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ABSTRACT

The problem of colouring geographical political maps
has historically been associated with the theory of graph
colouring. In the middle of the 19th century the follow-
ing question was posed: how many colours are needed
to colour a map in a way that countries sharing a border
are coloured differently. The solution has been reached by
linking maps and graphs. It took more than a century to
prove that 4 colours are sufficient to create a map in which
neighbouring countries have different colours.
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O problemu bojanja grafova s primjenom u kar-
tografiji

SAŽETAK

Problem bojanja geografskih političkih karata povijesno je
vezan uz teoriju bojanja grafova. Polovicom 19. stoljeća
nametnulo se pitanje koliko je boja potrebno da bi se dana
geografska karta obojila tako da zemlje koje graniče budu
obojane različitim bojama. Do rješenja se došlo povezi-
vanjem karata i grafova. Bilo je potrebno vǐse od jednog
stoljeća kako bi se dokazalo da su četiri boje dovoljne za
obojiti (geografsku) kartu na takav način da susjedna po-
dručja (države) imaju različitu boju.

Ključne riječi: graf, bojanje grafa, karta, bojanje karte,
teorem o 4 boje

1 Introduction

The problem of colouring geographical political maps
has historically been associated with the theory of graph
colouring. In the middle of the 19th century the follow-
ing question was posed: how many colours are needed
to colour a map in a way that countries sharing a border
are coloured differently. The solution has been reached by
linking maps and graphs. It took more than a century to
prove that 4 colours are sufficient to create a map in which
neighbouring countries have different colours.

In graph theory, graph colouring is a special case of graph
labelling. It is about assigning a colour to graph elements:
vertices, edges, regions, with certain restrictions.

With this paper we would like to assess the elements of the
theory of graph colouring with an emphasis on its applica-
tion on practical problems in the field of cartography.

A mathematical basis for map colouring will be given
along with the chronology of proving The Four Colour
Theorem. In addition, world political map will be shown,
to determine the minimum number of colours needed to
colour a map properly in practice.

2 Elements of Graph Theory

Graph Theory is a special branch of combinatorics closely
related to applied mathematics, optimization theory and
computer sciences. The simplest and most frequently ap-
plied combinatorical structure is a graph, and exactly the
simplicity of this structure provides easy transfer and mod-
elling of practical problems in graph terms, as well as the
application of known proved theoretical concepts, algo-
rithms and abstract ideas to particular graphs.

2.1 Historical overview of Graph Theory

Graph Theory has rather precise historical aspects. The
first paper in the Graph theory was the article “Solutio
problematis ad geometriam situs pertinentis”, i.e. “The
Solution of a Problem Relating to the Geometry of Posi-
tion” by a well known Swiss mathematician Leonhard Eu-
ler (1707-1783) from the year 1736. In this paper, “the
Königsberg Bridge Problem” was defined and solved. The
Prussian city Königsberg, now Kaliningrad (Russia) occu-
pies both banks of the river Pregolya. The river divides the
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city into four territories, two river islands and two coastal
areas mutually connected with seven bridges.

The inhabitants of Königsberg sought to solve the issue
that troubled them for many years: Is it possible to walk
around the city crossing each of the seven bridges once
and only once and to finish the walk through the city at the
starting point?

Leonhard Euler eliminated all features of the terrain except
the land masses and bridges presenting it by means of a
graph (Fig. 1); the points represent the coastal parts (B and
C) and the islands (A and D), while the bridges are pre-
sented as graph edges, i.e. as connections of points. His
answer to the question mentioned above was clear: such
walk is not possible if each part of mainland is not con-
nected with the other parts with an even number of bridges
(see Chapter 2.2).

Figure 1: The Königsberg bridges problem presented by a
graph

Although the origins of the Graph Theory date back as far
as the 18th century, it started to develop in the second half
of the 20th century. The first book dealing with the topic
of Graph Theory was written in 1936 by the Hungarian
mathematician D. König, and it is considered to be the be-
ginning of the development of Graph Theory as a separate
mathematical discipline. König unified and systematised
the earlier results offering the list of 110 published papers
where the term graph had appeared explicitly. Among the
authors of these papers are famous names like G. Kirchhoff
(1824 - 1887) and A. Cayley (1821 -1895). Ever since,
graph has become a generally accepted term [6].

Greater development of research in the field of Graph The-
ory and its applications started in the 60-ties of the twen-
tieth century and has been continuing parallel with the de-
velopment of information technologies up to the present
day.

2.2 Graph Theory basic concepts and definitions

Definition 1 A graph G consists of a finite non-empty set
V = V (G) whose elements are called vertices, points or
nodes of G and a finite set E = E(G) of unordered pairs of
distinct vertices called edges of G.

Such a graph we denote G(V,E) when emphasizing the two
parts of G, (Fig. 2).

Figure 2: Example of a simple graph - The Petersen graph

Definition 2 An edge e = u,v is said to join the vertices
u and v, and is usually abbreviated to e = uv. In such a
case, u and v are called endpoints and they are said to be
adjacent. Further, vertices u and v are said to be incident
on e and vice versa, the edge e is said to be incident on
each of its endpoints u and v. Similarly, two distinct edges
e and f are adjacent if they have a vertex in common.

Remark 1 If two or more edges connect the same end-
points, we call them multiple edges. An edge is called a
loop if its endpoints are the same vertex. The former defi-
nition of a graph permits neither multiple edges nor loops.
In some texts the term simple graph refers to the graph
without multiple edges and loops while the one permitting
them is called a multigraph. Most often it does not matter
whether we deal with a simple graph or a multigraf, and if
necessary, will be specially emphasized.

