (geografsku) kartu na takav način da susjedna po-
dručja (države) imaju različitu boju.

Ključne riječi: graf, bojanje grafa, karta, bojanje karte,
teorem o 4 boje

1 Introduction

The problem of colouring geographical political maps
has historically been associated with the theory of graph
colouring. In the middle of the 19th century the follow-
ing question was posed: how many colours are needed
to colour a map in a way that countries sharing a border
are coloured differently. The solution has been reached by
linking maps and graphs. It took more than a century to
prove that 4 colours are sufficient to create a map in which
neighbouring countries have different colours.

In graph theory, graph colouring is a special case of graph
labelling. It is about assigning a colour to graph elements:
vertices, edges, regions, with certain restrictions.

With this paper we would like to assess the elements of the
theory of graph colouring with an emphasis on its applica-
tion on practical problems in the field of cartography.

A mathematical basis for map colouring will be given
along with the chronology of proving The Four Colour
Theorem. In addition, world political map will be shown,
to determine the minimum number of colours needed to
colour a map properly in practice.

2 Elements of Graph Theory

Graph Theory is a special branch of combinatorics closely
related to applied mathematics, optimization theory and
computer sciences. The simplest and most frequently ap-
plied combinatorical structure is a graph, and exactly the
simplicity of this structure provides easy transfer and mod-
elling of practical problems in graph terms, as well as the
application of known proved theoretical concepts, algo-
rithms and abstract ideas to particular graphs.

2.1 Historical overview of Graph Theory

Graph Theory has rather precise historical aspects. The
first paper in the Graph theory was the article “Solutio
problematis ad geometriam situs pertinentis”, i.e. “The
Solution of a Problem Relating to the Geometry of Posi-
tion” by a well known Swiss mathematician Leonhard Eu-
ler (1707-1783) from the year 1736. In this paper, “the
Königsberg Bridge Problem” was defined and solved. The
Prussian city Königsberg, now Kaliningrad (Russia) occu-
pies both banks of the river Pregolya. The river divides the
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city into four territories, two river islands and two coastal
areas mutually connected with seven bridges.

The inhabitants of Königsberg sought to solve the issue
that troubled them for many years: Is it possible to walk
around the city crossing each of the seven bridges once
and only once and to finish the walk through the city at the
starting point?

Leonhard Euler eliminated all features of the terrain except
the land masses and bridges presenting it by means of a
graph (Fig. 1); the points represent the coastal parts (B and
C) and the islands (A and D), while the bridges are pre-
sented as graph edges, i.e. as connections of points. His
answer to the question mentioned above was clear: such
walk is not possible if each part of mainland is not con-
nected with the other parts with an even number of bridges
(see Chapter 2.2).

Figure 1: The Königsberg bridges problem presented by a
graph

Although the origins of the Graph Theory date back as far
as the 18th century, it started to develop in the second half
of the 20th century. The first book dealing with the topic
of Graph Theory was written in 1936 by the Hungarian
mathematician D. König, and it is considered to be the be-
ginning of the development of Graph Theory as a separate
mathematical discipline. König unified and systematised
the earlier results offering the list of 110 published papers
where the term graph had appeared explicitly. Among the
authors of these papers are famous names like G. Kirchhoff
(1824 - 1887) and A. Cayley (1821 -1895). Ever since,
graph has become a generally accepted term [6].

Greater development of research in the field of Graph The-
ory and its applications started in the 60-ties of the twen-
tieth century and has been continuing parallel with the de-
velopment of information technologies up to the present
day.

2.2 Graph Theory basic concepts and definitions

Definition 1 A graph G consists of a finite non-empty set
V = V (G) whose elements are called vertices, points or
nodes of G and a finite set E = E(G) of unordered pairs of
distinct vertices called edges of G.

Such a graph we denote G(V,E) when emphasizing the two
parts of G, (Fig. 2).

Figure 2: Example of a simple graph - The Petersen graph

Definition 2 An edge e = u,v is said to join the vertices
u and v, and is usually abbreviated to e = uv. In such a
case, u and v are called endpoints and they are said to be
adjacent. Further, vertices u and v are said to be incident
on e and vice versa, the edge e is said to be incident on
each of its endpoints u and v. Similarly, two distinct edges
e and f are adjacent if they have a vertex in common.

Remark 1 If two or more edges connect the same end-
points, we call them multiple edges. An edge is called a
loop if its endpoints are the same vertex. The former defi-
nition of a graph permits neither multiple edges nor loops.
In some texts the term simple graph refers to the graph
without multiple edges and loops while the one permitting
them is called a multigraph. Most often it does not matter
whether we deal with a simple graph or a multigraf, and if
necessary, will be specially emphasized.

Definition 3 If the vertex set of a graph G can be split into
two disjoint sets X and Y so that each edge of G joins a
vertex of X and a vertex of Y, then G is said to be bipartite.
A complete bipartite graph is a bipartite graph in which
each vertex in X is joined to each vertex in Y by just one
edge. If r is the number if vertices in X and s is the number
of vertices in Y we denote this graph Kr,s, (Fig. 3).

Figure 3: Complete bipartite graphs K1,3, K2,3, K3,3

Definition 4 For the two disjoint graphs G =
(V (G),E(G)) and H = (V (H),E(H)), their union G∪H
is defined by G∪H = (V (G)∪V (H),E(G)∪E(H)).
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Definition 5 A graph G is connected if it cannot be repre-
sented as the union of two graphs. Otherwise, it is discon-
nected. Any disconnected graph can be represented as the
union of connected graphs called connected components
of G. A graph is said to be finite if it has a finite number of
vertices and a finite number of edges, otherwise it is infi-
nite.

