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Z. Can, Ö. Gelişgen, R. Kaya: On the Metrics Induced by Icosidodecahedron and Rhombic Triacontahedron . . . 17

G. Weiss: Elementary Constructions for Conics in Hyperbolic and Elliptic Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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E. Šamec, I. Kodrnja: Familija ploha Heltocat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

L. Cocchiarella: Kad slike postavljaju stvarnost. Perspektivna alkemija u Velázquezijevoj Las Meninas . . . . . . . . 65
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BARBORA POKORNÁ
PAVEL CHALMOVIANSKÝ

Collision-free Piecewise Quadratic Spline
with Regular Quadratic Obstacles

Collision-free Piecewise Quadratic Spline with
Regular Quadratic Obstacles

ABSTRACT

We classify mutual position of a quadratic Bézier curve
and a regular quadric in three dimensional Euclidean space.
For given first and last control point, we find the set of
all quadratic Bézier curves having no common point with
a regular quadric. This system of such quadratic Bézier
curves is represented by the set of their admissible middle
control points. The spatial problem is reduced to a planar
problem where the regular quadric is represented by a conic
section. Then, the set of all middle control points is found
for each type of conic section separately. The key issue is
to find the boundary of this set. It is formed from the mid-
dle control points of the Bézier curves touching the given
conic section. Our results are applicable in collision-free
paths computation for virtual agents where the obstacles
are represented or bounded by regular quadrics. Another
application can be found in searching for pointwise space-
like curves in Minkowski space.

Key words: Bézier quadratic curve, regular quadric, inter-
section, collision-free paths

MSC2010: 65D17, 14P25, 51M04

Kvadratni splajnovi, po dijelovima bez kolizija, s
regularnim kvadratnim barijerama

SAŽETAK

U trodimenzionalnom euklidskom prostoru klasificiramo
med-usobni odnos kvadratne Bézierove krivulje i regu-
larne kvadrike. Za danu prvu i zadnju kontrolnu točku,
nalazimo skup svih kvadratnih Bézierovih krivulja koje ne-
maju zajedničku točku s regularnom kvadrikom. Sustav
ovakvih kvadratnih Bézierovih krivulja prikazuje se skupom
njihovih dopustivih srednjih kontrolnih točaka. Pros-
torni problem svodi se na ravninski problem gdje konika
predstavlja regularnu kvadriku. Tada se za svaku vrstu
konike zasebno nalazi skup svih srednjih kontrolnih točaka.
Glavna zadaća je naći granicu ovakvog skupa. Spomenutu
granicu čine sredǐsnje kontrolne točke Bézierovih krivulja
koje diraju koniku. Naši rezultati primjenjuju se u
računanju putanja bez kolizija za virtualna sredstva gdje
su barijere prikazane ili ograničene regularnim kvadrikama.
Drugu primjenu nalazimo u istraživanju točkovnih pros-
tornih krivulja u prostoru Minkowski.

Ključne riječi: Bézierove kvadratna krivulja, regularna
kvadrika, presjek, dijelovi bez kolizija

1 Introduction

We consider a problem of finding conditions for collision-
free piecewise quadratic path in Ed with respect to a regu-
lar quadric. If the quadric is a bounding domain of a com-
plex object, we reduce the complexity of exact collision
detection considerably.

For illustration, we work in three-dimensional space in
which a regular quadric is situated. Taking two arbitrary
fixed points out of the quadric in the same connected com-
ponent, we find a set of all parabolic arcs connecting these
two points such that this path and the regular quadric have
no intersection. The spatial problem is reduced to a planar

problem where the the regular quadric is represented by a
conic section.

In most algorithms, the finding of collision-free path con-
sists of two main steps. The first one is acquisition of lin-
ear spline path generated by sample-based planning algo-
rithms. The second step is smoothing of the path because
in mobile robotics a non smooth motions can cause slip-
page of wheels.

The finding of smooth collision-free path using Bézier
curves was considered e.g. in [9], [11], [10]. But these
algorithms are used as post processing, because they as-
sume some linear collision-free path and they only smooth
the path. Moreover, the algorithms provide only a numeri-
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cal solution. Our method offers a direct analytical compu-
tation of all possible collision-free smooth paths without
using sample-based planning algorithms. We assume an
obstacle represented by a regular quadric and given start
and end position of robot. We find all quadratic Bézier
curves constituting the set of collision-free paths. One can
use such a set for optimization of the sought path.
Sometimes the scene with obstacles is too much compli-
cated and the smooth collision-free path cannot be found
directly. Then, the use of sample-based planning algo-
rithms is necessary. But the obtained linear path is jerky,
because it contains many redundant nodes which was gen-
erated randomly. In order to remove these nodes the path
pruning techniques as in [5] are used. Our results can also
form a path pruning algorithm, where the node vi can be
removed if there is a quadratic Bézier collision-free path
between nodes vi−1 and vi+1. Such an algorithm is more
flexible comparing with a piecewise linear approach.
There is another use for the affine three dimensional
Minkowski space typically determined by a light cone.
The points lying outside the cone are called space-like. If
we take two space-like points as a first and a last control
point, we can find all quadratic pointwise space-like Bézier
curves. We analyze this problem in [3] for parabola. Some
statements for other conic sections, we summarize in [13]

2 Theoretical background

In this section, we mention basic definitions of Bézier
curves, regular quadrics and all concepts required later in
the text.
Let E3 be three dimensional vector Euclidean space
formed by vectors x = (x1,x2,x3) with scalar product
〈· , · 〉 : E3 × E3 → R. By standard construction, we
get an affine space with a Cartesian coordinate system
〈O,e1,e2,e3〉. Let E2 be a Euclidean plane. We assign
to each family of parallel lines a unique point at infinity, at
which ”all of such lines meet”. All the points at infinity de-
fine the line at infinity l∞. The extended Euclidean plane,
denoted by E2, is obtained as E2 = E2 ∪ l∞. More can be
found in [1], [2].
Let M3,3(R) be the set of 3× 3 matrices with real coef-
ficients. A quadratic form is the map q : R3 → R, where
q(x) = xQx� for the symmetric Q ∈ M3,3(R). We talk
about regular quadratic form if the matrix Q is diago-
nal with entries λ1,2,3 ∈ {−1,1} in a certain basis of R3.
The unique symmetric bilinear form giving rise to q is
denoted by P and called the polar form of q. We have
q(x) = P(x,x), P(x,w) = xQw�. In the associated affine
space, we have P(X ,W ) = XQW�. Let Q be regular and
the point W ∈ R3 be fixed. We call the set W⊥ = {X ∈
R3 : P(X ,W ) = 0} the polar (hyperplane) of W . We say
that X and W are conjugate with respect to the polar form

P, and we denote this fact by X⊥W . For the self-polar
point W holds P(W,W ) = 0. In the affine space R2, the
W⊥ is the polar line determined by equation WQX� = 0,
where the variable X = (x,y,1). An image of a regular
quadric κ is the set of all points X ∈ E3 such that for its
position vector x = X −O the equality q(x) = 0 holds. The
properties of quadrics are in [8].
Let QK ∈ M3,3(R) be a symmetric matrix. The alge-
braic curve of degree 2 called conic section is the set K =
{[x,y] ∈ R2 : f (x,y) = 0 for f (x,y) = (x y 1)QK(x y 1)�}.
In appropriate cases, we consider the equation of the conic
section instead of K due to the fact that the field R is not
algebraically closed. In the extended Euclidean plane, it is
necessary to homogenize the equation of conic section by
replacing (x,y,1) with (x,y,z). We obtain the conic sec-
tion K = {[x,y,z] ∈ R2 : (x y z)QK(x y z)� = 0} in ho-
mogeneous coordinates. More on plane algebraic curves
we refer to the book [7]. The polar line N⊥ of such a
point N that P(N,N) > 0 splits the conic section K into
some arcs. If N⊥ ∩K = {T1,T2} then we denote the arc
�

T1T2= {X ∈ K : P(N,X)> 0}.
From each point X ∈ R2 lying outside the regular conic
section K, one can construct two tangent lines to K ⊂ R2.
The corresponding points of contact may be either affine
or at infinity. In the case of point of the contact at infinity,
the conic section K ⊂ R2 is a hyperbola and the projec-
tive tangent line is called asymptote a in affine space. We
denote its point of contact with K at infinity by a∞, see
fig. 7 for an example. We denote the set of all tangent
lines to K by TK . Hence, TK = {� ⊂ R2 : each point X ∈
� satisfies 0 = 〈∇ f (X0),X −X0〉 | X0 ∈ K ∩ �}. We denote
by ∇ f (x0,y0) the gradient

(
∂ f
∂x (x0,y0),

∂ f
∂y (x0,y0)

)
of K at

the point [x0,y0] ∈ K. Clearly, in a regular point, it is the
normal vector of its tangent line.
For counting the number of real roots of real polynomial
function in an interval, the theorem below is useful.

Theorem 1 (Budan-Fourier) Let f (x) = ∑n
i=0 aixi ∈ Pn,

n > 0,an �= 0. Let α < β and f (α) f (β) �= 0 and let
V (x) be the number of changes in sign in the sequence
{ f (x), f ′(x), . . . , f (n)(x)}. Then, the number (including
multiplicity) of real roots of the equation f (x) = 0 lying
in the interval 〈α,β〉 is equal to or is smaller, by an even
number, than V (α)−V (β).

We consider the collision-free path represented in Bézier
form.

Definition 1 (Bézier curve) Bézier curve of degree n in
the space E3 is a polynomial map b : [0,1] → E3 given
by b(t) = ∑n

i=0 Bn
i (t)bi. The points bi ∈ E3 are called

control points, the functions Bn
i (t) =

( n
i

)
(1 − t)n−it i for

i ∈ {0, . . . ,n} are Bernstein polynomials of degree n.

6



KoG•19–2015 B. Pokorná, P. Chalmovianský: Collision-free Piecewise Quadratic Spline with Regular ...

More about the properties of Bézier curves can be found in
[6], [4].

Lemma 1 (Determination of quadratic Bézier curve by
its tangent) Let the points A,B,T ∈ R2 be non-collinear
and �T be a line such that segment AB∩ �T = /0, T ∈ �T .
Then, the quadratic Bézier curve b(t) with the end points
A,B, containing the point T and with the tangent line �T at
the point T exists and is uniquely determined.

Proof. Let the vector � = (�x, �y) �= (0,0) be the direc-
tion vector of the tangent line �T and A = [ax,ay],B =

[bx,by],T = [tx, ty]. Let the vector n� = (−�y, �x). We de-
fine the map τ such that τ(A,B,T, �) =C returns the middle
control point of the Bézier curve b(t).

τ(A,B,T, �) =C =
T −B2

0(t0)A−B2
2(t0)B

B2
1(t0)

,

where t0 ∈ (0,1) is a solution of the equation

0 = αt2 +2βt + γ ,

and

α = �x(by −ay)− �y(bx −ax) ,

β = �x(ay − ty)− �y(ax − tx) ,

γ =−β .

The Bézier curve bACB (t) with its control points A,C,B in
this order satisfies the requirements of the theorem. For
proving the existence of bACB, we use the affine transfor-
mation mapping the three independent points A,B,T to the
points A = [−1,0], B = [1,0], T = [0,1]. We obtain the
coefficients α = −2�y, β = −�x + �y, γ = �x − �y. After
computing the discriminant, we do discussion with respect
to direction of the vector �. �

This statement is possible to extend in a natural way for de-
generate situation in which collinearity of the points A,B,T
or even A = B hold.

3 Collision-free situation

Let us consider the Euclidean space E3, let 〈O,e1,e2,e3〉 be
an affine coordinate system, with a regular quadric κ repre-
sented by the matrix Q. Let the points A = [a1,a2,a3] and
B = [b1,b2,b3] be fixed and a = A−O,b = B−O are their
position vectors. Assuming the quadric is an enclosing
volume of some obstacle and the points A,B are start and
end position of a robot we require q(a) > 0 and q(b) > 0,

i.e. A,B lie outside the quadric κ. We look for all collision-
free (relative to quadric) paths supply by quadratic Bézier
curves from the point A to the point B. In other words, we
look for the set of all such points C that the Bézier curve
bACB (t) lie out of quadric. Thus, for all points X ∈ bACB (t)
and their position vectors x=X −O the inequality q(x)> 0
holds. In applications, A �= B yields, however we solved
also the case A = B for the sake of completeness.