Definition 3 If the vertex set of a graph G can be split into
two disjoint sets X and Y so that each edge of G joins a
vertex of X and a vertex of Y, then G is said to be bipartite.
A complete bipartite graph is a bipartite graph in which
each vertex in X is joined to each vertex in Y by just one
edge. If r is the number if vertices in X and s is the number
of vertices in Y we denote this graph Kr,s, (Fig. 3).

Figure 3: Complete bipartite graphs K1,3, K2,3, K3,3

Definition 4 For the two disjoint graphs G =
(V (G),E(G)) and H = (V (H),E(H)), their union G∪H
is defined by G∪H = (V (G)∪V (H),E(G)∪E(H)).
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Definition 5 A graph G is connected if it cannot be repre-
sented as the union of two graphs. Otherwise, it is discon-
nected. Any disconnected graph can be represented as the
union of connected graphs called connected components
of G. A graph is said to be finite if it has a finite number of
vertices and a finite number of edges, otherwise it is infi-
nite.

Graphs within this article shall be finite.

Definition 6 The degree of a vertex v in G, written deg
(v), is equal to the number of edges in G incident with v. It
shall be taken conventionally that a loop contributes 2 to
the degree of v. A vertex of degree zero is called an isolated
vertex and a vertex of degree 1 is an end-vertex.

Definition 7 Consider the graphs G = (V (G),E(G)) and
H = (V (H),E(H)). H is a subgraph of G if V (H)⊆V (G)
and E(H)⊆E(G). A subgraph H of G is said to be a span-
ning subgraph of G if V (H) =V (G).

Subgraphs are often obtained from a given graph by delet-
ing its vertices and edges. Specifically, if v is a vertex in
G, G− v is a subgraph of G obtained by deleting v and all
edges incident with v. Similarly, if e is an edge in G, G−e
is a subgraph of G obtained by deleting e from G. How-
ever, it is easily seen that contracting an edge of a graph
does not give a subgraph. Contracting an edge e from G
means removing it and identifying its ends u and v so that
the resulting vertex is incident with those edges that were
originally incident with u or v. Such a graph is denoted by
G|e.

Definition 8 A graph G is said to be complete if every ver-
tex in G is adjacent to every other vertex in G. A complete
graph with n vertices is denoted by Kn, (Fig. 4).

Kn : s is used to denote a complete graph with |V |= n and
|E|= s. It is easy to check that Kn has s = n(n−1)

2 edges.

K1 : 0 K2 : 1 K3 : 3 K4 : 6 K5 : 10

Figure 4: Some complete graphs

Definition 9 A walk in a graph G is an alternat-
ing sequence of vertices and edges of the form
v0,e1,v1,e2, . . . ,ek,vk, where each edge ei contains the ver-
tices vi−1 and vi, 1 ≤ i ≤ k. In a simple graph a walk is
determined by a sequence v0,v1, . . . ,vk, of vertices; v0 be-
ing the initial vertex and vk the final vertex. We say a walk

is from v0 to vk, or connects v0 to vk. A walk is closed if
the initial and final vertices are identified. The number k of
edges in a walk is called its length. A trail is a walk such
that all of the edges are distinct. A path is a walk such
that all of the vertices and edges are distinct. A circuit is a
closed trail, while a cycle is a closed path.

Definition 10 A connected graph G is called Eulerian if
there exists a closed trail containing every edge of G. Such
a trail is called an Eulerian trail. A non-Eulerian graph
G is semi-Eulerian if there exists a trail containing every
edge of G.

Let us now observe the theorem that solves the problem of
the Königsberg bridges.

Theorem 1 (Euler, 1736) A connected graph is Eulerian
if and only if each vertex has even degree.

For the proof see e.g. [20].

Considering now a graph given in Figure 1 in the light of
the above theorem, we conclude that the closed trail that
meets the required conditions does not exist.

From the proof of Theorem 1 arises,

Corollary 1 Any connected graph with two odd vertices is
semi-Eulerian. A trail may begin at either odd vertex and
will end at the other odd vertex.

3 Graph colouring

Definition 11 Consider a graph G. A (vertex) colouring
of G is an assignment of colours to the vertices of G such
that adjacent vertices have different colours. It is a map-
ping c : V (G)→ S. The elements of S are called colours.
If |S| = k, we say that c is a k-colouring. A colouring is
proper if adjacent vertices have different colours. A graph
is k-colourable if it has a proper k - colouring.

Each graph with n vertices is n - colourable, since each ver-
tex may be coloured with a different colour. Consequently,
the question is: what is the minimum necessary number of
colours to colour the graph properly.

Definition 12 If a graph G is k-colourable, but not (k−1)-
colourable, it is said that G is k-chromatic. The minimum
number of colours needed to colour G is called the chro-
matic number of G and is denoted by χ(G), χ(G)≤ |V |.
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3.1 Planar graphs and maps

3.1.1 About planar graphs

Although graphs are usually presented two-dimensionally,
i.e. in a plane, on paper or screen, it should be noted that
each graph can always be presented in three-dimensional
Euclidean space without the edges being crossed. The
proof of this property is simple and can be found for ex-
ample in [14]. In this section we deal with requirements
needed for a graph drawn in a plane to have the specified
property.

Definition 13 A graph is said to be planar if it can be
drawn in a plane so that its edges do not cross, (Fig. 5).

From the above definition it can be deduced that each sub-
graph of a planar graph is planar, and that each graph with
a nonplanar subgraph is nonplanaran.

Figure 5: The complete graph K4 is a planar graph and a
map

Definition 14 A map is a connected planar graph where
all vertices have degree at least 3. A map divides the plane
into a number of regions or faces (one of them infinite).
The term degree of a region, written deg(r), refers to the
length of the cycle that surrounds it. Regions are said to be
adjacent if they share an edge, not just a point.