Graphs within this article shall be finite.

Definition 6 The degree of a vertex v in G, written deg
(v), is equal to the number of edges in G incident with v. It
shall be taken conventionally that a loop contributes 2 to
the degree of v. A vertex of degree zero is called an isolated
vertex and a vertex of degree 1 is an end-vertex.

Definition 7 Consider the graphs G = (V (G),E(G)) and
H = (V (H),E(H)). H is a subgraph of G if V (H)⊆V (G)
and E(H)⊆E(G). A subgraph H of G is said to be a span-
ning subgraph of G if V (H) =V (G).

Subgraphs are often obtained from a given graph by delet-
ing its vertices and edges. Specifically, if v is a vertex in
G, G− v is a subgraph of G obtained by deleting v and all
edges incident with v. Similarly, if e is an edge in G, G−e
is a subgraph of G obtained by deleting e from G. How-
ever, it is easily seen that contracting an edge of a graph
does not give a subgraph. Contracting an edge e from G
means removing it and identifying its ends u and v so that
the resulting vertex is incident with those edges that were
originally incident with u or v. Such a graph is denoted by
G|e.

Definition 8 A graph G is said to be complete if every ver-
tex in G is adjacent to every other vertex in G. A complete
graph with n vertices is denoted by Kn, (Fig. 4).

Kn : s is used to denote a complete graph with |V |= n and
|E|= s. It is easy to check that Kn has s = n(n−1)

2 edges.

K1 : 0 K2 : 1 K3 : 3 K4 : 6 K5 : 10

Figure 4: Some complete graphs

Definition 9 A walk in a graph G is an alternat-
ing sequence of vertices and edges of the form
v0,e1,v1,e2, . . . ,ek,vk, where each edge ei contains the ver-
tices vi−1 and vi, 1 ≤ i ≤ k. In a simple graph a walk is
determined by a sequence v0,v1, . . . ,vk, of vertices; v0 be-
ing the initial vertex and vk the final vertex. We say a walk

is from v0 to vk, or connects v0 to vk. A walk is closed if
the initial and final vertices are identified. The number k of
edges in a walk is called its length. A trail is a walk such
that all of the edges are distinct. A path is a walk such
that all of the vertices and edges are distinct. A circuit is a
closed trail, while a cycle is a closed path.

Definition 10 A connected graph G is called Eulerian if
there exists a closed trail containing every edge of G. Such
a trail is called an Eulerian trail. A non-Eulerian graph
G is semi-Eulerian if there exists a trail containing every
edge of G.

Let us now observe the theorem that solves the problem of
the Königsberg bridges.

Theorem 1 (Euler, 1736) A connected graph is Eulerian
if and only if each vertex has even degree.

For the proof see e.g. [20].

Considering now a graph given in Figure 1 in the light of
the above theorem, we conclude that the closed trail that
meets the required conditions does not exist.

From the proof of Theorem 1 arises,

Corollary 1 Any connected graph with two odd vertices is
semi-Eulerian. A trail may begin at either odd vertex and
will end at the other odd vertex.

3 Graph colouring

Definition 11 Consider a graph G. A (vertex) colouring
of G is an assignment of colours to the vertices of G such
that adjacent vertices have different colours. It is a map-
ping c : V (G)→ S. The elements of S are called colours.
If |S| = k, we say that c is a k-colouring. A colouring is
proper if adjacent vertices have different colours. A graph
is k-colourable if it has a proper k - colouring.

Each graph with n vertices is n - colourable, since each ver-
tex may be coloured with a different colour. Consequently,
the question is: what is the minimum necessary number of
colours to colour the graph properly.

Definition 12 If a graph G is k-colourable, but not (k−1)-
colourable, it is said that G is k-chromatic. The minimum
number of colours needed to colour G is called the chro-
matic number of G and is denoted by χ(G), χ(G)≤ |V |.
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3.1 Planar graphs and maps

3.1.1 About planar graphs

Although graphs are usually presented two-dimensionally,
i.e. in a plane, on paper or screen, it should be noted that
each graph can always be presented in three-dimensional
Euclidean space without the edges being crossed. The
proof of this property is simple and can be found for ex-
ample in [14]. In this section we deal with requirements
needed for a graph drawn in a plane to have the specified
property.

Definition 13 A graph is said to be planar if it can be
drawn in a plane so that its edges do not cross, (Fig. 5).

From the above definition it can be deduced that each sub-
graph of a planar graph is planar, and that each graph with
a nonplanar subgraph is nonplanaran.

Figure 5: The complete graph K4 is a planar graph and a
map

Definition 14 A map is a connected planar graph where
all vertices have degree at least 3. A map divides the plane
into a number of regions or faces (one of them infinite).
The term degree of a region, written deg(r), refers to the
length of the cycle that surrounds it. Regions are said to be
adjacent if they share an edge, not just a point.

Definition 15 Graphs G and H are said to be isomorphic
(G ≈ H) if there is a one-to-one correspondence between
their vertices and their edges so that adjacent vertices are
maped in adjacent ones.

Definition 16 Two graphs are said to be homeomorphic if
they are isomorphic or one from another can be obtained
by removing or inserting vertices of degree 2.

Note that homeomorphism preserves planarity, i.e. insert-
ing vertices of degree 2 does not have impact on planarity.

3.1.2 Some results related to planar graphs

Some Euler’s results and their consequences are listed be-
low. Here we state some of the proofs, however, the other
proofs can be found in e.g. [14], [20].

1. In any map K the sum of degrees of all regions
equals to twice the number of edges in K.

2. “Euler’s formula”: Let G = (V,E) be a connected
planar graph with v = |V |, e = |E|, and let r denotes
the number of its regions. Then, v− e+ r = 2 .