A generic quadratic Bézier curve is a part of a parabola, so
it lies in the affine plane ρ ⊂ E3. Since the given points
A,B ∈ ρ, the construction of the plane ρ may have several
degrees of freedom depending on their positions. Using the
equation ρ = {X ∈ E3; X = A+ tv+ sw, for t,s ∈ R}, the
degree of freedom is represented by the dim[v,w]. If A �=B,
the degree of freedom is 1. As the position of the point C
changes, the plane ρ accordingly contains the axis

←→
AB, so

we can choose as v = B−A and the choice of the vector w
is free. If A = B, the degree of freedom is 2 and the choice
of both vectors v,w is free (up to linear dependency).

In any case, the intersection of the quadric κ and the plane
ρ is a conic section K (see fig. 1(a)). The figure 1(b) shows
all cases how the set S of all points X that q(x) > 0 in
the possible types of plane ρ looks like. The collision-
free Bézier curve bACB (t)⊂ S. We present a solution in the
plane ρ for each type of conic section and the planar results
can be put together to form the spatial result.

As we shall see later, it is useful to consider ρ as an
extended Euclidean plane. However, the control points
A,B,C /∈ l∞. Let 〈O,x,y〉ρ be any Cartesian coordinate
system in the plane ρ. Let A = [ax,ay], B = [bx,by] a
C = [cx,cy] be the local affine coordinates of the control
points in 〈O,x,y〉ρ.

Definition 2 (Set of admissible solutions) Let Vρ(A,B)
be a set of points C ∈ ρ such that the curve bACB is
collision-free. Then, we say that Vρ(A,B) is a set of ad-
missible solutions in the plane ρ with respect to A,B. If no
confusion arises, we say the set of admissible solutions.

By V v
ρ (A,B), we denote the set of points C ∈ ρ such that

bACB ∩K = M, where M is the set of contact points of or-
der 2 between bACB(t) and K. We denote the set of points
C ∈ ρ such that bACB and K have transversal intersection
(i.e. directions of the intersecting curves at the intersection
point are linearly independent) by Vt

ρ(A,B). The set M con-
tains at most two such points, since two componentwise
different quadratic curves may have at most two common
points of contact of order 2 (see e.g. Bézout theorem, [7]).

For the given points A,B, the union of disjoint sets
Vρ(A,B)∪V v

ρ (A,B)∪Vt
ρ(A,B) gives the whole plane ρ.

7
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K
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Figure 1: (a) Plane ρ spans points A,B,C. In case of their non-collinearity, they generate ρ as affine hull. The conic
section K is the intersection of the quadric κ and the plane ρ.
(b–g) Let K ⊂ ρ be the conic section (point, double line, pair of lines, ellipse, parabola, hyperbola). The
set S consists of all points lying out of quadric in the plane ρ.

4 Exterior and interior points of contact

At first, we study the touching situation, that is the set
V v

ρ (A,B).

Definition 3 (Set of points of contact) We say that the set
D ⊂ K is the set of points of contact between K and the set
of all bACB if for any point X0 = [x0,y0] ∈ D there is a point
C0 such that C0 ∈V v

ρ (A,B) and X0 ∈ bAC0B ∩K.

We say that bACB has double contact, if it has exactly two
points of contact of order 2 with K (i.e. the set M contains
exactly two points). We denote the middle control point
of such Bézier curve by Cu. If K is a regular conic sec-
tion, we denote the touching points by the letters Ui, i= 1,2
(see fig. 4). If K is a singular conic section, we denote the
touching points by the symbol Si, for i= p,r (see fig. 5(b)).

When we obtain K as a connected component of a regu-
lar conic section, it may be an ellipse, a parabola or one
component of a hyperbola. Since the connected compo-
nent of regular conic section is convex, the tangent line is
a supporting line of the component. In the case of singu-
lar conic section, the connected component may be a point
(the top of the light-cone) or one isotropic line.

Let �T be a tangent line to a connected component K of
conic section (regular or singular) at the point T ∈ K. It
divides the plane ρ into two half-planes H+

� ,H
−
� such that

K ⊂ H+
� . We say, that �T separates the connected compo-

nent K of the conic section and the arbitrary set of points O
, if they lie in the different half-planes with respect to the
tangent �T , i.e. K ⊂ H+

� and O ⊂ H−
� . Additionally, in the

case of hyperbola the asymptotes separate similarly K and
O, but the corresponding touching point is infinite. We de-
note the set of all separating tangent lines and asymptotes
by Tsep(O,K). We denote by S(O,K) ⊂ K the maximal

open set of all affine points of contact of K and separating
tangent lines.

Definition 4 (Exterior (interior) point of contact) We
say that the curve bACB touches a connected component
of the regular conic section K from outside (inside), if
their common tangent is (is not) separating. Then, the
point of contact is called exterior (interior) point of con-
tact. The set of all exterior (interior) points of contact is
denoted Dext (Din).

The set of points of contact D = Dext ∪Din. Now, we de-
scribe the set of points of contact D for every type of conic
section. First, we consider the regular conic sections, then
we analyze the singular conic sections.

The polar line of the point A determined by the equation
AQKX� = 0 splits the conic section K to some arcs. Let
K be a regular conic section different from hyperbola. The
condition that the point A is separated from K with respect
to �T is that the point T ∈ {X ∈ K : AQKX� ≥ 0}. So, the
open set S(A,K) = {X ∈ K : AQKX� > 0} (see fig. 2(a)).
Now, let K1,K2 be the connected components of a hyper-
bola K. We consider each of them separately and we get
S(A,K1) = {X ∈ K1 : AQKX� > 0} and S(A,K2) (see also
fig. 2(b)).

Let K be a connected component of a regular conic sec-
tion. Let �T ∈ TK and the point T ∈ K be its point of con-
tact. The tangent line �T ∈ Tsep(AB,K) if and only if T ∈
S(A,K)∩S(B,K) = {X ∈ K : AQKX� ≥ 0∧BQKX� ≥ 0}
(see fig. 2(a)).

We denote the set of all X ∈ K such that the corresponding
tangent line �X to K at X contains both control points A,B
by DAB. The set DAB = {X ∈ K : AQKX� = 0∧BQKX� =
0}.

8
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T2

T+
1

T1

T+
2

A

B K

A⊥

B⊥

(a)

K1
K2

A

B

T

a∞2

a1 a2

S(A,K2)

S(A,K1)

(b)

Figure 2: (a) The set of all tangent lines of K, which separate the point A and K, is determined by arc
�

T1T+
2 = S(A,K).

Similarly, the arc
�

T+
1 T2= S(B,K). The arc

�
T1T2 determines all tangent lines Tsep(AB,K). We obtain it as

intersecion of the sets S(A,K)∩S(B,K).

(b) We have the set S(A,K1) = {X ∈ K1 : AQKX� > 0} =
�

Ta∞
2 . All tangent lines of connected component

K2 separate this component and the point A. Hence, we have the set S(A,K2) = K2.

Theorem 2 (Set of exterior points of contact) Let K be
a regular connected component of conic section. The set
of exterior points of contact Dext �= /0 if and only if the seg-
ment AB∩K = /0 or AB∩K = {T}.
The set Dext = {X ∈K : AQKX� > 0∧BQKX� > 0}∪DAB.

Proof. Sufficient condition. Let AB∩K = {X1,X2}. Let �
be any tangent line to K. In order that the line � separates
AB and K (up to the point of contact if it exists), they must
lie in the different half-planes with respect to � (up to the
point of contact). But the points X1,X2 ∈ K lie in the same
half-plane as AB. Hence, S(A,K)∩S(B,K) = /0 and there is
no separating tangent line �T ∈ Tsep(AB,K). So, there ex-
ists no separating tangent line for any Bézier curve bACB.
Consequently, the set Dext = /0.
Necessary condition. We discuss each case separately.
Mainly, we use the fact that the quadratic Bézier curve
is a convex curve, each of its tangent line defines a sup-
porting half-plane to the curve. If �T ∈ Tsep(A,K) and
�T ∈ Tsep(B,K), then �T ∈ Tsep(bACB,K). So, for every
T ∈ S(A,K)∩ S(B,K) holds that �T ∈ Tsep(bACB,K). At
the end, we decide if endpoints T1,T2 of the intersection

S(A,K)∩ S(B,K) belong to the set Dext . It is shown they
do not in general. But if one of the triplets of points A,B,T1
and A,B,T2 is collinear, without loss of generality A,B,T1,
then the point T1 ∈DAB. But T1 ∈Dext too, because the cor-
responding Bézier curve is a segment tangent to K. Hence,
the set Dext = {S(A,K)∩S(B,K)}∪{T1} �= /0. �

Note, there might be two continuous arcs D1
ext ,D

2
ext , one

on each connected component K1,K2 of the hyperbola K.
Then, Dext = D1

ext ∪D2
ext .

The line
←→
AB divides the plane ρ into two half-planes, the

open half-plane ρ−, and the closed half-plane ρ+. Let us
sort the tangent lines from A and B to K, that are not in
Tsep(AB,K), into pairs. If there are only two tangent lines
not in Tsep(AB,K), we denote them �+1 , �

+
2 (see fig. 3(a)).

If there are four tangent lines not in Tsep(AB,K), we de-
termine two pairs �+1 , �

+
2 and �−1 , �

−
2 such that the corre-

sponding points of contact T±
i = �±i ∩ K, i = 1,2 lie in

the same half-plane T+
i ∈ ρ+ and T−

i ∈ ρ−, i = 1,2. If
�+1 ∩ �+2 = P+ ∈ ρ+. We say the tangents �+1 , �

+
2 converge.

If P+ ∈ ρ− or P+ is a point at infinity, we say they diverge
(see fig. 3(b)).

ℓ+1

ℓ+2

T+
1

T+
2

A

B K

ρ− ρ+

(a)

A

B

T+
2

ℓ+2

T−
2

ℓ−2

T+
1

ℓ+1

T−
1

ℓ−1

ρ+ ρ−

P+P− K

(b)
Figure 3: (a) There are only two tangent lines not in Tsep(AB,K). The corresponding points of contact T+

1 ,T+
2 ∈ ρ+,

so we denote the tangent lines �+1 , �
+
2 . They diverge, because their intersection lies in the half-plane ρ−.

(b) If there are four tangent lines not in Tsep(AB,K), we determine two pairs �+1 , �
+
2 and �−1 , �

−
2 according to

corresponding points of contact. The pair �+1 , �
+
2 converge, because their intersection P+ ∈ ρ+. However,

the pair �−1 , �
−
2 diverge.
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Theorem 3 (Set of interior points of contact) Let K be a
regular connected conic section. The set of interior points
of contact D+

in �= /0 (D−
in �= /0) iff the pair of tangents �+1 , �

+
2

(�−1 , �
−
2 ) converges.

Moreover, let �1, �2 /∈ Tsep(AB,K) be a pair of converg-
ing tangent lines and P+ = �1 ∩ �2 ∈ ρ+. If there ex-
ists a point Cu ∈ ρ+ such that curve bACuB has double
contact (at the points U1,U2), then the set D+

in = {X ∈
K ∩ ρ+ : AQKX� < 0 ∧ BQKX� < 0} \ {

�
U1U2} (see

fig. 4). Else, the set D+
in = {X ∈ K ∩ρ+ : AQKX� < 0 ∧

BQKX� < 0}. A similar statement holds for a pair of tan-
gent lines converging in the half-plane ρ− and D−

in.