Definition 15 Graphs G and H are said to be isomorphic
(G ≈ H) if there is a one-to-one correspondence between
their vertices and their edges so that adjacent vertices are
maped in adjacent ones.

Definition 16 Two graphs are said to be homeomorphic if
they are isomorphic or one from another can be obtained
by removing or inserting vertices of degree 2.

Note that homeomorphism preserves planarity, i.e. insert-
ing vertices of degree 2 does not have impact on planarity.

3.1.2 Some results related to planar graphs

Some Euler’s results and their consequences are listed be-
low. Here we state some of the proofs, however, the other
proofs can be found in e.g. [14], [20].

1. In any map K the sum of degrees of all regions
equals to twice the number of edges in K.

2. “Euler’s formula”: Let G = (V,E) be a connected
planar graph with v = |V |, e = |E|, and let r denotes
the number of its regions. Then, v− e+ r = 2 .

3. If G = (V,E) is a simple connected planar graph
with the v vertices, e ≥ 3 edges and r regions, then
3r ≤ 2e and e≤ 3v−6. If G does not contain trian-
gles, i.e. the degree of each region is at least 4, then
e≤ 2v−4.

4. The graph K5 is not planar.
Proof: Indeed, in K5 we have v = 5 and e = 10,
hence 3v−6 = 9 < e = 10, which is in contradiction
with the previous result.

5. The graph K3,3 is not planar.
Proof: As K3,3 does not contain triangles, to be pla-
nar e ≤ 2v− 4 must be fulfilled, which in this case
leads to a contradiction, i.e. 9≤ 2 ·6−4 = 8.

6. Every simple planar graph contains a vertex of de-
gree lower than 6.

The following important result gives a necessary and suffi-
cient condition for a graph to be planar.

Theorem 2 (Kazimierz Kuratowski, 1930) A graph is
planar if and only if it contains no subgraph homeomor-
phic to K5 or K3,3.

For example, graphs given in Fig. 6 are not planar.

(a) (b)

Figure 6: Examples of non-planar graphs

Indeed, graph (a) is graph K3,3, (Fig. 7):

102
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Figure 7: Graph K3,3

while graph (b) is homeomorphic to graph K5, (Fig. 8):

Figure 8: A graph homeomorphic to graph K5

3.1.3 Every planar graph is 6-colourable

The claim will be proved by induction on the number of
vertices of a graph.

For the base case we take the claim every graph with at
most 6 vertices is 6-colourable. Let G be a simple planar
graph with n vertices, and let all the simple planar graphs
with n− 1 vertices be 6-colourable. We consider graph G
has a vertex of degree at most 5, say v.G−v is a graph with
n− 1 vertices and as such is 6-colourable. As v has five
neighbours, simply colouring it with the remaining colour
out of 6, a proper 6-colouring of G is obtained.

3.1.4 Every planar graph is 5-colourable (Kempe, Hea-
wood)

For the proof, we use again induction on the number of
vertices of a graph.

The result holds trivially if G has one vertex. Let us assume
G is a simple planar graph with n vertices, and let all the
simple planar graphs with n− 1 vertices be 5-colourable.
We take in account that within G there is a vertex v of de-
gree at most 5. G− v is a graph with n−1 vertices and by
the induction hypothesis, is 5-colourable. Now we have to
assign a colour to v.

The claim of the theorem holds for deg(v) = 5 since in that
case it would be sufficient to colour v with the one remainin
colour.

Hence, we may assume and v has five neighbours coloured
differently. For being all mutually adjacent to each other
would mean K5 is a subgraph of G, being in contradiction
with the assumption that G is planar. Therefore, at least

one pair of vertices is not connected. Let v1 and v3 be the
vertices in question. Contracting the edges vv1 and vv3,
we get a graph with n− 2 vertices being 5-colourable by
the induction hypothesis. After performing the colouring,
we invert the process, i.e. we stretch the contracted edges.
Since v1 and v3 are not adjacent it causes no problem if
being of the same colour. As for the neighbours of v one
needs now 4 colours, we simply colour v with the one re-
maining colour.

3.2 Dual graph of a map

Definition 17 Map colouring is the act of assigning dif-
ferent colours to different regions (faces) of a map in a way
that no two adjacent regions (regions with a boundary line
in common) have the same colour. We now define a map to
be k-colourable if its faces can be coloured with k colours.

Similarity between the above definition and the one defin-
ing graph colouring is obvious. In order to show the
colouring of a map to be equivalent to the vertex colour-
ing we need a concept of the dual map, also known as
geometrical dual.
Creating a dual map for a given map K is based on a cor-
respondence (dualism) reflected in a following way:

region↔ graph vertex

adjacent regions↔ adjacent vertices

map colouring↔ colouring graph vertices

The procedure is as follows: A point within each region of
a map K needs to be selected. If two regions are adjacent,
points need to be connected with a curve. These curves can
be drawn so that they do not intersect. The result is a new
map K∗, called the dual of K (Fig. 9). Any colouring of
the regions of a map K correspond to vertex colouring of
the dual K∗.

Figure 9: From map K to its dual K∗
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It is easy to see that K being planar and connected entails
its geometric dual K∗ to be planar and connected graph as
well. Even more is fulfilled:

Theorem 3 Let K be a planar connected graph with v ver-
tices, e bridges and r regions, and let its dual K∗ has v∗

vertices, e∗ bridges and r∗ regions. Then, v∗ = r, e = e∗,
r∗ = v.