3. If G = (V,E) is a simple connected planar graph
with the v vertices, e ≥ 3 edges and r regions, then
3r ≤ 2e and e≤ 3v−6. If G does not contain trian-
gles, i.e. the degree of each region is at least 4, then
e≤ 2v−4.

4. The graph K5 is not planar.
Proof: Indeed, in K5 we have v = 5 and e = 10,
hence 3v−6 = 9 < e = 10, which is in contradiction
with the previous result.

5. The graph K3,3 is not planar.
Proof: As K3,3 does not contain triangles, to be pla-
nar e ≤ 2v− 4 must be fulfilled, which in this case
leads to a contradiction, i.e. 9≤ 2 ·6−4 = 8.

6. Every simple planar graph contains a vertex of de-
gree lower than 6.

The following important result gives a necessary and suffi-
cient condition for a graph to be planar.

Theorem 2 (Kazimierz Kuratowski, 1930) A graph is
planar if and only if it contains no subgraph homeomor-
phic to K5 or K3,3.

For example, graphs given in Fig. 6 are not planar.

(a) (b)

Figure 6: Examples of non-planar graphs

Indeed, graph (a) is graph K3,3, (Fig. 7):
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Figure 7: Graph K3,3

while graph (b) is homeomorphic to graph K5, (Fig. 8):

Figure 8: A graph homeomorphic to graph K5

3.1.3 Every planar graph is 6-colourable

The claim will be proved by induction on the number of
vertices of a graph.

For the base case we take the claim every graph with at
most 6 vertices is 6-colourable. Let G be a simple planar
graph with n vertices, and let all the simple planar graphs
with n− 1 vertices be 6-colourable. We consider graph G
has a vertex of degree at most 5, say v.G−v is a graph with
n− 1 vertices and as such is 6-colourable. As v has five
neighbours, simply colouring it with the remaining colour
out of 6, a proper 6-colouring of G is obtained.

3.1.4 Every planar graph is 5-colourable (Kempe, Hea-
wood)

For the proof, we use again induction on the number of
vertices of a graph.

The result holds trivially if G has one vertex. Let us assume
G is a simple planar graph with n vertices, and let all the
simple planar graphs with n− 1 vertices be 5-colourable.
We take in account that within G there is a vertex v of de-
gree at most 5. G− v is a graph with n−1 vertices and by
the induction hypothesis, is 5-colourable. Now we have to
assign a colour to v.

The claim of the theorem holds for deg(v) = 5 since in that
case it would be sufficient to colour v with the one remainin
colour.

Hence, we may assume and v has five neighbours coloured
differently. For being all mutually adjacent to each other
would mean K5 is a subgraph of G, being in contradiction
with the assumption that G is planar. Therefore, at least

one pair of vertices is not connected. Let v1 and v3 be the
vertices in question. Contracting the edges vv1 and vv3,
we get a graph with n− 2 vertices being 5-colourable by
the induction hypothesis. After performing the colouring,
we invert the process, i.e. we stretch the contracted edges.
Since v1 and v3 are not adjacent it causes no problem if
being of the same colour. As for the neighbours of v one
needs now 4 colours, we simply colour v with the one re-
maining colour.

3.2 Dual graph of a map

Definition 17 Map colouring is the act of assigning dif-
ferent colours to different regions (faces) of a map in a way
that no two adjacent regions (regions with a boundary line
in common) have the same colour. We now define a map to
be k-colourable if its faces can be coloured with k colours.

Similarity between the above definition and the one defin-
ing graph colouring is obvious. In order to show the
colouring of a map to be equivalent to the vertex colour-
ing we need a concept of the dual map, also known as
geometrical dual.
Creating a dual map for a given map K is based on a cor-
respondence (dualism) reflected in a following way:

region↔ graph vertex

adjacent regions↔ adjacent vertices

map colouring↔ colouring graph vertices

The procedure is as follows: A point within each region of
a map K needs to be selected. If two regions are adjacent,
points need to be connected with a curve. These curves can
be drawn so that they do not intersect. The result is a new
map K∗, called the dual of K (Fig. 9). Any colouring of
the regions of a map K correspond to vertex colouring of
the dual K∗.

Figure 9: From map K to its dual K∗
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It is easy to see that K being planar and connected entails
its geometric dual K∗ to be planar and connected graph as
well. Even more is fulfilled:

Theorem 3 Let K be a planar connected graph with v ver-
tices, e bridges and r regions, and let its dual K∗ has v∗

vertices, e∗ bridges and r∗ regions. Then, v∗ = r, e = e∗,
r∗ = v.

Proof: v∗ = r follows at once from the definition of a
dual graph. As there is a bijection between the edges of
K and the edges of K∗, we have e = e∗, and as K∗ is
planar and connected, applying Euler’s formula one gets
r∗ = 2− v∗+ e∗ = v �

As mentioned before, any colouring of the regions of a map
K correspond to vertex colouring of the dual K∗ (Fig. 9).
As a concequence, we have the following result.

Theorem 4 A map K is region (face) k-colourable if and
only if the planar graph of its geometrical dual K∗ is vertex
k-colourable.

For the proof see [14].

And finally,

Theorem 5 The four-colour theorem for maps is equiva-
lent to the four-colour theorem for planar graphs.

For the proof see [20].