Proof. Necessary condition of the existence D+
in �= /0. Let

the pair of tangent lines �+1 , �
+
2 converges in the half-plane

ρ+. We consider the parallel line va, resp. vb containing the
point A, resp. B, and have no common points with K in the
half-plane ρ+. Let the lines va,vb determine the point at
infinity v∞. Let Cm = 1

2 A+ 1
2 B be. Let the line vm be paral-

lel to the lines va,vb and Cm ∈ vm. Let us construct the se-
quence {Ci}i∈N ⊂ ρ+ such that Ci ∈ vm and limi→∞ Ci = v∞.
There exists n ∈ N such that for each Ci, where i > n, the
Bézier curve bACiB∩K = /0. On the other hand, there exists
k ∈N such that for Ck the Bézier curve bACkB intersects the
conic section K. So there must exists some real l ∈ (k,n)
that for the Bézier curve bAClB∩K ∈ D+

in. The proof for the
set D−

in can be done in a similar way.
Now, we indicate how to get the expression of the set D+

in.
Let us construct the curve Γ(X) = τ(A,B,X , �X ), where

X ∈ {X ∈ K ∩ ρ+ : AQKX� < 0∧BQKX� < 0} =
�

T1T2
and �X is the direction vector of the tangent line �X to the
conic section K at the point X . The curve Γ is connected,

because the continuous map τ maps the connected set
�

T1T2

onto one connected curve. Let s : (0,1)→
�

T1T2 be any reg-

ular parameterization of the arc
�

T1T2 such that for s → 0
be X → T1 and for s → 1 be X → T2. Then, we study a
self-intersections of the curve Γ(X). It can be proved the
curve Γ has at most one self-intersection.
If Γ has one self-intersection Cu = Γ(U1), it means, there

exists another point U2 ∈
�

T1T2 that Cu = Γ(U2) and the
Bézier curve bACuB has double contact with K. There ex-
ist two special Bézier curves lying in ρ+, the curve bAC2T B
having two transversal intersections with K and the curve
bAC4T B having four transversal intersections with K. We
construct the set of Bézier curves L(w) = (1−w)bAC2T B +
wbAC4T B, where w ∈ [0,1]. According to the Hurwitz the-
orem (Th.(1,5) in [12]), there exists the point C3 ∈ ρ+ that
Bézier curve bAC3B has two transversal intersections and
one common point of contact T3 with the conic section K.

The point T3 ∈
�

T1T2 and then C3 ∈ Γ for some parameter

s3,s1 < s3 < s2. Hence, the points of the arc
�

U1U2 gen-

erate the Bézier curves with transversal intersections with
K, because there is not other self-intersection of Γ except
Cu. The set has the form D+

in = {X ∈ K ∩ρ+ : AQKX� <

0∧BQKX� < 0}\{
�

U1U2}. Note, that U1,U2 ∈ D+
in.

If Γ does not have a self-intersection, for all the points

X ∈
�

T1T2, the corresponding Bézier curves bAΓ(X)B have
only one common point with K, the point of contact
X . Hence, the set D+

in = {X ∈ K ∩ ρ+ : AQKX� < 0 ∧
BQKX� < 0}. �

5 Set of admissible points of contact

As we said, the set of all points of order 2 contact D =
Dext ∪Din. The following theorem describes the set D for
various regular types of the conic section K.

Theorem 4 (Set of points of contact)

(a) Let K be an ellipse. Then, the set of the points of con-
tact D is either one arc of the exterior points of contact
or one arc of exterior and one arc of interior points of
contact or one or two arcs of interior points of contact.

(b) Let K be a parabola. Then, the set of the points of con-
tact D is either one arc of the exterior points of contact
or one arc of interior points of contact.

(c) Let K be a hyperbola. Then, the set of the points of
contact D is either two arcs of the exterior points of
contact or one arc of exterior and one arc of interior
points of contact.

The arcs of the interior points of contact may have two af-
filiated components. The set of exterior points of contact
may contains only one point T , when segment AB∩K =
{T}.

Proof. a) (Ellipse) Let AB∩K = /0. Then among all tan-
gents passing through A or B to K, there are two in the set
Tsep(AB,K). They determine one arc Dext . The other two
tangents are not in the set Tsep(AB,K). If they converge,
then there is also one arc Din. If they diverge, Din = /0. If
AB∩K = {T}, the only difference is that the separating
pair of tangent lines becomes one line

←→
AB and Dext = {T}.

Let AB∩K = {X1,X2}. Then, we consider two pairs of
tangent lines �+1 , �

+
2 and �−1 , �

−
2 . One pair, without loss of

generality the pair �+1 , �
+
2 , always converge so D+

in �= /0. The
pair �−1 , �

−
2 may converge or diverge, so we can obtain D as

one or two arcs of Din.
b) c) The proof for parabola and hyperbola is omitted, be-
cause it can be derived in a similar way. �

10



KoG•19–2015 B. Pokorná, P. Chalmovianský: Collision-free Piecewise Quadratic Spline with Regular ...

T2

T+
1

T+
2

U1

U2

P

K

bACuB

D

l1 l2

W 1
1 W 2

1

W 1
2

W 2
2

V
V

Cu

A

B

T1

Figure 4: The set Dext = {X ∈ K : AQKX� > 0 ∧
BQKX� > 0}=

�
T1T2. The set Din �= /0, because the point P

lies in the same half-plane generated by
←→
AB as the points

T+
1 ,T+

2 . The set Din = {X ∈ K : AQKX� < 0∧BQKX� <

0} \ {
�

U1U2} consists of two affiliated components
�

T+
2 U1

∪
�

U2T+
1 ∪{U1,U2}. The split of the arc is caused by the

existence of the curve bACuB, which has double contact with
the conic section K. As one can see, bACuB ∩K = {U1,U2}.
Therefore, the set of points of contact D = Dext ∪Din gen-
erates the curves l1, l2 such that l1 ∪ l2 = ∂Vρ(A,B). Be-
cause the curve l1 is generated by the exterior points of
contact, the region W 1

1 containing the points A,B is subset
W 1

1 ⊂ Vρ(A,B). The curve l2 is generated by the interior
points of contact. It bounds region W 2

2 not containing the
points A,B and W 2

2 ⊂ Vρ(A,B) according to theorem 7 .
The set of admissible solutions Vρ(A,B) = W 1

1 ∪W 2
2 con-

sists of two regions.

Now, let K be a singular conic section. In the case of K =
{VQ} (see fig. 1(b)), where VQ is the top of the isotropic
cone Q, we have D = {VQ} (see fig. 5(a)).
If K = p, where p is an isotropic double line (see fig. 1(c)),
we must distinguish two cases. If A,B lie in the opposite
half-planes generated by the line p, we have D = /0. If
A,B lie in the same half-plane, the set of points of contact
D = p.
The last singular case is K = p∪ r, where p,r are a pair of
distinct isotropic lines (see fig. 1(d)). Then, there are two
regions of points lying out of K in the plane ρ. If A,B lie in
the different regions, there is no collision-free Bézier curve
bACB. Let A,B lie in the same region, which is determined
by two half-lines

−−→
VQP ⊂ p and

−−→
VQR ⊂ r (see fig. 5(b)). Let

Sp ∈ p and Sr ∈ r are the points of contact of the Bézier

curve bACuB, i.e. bACuB ∩K = {Sp,Sr} is double contact.
Then D =

−−→
SpP∪−→

SrR. The special case is Sp = Sr =VQ.
In the tables 1 and 2, we see the structure of the set D for
various types of conic sections. The numbers in the table 2
represent the number of connected arcs in the set D.

Table 1: The set D for singular types of conic section K.
{VQ} p p∪ r

Dext Din Dext Din Dext Din
AB∩K = /0 ∧ {VQ} /0 p /0 −−→

SpP∪−→
SrR /0←→

AB∩K �= {T}
AB∩K = /0 ∧ {VQ} /0 – – – –←→
AB∩K = {T}

AB∩K = {X1,X2} – – – – – –
AB∩K = {T0} {VQ} /0 – – – –

A = B {VQ} /0 p /0 −−→
VQP∪−−→

VQR /0

Table 2: The set D for regular conic sections. The num-
bers indicate the number of connected arc components in
the set D.

ellipse parabola hyperbola
Dext Din Dext Din Dext Din

AB∩K = /0 ∧
1 /0,1 1 /0 2 /0←→

AB∩K �= {T}
AB∩K = /0 ∧

1 /0 1 /0 2 /0←→
AB∩K = {T}

AB∩K = {X1,X2} /0 1,2 /0 1 1 1
AB∩K = {T0} {T0} /0,1 {T0} /0 2 /0

A = B 1 /0 1 /0 2 /0

6 Boundary map

For the given points A,B, X ∈ D\DAB ⊆ K and the tangent
line �X at X to K, the Bézier curve bACB touching the conic
section K is clearly identified. In order to find the middle
control vertex C, we use the following map σ.

Definition 5 (Boundary map) Let D be the set of points
of contact for the given points A,B and K. The map
σ : D\DAB → ρ is called boundary map if σ(X) =C holds
for some C from the definition 3 and X ∈ D \ DAB (see
fig. 5(a)).

It is not possible to define the map σ on the points in DAB.
If T ∈ DAB ⊂ K then the points A,B,T are collinear on the
tangent line �T to K. Hence, there is an infinite number of
points C such that the Bézier curve bACB touches K in T .
All suitable C form a half-line, therefore we are interested
in the end point of the half-line, the point CS.

Theorem 5 Let the conic section K �= {VQ} and X =
[x0,y0] ∈ D\DAB. Then, the corresponding boundary map
σ : D\DAB → ρ has the form

σ(X) =
b(t0)−B2

0(t0)A−B2
2(t0)B

B2
1(t0)

, (1)

11
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where t0 ∈ [0,1] is a solution of the equation

0 = αt2 +2βt + γ (2)

and for A = [ax,ay,1], B = [bx,by,1], X = [x0,y0,1] are

α = (A−B)QKX�,

β =−AQKX�,

γ =−β.

Proof. Since we consider only affine points C ∈ ρ, let K
be a conic section with the matrix QK . Since the point
of contact X ∈ bACB(t), there exists t0 ∈ [0,1] such that
X = bACB(t0) = B2

0(t0)A+B2
1(t0)C+B2

2(t0)B. For the point
X ∈ K the equality XQKX� = 0 holds. So, X /∈ {A,B}
and t0 /∈ {0,1}. Because the point of contact X = [x0,y0] ∈
D \DAB, the equality

〈
∇ f (x0,y0),

d
dt bACB(t0)

〉
= 0 holds.

The equation (2) has a real solution if the discriminant

∆ = (AQKX�)(BQKX�)≥ 0. It holds, because if X ∈ Dext
then both brackets are positive. On the other hand, if
X ∈ Din then both brackets are negative and their prod-
uct is positive. From this quadratic equation, we obtain
two roots t1, t2. The question is, if they are both within
〈0,1〉. We use the theorem 1. The table 3 shows the val-
ues of the sequences { f (t), f ′(t), f ′′(t)} in the end points
of the interval 〈0,1〉 for f (t) = αt2 + 2βt + γ. From the
previous, the expressions AQKX� and BQKX� have the
same sign. Hence, the table 4 shows the number of sign
changes of the sequences { f (t), f ′(t), f ′′(t)} with respect
to the signs of AQKX� and BQKX�. According to theorem
1 applied to the function f (t), only one root is in 〈0,1〉. If
both t1, t2 ∈ (0,1) and t1 �= t2 then X ∈ DAB. Let t1 ∈ (0,1).
Then, we substitute t0 = t1 into the Bézier curve equation
and obtain the relevant point C from the definition 3 for the
point of contact X . Hence, C = σ(X). �

Table 3: The values of derivatives of
the function f (t) = αt2 +2βt + γ at the
end points of the interval 〈0,1〉.

Table 4: If we look on the numbers of sign changes, the differ-
ences 2−1 and 1−0 are both equal to 1. So, the function f (t)
have one real solution within the interval 〈0,1〉.

t = 0 t = 1

f (t) AQKX� −BQKX�

f ′(t) −2AQKX� −BQKX�

f ′′(t) 2(A−B)QKX�

AQKX� > 0∧BQKX� > 0 AQKX� < 0∧BQKX� < 0

t = 0 t = 1 t = 0 t = 1

f (t) + − − +

f ′(t) − − + +

f ′′(t) ± ± ± ±
# of sign
changes

2
1

1
0

1
2

0
1

K

C

∂V

D

T

A

B

(a)

A

B
K

D ∂V

VP

R

Cu

Sr

Sp

(b)

Figure 5: (a) The boundary map σ maps the points of the arc D to the points on ∂V , see that σ(T ) =C.
(b) Let the conic section K = p∪ r. The points A,B have to lie in the same quadrant with respect to K. Let
the quadrant be determined by two half-lines

−−→
VQP ⊂ p and

−−→
VQR ⊂ r. If there exists a Bézier curve bACuB

with double contact M = {Sp,Sr} with K, the set of exterior points of contact Dext =
−−→
SpP∪−→

SrR. Otherwise,
we get Sp = Sr = VQ and Dext =

−−→
VQP∪−−→

VQR. The set of interior points of contact is always Din = /0. The
boundaries generated by the half-lines

−−→
SpP,

−→
SrR are connected due to the fact that σ(Sp) = σ(Sr) = Cu.