Proof: v∗ = r follows at once from the definition of a
dual graph. As there is a bijection between the edges of
K and the edges of K∗, we have e = e∗, and as K∗ is
planar and connected, applying Euler’s formula one gets
r∗ = 2− v∗+ e∗ = v �

As mentioned before, any colouring of the regions of a map
K correspond to vertex colouring of the dual K∗ (Fig. 9).
As a concequence, we have the following result.

Theorem 4 A map K is region (face) k-colourable if and
only if the planar graph of its geometrical dual K∗ is vertex
k-colourable.

For the proof see [14].

And finally,

Theorem 5 The four-colour theorem for maps is equiva-
lent to the four-colour theorem for planar graphs.

For the proof see [20].

4 The four colour theorem

The four colour problem was defined as Francis Guthrie
(1831-1899), the student of the University in London in
1852 was given the task to colour the map of English coun-
ties with as few colours as possible. He concluded that 4
colours were sufficient to complete the task with the coun-
ties sharing a common border being coloured with differ-
ent colours. He wanted to find out whether each map in
a plane or on a sphere can be coloured with 4 colours at
the most with the neighbouring countries being coloured
with various colours. It implies the fact that each coun-
try presents one coherent area. This question shall initiate
a great number of attempts to find the answer by mathe-
maticians and laypersons, which shall last for more than a
century making this theorem one of the issues remaining
unproven for the longest period of time. The main “tool”
that the mathematicians will use in solving this problem
will be the Graph Theory.

4.1 Historical overview

4.1.1 Francis Guthrie first noticed the problem

Although August Möbius, a German mathematician and
astronomer mentioned the four colour problem in one of
his lectures held in 1840, it is considered that Francis
Guhrie first posed the problem.

Francis Guthrie was a versatile person who was active in
many areas. He was a very efficient barrister, acknowl-
edged botanist (two plants were named after him: Guthriea
capensis and Erica Guthriei), but first of all an excellent
mathematician. However, since he could not find the solu-
tion to the four colour problem, he sent his notes with his
brother Frederick to their mutual professor Augustus De
Morgan. Augustus De Morgan (1806-1871) was a promi-
nent English mathematician, a professor at the University
in London who was very intrigued by this problem. Since
he did not know the answer, he wrote a letter on October
23, 1852 to his colleague and friend, Sir William R. Hamil-
ton in Dublin where he presented the statement and gave an
example showing that four colours suffice. He wrote in his
letter as follows, (Fig. 10):

”A student of mine asked me to give him a reason for a fact
which I did not know was fact - and do not yet. He says that
if a figure be anyhow divided and the compartments differ-
ently coloured so that figures with any portion of common
boundary line are differently coloured – four colours may
be wanted. I cannot find an example where five colours are
needed. If you retort with some very simple case, I think I
must do as the Sphynx did. . .” [23]

Figure 10: Display of the original letter [5]
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Sir Hamilton, however, was not interested. Therefore, De
Morgan published the problem in 1860 in a literary jour-
nal Athenaeum. The American mathematician, philoso-
pher and logician Charles Sanders Pierce learned about the
problem probably from the journal, and tried to solve it.
Although it was said that he managed to solve it, the proof
has never been published.

4.1.2 Arthur Cayley refreshes the problem

After the year 1860, in the period of about 20 years, the
mathematicians almost completely stopped to be interested
in the four colour problem until the British Arthur Cayley
(1821 - 1895) “revived” the problem in 1878 at the meet-
ing of the London Mathematical Society. He was namely
concerned if anyone of the participants at the meeting man-
aged to find a solution of this problem. Cayley was a math-
ematician and barrister, as well as a professor at the Uni-
versity in Cambridge. He was the youngest person that
was elected a professor at the university in the 19. century.
In 1879, he published an article in the journal Proceedings
of the Royal Geographical Society. In this article, he ad-
mitted that he could not prove the statement in spite of the
efforts made, but he came to some important conclusions:

– it is sufficient to observe only the maps where exactly
three countries meet in each node, so called cubic maps.
Namely, if more than three countries meet in some node,
then a small circular “patch” is put on that node, the map
thus obtained is coloured, and then the patch simply re-
moved, (Fig. 11);

Figure 11: Putting and removal of a “patch” when colour-
ing a map where five countries meet in a node

– if the four colour theorem was true, then map colour-
ing could be performed in such a way that all coun-
tries located along the map edge are coloured with three
colours at the most;

– if an arbitrary map consisting of n countries is already
coloured with four colours and if we add one more
country to this map, then a new map consisting of n+1
countries can be coloured with four colours.

The previous conclusion inspired Cayley to consider
whether the problem could be solved by using the method
of mathematical induction.

Hence, if a country is added to a map and correctly
coloured, it would refer to proving the induction step: pre-
suming that all maps with n counties can be coloured with
4 colours, it would mean also that all maps with n+1 coun-
ties can be coloured with 4 colours.

Consequently, the Theorem would thus be proved. How-
ever, there are too many combinations and ways in which
one country can be added to some map. It is also a problem
to attribute a colour to a new country. In some situations, it
is trivial. However, there are cases when the colour needs
to be changed for a large number of coloured countries in
order to colour a new country correctly. For n = 1,2,3 and
4, the statement is trivial. Then, it could be derived from
the statement for n = 4 that the Theorem is valid also when
n = 5, if it is valid for all maps with 5 countries, it would
be valid also for all maps with 6 countries, etc. Thus, the
statement would be valid generally for all maps. It was
very difficult to find a method to enlarge a map from n to
n+ 1 countries that would be generally valid [7]. This is
why Cayley decided to try to solve a problem by contra-
diction.

The basic idea when proving by contradiction is to assume
that the statement we want to prove, say A, is false, i. e.
¬A is true, and then show that this assumption leads to
falsehood. Analogously, if a statement ¬(A⇒ B) leads to
contradiction, it follows that A⇒ B is true.