4 The four colour theorem

The four colour problem was defined as Francis Guthrie
(1831-1899), the student of the University in London in
1852 was given the task to colour the map of English coun-
ties with as few colours as possible. He concluded that 4
colours were sufficient to complete the task with the coun-
ties sharing a common border being coloured with differ-
ent colours. He wanted to find out whether each map in
a plane or on a sphere can be coloured with 4 colours at
the most with the neighbouring countries being coloured
with various colours. It implies the fact that each coun-
try presents one coherent area. This question shall initiate
a great number of attempts to find the answer by mathe-
maticians and laypersons, which shall last for more than a
century making this theorem one of the issues remaining
unproven for the longest period of time. The main “tool”
that the mathematicians will use in solving this problem
will be the Graph Theory.

4.1 Historical overview

4.1.1 Francis Guthrie first noticed the problem

Although August Möbius, a German mathematician and
astronomer mentioned the four colour problem in one of
his lectures held in 1840, it is considered that Francis
Guhrie first posed the problem.

Francis Guthrie was a versatile person who was active in
many areas. He was a very efficient barrister, acknowl-
edged botanist (two plants were named after him: Guthriea
capensis and Erica Guthriei), but first of all an excellent
mathematician. However, since he could not find the solu-
tion to the four colour problem, he sent his notes with his
brother Frederick to their mutual professor Augustus De
Morgan. Augustus De Morgan (1806-1871) was a promi-
nent English mathematician, a professor at the University
in London who was very intrigued by this problem. Since
he did not know the answer, he wrote a letter on October
23, 1852 to his colleague and friend, Sir William R. Hamil-
ton in Dublin where he presented the statement and gave an
example showing that four colours suffice. He wrote in his
letter as follows, (Fig. 10):

”A student of mine asked me to give him a reason for a fact
which I did not know was fact - and do not yet. He says that
if a figure be anyhow divided and the compartments differ-
ently coloured so that figures with any portion of common
boundary line are differently coloured – four colours may
be wanted. I cannot find an example where five colours are
needed. If you retort with some very simple case, I think I
must do as the Sphynx did. . .” [23]

Figure 10: Display of the original letter [5]
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Sir Hamilton, however, was not interested. Therefore, De
Morgan published the problem in 1860 in a literary jour-
nal Athenaeum. The American mathematician, philoso-
pher and logician Charles Sanders Pierce learned about the
problem probably from the journal, and tried to solve it.
Although it was said that he managed to solve it, the proof
has never been published.

4.1.2 Arthur Cayley refreshes the problem

After the year 1860, in the period of about 20 years, the
mathematicians almost completely stopped to be interested
in the four colour problem until the British Arthur Cayley
(1821 - 1895) “revived” the problem in 1878 at the meet-
ing of the London Mathematical Society. He was namely
concerned if anyone of the participants at the meeting man-
aged to find a solution of this problem. Cayley was a math-
ematician and barrister, as well as a professor at the Uni-
versity in Cambridge. He was the youngest person that
was elected a professor at the university in the 19. century.
In 1879, he published an article in the journal Proceedings
of the Royal Geographical Society. In this article, he ad-
mitted that he could not prove the statement in spite of the
efforts made, but he came to some important conclusions:

– it is sufficient to observe only the maps where exactly
three countries meet in each node, so called cubic maps.
Namely, if more than three countries meet in some node,
then a small circular “patch” is put on that node, the map
thus obtained is coloured, and then the patch simply re-
moved, (Fig. 11);

Figure 11: Putting and removal of a “patch” when colour-
ing a map where five countries meet in a node

– if the four colour theorem was true, then map colour-
ing could be performed in such a way that all coun-
tries located along the map edge are coloured with three
colours at the most;

– if an arbitrary map consisting of n countries is already
coloured with four colours and if we add one more
country to this map, then a new map consisting of n+1
countries can be coloured with four colours.

The previous conclusion inspired Cayley to consider
whether the problem could be solved by using the method
of mathematical induction.

Hence, if a country is added to a map and correctly
coloured, it would refer to proving the induction step: pre-
suming that all maps with n counties can be coloured with
4 colours, it would mean also that all maps with n+1 coun-
ties can be coloured with 4 colours.

Consequently, the Theorem would thus be proved. How-
ever, there are too many combinations and ways in which
one country can be added to some map. It is also a problem
to attribute a colour to a new country. In some situations, it
is trivial. However, there are cases when the colour needs
to be changed for a large number of coloured countries in
order to colour a new country correctly. For n = 1,2,3 and
4, the statement is trivial. Then, it could be derived from
the statement for n = 4 that the Theorem is valid also when
n = 5, if it is valid for all maps with 5 countries, it would
be valid also for all maps with 6 countries, etc. Thus, the
statement would be valid generally for all maps. It was
very difficult to find a method to enlarge a map from n to
n+ 1 countries that would be generally valid [7]. This is
why Cayley decided to try to solve a problem by contra-
diction.

The basic idea when proving by contradiction is to assume
that the statement we want to prove, say A, is false, i. e.
¬A is true, and then show that this assumption leads to
falsehood. Analogously, if a statement ¬(A⇒ B) leads to
contradiction, it follows that A⇒ B is true.

It is first presumed that there are maps that cannot be
coloured with 4 colours. A map with the smallest number
of countries is selected that can be coloured with 5 or more
colours. Such map is defined as the minimal counterex-
ample. Then, the following statement is valid: the minimal
counterexample cannot be coloured with four colours, but
any map with fewer countries can be coloured with four
colours. Hence, in order to prove the four colour theorem,
it is necessary to prove that the minimal counterexample
does not exist.

The next figure shows that the minimal counterexample
does not contain a country that has only two neighbours.
The following procedures is applied: if one edge is re-
moved, a map with one country less is obtained that can
be coloured with 4 colours at the most. The removed edge
is then brought back to the map. The country with two
coloured neighbours can be coloured with one out of two
remaining colours (Fig. 12).