Hence, the set of admissible solution Vρ(A,B) consist of one region. Because the boundary is generated by
the exterior points of contact, A,B ∈Vρ(A,B).
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For each X ∈D\DAB, there exists exactly one point C such
that the Bézier curve bACB(t)∩ K = {X}. How can we
find the point C corresponding to a given point of contact
T ∈ DAB ⊂ D?

Lemma 2 Let the points A,B and T ∈ DAB ⊂ K be
collinear.
(a) Let AB∩K = {T}. The Bézier curve bACB ∩K = {T}
iff C ∈←→

AB.
(b) Let AB∩K = /0. The Bézier curve bACB ∩K = {T} if
and only if C ∈ −−→

CSX ⊂ ←→
AB, where A,B /∈ −−→

CSX and CS is
such that the derivative d

dt bACSB(t0) = 0 for T = bACSB(t0).
For the special case A = B, the point CS = A+2(T −A).

In the equation (1) of the boundary map σ, the inequal-
ity B2

1(t0) > 0 holds for t0 ∈ (0,1), so the map σ is con-
tinuous. The σ maps the connected set Dext \ DAB onto
one connected curve l. If the point T ∈ DAB �= /0, then
limX→T σ(X) = CS and the union l ∪−−→

CSX is a connected
curve.

7 Set of admissible solutions

Theorem 6 (Boundary of the set Vρ(A,B)) The set of all
such points C that for the Bézier curve bACB∩K ⊂D yields,
is the boundary of the set of admissible solutions Vρ(A,B).
We denote it ∂Vρ(A,B).

Proof. The point C belongs to the boundary of the set
Vρ(A,B), if each neighborhood N of the point C contains
both the point C1 ∈Vρ(A,B) and the point C2 ∈ ρ\Vρ(A,B).
So, we prove the existence of points C1,C2 ∈ N such that
bAC1B ∩K = /0 and bAC2B ∩K = {X1,X2} with transversal
intersection (see fig. 6).

Let A,B,u be given as in the lemma 1. Let C be such
that bACB ∩K ⊂ D and T ∈ bACB ∩K. Let the line �T with
the direction vector u is the tangent line to K in T . Since
B2

1(t0)> 0 for t0 ∈ (0,1), the map τ assigning to each point
T its corresponding point C is continuous. It means, there
exists a neighborhood M of the point T for each neighbor-
hood N of the point C such that τ(M)⊂ N. For an arbitrary
neighborhood N of the point C, the neighborhood M of the
point T exists such that τ(M) ⊂ N. Let T1 = T + k∇ f (T )
and T2 = T − k∇ f (T ), where k > 0 is such that T1,T2 ∈ M
and they satisfy the conditions of the lemma 1. Let the
lines �1, �2 be parallel to the line �T (i.e. the vector u is
their direction vector) and T1 ∈ �1,T2 ∈ �2. Then, the points
C1 = τ(A,B,T1,u) and C2 = τ(A,B,T2,u) are C1,C2 ∈ N.
We obtain the Bézier curves bAC1B,bAC2B. Since each tan-
gent line �1, �2 defines the supporting half-plane to the con-
vex quadratic Bézier curve and the points A,B lie out of
K, it holds bAC1B ∩K = /0 and bAC2B ∩K = {X1,X2} with
transversal intersection. �

K

M

τ (M)

NC1

C2

∂V

D

C

TT1

T2

A

B

Figure 6: Let C be such that bACB ∩ K ⊂ D and T ∈
bACB ∩K. For arbitrary neighborhood N of the point C,
there exists a neighborhood M of the point T such that for
T1,T2 ∈ M the corresponding C1 = τ(T1),C2 = τ(T2) ∈ N.
Moreover, bAC1B ∩K = /0 and bAC2B ∩K = {X1,X2} with
transversal intersection. Hence, C ∈ ∂Vρ(A,B).

We say that the boundary of the set of admissible solu-
tions ∂Vρ(A,B) is generated by the set D mapped by the
boundary map σ. The boundary of admissible solutions
∂Vρ(A,B) consists of one or two continuous unbounded
curves. The degree of the curves is at most four in pa-
rameter t used in the map σ. It is clear from the expression
for roots and the map σ in theorem 5.

If the conic section K = p, then the boundary of the set of
admissible solutions ∂V is the parallel line with the line p.
Let K = p∪ r. According to the table 1, the set of points of
contact D =

−−→
SpP∪−→

SrR (in special case Sp = Sr =VQ). The
set ∂V consists from two half-lines parallel with p, resp. r,
connected in the point Cu (see fig. 5(b)).

The region Vρ(A,B) is determined by its boundary. The
boundary is parametrized piecewise using the map σ : D\
DAB → ρ. The next theorem determines, which parts of ρ
with respect to the boundary belong to the region Vρ(A,B).

Theorem 7 (Set of admissible solutions)

(a) Let K �= {VQ} be a connected component of the reg-
ular conic section. Let l ⊂ ∂Vρ(A,B) be a connected
curve, which divides the plane into two regions W1,W2.
If l is generated by Dext , then Wi ⊆ Vρ(A,B) when
A,B ∈ Wi. If l is generated by Dext and AB ⊂ l, then
Wi ⊆ Vρ(A,B) when K /∈ Wi. If l is generated by Din,
then Wi ⊆Vρ(A,B) when A,B �∈Wi.

(b) In the case of K = {VQ}, both W1,W2 ⊂ Vρ(A,B). If
K = p or K = p∪r, then Wi ⊆Vρ(A,B) when A,B∈Wi.

13
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Proof. (a) The intersection AB∩ l �= /0 iff AB∩K = {T}.
Then, the curve l is generated by exterior points of con-
tact. The connected component K is a convex curve and the
line

←→
AB determine the supporting half-plane to K. Hence,

Wi ⊆Vρ(A,B) if K /∈Wi.
If there exists only one curve l = ∂Vρ(A,B), we decide
about Wi according to the point C = 1

2 A+ 1
2 B.

Suppose that l1 and l2 exist such that l1 ∪ l2 = ∂Vρ(A,B).
According to the table 2, the conic section K is an ellipse.
If both l1, l2 are generated by the sets of interior points of
contact, in both cases we can decide about Wi according
to the point C = 1

2 A+ 1
2 B. The segment AB lies between

the curves l1, l2 and the set Vρ(A,B) consists of two re-
gions. Now, let the curve l1 be generated by the set of
exterior points of contact and the curve l2 be generated by
the set of interior points of contact (see fig. 4). The in-
tersection l1 ∩ l2 = /0, because the Bézier curve with one
exterior and one interior point of contact with K simulta-
neously does not exist. Let the curve l1 divide the plane
ρ into two components W1,W2 and A,B ∈ W1. The curve
l2 ⊂W2, because for C = 1

2 A+ 1
2 B is bACB ∩K = /0 and the

set W1 ⊂ ∂Vρ(A,B). Let the curve l2 divide the region W2

into two components W3,W4 and l1 be the boundary be-
tween W1,W3. According to the theorem 6, the region W3

consists of such points C that bACB and K have transversal
intersections and the region W4 ⊂ ∂Vρ(A,B). �

In the case of hyperbola, each component generates one
set of admissible solutions. Hence, we obtain the re-
gions V1(A,B),V2(A,B) for the K1,K2. For every point
C ∈V1(A,B), the Bézier curve bACB∩K1 = /0. We are look-
ing for the set of points C, such that bACB ∩ (K1 ∪K2) = /0.
It holds for every point C ∈V1(A,B)∩V2(A,B), see fig. 7.

Finally, for the two given points A,B and the conic K, the
set of acceptable solutions Vρ(A,B) consists of one or two

regions, see the table 5. It depends on the number of arcs
in the set D and on the type of the conic section K.

K1 K2

a1 a2

A

B

T1

T+
2

T+
1

T2

D1 D2

l1

l2

W 1
1 W 1

2

W 2
1 W 2

2

V

Figure 7: For the component K1, the set of exterior points
of contact D1

ext = /0 and the set of interior points of contact

D1
in =

�

T+
1 T+

2 . The set of points of contact D1 = D1
in gen-

erates the curve l1 ⊂ ∂Vρ(A,B). The curve l1 divides the
plane ρ into two regions W 1

1 ,W
1
2 . Let the points A,B ∈W 1

1 .
According to the theorem 7, the set of admissible solutions
for the component K1 is V 1(A,B) =W 1

2 .
For the component K2, since T2 = a∞

2 , the set of exte-

rior points of contact D2
ext =

�
T1a∞

2 and the set of interior
points of contact D2

in = /0. The set of points of contact
D2 = D2

ext generates the curve l2 ⊂ ∂Vρ(A,B) and if the
points A,B ∈W 2

1 , then V 2(A,B) =W 2
1 .

Finally, the set of admissible solutions for the conic section
K is Vρ(A,B) =V 1(A,B)∩V 2(A,B).

Table 5: The number of regions in the set of acceptable solutions Vρ(A,B).

{VQ} p p∪ r ellipse parabola hyperbola
AB∩K = /0 ∧ 2 1 1 1,2 1 1←→
AB∩K �= {T}
AB∩K = /0 ∧ 1 – – 1 1 1←→
AB∩K = {T}

AB∩K = {X1,X2} – – – 1,2 1 1
AB∩K = {T0} 2 – – 1,2 1 1

A = B 1 1 1 1 1 1
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On the Metrics Induced by Icosidodecahedron
and Rhombic Triacontahedron

ABSTRACT

The theory of convex sets is a vibrant and classical field
of modern mathematics with rich applications. If every
points of a line segment that connects any two points
of the set are in the set, then it is convex. The more
geometric aspects of convex sets are developed introduc-
ing some notions, but primarily polyhedra. A polyhedra,
when it is convex, is an extremely important special solid
in Rn. Some examples of convex subsets of Euclidean
3-dimensional space are Platonic Solids, Archimedean
Solids and Archimedean Duals or Catalan Solids. In this
study, we give two new metrics to be their spheres an
archimedean solid icosidodecahedron and its archimedean
dual rhombic triacontahedron.

Key words: Archimedean solids, Catalan solids, metric,
Chinese Checkers metric, Icosidodecahedron, Rhombic tri-
acontahedron

MSC2010: 51K05, 51K99, 51M20

O metrici induciranoj ikosadodekaedrom i
trijakontaedrom

SAŽETAK

Teorija konveksnih skupova je vitalno i klasično područje
moderne matematike s bogatom primjenom. Ako se sve
točke dužine, koja spaja bilo koje dvije točke skupa, nalaze
u tom skupu, tada je taj skup konveksan. Sve se vǐse
geometrijskih aspekata o konveksnim skupovima razvija
uvodeći neke pojmove, ponajprije poliedre. Konveksni
poliedar je iznimno važno posebno tijelo u Rn. Neki primje-
ri konveksnih podskupova euklidskog trodimenzionalnog
prostora su Platonova tijela, Arhimedova tijela, tijela du-
alna Arhimedovim tijelima i Catalanova tijela. U ovom
članku prikazujemo dvije metrike koje su sfere Arhime-
dovom tijelu ikosadodekaedru i njemu dualnom tijelu, tri-
jakontaedru.

Ključne riječi: Arhimedova tijela, Catalanova tijela,
metrika kineskog šaha, ikosadodekaedar, trijakontaedar

1 Introduction

Some mathematicians studied on metrics and improved
metric geometry (some of these are [2], [3], [6], [7], [8],
[9]). Let P1 = (x1,y1,z1) and P2 = (x2,y2,z2) be two points
in R3. The maximum metric dM : R3 ×R3 → [0,∞) is de-
fined by

dM(P1,P2) = max{|x1 − x2| , |y1 − y2| , |z1 − z2|}.

Taxicab metric dT : R3 ×R3 → [0,∞) is defined by

dT (P1,P2) = |x1 − x2|+ |y1 − y2|+ |z1 − z2| .