It is first presumed that there are maps that cannot be
coloured with 4 colours. A map with the smallest number
of countries is selected that can be coloured with 5 or more
colours. Such map is defined as the minimal counterex-
ample. Then, the following statement is valid: the minimal
counterexample cannot be coloured with four colours, but
any map with fewer countries can be coloured with four
colours. Hence, in order to prove the four colour theorem,
it is necessary to prove that the minimal counterexample
does not exist.

The next figure shows that the minimal counterexample
does not contain a country that has only two neighbours.
The following procedures is applied: if one edge is re-
moved, a map with one country less is obtained that can
be coloured with 4 colours at the most. The removed edge
is then brought back to the map. The country with two
coloured neighbours can be coloured with one out of two
remaining colours (Fig. 12).

Original
map

New map Coloured
new map

Coloured

original map

Figure 12: A procedure applied for a country that has only
two neighbours

Similar proof procedure will also be applied with the coun-
try having three neighbours. One edge is removed and 3
countries are obtained out of 4 countries. Such map can
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be coloured with 4 colours. Three countries are coloured
with three various colours, the removed edge is brought
back, and the fourth country is coloured with the remain-
ing fourth colour, (Fig. 13).

Original
map

New map Coloured
new map

Coloured

original map

Figure 13: Colouring countries having three neighbours

However, there is a problem when applying the method of
removing and restoring to the countries with 4, 5 or more
neighbors, (Fig. 14 and Fig. 15).

Original
map

New map Coloured
new map

Coloured

original map

Figure 14: The case when a map contains a square

Original
map

New map Coloured
new map

Coloured

original map

Figure 15: The case when a map contains a pentagon

4.1.3 Maps and Euler polyhedra

Leonhard Euler played an important role in proving the
four colour conjecture with his findings and research that
will later on be used by mathematicians. Dealing with reg-
ular polyhedra, he made an important discovery, namely a
formula (”Euler formula”) that states that:

number of faces − number of edges + number of verteces = 2.

The formula has many applications and can be generalized
in various ways with one of them being used to handle pla-
nar graphs, i.e. maps (Chapter 3.1.2).

The connection between a map and a polyhedron is
achieved by projecting a polyhedron from one point to a
plane (Fig. 16). The faces of polyhedron in a plane projec-
tion represent countries/regions where one face is observed
as the exterior of the projection, and the edges are actually
boundary lines of countries. On the other hand, every cubic

map, i.e. the map on which exactly three countries meet in
each vertex, can be drawn onto a sphere and then, it can
be imagined that it presents some polyhedron. In this case,
the problem of colouring a spherical map is identical to the
problem of colouring a map in the plane [22].

Figure 16: Projection of a polyhedron from a point into the
plane [22]

A direct consequence of Euler’s formula is the so called
enumeration formula [7]. Using this formula one can count
the regions, edges and vertices of a map that has r2 re-
gions with exactly two neighbors, r3 regions with exactly
3 neighbors, r4 regions with exactly 4 neighbors, etc.

Euler used the enumeration formula for proving the”only 5
neighbors” theorem, i.e. that every cubic map has at least
one region with five or fewer neighbors. In addition, if a
map does not contain any biangle or a triangle and not a
single square, it must contain at least 12 pentagons. Simi-
larly, it can be concluded the following: if a cubic map con-
sists entirely of pentagons and hexagons, then it must have
exactly 12 pentagons (for the proofs see [23]). Although
Arthur Cayley had failed to prove that the minimum coun-
terexamples do not exsist, his idea proved useful because it
was used to prove somewhat weaker claim, the six – colour
theorem.

4.2 Kempe “solves” the problem

Sir Alfred Bray Kempe (1849-1922) was also a barrister
and mathematician. He finished his studies at the Trin-
ity College, Cambridge where he attended the lectures of
Arthur Cayley. He was also present at the meeting of the
London Mathematical Society where Arthur Cayley spoke
about the problem. He succeeded to apprehend the issues
of 4 colour theorem, and a year later he published an article
in the American Journal of Mathematics where he claimed
to have managed to solve the problem successfully. The
procedure of Kempe’s method of colouring any map can
be presented in all of the following six steps:
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1. Find a country on the map that has 5 or less neigh-
bors (it exists according to Theorem of “only 5
neighbors”);

2. Cover the country in question with a piece of blank
paper of similar shape, just a little bigger;

3. Extend all borders that touch the “patch” so that they
meet at one point on the paper - as if the selected
country has been reduced to one point (with this pro-
cedure the number of the countries on the map is re-
duced by 1), (Fig. 17);

Figure 17: Reducing the number of countries on a map

4. Repeat the three previous steps until the initial map
is reduced to a map with exactly one country;

5. Colour the only remaining country with any of the
four given colors;

6. Reverse the upper process: remove “patches” all the
way back until you get the initial map and colour ev-
ery “restored” country with different color from the
neighbor along the way [8].

Now we face the problem that Cayley couldn’t solve, i.e.
how to color the country which has 4 or 5 neighbors.
Kempe has solved this problem by using the method of
chains.

4.2.1 Method of Kempe chain

Kempe assumed that the country K that needs to be
coloured has a square form, i.e. borders with 4 countries.
He then selected two countries that do not share borders
with each other. Fig. 18 presents the country K and two
not neighbouring countries that share their border with the
country K. They are coloured in black and yellow colour.
Now, on both of them, we continue with a line of black-
yellow coloured countries. These lines can be connected
in such a way that they make a closed circle that is then
called a chain. Two cases may occur when coloring a map
by means of this method, both shown in Figure 18.