Original
map

New map Coloured
new map

Coloured

original map

Figure 12: A procedure applied for a country that has only
two neighbours

Similar proof procedure will also be applied with the coun-
try having three neighbours. One edge is removed and 3
countries are obtained out of 4 countries. Such map can

105
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be coloured with 4 colours. Three countries are coloured
with three various colours, the removed edge is brought
back, and the fourth country is coloured with the remain-
ing fourth colour, (Fig. 13).

Original
map

New map Coloured
new map

Coloured

original map

Figure 13: Colouring countries having three neighbours

However, there is a problem when applying the method of
removing and restoring to the countries with 4, 5 or more
neighbors, (Fig. 14 and Fig. 15).

Original
map

New map Coloured
new map

Coloured

original map

Figure 14: The case when a map contains a square

Original
map

New map Coloured
new map

Coloured

original map

Figure 15: The case when a map contains a pentagon

4.1.3 Maps and Euler polyhedra

Leonhard Euler played an important role in proving the
four colour conjecture with his findings and research that
will later on be used by mathematicians. Dealing with reg-
ular polyhedra, he made an important discovery, namely a
formula (”Euler formula”) that states that:

number of faces − number of edges + number of verteces = 2.

The formula has many applications and can be generalized
in various ways with one of them being used to handle pla-
nar graphs, i.e. maps (Chapter 3.1.2).

The connection between a map and a polyhedron is
achieved by projecting a polyhedron from one point to a
plane (Fig. 16). The faces of polyhedron in a plane projec-
tion represent countries/regions where one face is observed
as the exterior of the projection, and the edges are actually
boundary lines of countries. On the other hand, every cubic

map, i.e. the map on which exactly three countries meet in
each vertex, can be drawn onto a sphere and then, it can
be imagined that it presents some polyhedron. In this case,
the problem of colouring a spherical map is identical to the
problem of colouring a map in the plane [22].

Figure 16: Projection of a polyhedron from a point into the
plane [22]

A direct consequence of Euler’s formula is the so called
enumeration formula [7]. Using this formula one can count
the regions, edges and vertices of a map that has r2 re-
gions with exactly two neighbors, r3 regions with exactly
3 neighbors, r4 regions with exactly 4 neighbors, etc.

Euler used the enumeration formula for proving the”only 5
neighbors” theorem, i.e. that every cubic map has at least
one region with five or fewer neighbors. In addition, if a
map does not contain any biangle or a triangle and not a
single square, it must contain at least 12 pentagons. Simi-
larly, it can be concluded the following: if a cubic map con-
sists entirely of pentagons and hexagons, then it must have
exactly 12 pentagons (for the proofs see [23]). Although
Arthur Cayley had failed to prove that the minimum coun-
terexamples do not exsist, his idea proved useful because it
was used to prove somewhat weaker claim, the six – colour
theorem.

4.2 Kempe “solves” the problem

Sir Alfred Bray Kempe (1849-1922) was also a barrister
and mathematician. He finished his studies at the Trin-
ity College, Cambridge where he attended the lectures of
Arthur Cayley. He was also present at the meeting of the
London Mathematical Society where Arthur Cayley spoke
about the problem. He succeeded to apprehend the issues
of 4 colour theorem, and a year later he published an article
in the American Journal of Mathematics where he claimed
to have managed to solve the problem successfully. The
procedure of Kempe’s method of colouring any map can
be presented in all of the following six steps:
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1. Find a country on the map that has 5 or less neigh-
bors (it exists according to Theorem of “only 5
neighbors”);

2. Cover the country in question with a piece of blank
paper of similar shape, just a little bigger;

3. Extend all borders that touch the “patch” so that they
meet at one point on the paper - as if the selected
country has been reduced to one point (with this pro-
cedure the number of the countries on the map is re-
duced by 1), (Fig. 17);

Figure 17: Reducing the number of countries on a map

4. Repeat the three previous steps until the initial map
is reduced to a map with exactly one country;

5. Colour the only remaining country with any of the
four given colors;

6. Reverse the upper process: remove “patches” all the
way back until you get the initial map and colour ev-
ery “restored” country with different color from the
neighbor along the way [8].

Now we face the problem that Cayley couldn’t solve, i.e.
how to color the country which has 4 or 5 neighbors.
Kempe has solved this problem by using the method of
chains.

4.2.1 Method of Kempe chain

Kempe assumed that the country K that needs to be
coloured has a square form, i.e. borders with 4 countries.
He then selected two countries that do not share borders
with each other. Fig. 18 presents the country K and two
not neighbouring countries that share their border with the
country K. They are coloured in black and yellow colour.
Now, on both of them, we continue with a line of black-
yellow coloured countries. These lines can be connected
in such a way that they make a closed circle that is then
called a chain. Two cases may occur when coloring a map
by means of this method, both shown in Figure 18.

(a) (b)

Figure 18: Two possible outcomes when using the Kempe
chain method

Fig. 18 a) presents the first case of colouring the country
K. It can be seen on the figure that the black neighbour of
K is not connected with the yellow neighbour of K. Then
it is possible to re-colur the black neighbour of the coun-
try K, e.g. with yellow colour. Black colour remains then
available for the country K so that the map can be in accor-
dance with the theorem. This procedure is shown on Fig.
19.

Figure 19: Colour replacement in the line

In the case presented on Fig. 18 b), the previous procedure
of colour replacement shall not be successful. However,
the chain of black and yellow countries makes a loop that
starts and ends in the country K. Two other neighbours can
be seen on Fig. 20: blue and yellow. It is not possible to
join the chains of these two neighbours because they are in-
terrupted by a black-yellow loop. The method is therefore
applied similarly as in the first case: if a blue neighbour
changes the colour into yellow, and the colours of the en-
tire blue-yellow branch are replaced, the country K can be
coloured with the remaining blue colour.