Then E. Krause asked the question of how to develop
a metric which would be similar to movement made by
playing Chinese Checkers [11]. An answer was given

by G. Chen for plane [1]. In [5], Ö. Gelişgen, R.
Kaya and M. Özcan extended Chinese-Checkers metric to
3−dimensional space. The CC−metric
dCC : R3 ×R3 → [0,∞) is defined by

dCC(P1,P2) = dL(P1,P2)+(
√

2−1)dS(P1,P2)

where dL(P1,P2) = max{|x1 − x2| , |y1 − y2| , |z1 − z2|} and
dS(P1,P2) = min{|x1 − x2|+ |y1 − y2| , |x1 − x2|+ |z1 − z2| ,
|y1 − y2|+ |z1 − z2|}.
Each of geometries induced by these metrics is a
Minkowski geometry. Minkowski geometry is a non-
euclidean geometry in a finite number of dimensions that
is different from elliptic and hyperbolic geometry (and
from the Minkowskian geometry of space-time). In a
Minkowski geometry, the linear structure is just like the
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Euclidean one but distance is not uniform in all directions.
That is, the points, lines and planes are the same, and the
angles are measured in the same way, but the distance func-
tion is different. Instead of the usual sphere in Euclidean
space, the unit ball is a certain symmetric closed convex
set [13].
A polyhedron is a solid in three dimensions with flat faces,
straight edges and vertices. A regular polyhedron is a poly-
hedron with congruent faces and identical vertices. There
are only five regular convex polyhedra which are called
platonic solids. Archimedes discovered the semiregular
convex solids. However, several centuries passed before
their rediscovery by the renaissance mathematicians. Fi-
nally, Kepler completed the work in 1620 by introducing
prisms and antiprisms as well as four regular nonconvex
polyhedra, now known as the Kepler–Poinsot polyhedra.
Construction of the dual solids of the Archimedean solids
was completed in 1865 by Catalan nearly two centuries
after Kepler (see [10]). A convex polyhedron is said to
be semiregular if its faces have a similar configuration of
nonintersecting regular plane convex polygons of two or
more different types about each vertex. These solids are
commonly called the Archimedean solids. The duals are
known as the Catalan solids. The Catalan solids are all
convex. They are face-transitive when all its faces are the
same but not vertex-transitive. Unlike Platonic solids and
Archimedean solids, the face of Catalan solids are not reg-
ular polygons.
According to studies of mentioned researches unit spheres
of Minkowski geometries which are furnished by these
metrics are associated with convex solids. For example,
unit spheres of maximum space and taxicab space are
cubes and octahedrons, respectively, which are Platonic
Solids [4], [6]. And unit sphere of CC-space is a del-
toidal icositetrahedron which is a Catalan solid [5]. There-

fore, there are some metrics in which unit spheres of space
furnished by them are convex polyhedra. That is, convex
polyhedra are associated with some metrics. When a met-
ric is given we can find its unit sphere. On the contrary
a question can be asked; “Is it possible to find the metric
when a convex polyhedron is given?”. In this study we
find the metrics of which unit spheres are an icosidodeca-
hedron, one of the Archimedean Solids and a rhombic tri-
acontahedron which is Archimedean dual (a catalan solid)
of icosidodecahedron.

2 Icosidodecahedron Metric

One type of convex polyhedrons is the Archimedean
solids. The fifth book of the “Synagoge” or “Collection” of
the Greek mathematician Pappus of Alexandria, who lived
in the beginning of the fourth century AD, gives the first
known mention of the thirteen “Archimedean solids”. Al-
though, Archimedes makes no mention of these solids in
any of his extant works, Pappus lists this solids and at-
tributes to Archimedes in his book [16].
An Archimedean solid is a symmetric, semiregular con-
vex polyhedron composed of two or more types of regular
polygons meeting in identical vertices. A polyhedron is
called semiregular if its faces are all regular polygons and
its corners are alike. And, identical vertices are usually
means that for two taken vertices there must be an isom-
etry of the entire solid that transforms one vertex to the
other.
One of the Archimedean solids is the icosidodecahedron.
An icosidodecahedron is a polyhedron which has 32 faces,
60 edges and 30 vertices. Twelve of its faces are regu-
lar pentagons and twenty of them are equilateral triangles
[14].

(a)
(b)

Figure 1: (a) Icosidodecahedron, (b) Net of icosidodecahedron
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To find the metrics of which unit spheres are convex poly-
hedrons, firstly, the related polyhedra are placed in the 3-
dimensional space in such a way that they are symmetric
with respect to the origin. And then the coordinates of ver-
tices are found. Later one can obtain metric which always
supply plane equation related with solid’s surface. There-
fore we describe the metric which unit sphere is an icosi-
dodecahedron as following:

Definition 1 Let P1 = (x1,y1,z1) and P2 = (x2,y2,z2) be
two points in R3.
The distance function dID : R3 ×R3 → [0,∞) icosidodeca-
hedron distance between P1 and P2 is defined by

dID(P1,P2) =

max




u+(ϕ−1)max{v,(ϕ−1)w,(1−ϕ)u+ v+w} ,
v+(ϕ−1)max{w,(ϕ−1)u,u+(1−ϕ)v+w} ,
w+(ϕ−1)max{u,(ϕ−1)v,u+ v+(1−ϕ)w}




where u = |x1 − x2|, v = |y1 − y2|, w = |z1 − z2| and ϕ =
1+

√
5

2 the golden ratio.

According to icosidodecahedron distance, there are three
different paths from P1 to P2. These paths are
i) union of two line segments which one is parallel to a
coordinate axis and other line segment makes arctan(

√
5

2 )
angle with another coordinate axis.
ii) union of two line segments which one is parallel to a co-
ordinate axis and other line segment makes arctan( 1

2 ) angle
with another coordinate axis.
iii) union of three line segments each of which is parallel
to a coordinate axis.

Thus icosidodecahedron distance between P1 and P2 is the
sum of Euclidean lengths of these two line segments or√

5−1
2 times the sum of Euclidean lengths of these three

line segments.
Figure 2 illustrates icosidodecahedron way from P1 to
P2 if maximum value is |x1 − x2| + (

√
5−1
2 ) |y1 − y2|,

|x1 − x2| + (
√

5−1
2 )2 |z1 − z2| or (

√
5−1
2 )(|x1 − x2| +

|y1 − y2|+ |z1 − z2|).

Lemma 1 Let P1 = (x1,y1,z1) and P2 = (x2,y2,z2) be dis-
tinct two points in R3. u, v, w denote |x1 − x2|, |y1 − y2|,
|z1 − z2|, respectively. Then

dID(P1,P2)≥ u+(ϕ−1)max{v,(ϕ−1)w,(1−ϕ)u+ v+w},
dID(P1,P2)≥ v+(ϕ−1)max{w,(ϕ−1)u,u+(1−ϕ)v+w},
dID(P1,P2)≥ w+(ϕ−1)max{u,(ϕ−1)v,u+ v+(1−ϕ)w}.

Proof. Proof is trivial by the definition of maximum func-
tion. �

Theorem 1 The distance function dID is a metric. Also
according to dID, the unit sphere is an icosidodecahedron
in R3.

Proof. Let dID : R3 × R3 → [0,∞) be the icosidodec-
ahedron distance function and P1 = (x1,y1,z1), P2 =
(x2,y2,z2) and P3 = (x3,y3,z3) are distinct three points in
R3. u, v, w denote |x1 − x2|, |y1 − y2|, |z1 − z2|, respec-
tively. To show that dID is a metric in R3, the following
axioms hold true for all P1, P2 and P3 ∈ R3.

Figure 2: ID way from P1 to P2
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M1) dID(P1,P2)≥ 0 and dID(P1,P2) = 0 iff P1 = P2
M2) dID(P1,P2) = dID(P2,P1)
M3) dID(P1,P3)≤ dID(P1,P2)+dID(P2,P3).
Since absolute values is always nonnegative value
dID(P1,P2) ≥ 0. If dID(P1,P2) = 0 then there are possi-
ble three cases. These cases are
Case I:
dID(P1,P2) = u+(ϕ−1)max{v,(ϕ−1)w,(1−ϕ)u+v+w}
Case II:
dID(P1,P2) = v+(ϕ−1)max{w,(ϕ−1)u,u+(1−ϕ)v+w}
Case III:
dID(P1,P2) =w+(ϕ−1)max{u,(ϕ−1)v,u+v+(1−ϕ)w}.

Case I: If dID(P1,P2) = u+(ϕ− 1)max{v,(ϕ− 1)w,(1−
ϕ)u+ v+w}, then

u+(ϕ−1)max{v,(ϕ−1)w,(1−ϕ)u+ v+w}=0
⇔ u = 0 and (ϕ−1)max{v,(ϕ−1)w,(1−ϕ)u+ v+w}= 0
⇔ x1 = x2, y1 = y2, z1 = z2
⇔ (x1,y1,z1) = (x2,y2,z2)
⇔ P1 = P2

The other cases can be shown by similar way in Case I.
Thus we get dID(P1,P2) = 0 iff P1 = P2.
Since |x1 − x2| = |x2 − x1|, |y1 − y2| = |y2 − y1| and
|z1 − z2| = |z2 − z1|, obviously dID(P1,P2) = dID(P2,P1).
That is, dID is symmetric.
Let P1 = (x1,y1,z1), P2 = (x2,y2,z2) and P3 = (x3,y3,z3)
are distinct three points in R3. u1, v1, w1, u2, v2, w2 denote
|x1 − x3|, |y1 − y3|, |z1 − z3|, |x2 − x3|, |y2 − y3|, |z2 − z3|,
respectively.
Then by using the property |a−b+b− c| ≤ |a−b| +
|b− c| we get

dID(P1,P3)

=max




u1 +(ϕ−1)max{v1, (ϕ−1)w1,(1−ϕ)u1 + v1 +w1} ,
v1 +(ϕ−1)max{w1, (ϕ−1)u1,u1 +(1−ϕ)v1 +w1} ,
w1 +(ϕ−1)max{u1, (ϕ−1)v1,u1 + v1 +(1−ϕ)w1}




≤ max





u1 +u2 +(ϕ−1)max





v1 + v2, (ϕ−1)(w1 +w2) ,
(1−ϕ)(u1 +u2)
+v1 + v2 +w1 +w2


 ,

v1 + v2 +(ϕ−1)max




w1 +w2, (ϕ−1)(u1 +u2) ,
u1 +u2 +(1−ϕ)(v1 + v2)
+w1 +w2


 ,

w1 +w2 +(ϕ−1)max





u1 +u2, (ϕ−1)(v1 + v2) ,
u1 +u2 + v1 + v2
+(1−ϕ)(w1 +w2)







= I.

Therefore one can easily find that I ≤ dID(P1,P2) +
dID(P2,P3) from Lemma 1. So, dID(P1,P3)≤ dID(P1,P2)+
dID(P2,P3). Consequently, icosidodecahedron distance is a
metric in 3-dimensional analytical space.
Finally, the set of all points X = (x,y,z) ∈ R3 that icosido-
decahedron distance is 1 from O = (0,0,0) is

SID =



(x,y,z):max





|x|+(ϕ-1)max
{
|y| ,(ϕ-1) |z| ,
(1-ϕ) |x|+ |y|+ |z|

}
,

|y|+(ϕ-1)max
{
|z| ,(ϕ-1) |x| ,
|x|+(1-ϕ) |y|+ |z|

}
,

|z|+(ϕ-1)max
{
|x| ,(ϕ-1) |y| ,
|x|+ |y|+(1-ϕ) |z|

}




=1





.

Thus the graph of SID is as in Figure 3. �

Figure 3: Icosidodecahedron

Corollary 1 The equation of the icosidodecahedron with
center (x0,y0,z0) and radius r is

max




|x− x0|+(ϕ−1)max




|y− y0| ,(ϕ−1) |z− z0| ,
(1−ϕ) |x− x0|
+ |y− y0|+ |z− z0|


 ,

|y− y0|+(ϕ−1)max




|z− z0| ,(ϕ−1) |x− x0| ,
(1−ϕ) |y− y0|
+ |x− x0|+ |z− z0|


 ,

|z− z0|+(ϕ−1)max




|x− x0| ,(ϕ−1) |y− y0| ,
(1−ϕ) |z− z0|
+ |x− x0|+ |y− y0|







= r
which is a polyhedron which has 32 faces with vertices;
such that all permutations of the three axis components
and all posible +/- sign changes of each axis component
of (0,0,r), and (ϕ−1

2 r, 1
2 r, ϕ

2 r), where ϕ = 1+
√

5
2 the golden

ratio.