(a) (b)

Figure 18: Two possible outcomes when using the Kempe
chain method

Fig. 18 a) presents the first case of colouring the country
K. It can be seen on the figure that the black neighbour of
K is not connected with the yellow neighbour of K. Then
it is possible to re-colur the black neighbour of the coun-
try K, e.g. with yellow colour. Black colour remains then
available for the country K so that the map can be in accor-
dance with the theorem. This procedure is shown on Fig.
19.

Figure 19: Colour replacement in the line

In the case presented on Fig. 18 b), the previous procedure
of colour replacement shall not be successful. However,
the chain of black and yellow countries makes a loop that
starts and ends in the country K. Two other neighbours can
be seen on Fig. 20: blue and yellow. It is not possible to
join the chains of these two neighbours because they are in-
terrupted by a black-yellow loop. The method is therefore
applied similarly as in the first case: if a blue neighbour
changes the colour into yellow, and the colours of the en-
tire blue-yellow branch are replaced, the country K can be
coloured with the remaining blue colour.

Figure 20: Replacement of yellow and blue

It is herewith proved that no minimal counterexample
contains “a square”. It is namely sufficient to have 4
colours for the “square”. It would be necessary to prove
furthermore that the minimal counterexample does not
contain a pentagon. The pentagon is surrounds by 5 coun-
tries that are already coloured with 4 colours. Kempe
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solved this problem by selecting two neighbours of P that
do not touch each other: in this case, the yellow and red
neighbour “above” and “below” P as presented on Fig. 21.

Figure 21: Pentagon P and its neighbours

If the above yellow-red line is not connected to the red-
yellow line below, then the colours of the neighbours of
the country P can be replaced, hence the yellow neighbour
of P becomes red. Thus, yellow colour is left as a possible
colour for P, as it is presented on Fig. 22.

Figure 22: Yellow neighbour of P becomes red

If the “above” yellow-red line on Fig. 21 is connected with
the red-yellow line “below” the country P, then the blue
neighbour of the country P can be observed, as well as
red-blue and blue-red lines. Such example is presented on
Fig. 23.

Figure 23: The red-yellow chain

Consider the situation given on Fig. 22. If the blue-red
line “above” was not connected with the red-blue line “be-
low”, the blue neighbour of the country P can be coloured
with red colour, and all countries in the blue-red line can be
re-coloured. In this way, another red-blue line is obtained.
Thus, only blue colour is left for the country P as presented
on Fig. 24.

Figure 24: Blue neighbour of P becomes red

However, if the chains are linked, then there are two loops
together with the previous one. Such situation is presented
on the next figure.

Figure 25: The blue-yellow and the blue-green chain

It can be seen on Fig. 25 that blue-yellow line on the left
side of the country P cannot be connected with the blue-
yellow line on the right side of the country P. The colours
of the blue-yellow line on the right side can then be re-
placed. The blue-green line on the left side cannot be con-
nected with the blue-green line on the right side, hence,
the blue-green line on the left side can be re-coloured. If
the lines are re-coloured simultaneously, the country P will
have the neighbours in yellow, red and green colour, and it
can be coloured with blue colour, as presented on Fig. 26.

Figure 26: P is coloured blue

Hereby, the procedure of colouring the map to which the
country pentagon has been brought back is completed. Us-
ing the above described procedure of colouring the map
that has a country with five neighbours, Kempe found a
proof that the minimal counterexample does not contain
a pentagon. It is, however, in contradiction with the “five
neighbours” theorem according to which every cubic map
contains at least one country with five or less neighbours.
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According to Kempe, the four colour theorem would thus
be proved. After publishing the article, Kempe was recog-
nized as the person who proved the theorem. His article
was published in the American Journal of Mathematics.

4.2.2 The flaw in Kempe’s proof

It took 11 years to spot the mistake in Kempe’s proof. In
1890, Percy John Heawood (1861 - 1955), a professor of
mathematics from Durham denied Kempe’s theory. After
that, Kempe’s proof became the most famous inaccurate
proof in the history of mathematics.

In his article Map-colour Theorem, published in the Quar-
terly Journal of Mathematics in 1890, Heawood explained
that the error occurred at the end of the proof in determin-
ing the colour of the country with pentagon form. Hea-
wood proved that there were maps on which it is impos-
sible to make changes of colours in two different chains
simultaneously.

Figure 27: Map with 25 countries

On Fig. 27, each of the twenty five countries is coloured
with one of the four colours: red, golden, yellow or green,
except the central pentagon P. It was proved that this map
can be coloured only with four colours.

The application of Kempe’s methods in determining the
pentagon P provides the re-colouring of two neighbours of
the pentagon P.

Each of these two changes is allowed if it is done sepa-
rately. The problem occurs if it is attempted to make the
changes simultaneously.

Two neighbouring countries marked with the letter A (yel-
low colour) and B (golden colour) become red as it is
presented on Fig. 28. The basic principle of 4 colour
problem implying that the neighbouring countries should
be coloured with various colours is hereby undermined.
Hence, one came to the conclusion that Kempe’s method
of proof was wrong.

Figure 28: Contradiction

In 1891, Kempe admitted publicly that he was wrong.
However, he managed to notice the mistake in the proof
Heawood did not know how to correct it. In his second
paper, Heawood approached the problem using a number
theory, but even this attempt to prove the four colour theo-
rem ended unsuccessfully. Using Kempe’s ideas, Heawood
was able to prove the Five colour theorem. Although the
Five colour theorem was weaker than the Four colour the-
orem, it still represents one more step that will be needed
to prove the initial problem.