Figure 20: Replacement of yellow and blue

It is herewith proved that no minimal counterexample
contains “a square”. It is namely sufficient to have 4
colours for the “square”. It would be necessary to prove
furthermore that the minimal counterexample does not
contain a pentagon. The pentagon is surrounds by 5 coun-
tries that are already coloured with 4 colours. Kempe
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solved this problem by selecting two neighbours of P that
do not touch each other: in this case, the yellow and red
neighbour “above” and “below” P as presented on Fig. 21.

Figure 21: Pentagon P and its neighbours

If the above yellow-red line is not connected to the red-
yellow line below, then the colours of the neighbours of
the country P can be replaced, hence the yellow neighbour
of P becomes red. Thus, yellow colour is left as a possible
colour for P, as it is presented on Fig. 22.

Figure 22: Yellow neighbour of P becomes red

If the “above” yellow-red line on Fig. 21 is connected with
the red-yellow line “below” the country P, then the blue
neighbour of the country P can be observed, as well as
red-blue and blue-red lines. Such example is presented on
Fig. 23.

Figure 23: The red-yellow chain

Consider the situation given on Fig. 22. If the blue-red
line “above” was not connected with the red-blue line “be-
low”, the blue neighbour of the country P can be coloured
with red colour, and all countries in the blue-red line can be
re-coloured. In this way, another red-blue line is obtained.
Thus, only blue colour is left for the country P as presented
on Fig. 24.

Figure 24: Blue neighbour of P becomes red

However, if the chains are linked, then there are two loops
together with the previous one. Such situation is presented
on the next figure.

Figure 25: The blue-yellow and the blue-green chain

It can be seen on Fig. 25 that blue-yellow line on the left
side of the country P cannot be connected with the blue-
yellow line on the right side of the country P. The colours
of the blue-yellow line on the right side can then be re-
placed. The blue-green line on the left side cannot be con-
nected with the blue-green line on the right side, hence,
the blue-green line on the left side can be re-coloured. If
the lines are re-coloured simultaneously, the country P will
have the neighbours in yellow, red and green colour, and it
can be coloured with blue colour, as presented on Fig. 26.

Figure 26: P is coloured blue

Hereby, the procedure of colouring the map to which the
country pentagon has been brought back is completed. Us-
ing the above described procedure of colouring the map
that has a country with five neighbours, Kempe found a
proof that the minimal counterexample does not contain
a pentagon. It is, however, in contradiction with the “five
neighbours” theorem according to which every cubic map
contains at least one country with five or less neighbours.
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According to Kempe, the four colour theorem would thus
be proved. After publishing the article, Kempe was recog-
nized as the person who proved the theorem. His article
was published in the American Journal of Mathematics.

4.2.2 The flaw in Kempe’s proof

It took 11 years to spot the mistake in Kempe’s proof. In
1890, Percy John Heawood (1861 - 1955), a professor of
mathematics from Durham denied Kempe’s theory. After
that, Kempe’s proof became the most famous inaccurate
proof in the history of mathematics.

In his article Map-colour Theorem, published in the Quar-
terly Journal of Mathematics in 1890, Heawood explained
that the error occurred at the end of the proof in determin-
ing the colour of the country with pentagon form. Hea-
wood proved that there were maps on which it is impos-
sible to make changes of colours in two different chains
simultaneously.

Figure 27: Map with 25 countries

On Fig. 27, each of the twenty five countries is coloured
with one of the four colours: red, golden, yellow or green,
except the central pentagon P. It was proved that this map
can be coloured only with four colours.

The application of Kempe’s methods in determining the
pentagon P provides the re-colouring of two neighbours of
the pentagon P.

Each of these two changes is allowed if it is done sepa-
rately. The problem occurs if it is attempted to make the
changes simultaneously.

Two neighbouring countries marked with the letter A (yel-
low colour) and B (golden colour) become red as it is
presented on Fig. 28. The basic principle of 4 colour
problem implying that the neighbouring countries should
be coloured with various colours is hereby undermined.
Hence, one came to the conclusion that Kempe’s method
of proof was wrong.

Figure 28: Contradiction

In 1891, Kempe admitted publicly that he was wrong.
However, he managed to notice the mistake in the proof
Heawood did not know how to correct it. In his second
paper, Heawood approached the problem using a number
theory, but even this attempt to prove the four colour theo-
rem ended unsuccessfully. Using Kempe’s ideas, Heawood
was able to prove the Five colour theorem. Although the
Five colour theorem was weaker than the Four colour the-
orem, it still represents one more step that will be needed
to prove the initial problem.

After his proof had been denied, Kempe approached the
problem in somewhat different way; in each country on a
map, he highlighted one point (e.g. capital city) and then
connected the points representing the neighbouring coun-
tries with lines. The new structure matched the structure of
a graph. The problem of determining the colours of indi-
vidual countries was reduced to assigning it to points, but
in such a way that the neighbouring points were named dif-
ferently. The importance of this idea is related to the fact
that in such a way the problem of map colouring was trans-
ferred into graph theory (Fig. 9). Based on this idea and
with the help of computers, the Four colour theorem will
finally be proved.

4.3 Heesch, Appel and Haken finally solve the
problem

The conjecture on four colours is articulated so simply that
it was presumed someone would find an elegant and simple
solution one day. However, something completely differ-
ent happened.