Lemma 2 Let l be the line through the points P1 =
(x1,y1,z1) and P2 = (x2,y2,z2) in the analytical 3-
dimensional space and dE denote the Euclidean metric. If
l has direction vector(p,q,r), then

dID(P1,P2) = µ(P1P2)dE(P1,P2)

where µ(P1P2) =

max



|p|+(ϕ−1)max{|q| ,(ϕ−1) |r| ,(1−ϕ) |p|+ |q|+ |r|} ,
|q|+(ϕ−1)max{|r| ,(ϕ−1) |p| , |p|+(1−ϕ) |q|+ |r|} ,
|r|+(ϕ−1)max{|p| ,(ϕ−1) |q| , |p|+ |q|+(1−ϕ) |r|}




√
p2 +q2 + r2

.
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Proof. Equation of l gives us x1 − x2 = λp, y1 − y2 = λq,
z1 − z2 = λr, r ∈ R. Thus, dID(P1,P2) is equal to

|λ|




max




|p|+(ϕ−1)max
{

|q| ,(ϕ−1) |r| ,
(1−ϕ) |p|+ |q|+ |r|

}
,

|q|+(ϕ−1)max
{

|r| ,(ϕ−1) |p| ,
|p|+(1−ϕ) |q|+ |r|

}
,

|r|+(ϕ−1)max
{

|p| ,(ϕ−1) |q| ,
|p|+ |q|+(1−ϕ) |r|

}







and dE(A,B) = |λ|
√

p2 +q2 + r2 which implies the re-
quired result. �

The lemma above says that dID−distance along any line
is some positive constant multiple of Euclidean distance
along same line. Thus, one can immediately state the fol-
lowing corollaries.

Corollary 2 If P1, P2 and X are any three collinear
points in R3, then dE(P1,X) = dE(P2,X) if and only if
dID(P1,X) = dID(P2,X).

Corollary 3 If P1, P2 and X are any three distinct
collinear points in the real 3-dimensional space, then

dID(X ,P1) / dID(X ,P2) = dE(X ,P1) / dE(X ,P2) .

That is, the ratios of the Euclidean and dID−distances
along a line are the same.

3 Rhombic Triacontahedron Metric

The duals of thirteen Archimedean solids are known as
Catalan solids. Unlike Platonic and Archimedean solids,
faces of Catalan solids are not regular polygons. Rhombic
triacontahedron is one of the Catalan solids with 30 faces,

32 vertices and 60 edges. Its faces are rhombuses. The ra-
tio of the long diagonal to the short diagonal of each face is
exactly equal to ϕ = 1+

√
5

2 , which is the golden ratio [15].

Definition 2 Let P1 = (x1,y1,z1) and P2 = (x2,y2,z2) be
two points in R3. The distance function dRT : R3 ×R3 →
[0,∞) Rhombic triacontahedron distance between P1 and
P2 is defined by dRT (P1,P2) =

ϕ
2

max




|x1 − x2|+(2ϕ−3)max
{
(ϕ+1) |z1 − z2|+ϕ |y1 − y2|,
|x1 − x2|

}
,

|y1 − y2|+(2ϕ−3)max
{
(ϕ+1) |x1 − x2|+ϕ |z1 − z2|,
|y1 − y2|

}
,

|z1 − z2|+(2ϕ−3)max
{
(ϕ+1) |y1 − y2|+ϕ |x1 − x2|,
|z1 − z2|

}




where ϕ = 1+
√

5
2 , the golden ratio.

According to the rhombic triacontahedron distance, there
are two types path from P1 to P2. These paths are:

i) union of three line segments which one is parallel to
a coordinate axis and other line segments are made
arctan( 1

2 ) and arctan(
√

5
2 ) angle with other coordi-

nate axes.

ii) a line segment which is parallel to a coordinate axis.

Thus rhombic triacontahedron distance between P1 and
P2 is the Euclidean length of line segment which is par-
allel to a coordinate axis or

√
5+1
4 times the sum of Eu-

clidean lengths of three line segments. Figure 5 shows
that the path between P1 and P2 in case of the maximum
is |y1 − y2|+ 3−

√
5

2 |z1 − z2|+
√

5−1
2 |x1 − x2|.

(a) (b)

Figure 4: (a) Rhombic triacontahedron, (b) Net of rhombic triacontahedron
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Figure 5: RT way from P1 to P2 in the case |y1 − y2| ≥
|x1 − x2| ≥ |z1 − z2|

Lemma 3 Let P1 = (x1,y1,z1) and P2 = (x2,y2,z2) be dis-
tinct two points in R3. Then

dRT (P1,P2)≥
ϕ
2 (|x1 − x2|+(2ϕ−3)max{(ϕ+1) |z1 − z2|+ϕ |y1 − y2|, |x1 − x2|})

dRT (P1,P2)≥
ϕ
2 (|y1 − y2|+(2ϕ−3)max{(ϕ+1) |x1 − x2|+ϕ |z1 − z2|, |y1 − y2|})

dRT (P1,P2)≥
ϕ
2 (|z1 − z2|+(2ϕ−3)max{(ϕ+1) |y1 − y2|+ϕ |x1 − x2|, |z1 − z2|}) .

where ϕ = 1+
√

5
2 .

Proof. Proof is trivial by the definition of maximum func-
tion. �

Theorem 2 The distance function dRT is a metric. Also
according to dRT , unit sphere is a rhombic triacontahedron
in R3.

Proof. Let dRT : R3 ×R3 → [0,∞) be the rhombic tria-
contahedron distance function and P1 = (x1,y1,z1), P2 =
(x2,y2,z2) and P3 = (x3,y3,z3) are distinct three points in
R3. To show that dRT is a metric in R3, the following ax-
ioms hold true for all P1, P2 and P3 ∈ R3.
M1) dRT (P1,P2)≥ 0 and dRT (P1,P2) = 0 iff P1 = P2

M2) dRT (P1,P2) = dRT (P2,P1)

M3) dRT (P1,P3)≤ dRT (P1,P2)+dRT (P2,P3).
One can easily show that the rhombic triacontahedron dis-
tance function satisfies above axioms by similar way in
Theorem 1.
Consequently, the set of all points X = (x,y,z) ∈ R3 that
rhombic triacontahedron distance is 1 from O = (0,0,0) is
SRT =


(x,y,z) : ϕ

2 max




|x|+(2ϕ−3)max{(ϕ+1) |z|+ϕ |y|, |x|} ,
|y|+(2ϕ−3)max{(ϕ+1) |x|+ϕ |z|, |y|} ,
|z|+(2ϕ−3)max{(ϕ+1) |y|+ϕ |x|, |z|}


=1


.

Thus the graph of SRT is as in Figure 6. �

Corollary 4 The equation of the rhombic triacontahedron
with center (x0,y0,z0) and radius r is

ϕ
2

max




|x− x0|+(2ϕ−3)max
{
(ϕ+1) |z− z0|+ϕ |y− y0|,
|x− x0|

}
,

|y− y0|+(2ϕ−3)max
{
(ϕ+1) |x− x0|+ϕ |z− z0|,
|y− y0|

}
,

|z− z0|+(2ϕ−3)max
{
(ϕ+1) |y− y0|+ϕ |x− x0|,
|z− z0|

}




=r.
which is a polyhedron which has 30 faces with vertices;
such that all permutations of the three axis components
and all posible +/- sign changes of each axis component
of (µr,0,r), (0,δr,r) and (µr,µr,µr), where µ =

√
5−1
2 and

δ = 3−
√

5
2 .

Figure 6: Rhombic Triacontahedron

Lemma 4 Let l be the line through the points P1 =
(x1,y1,z1) and P2 = (x2,y2,z2) in the analytical 3-
dimensional space and dE denote the Euclidean metric. If
l has direction vector (p,q,r), then

dRT (P1,P2) = µ(P1P2)dE(P1,P2)

where

µ(P1P2)=

ϕ
2 max




|p|+(2ϕ−3)max{(ϕ+1) |r|+ϕ |q| , |p|} ,
|q|+(2ϕ−3)max{(ϕ+1) |p|+ϕ |r| , |q|} ,
|r|+(2ϕ−3)max{(ϕ+1) |q|+ϕ |p| , |r|}




√
p2 +q2 + r2

.

Proof. Equation of l gives us x1 − x2 = λp, y1 − y2 = λq,
z1 − z2 = λr, r ∈ R. Thus,
dRT (P1,P2) =

|λ|


ϕ

2
max




|p|+(2ϕ−3)max{(ϕ+1) |r|+ϕ |q| , |p|} ,
|q|+(2ϕ−3)max{(ϕ+1) |p|+ϕ |r| , |q|} ,
|r|+(2ϕ−3)max{(ϕ+1) |q|+ϕ |p| , |r|}







and dE(A,B) = |λ|
√

p2 +q2 + r2 which implies the re-
quired result. �
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The previous lemma says that dRT−distance along any line
is some positive constant multiple of Euclidean distance
along same line. Thus, one can immediately state the fol-
lowing corollaries:

Corollary 5 If P1, P2 and X are any three collinear
points in R3, then dE(P1,X) = dE(P2,X) if and only if
dRT (P1,X) = dRT (P2,X).

Corollary 6 If P1, P2 and X are any three distinct
collinear points in the real 3-dimensional space, then

dRT (X ,P1) / dRT (X ,P2) = dE(X ,P1) / dE(X ,P2) .

That is, the ratios of the Euclidean and dRT−distances
along a line are the same.
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taschenbücher 447/447a, Mannheim-Wien-Zürich,
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On Some Regular Polygons in the Taxicab
3−Space

On Some Regular Polygons in the Taxicab
3−Space

ABSTRACT

In this study, it has been researched which Euclidean reg-
ular polygons are also taxicab regular and which are not.
The existence of non-Euclidean taxicab regular polygons
in the taxicab 3-space has also been investigated.
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O nekim pravilnim mnogokutima u taxicab trodi-
menzionalnom prostoru

SAŽETAK

U ovom se radu proučava koji su euklidski pravilni mno-
gokuti ujedno i taxicab pravilni, a koji to nisu. Takod-er se
istražuje postojanje taxicab pravinih mnogokuta koji nisu
pravilni u euklidskom smislu.

Ključne riječi: taxicab geometrija, euklidska geometrija,
pravilni mnogokuti

1 Introduction

The taxicab 3-dimensional space R3
T is almost the same

as the Euclidean analytical 3-dimensional space R3. The
points, lines and planes are the same in Euclidean and taxi-
cab geometry and the angles are measured in the same way,
but the distance function is different. The taxicab metric is
defined using the distance function as in [4], [6]

dT (A,B) = |b1 −a1|+ |b2 −a2|+ |b3 −a3| . (1)

Also, for a vector
−→
V = (v1,v2,v3) ∈ R3, taxicab norm of

−→
V is noted as

∥∥∥−→V
∥∥∥

T
as in [5] and

∥∥∥−→V
∥∥∥

T
= |v1|+ |v2|+ |v3| . (2)

Since taxicab plane and 3-dimensional taxicab space have
different distance function from that in the Euclidean plane
and 3-dimensional space, it is interesting to study the taxi-
cab analogues of topics that include the distance concept
in the Euclidean plane and 3-dimensional space. During
the recent years, many such topics have been studied in the
taxicab plane and 3-dimensional space (see [1], [2], [3],
[5], [6], [7], [8], [9], [10]).
In R2, the equation of taxicab circle is

|x− x0|+ |y− y0|= r (3)

which is centered at M = (x0,y0) point with radius r.
In R3, the equation of taxicab sphere is

|x− x0|+ |y− y0|+ |z− z0|= r (4)

which is centered at M = (x0,y0,z0) point with radius r
(see [7], [8], [9]). Then, a taxicab circle can be defined by
a plane and a taxicab sphere.
In R3, the taxicab circle is the intersection set of taxicab
sphere and ax + by + cz + d = 0, (a,b,c,d ∈ R), plane
which passes through the center of taxicab sphere.
Recently regular polygons have been studied in the taxicab
plane (see [3]). Although there do not exist Euclidean and
taxicab regular triangles in the taxicab plane (see [3]), there
exist Euclidean and taxicab regular triangles in the taxicab
3-dimensional space R3

T (see Example 1, 2). Therefore, it
can be interesting to study regular polygons in the taxi-
cab 3-dimensional space. On the x = k1,y = k2,z = k3
(k1,k2,k3 ∈ R) planes in the R3

T , Euclidean and taxicab
regular polygons can be investigated in the same way as
in the taxicab plane R2

T . Therefore, in this study, reg-
ular polygons which are not on x = k1,y = k2,z = k3
(k1,k2,k3 ∈ R) planes are researched and we answer the
following question: Which Euclidean regular polygons are
also the taxicab regular, and which are not? In addition,
we investigate the existence and nonexistence of taxicab
regular polygons in the taxicab 3-dimensional space R3

T .
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2 Taxicab Regular Polygons

As in the Euclidean 3-space, a polygon in the taxicab 3-
space consists of three or more coplanar line segments, the
line segments (sides) intersect only at endpoints, each end-
point (vertex) belongs to exactly two line segments and no
two line segments with a common endpoint are collinear.
If the number of sides of a polygon is n for n ≥ 3 and
n ∈N, then the polygon is called an n−gon. The following
definitions for polygons in the taxicab 3-space are given
by means of the taxicab lengths instead of the Euclidean
lengths:

Definition 1 A polygon in the plane is said to be taxicab
equilateral if the taxicab lengths of its sides are equal.