After his proof had been denied, Kempe approached the
problem in somewhat different way; in each country on a
map, he highlighted one point (e.g. capital city) and then
connected the points representing the neighbouring coun-
tries with lines. The new structure matched the structure of
a graph. The problem of determining the colours of indi-
vidual countries was reduced to assigning it to points, but
in such a way that the neighbouring points were named dif-
ferently. The importance of this idea is related to the fact
that in such a way the problem of map colouring was trans-
ferred into graph theory (Fig. 9). Based on this idea and
with the help of computers, the Four colour theorem will
finally be proved.

4.3 Heesch, Appel and Haken finally solve the
problem

The conjecture on four colours is articulated so simply that
it was presumed someone would find an elegant and simple
solution one day. However, something completely differ-
ent happened.

In 1904, a new idea about the proof of this conjecture
occurred. This approach started with the search for un-
avoidable sets. Before defining this term, it is necessary to
define the terms triangulation and configuration. A plane
graph is a triangulation if it is connected and every region
is a triangle. A configuration is a part of triangulation in-
cluded inside the area (map). The unavoidable set is then
defined as a set of configurations with the property that any
triangulation must contain one of the configurations in the
set. Unavoidable set is actually a set of countries out of
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which at least one country must be located on every map.
Since it is sufficient to observe only cubic maps, Fig. 29
presents some countries that a cubic map must contain.

digon triangle square two pentagons pentagon
hexagon

Figure 29: Unavoidable set for a cubic map

It can be deduced from the figure that if a map does not
contain digon (a country with two neighbours), triangle or
rectangle, it must contain either two connected pentagons
or connected pentagon and hexagon.

Among the mathematicians who started to search for un-
avoidable sets, George David Birkhoff (1884 - 1944) made
a distinguished contribution in this area. Birkhoff was the
first to introduce the concept of reducibility. A configura-
tion is reducible if it cannot be contained in a triangulation
of the smallest graph which cannot be 4-coloured. It means
that reducible configuration is a set of countries that can-
not appear in the minimal counterexample. Minimal coun-
terexample is, as it has been defined earlier, a map that con-
tains the smallest number of countries and can be coloured
with 5 or more colours. From this follows that the minimal
counterexample cannot be coloured with 4 colours, but ev-
ery map with smaller number of countries can. Hence, in
order to prove the Four colour theorem, it is necessary to
prove that the minimal counterexample does not exist.

The research and search for unavoidable sets and reducible
configurations were developing separately until German
mathematician Heinrich Heesch (1906 - 1995) unified
those 1960. His goal was namely to find an unavoidable
set of reducible configurations. If a set is unavoidable, then
each map must contain at least one of the configurations
from that set, and since every configuration is reducible,
it cannot be contained in a minimal counterexample. It
would thus be proved that there are no minimal counterex-
amples, and consequently, the 4 colour theorem would be
proved. He therefore developed an algorithm naming it
D-Reduction that he adapted to computer methods (pro-
gramming) [24]. This algorithm is used to prove that every
graph contains a subgraph from a specific set, i.e. that ev-
ery map contains some map from an unavoidable set.

Heesch presumed that he would have needed to observe a
set of about 8900 configuration. However, certain prob-
lems appeared in his approach, as for example the inability
to test the reductions of some configurations, mostly be-
cause of a large number of vertices within some rings, i. e.
configurations that “wrap arround and meet themselves”
[17].

Figure 30: A set of configurations

In 1972, Wolfgang Haken, a student of mathematics,
physics and philosophy continued after a short collabora-
tion with Heesch to work with a programmer and math-
ematician Kenneth Appel on upgrading of Heesch’s idea.
They were focused on the improvement of Heesch algo-
rithm. After two years, John Koch joined them, and the
three of them succeeded together to create the programme
to be used in searching for unavoidable sets of reducible
configurations. Unlike Heesch, they manage to reduce the
number of ring vertices from 18 to 14 avoiding thus the
complications and simplifying the counting.

Using the programme for searching an unavoidable set of
reducible configurations, Appel and Haken, both from the
University of Illinois, managed to prove the assumption in
1976. Since there are too many possible configurations,
the proof could not be carried out without computer as-
sistance. The usage of computer in proving this problem
caused numerous discussions and disapprovals.

Still, Haken and Appel published the proof on July 22,
1976 that was based on the construction of the unavoidable
set of 1936 reducible configurations, and in 1977 all three
of them published the proof in Illinois Journal of Mathe-
matics with the unavoidable set of 1482 reducible config-
urations. The proof was published in two parts, and the
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text was accompanied by the material on microfilm with
450 pages of various diagrams and detailed explanations.
However, Ulrich Schmidt found an error in the programme
in 1981 that was soon corrected.

Regardless of the difficulties, the four colour problem
gained the status of a theorem for the second time. The
following comment illustrates the opinion of a great num-
ber of mathematicians at that time:

”Good mathematical proof is like a poem - this is a tele-
phone directory”

Appel and Haken published therefore in 1986 an article
where they described their methods in details strongly de-
fending the proof and rejecting any doubt, and three years
later they also published a book titled Every Planar Map is
Four Colourable.

Due to the complicated nature of part of the proof that
can’t be checked without computer assistance, Paul Sey-
mour, Neil Robertson, Daniel Sanders and Robin Thomas
decided to simplify the proof and to eliminate all doubts.
However, they gave up soon after they had started to study
it. They decided to develop their own proof based on the
ideas of Appel and Hesch.

As they [17], wrote in the article, the concept of the proof
itself is identical to the concept of Appel and Haken. They
tested the set of 633 configurations proving that each of
them is reducible. Furthermore, they proved that at least
one of the 633 configurations appears in a planar graph
with 6 vertices (minimal counterexsample). They have
thus proved the unavoidability. This part shows the largest
difference between their proof and the one made by Ap-
pel and Haken. In order to prove the unavoidability, they
used the method of discharging that unlike with Appel and
Haken has 32 rules as related to 300+.