In 1904, a new idea about the proof of this conjecture
occurred. This approach started with the search for un-
avoidable sets. Before defining this term, it is necessary to
define the terms triangulation and configuration. A plane
graph is a triangulation if it is connected and every region
is a triangle. A configuration is a part of triangulation in-
cluded inside the area (map). The unavoidable set is then
defined as a set of configurations with the property that any
triangulation must contain one of the configurations in the
set. Unavoidable set is actually a set of countries out of
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which at least one country must be located on every map.
Since it is sufficient to observe only cubic maps, Fig. 29
presents some countries that a cubic map must contain.

digon triangle square two pentagons pentagon
hexagon

Figure 29: Unavoidable set for a cubic map

It can be deduced from the figure that if a map does not
contain digon (a country with two neighbours), triangle or
rectangle, it must contain either two connected pentagons
or connected pentagon and hexagon.

Among the mathematicians who started to search for un-
avoidable sets, George David Birkhoff (1884 - 1944) made
a distinguished contribution in this area. Birkhoff was the
first to introduce the concept of reducibility. A configura-
tion is reducible if it cannot be contained in a triangulation
of the smallest graph which cannot be 4-coloured. It means
that reducible configuration is a set of countries that can-
not appear in the minimal counterexample. Minimal coun-
terexample is, as it has been defined earlier, a map that con-
tains the smallest number of countries and can be coloured
with 5 or more colours. From this follows that the minimal
counterexample cannot be coloured with 4 colours, but ev-
ery map with smaller number of countries can. Hence, in
order to prove the Four colour theorem, it is necessary to
prove that the minimal counterexample does not exist.

The research and search for unavoidable sets and reducible
configurations were developing separately until German
mathematician Heinrich Heesch (1906 - 1995) unified
those 1960. His goal was namely to find an unavoidable
set of reducible configurations. If a set is unavoidable, then
each map must contain at least one of the configurations
from that set, and since every configuration is reducible,
it cannot be contained in a minimal counterexample. It
would thus be proved that there are no minimal counterex-
amples, and consequently, the 4 colour theorem would be
proved. He therefore developed an algorithm naming it
D-Reduction that he adapted to computer methods (pro-
gramming) [24]. This algorithm is used to prove that every
graph contains a subgraph from a specific set, i.e. that ev-
ery map contains some map from an unavoidable set.

Heesch presumed that he would have needed to observe a
set of about 8900 configuration. However, certain prob-
lems appeared in his approach, as for example the inability
to test the reductions of some configurations, mostly be-
cause of a large number of vertices within some rings, i. e.
configurations that “wrap arround and meet themselves”
[17].

Figure 30: A set of configurations

In 1972, Wolfgang Haken, a student of mathematics,
physics and philosophy continued after a short collabora-
tion with Heesch to work with a programmer and math-
ematician Kenneth Appel on upgrading of Heesch’s idea.
They were focused on the improvement of Heesch algo-
rithm. After two years, John Koch joined them, and the
three of them succeeded together to create the programme
to be used in searching for unavoidable sets of reducible
configurations. Unlike Heesch, they manage to reduce the
number of ring vertices from 18 to 14 avoiding thus the
complications and simplifying the counting.

Using the programme for searching an unavoidable set of
reducible configurations, Appel and Haken, both from the
University of Illinois, managed to prove the assumption in
1976. Since there are too many possible configurations,
the proof could not be carried out without computer as-
sistance. The usage of computer in proving this problem
caused numerous discussions and disapprovals.

Still, Haken and Appel published the proof on July 22,
1976 that was based on the construction of the unavoidable
set of 1936 reducible configurations, and in 1977 all three
of them published the proof in Illinois Journal of Mathe-
matics with the unavoidable set of 1482 reducible config-
urations. The proof was published in two parts, and the
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text was accompanied by the material on microfilm with
450 pages of various diagrams and detailed explanations.
However, Ulrich Schmidt found an error in the programme
in 1981 that was soon corrected.

Regardless of the difficulties, the four colour problem
gained the status of a theorem for the second time. The
following comment illustrates the opinion of a great num-
ber of mathematicians at that time:

”Good mathematical proof is like a poem - this is a tele-
phone directory”

Appel and Haken published therefore in 1986 an article
where they described their methods in details strongly de-
fending the proof and rejecting any doubt, and three years
later they also published a book titled Every Planar Map is
Four Colourable.

Due to the complicated nature of part of the proof that
can’t be checked without computer assistance, Paul Sey-
mour, Neil Robertson, Daniel Sanders and Robin Thomas
decided to simplify the proof and to eliminate all doubts.
However, they gave up soon after they had started to study
it. They decided to develop their own proof based on the
ideas of Appel and Hesch.

As they [17], wrote in the article, the concept of the proof
itself is identical to the concept of Appel and Haken. They
tested the set of 633 configurations proving that each of
them is reducible. Furthermore, they proved that at least
one of the 633 configurations appears in a planar graph
with 6 vertices (minimal counterexsample). They have
thus proved the unavoidability. This part shows the largest
difference between their proof and the one made by Ap-
pel and Haken. In order to prove the unavoidability, they
used the method of discharging that unlike with Appel and
Haken has 32 rules as related to 300+.

The article itself and their proof were presented at the In-
ternational Congress of Mathematicians in Zürich in 1994
where they finally proved that Appel and Haken were right.
The proof itself was also upgraded and improved and con-
tained 633 configurations instead of 1482.

Fig. 31 presents 17 out of 633 configurations that were
used in this proof. When drawing the configurations, they
used Heesch’s method of marking. The forms of vertices
present the degree of a vertex. Black circle represents the
vertex of degree 5, the point (shown on the figure without
a symbol) has the vertex degree 6, empty circle represents
the vertex of the degree 7, the triangle the vertex of degree
9, and the pentagon represents the vertex of the degree 10.