Definition 2 A polygon in the plane is said to be taxicab
equiangular if the measures of its interior angles are equal.

Definition 3 A polygon in the plane is said to be taxicab
regular if it is both taxicab equilateral and equiangular.

Definition 2 does not give a new equiangular concept be-
cause the taxicab and the Euclidean measure of an angle
are the same. That is, every Euclidean equiangular polygon
is also the taxicab equiangular, and vice versa. However,
since the taxicab 3-space has a different distance function,
Definition 1 and Definition 3 are new concepts [3].
An n-gon can be formed by n vectors with a total of zero
on a plane. If the lengths of n vectors are the same and all
the angles between two consecutive vectors are equal, the
n-gon is regular (see Figure 1). Therefore, we need to find
n vectors that allow these requirements to form a regular
n-gon.

Figure 1.

Let W be a vector set and the members of W are sides of
taxicab regular polygon as in Figure 1. It is clear that all the
vectors are on the same plane and all the angles between
two consecutive vectors are equal.
Let w be a vector in R3. We would like to find geo-
metric locations of the wi vectors where ‖w‖E = ‖wi‖E

and ‖w‖T = ‖wi‖T (since there exist an infinite number of
points on a circle as in Case 2, it can be said that i ∈ N).
Let k ∈ R.
If the direction vector of w is (±k,±k,±k), then ‖w‖E =
‖w‖T√

3
.

If the direction vector of w is a member of
{(±k,0,0) ,(0,±k,0) ,(0,0,±k)}, then ‖w‖E = ‖w‖T .
If the direction vector of w is not a member of
{(±k,0,0) ,(0,±k,0) ,(0,0,±k) ,(±k,±k,±k)} , then
‖w‖T√

3
< ‖w‖E < ‖w‖T .

To determine wi vectors, there exist three different cases
depending on the Euclidean and taxicab lengths of the w
vector.
Case 1. For ‖w‖E =

‖w‖T√
3
, as it is shown in Figure 2, the

members of the intersection set of the Euclidean and taxi-
cab sphere are

wi = (±‖w‖T
3

,±‖w‖T
3

,±‖w‖T
3

). (5)

Figure 2.

Case 2. For ‖w‖T√
3

< ‖w‖E < ‖w‖T , as it is shown in Fig-
ure 3, the intersection sets are 8 circles on the taxicab
sphere. One of the circles, C, is on x+ y+ z = ‖w‖T plane
and points of C are intersection of

x+ y+ z = ‖w‖T (6)

plane and

(
x−‖w‖T

3

)2

+

(
y−‖w‖T

3

)2

+

(
z− ‖w‖T

3

)2

=
3‖w‖2

E−‖w‖2
T

3
(7)

Euclidean sphere. All the circles, for 1 ≤ j ≤ 8 Cj, are
intersection of

(
x±‖w‖T

3

)2

+

(
y±‖w‖T

3

)2

+

(
z±‖w‖T

3

)2

=
3‖w‖2

E−‖w‖2
T

3
(8)
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Euclidean spheres and

±x± y± z = ‖w‖T (9)

planes. Thus, wi vectors where ‖w‖E = ‖wi‖E and ‖w‖T =

‖wi‖T are members of
8
∪

j=1
Cj.

Figure 3.

Case 3. For ‖w‖E = ‖w‖T , as it is shown in Figure 20, the
members of the intersection set of Euclidean and taxicab
sphere are

wi = (±‖w‖T ,0,0),(0,±‖w‖T ,0),(0,0,±‖w‖T ). (10)

Let us introduce the following abbreviations for the fol-
lowing Proposition 1.
±x±y± z = ‖−→w ‖T plane equation is shown as P±,±,± and(

x± ‖w‖T
3

)2
+
(

y± ‖w‖T
3

)2
+
(

z± ‖w‖T
3

)2
=

3‖w‖2
E−‖w‖2

T
3

sphere equation is shown as S±,±,±.

Proposition 1 Let w be a vector. The geometric locations
of the wi (i ∈ N) vectors which fulfill the following condi-

tions ‖w‖E = ‖wi‖E and ‖w‖T = ‖wi‖T are
9
∪

j=1
Cj and Cj,

for 0 ≤ j ≤ 9, can be defined as:

Assume ‖w‖E �= ‖w‖T
If 0 ≤ x,y,z ≤ ‖w‖T then C1 = S−,−,− ∩P+,+,+.
If 0≤ x,z≤‖w‖T and −‖w‖T ≤ y≤ 0 then C2 = S−,+,−∩
P+,−,+.
If 0≤ z≤‖w‖T and −‖w‖T ≤ x,y≤ 0 then C3 = S+,+,−∩
P−,−,+.
If 0 ≤ y,z ≤‖w‖T and −‖w‖T ≤ x ≤ 0 then C4 = S+,−,−∩
P−,+,+.
If 0≤ x,y≤‖w‖T and −‖w‖T ≤ z≤ 0 then C5 = S−,−,+∩
P+,+,−.
If 0 ≤ x ≤‖w‖T and −‖w‖T ≤ y,z ≤ 0 then C6 = S−,+,+∩
P+,−,−.
If −‖w‖T ≤ x,y,z ≤ 0 then C7 = S+,+,+∩P−,−,−.

If 0≤ y≤‖w‖T and −‖w‖T ≤ x,z≤ 0 then C8 = S+,−,+∩
P−,+,−.

Assume ‖w‖E = ‖w‖T .
C9 = {(±‖w‖T ,0,0) ,(0,±‖w‖T ,0),(0,0,±‖w‖T )}.

Corollary 1 Let W be a vector set of the edges of Eu-
clidean regular polygon and w ∈ W. A Euclidean regular

polygon is also taxicab regular if only if W ⊆
9
∪

j=1
Cj where

9
∪

j=1
Cj is the same as in Proposition 1.

Proof. For n ≥ 3, if an n−gon is Euclidean and taxicab
regular, then all the w side vectors of n−gon are members
of the intersection set of an origin-centered taxicab sphere
with a radius of ‖w‖T and an origin-centered Euclidean
sphere with a radius of ‖w‖E . It is clear that the intersec-

tion set is
9
∪

j=1
Cj as in Proposition 1. �

3 Euclidean Regular Polygons in Taxicab 3-
Space

Euclidean regular polygons are Euclidean equiangular.
Since the taxicab angles are measured in the same way
as Euclidean (see [3], [6]), the polygons are also taxicab
equiangular. Thus, we are just interested in which Eu-
clidean regular polygons are taxicab equilateral and which
are not (see Definitions 1, 2, 3).

Theorem 1 None of Euclidean regular n−gon (n > 12) is
taxicab regular.

Proof. All the regular polygons are planar and the inter-
section set of Euclidean and taxicab spheres forms eight
circles (see Figure 4). A plane can intersect only 6 out of
8 circles on the taxicab sphere. Thus, the number of inter-
section points of the plane and 6 circles are max 12 (see
Figures 4,5). Therefore, maximum 12 parts of lines which
have equal taxicab length and equal Euclidean length can
be obtained. As a result, no Euclidean regular n−gon
(n > 12) is taxicab regular. �

Figure 4.
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Figure 5.

Theorem 2 There exist 12-gons that are Euclidean and
taxicab regular and they are lying on a plane parallel to
one of the ±x± y± z = 0 planes.

Proof. According to the proof presented in Theorem 1, it
is possible that there exist 12 points on the intersection set
of Euclidean and taxicab spheres and a plane. Thus, we
need to prove that the angle between two consecutive vec-
tors can be 30o and that all the points can lay on a plane
parallel to one of the ±x± y± z = 0 planes.
As it was stated before, it is easy to see that the
plane can intersect max 6 out of 8 circles (see Fig-

ure 4) with r = 1√
3

√
3‖w‖2

E −‖w‖2
T radius and M =(

±‖w‖T
3 ,±‖w‖T

3 ,±‖w‖T
3

)
center. When a,b,c > 0, ax +

by+ cz = 0 plane intersect octahedron (taxicab sphere) on
its T1T2T3, T6T2T3, T6T3T4, T6T4T5, T1T5T4, T1T2T5 faces.
For k,m,n ∈ R, the intersection set of plane and edges of
octahedron is



P1 = (−k,0,k−‖w‖T ),P2 = (0,−m,‖w‖T −m),
P3 = (n,n−‖w‖T ,0),P4 = (k,0,k−‖w‖T ),

P5 = (0,m,m−‖w‖T ),P6 = (−n,‖w‖T −n,0)


 .

For 1 ≤ i ≤ 6, the plane Pi are on

ax+by+ cz = 0. (11)

To obtain

�w1Ow2 = �w3Ow4 = �w5Ow6 = �w7Ow8

= �w9Ow10 = �w11Ow12 = α,

it should be satisfied that

‖−−−→w1w2‖=‖−−−→w3w4‖=‖−−−→w5w6‖=‖−−−→w7w8‖=‖−−−→w9w10‖=‖−−−−→w11w12‖
(12)

(see Figures 4, 5). Also, to obtain (12) it should be satisfied
that

dE(M2, [P1P2]) = dE(M3, [P2P3]) = dE(M4, [P3P4])

= dE(M8, [P4P5]) = dE(M5, [P5P6])

= dE(M6, [P6P1]). (13)

For ‖w‖T = 3, each of equations (11) and (13) are solved
on the Maple Computer Math Program. It is seen that |a|=

|b|= |c| and m= k = n= ‖w‖T
2 . Therefore, ax+by+cz= 0

planes are ±x± y± z = 0.
If w1 = P1 and w2 = P2, then α = 60o (see Figure 6).
If w1 = w2, then α = 0o (see Figure 7). So 0o ≤ α ≤ 60o.
Then, it is possible that α = 30o. For α = 30o and 1 ≤ i ≤
12, Euclidean and taxicab regular 12−gon can be created
by wi vectors. �

Figure 6.

Figure 7.

Now we are going to explain the connection between taxi-
cab and Euclidean lengths of the sides of a regular 12−gon:
Because of P2 = (0,−‖w‖T

2 ,
‖w‖T

2 ) and P3 =

(
‖w‖T

2 ,−‖w‖T
2 ,0), P2 and P3 points have an equal distance

from the origin. Therefore, the midpoint of the line seg-
ment [P2P3] is S23 = (

‖w‖T
4 ,−‖w‖T

2 ,
‖w‖T

4 ) and this point,
S23, is on the taxicab sphere.
The angles of the right triangle S23V4O are 15o,75o,90o

(see Figure 8). As a result,

dE(S23,O) = cos15odE(w4,O) (14)

and

dE(S23,O) =

√(
‖w‖T

4

)2

+

(
−‖w‖T

2

)2

+

(
‖w‖T

4

)2

=

√
6

4
‖w‖T (15)

dE(w4,O) = ‖w‖E (16)

cos15o =
2+

√
3√

6+
√

2
. (17)
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Figure 8.

When equations (15), (16) and (17) are written in 14, it is
found that

‖w‖T =
3+

√
3

3
‖w‖T . (18)

Thus we can get the following corollary.