The article itself and their proof were presented at the In-
ternational Congress of Mathematicians in Zürich in 1994
where they finally proved that Appel and Haken were right.
The proof itself was also upgraded and improved and con-
tained 633 configurations instead of 1482.

Fig. 31 presents 17 out of 633 configurations that were
used in this proof. When drawing the configurations, they
used Heesch’s method of marking. The forms of vertices
present the degree of a vertex. Black circle represents the
vertex of degree 5, the point (shown on the figure without
a symbol) has the vertex degree 6, empty circle represents
the vertex of the degree 7, the triangle the vertex of degree
9, and the pentagon represents the vertex of the degree 10.

Figure 31: 17 out of 633 configurations [17]

5 Application within cartography

Each map in the plane can be coloured with four colours
such that neighbour areas are in different colours, as it is
shown in previous chapters. Application of four colour the-
orem for colouring political maps is tested in this chapter.
We use a world political map as an example. The software
used is QGIS [25] with its unofficial plugin TopoColour
[26], which implements algorithms for graph colouring.

Geographical maps of administrative units, i.e. political
maps, have some specialities that should be considered
prior to the application of graph colouring algorithms.

As it is defined in 3.1.1, neighbouring countries (admin-
istrative units) are those which shares common boundary
line. Existence of common point does not imply neigh-
bours. Geographical maps are abstract and generalised
models of reality, and it is possible that some short bound-
ary line in reality is represented as point, due to model or
cartographic generalisation. Application is therefore pos-
sible only to model of geographical reality, users should
be aware of these constraints, and in case of unexpected
results, know how to deal with it.

Maritime boundaries are often not shown on political
maps, and almost never are administrative areas on the sea
coloured with different colours. This is certainly true for
world political maps, where colouring is usually applied
to land parts of countries. This means that countries that
share only maritime boundaries will not be considered as
neighbours and could be coloured automatically with the
same colour.

Further, countries are often consisted of more or less dis-
tant land parts, e.g. islands or exclaves. For example, some
countries at certain administrative level contains overseas
territories. This could potentially lead to non-planar graphs
representing neighbours.

5.1 Methodology and programs used

The data used for the world countries were taken from
GADM database of Global Administrative Areas [27].
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There is no unique solution for model of countries and its
boundaries, and it is often result of the point of view of
certain diplomacy. For the purpose of this paper, we will
not change the original data, because we will use it for the
purpose of demonstration of application of graph colour-
ing, and not for making special world political map. The
dataset consists of 256 top-level administrative units, i.e.
countries.

Data was first loaded in QGIS as separate vector layer and
transformed to Eckert VI map projection, one of map pro-
jections suitable for world maps.

TopoColour plugin implements algorithms from graph
colouring theory with purpose of colouring polygons in
vector layer. It also allows creating graph representing de-
tected neighbours in dataset.

Typical procedure for colouring areas in vector layer is as
follows:

– Start the TopoColour plugin and select polygon vector
layer and one column in attribute table that has unique
value for each administrative unit. Finding of neigh-
bours starts. It can take a while for complex geometries
(e.g. up to one hour or more).

– When neighbours are found, user selects “greedy”
or “random” algorithm and starts the computing of
colours. Number of colours needed is given as a result.
For “random” algorithms, successive computations can
give different number of colours.

– Save the colour numbers to one column in attribute table
and style the layer.

Greedy algorithm gives five colours for political map of the
world. It does not guarantee optimum number of colours.
Brute force approach for four colours and 256 countries
would yield 4256 different colour assignments, and it is not
feasible even with modern computers. Random algorithm
usually gives six or seven colours for this political map.

After computation of colours is done, layer can be styled
in order to get nice coloured map (Fig. 32).

It is known that world political map can be coloured with
four colours. In order to achieve this we start with au-
tomatically defined colours, eliminate less used colour by
replacing it with one of the four colours, and rearranging
the colours of neighbours. It is not too hard to accomplish
that, and result can be seen on Fig. 33. This also means that
graph representing neighbouring countries is planar (Fig.
34) and algoritms used are not giving optimal solution.

Figure 32: World political map coloured with five colours obtained by greedy algorithm implemented in QGIS plugin Topo-
Colour. Less used colour is blue, and is a good candidate for manual elimination.
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Figure 33: Manual elimination of the fifth colour from automatically coloured world political map gives a map with four
colours.

Figure 34: Graph representing neighbouring countries
(clipped to Africa region)

6 Conclusion

Graph colouring is widely applied in many scientific fields.
In this paper, the focus is on the application in cartogra-
phy. Since the map colouring with four colours is rarely
mentioned in cartographic books, we were motivated to re-
search this connection in this paper.

The four colours conjecture has proved to be one of the
greatest and long lasting problems in mathematics. The
problem itself has attracted the attention both of mathe-
maticians and laypersons. It took more than one century
to prove this conjecture, which was achieved only with the
development of information science and with computer as-
sistance. It is also the first more significant theorem that
has been proved in such a way. The theorem faced a lot
of negative comments because of that and was not well ac-
cepted by the mathematical public of that time.

Algorithms implementing graph colouring and four colour
theorem, which are still not so widely available in carto-
graphic software, provide analysis and processing of map
data with aim of colouring administrative units or creating
political maps. In this process one should take care of ge-
ometry of boundaries because even very small differences
in coordinates can give unexpected results. Special care
has to be given to model of geographical reality, e.g. defi-
nition of administrative entities, maritime booundaries be-
tween countries, overseas territories etc. We can conclude
that automatization of colouring of administrative units can
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greatly help mapmakers, but for the final map, manual in-
terventions are still required.
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