Figure 31: 17 out of 633 configurations [17]

5 Application within cartography

Each map in the plane can be coloured with four colours
such that neighbour areas are in different colours, as it is
shown in previous chapters. Application of four colour the-
orem for colouring political maps is tested in this chapter.
We use a world political map as an example. The software
used is QGIS [25] with its unofficial plugin TopoColour
[26], which implements algorithms for graph colouring.

Geographical maps of administrative units, i.e. political
maps, have some specialities that should be considered
prior to the application of graph colouring algorithms.

As it is defined in 3.1.1, neighbouring countries (admin-
istrative units) are those which shares common boundary
line. Existence of common point does not imply neigh-
bours. Geographical maps are abstract and generalised
models of reality, and it is possible that some short bound-
ary line in reality is represented as point, due to model or
cartographic generalisation. Application is therefore pos-
sible only to model of geographical reality, users should
be aware of these constraints, and in case of unexpected
results, know how to deal with it.

Maritime boundaries are often not shown on political
maps, and almost never are administrative areas on the sea
coloured with different colours. This is certainly true for
world political maps, where colouring is usually applied
to land parts of countries. This means that countries that
share only maritime boundaries will not be considered as
neighbours and could be coloured automatically with the
same colour.

Further, countries are often consisted of more or less dis-
tant land parts, e.g. islands or exclaves. For example, some
countries at certain administrative level contains overseas
territories. This could potentially lead to non-planar graphs
representing neighbours.

5.1 Methodology and programs used

The data used for the world countries were taken from
GADM database of Global Administrative Areas [27].
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There is no unique solution for model of countries and its
boundaries, and it is often result of the point of view of
certain diplomacy. For the purpose of this paper, we will
not change the original data, because we will use it for the
purpose of demonstration of application of graph colour-
ing, and not for making special world political map. The
dataset consists of 256 top-level administrative units, i.e.
countries.

Data was first loaded in QGIS as separate vector layer and
transformed to Eckert VI map projection, one of map pro-
jections suitable for world maps.

TopoColour plugin implements algorithms from graph
colouring theory with purpose of colouring polygons in
vector layer. It also allows creating graph representing de-
tected neighbours in dataset.

Typical procedure for colouring areas in vector layer is as
follows:

– Start the TopoColour plugin and select polygon vector
layer and one column in attribute table that has unique
value for each administrative unit. Finding of neigh-
bours starts. It can take a while for complex geometries
(e.g. up to one hour or more).

– When neighbours are found, user selects “greedy”
or “random” algorithm and starts the computing of
colours. Number of colours needed is given as a result.
For “random” algorithms, successive computations can
give different number of colours.

– Save the colour numbers to one column in attribute table
and style the layer.

Greedy algorithm gives five colours for political map of the
world. It does not guarantee optimum number of colours.
Brute force approach for four colours and 256 countries
would yield 4256 different colour assignments, and it is not
feasible even with modern computers. Random algorithm
usually gives six or seven colours for this political map.

After computation of colours is done, layer can be styled
in order to get nice coloured map (Fig. 32).

It is known that world political map can be coloured with
four colours. In order to achieve this we start with au-
tomatically defined colours, eliminate less used colour by
replacing it with one of the four colours, and rearranging
the colours of neighbours. It is not too hard to accomplish
that, and result can be seen on Fig. 33. This also means that
graph representing neighbouring countries is planar (Fig.
34) and algoritms used are not giving optimal solution.

Figure 32: World political map coloured with five colours obtained by greedy algorithm implemented in QGIS plugin Topo-
Colour. Less used colour is blue, and is a good candidate for manual elimination.
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Figure 33: Manual elimination of the fifth colour from automatically coloured world political map gives a map with four
colours.

Figure 34: Graph representing neighbouring countries
(clipped to Africa region)

6 Conclusion

Graph colouring is widely applied in many scientific fields.
In this paper, the focus is on the application in cartogra-
phy. Since the map colouring with four colours is rarely
mentioned in cartographic books, we were motivated to re-
search this connection in this paper.

The four colours conjecture has proved to be one of the
greatest and long lasting problems in mathematics. The
problem itself has attracted the attention both of mathe-
maticians and laypersons. It took more than one century
to prove this conjecture, which was achieved only with the
development of information science and with computer as-
sistance. It is also the first more significant theorem that
has been proved in such a way. The theorem faced a lot
of negative comments because of that and was not well ac-
cepted by the mathematical public of that time.

Algorithms implementing graph colouring and four colour
theorem, which are still not so widely available in carto-
graphic software, provide analysis and processing of map
data with aim of colouring administrative units or creating
political maps. In this process one should take care of ge-
ometry of boundaries because even very small differences
in coordinates can give unexpected results. Special care
has to be given to model of geographical reality, e.g. defi-
nition of administrative entities, maritime booundaries be-
tween countries, overseas territories etc. We can conclude
that automatization of colouring of administrative units can
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greatly help mapmakers, but for the final map, manual in-
terventions are still required.
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[10] T. JOGUN, Izrada političke karte svijeta iz podataka
Openstreetmapa, master’s thesis, Faculty of Geodesy
University of Zagreb, Zagreb, 2016.

[11] S. LIPSCHUTZ, M. LIPSON, Discrete Mathematics
(3rd Edition) , Schaum’s Outline Series, McGraw-
Hill, New York, 1997.

[12] M. MONMONIER, How to Lie with Maps (2nd Edi-
tion), University of Chicago Press, Chicago, London,
1996.
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grafike.

UPUTSTVA ZA PREDAJU RADA. Znanstveni radovi trebaju biti napisani na engleskom jeziku, a stručni na hrvatskom ili
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Sonja Gorjanc
sgorjanc@grad.hr

Ema Jurkin
ema.jurkin@rgn.hr
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