Corollary 2 Let A1A2...A12 be a Euclidean regular poly-
gon on one of the ±x ± y ± z = k planes, k ∈ R. If the
taxicab length of one of the sides is 3+

√
3

3 times of the Eu-
clidean length, A1A2...A12 is also taxicab regular.

Theorem 3 There do not exist Euclidean regular 10-gons
that are taxicab regular at the same time.

Proof. Let A1A2A3A4A5A6A7A8A9A10 be a taxicab and Eu-
clidean regular 10-gon. In this case, taxicab lengths of vec-
tors

−−→
A1A2,

−−→
A2A3,

−−→
A3A4,

−−→
A4A5,

−−→
A5A6,

−−→
A6A7,

−−→
A7A8,

−−→
A8A9,−−−→

A9A10,
−−−→
A10A1 are the same. Thus, these vectors are on

the intersection set of an origin centered taxicab sphere
with a radius of dT (A1,A2) and an origin-centered Eu-
clidean sphere with a radius of dE(A1,A2) and the plane
ax+ by+ cz = 0. Also, the angle between each consecu-
tive vectors is 36o. For the number of intersection points
between 6 circles and the plane to be 10, the plane must
intersect four or five circles with two points. Since all the
circles are symmetric with respect to the origin, the plane
must intersect 4 circles with two points and 2 circles with
1 point as shown in Figures 9, 10.

Figure 9.

Figure 10.

Let �V1OV2 = θ, �V2OV3 = α and �V3OV4 = β (see Fig-
ures 9, 10). Since β > θ, β and θ cannot be 36o at the same
time. As a result, no Euclidean regular 10−gon is taxicab
regular. �

Theorem 4 None of the Euclidean regular 5,7,9,11−gons
is taxicab regular at the same time.

Proof. Let A1A2A3A4A5 Euclidean regular 5−gon be also
taxicab regular. Then, the taxicab lengths of

−−→
A1A2,

−−→
A2A3,−−→

A3A4,
−−→
A4A5,

−−→
A5A1 vectors of the 5−gon are the same.

If
−−→
A2A1,

−−→
A3A2,

−−→
A4A3,

−−→
A5A4,

−−→
A1A5 vectors are added into−−→

A1A2,
−−→
A2A3,

−−→
A3A4,

−−→
A4A5,

−−→
A5A1 vectors, ten vectors on the

same plane are obtained. The taxicab lengths of 10 vec-
tors are the same and the angle between each consecutive
vectors is 36o (see Figure 11). This is a contradiction, be-
cause it is shown in Theorem 3 that none of the Euclidean
regular 10−gons is taxicab regular. Also, in Theorem 1,
no Euclidean regular n−gon (n > 12) is taxicab regular, so
there is not any Euclidean and taxicab regular n−gon for
n = 14,18,22. Similarly, it can be understood that there is
not Euclidean and taxicab regular n−gon for n = 7,9,11.
�

Figure 11.

Theorem 5 If two symmetry planes of Euclidean regular
8,6,4,3−gons satisfy the following conditions, these poly-
gons are taxicab regular at the same time.

i) Two symmetry planes are not orthogonal.

ii) At least one of them is on the corners of polygons.

iii) Two symmetry planes are members of

{x∓ y = k1, x∓ z = k2,y∓ z = k3,x = k4,y = k5,z = k6}
set (for 1 ≤ i ≤ 6, ki ∈ R)
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Proof. A reflection about the plane set is a taxicab isom-
etry [6]. Let A1A2A3A4A5A6A7A8 be a Euclidean regular
polygon, A1A5 and A2A6 are symmetry planes. According
to the A1A5 symmetry plane;

dT (A1,A2) = dT (A1,A8) , dT (A2,A3) = dT (A8,A7)

dT (A3,A4) = dT (A7,A6) , dT (A4,A5) = dT (A6,A5) (19)

According to the A2A6 symmetry plane;

dT (A2,A3) = dT (A2,A1) , dT (A3,A4) = dT (A1,A8)

dT (A4,A5) = dT (A8,A7) , dT (A5,A6) = dT (A7,A6) (20)

From (19) and (20) equations, it is obtained that taxicab
lengths of polygon sides are the same. It is clear that the
other symmetry planes can give the same result.
As it is known that the angles between two non-orthogonal
symmetry planes of a Euclidean regular 8−gon are 22.5o,
45o and 67.5o (see Figure 12). The angle between x+ z =
k2 and x = k4 planes is 45o. Thus, if the following three
features are present in the Euclidean regular 8−gon, then
it is said to be taxicab regular.
i) Polygon center of gravity is on the intersection line of
x+ z = k2 and x = k4,
ii) Polygon is orthogonal to x+ z = k2 and x = k4,
iii) One of the corner of the polygon on x + z = k2, the
other corner on x = k4.
Similarly, other pairs of planes can be found. �

Figure 12.

In addition to Theorem 5, while a regular 8−gon is on one
of the x= k4, y= k5, z= k6 planes, the connection between
taxicab length and Euclidean length of the sides of the reg-
ular 8−gon are researched. As it is shown in Figure 13 the
result is researched for z = 0.

Figure 13.

Let S1 = (dT (A1,A2),0,0) and S2 = (0,dT (A1,A2),0).
Midpoint of S1 and S2 is S12 = ( dT (A1,A2)

2 , dT (A1,A2)
2 ,0) on

the taxicab sphere. The angles of S12V1O right triangle are
22.5o,67.5o,90o (see Figure 14). Hence,

dE(S12,O) = cos(22,5o) .dE(V1,O) (21)

and

dE(S12,O) =

√(
dT (A1,A2)

2

)2

+

(
dT (A1,A2)

2

)2

+02

=

√
2

2
dT (A1,A2) (22)

dE(V1,O) = dE(A1,A2) (23)

cos22,5o =
1+

√
2√

4+2
√

2
. (24)

Figure 14.

When equations (22), (23) and (24) are written in (21), the
following equation can be found

dT (A1,A2) =

√
2
√

2+2
2

·dE(A1,A2). (25)

Since every Euclidean translation of R3 is an isometry of
R3

T [6], this result is also the same on z = k (k ∈R) planes.
Thus, we can give the following corollary.

Corollary 3 Let A1A2A3A4A5A6A7A8 be a Euclidean reg-
ular polygon on one of the x = k1,y = k2,z = k3 planes. If

the taxicab length of one of the sides is
√

2
√

2+2
2 times of

the Euclidean length, A1A2A3A4A5A6A7A8 is also taxicab
regular.

Example 1 For A(0,1,0), B(1,0,0), C (0,0,1) points,
ABC is a triangle. Since

dE(A,B) = dE(A,B) = dE(A,B) =
√

2,
dT (A,B) = dT (A,B) = dT (A,B) = 2

ABC is also Euclidean and taxicab regular. Symmetry axes
of the triangle are x− y = 0, y− z = 0, x− z = 0.
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Symmetry planes are not enough to determine taxicab reg-
ular polygons. Because, all the symmetry planes of taxicab
regular polygons are not members of

{x∓ y = k1,x∓ z = k2,y∓ z = k3,x = k4,y = k5,z = k6}

set (for 1 ≤ i ≤ 6, ki ∈ R).

Example 2 For A(0,0,1), B(− 1
3 ,−

1
3 ,−

1
3 ), C(1,0,0)

points, ABC is a taxicab regular triangle. But only one
of the symmetry planes is a member of

{x∓ y = k1,x∓ z = k2,y∓ z = k3,x = k4,y = k5,z = k6}

set (for 1 ≤ i ≤ 6, ki ∈ R). Other two symmetry planes are
not members.

Corollary 4 Let A1A2A3A4A5A6 be a Euclidean regular
polygon on one of the ±x± y± z = k planes (k ∈ R). If
the taxicab length of one of the sides is

√
2 times of the

Euclidean length, A1A2A3A4A5A6 is also taxicab regular.

Proof. Let dT (A1,A2) =
√

2dE(A1,A2). The intersection
points between x+ y+ z = 0 plane and an origin-centered
taxicab sphere with a radius of dT (A1,A2) are the mid-
points of the 6 edges.

Figure 15.

Figure 16.

Also P1 = (− dT (A1,A2)
2 ,0, dT (A1,A2)

2 ). Since

dE(P1,O) =

√
(−dT (A1,A2)

2
)2 +02 +

(
dT (A1,A2)

2

)2

=

√
2

2
dT (A1,A2),

then dE(P1,O) = dE(A1,A2). Thus, the intersection points
between x + y + z = 0 plane and an origin-centered Eu-
clidean sphere with a radius of dE(A1,A2) and an origin-
centered taxicab sphere with a radius of dT (A1,A2) are the
midpoints of the 6 edges. The angle between each con-
secutive vectors is 60o (see Figure 17). Thus, the polygon
A1A2A3A4A5A6 is taxicab regular at the same time. �

Figure 17.

Example 3 Let us consider A1 = (0,0,0), A2 = (0,−1,1),
A3 = (1,−2,1), A4 = (2,−2,0), A5 = (2,−1,−1), A6 =
(1,0,−1). It is clear that A1A2...A6 is a Euclidean
and taxicab regular 6−gon. Besides, dT (A1,A2) =√

2dE(A1,A2) and A1,A2,A3,A4,A5,A6 points are on the
x+ y+ z = 0 plane.

Corollary 5 For n = 3,4 and 6, n−gons on one of the
±x± y± z = k planes are Euclidean regular. If the taxi-
cab length of one of the sides is 3+

√
3

3 times of Euclidean
length, n−gon is also taxicab regular.

Proof. As it is seen in Theorem 2, there are 12 vectors on
the same plane with the same taxicab length and the angles
between two consecutive vectors are 30o (see Figure 18).

Figure 18.

If we choose 6 vectors whose angles between two consec-
utive vectors are 60o, these vectors can create a taxicab
regular 6−gon. �
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Corollary 6 Let us consider, A1A2A3A4A5A6 is a Eu-
clidean regular polygon on one of the ±x ± y ± z = k
planes. If the taxicab length of one of the sides is 2

√
6

3
times of the Euclidean length, A1A2A3A4A5A6 is also taxi-
cab regular.

Proof. Let A1A2A3A4A5A6 be a Euclidean regular 6−gon
on x + y + z = k plane and the taxicab length of the
−−→
A1A2 vector is 2

√
6

3 times of the Euclidean length. Then

dT (A1,A2) =
2
√

6
3 dE(A1,A2) and let the intersection points

between x + y + z = 0 plane and a origin-centered Eu-
clidean sphere with a radius of dE(A1,A2) and a origin-
centered taxicab sphere with a radius of dT (A1,A2) be
wi = (x,y,z) for i ∈ N. Then

‖−→wi‖T =
2
√

6
3

‖−→wi‖E (26)

|x|+ |y|+ |z|= 2
√

6
3

√
x2 + y2 + z2 (27)

and

x+ y+ z = 0 (28)

and

‖−→wi‖T = dT (A1,A2) (29)

|x|+ |y|+ |z|= dT (A1,A2). (30)

Equations (27), (28) and (30) are solved by the Maple math
program. As a result, it is found that all points are

w1 = (−dT (A1,A2)

2
,

dT (A1,A2)

4
,

dT (A1,A2)

4
),

w2 = (−dT (A1,A2)

4
,−dT (A1,A2)

4
,

dT (A1,A2)

2
),

w3 = (
dT (A1,A2)

4
,−dT (A1,A2)

2
,

dT (A1,A2)

4
),

w4 = (
dT (A1,A2)

2
,−dT (A1,A2)

4
,−dT (A1,A2)

4
),

w5 = (
dT (A1,A2)

4
,

dT (A1,A2)

4
,−dT (A1,A2)

2
),

w6 = (−dT (A1,A2)

4
,

dT (A1,A2)

2
,−dT (A1,A2)

4
).

It is clear that ‖−→wi‖ =
∥∥−→w j

∥∥ and ‖−→wi‖T = ‖−→wi‖T for
1 ≤ i, j ≤ 6. Also the angle between −→w1 and −→w2 is α and
α= 60o. Similarly, it can be shown that the angles between
−→wi and −→w j (1 ≤ i, j ≤ 6) are also 60o. Therefore, it can be
concluded that the Euclidean polygon is a taxicab regular
at the same time. �

Example 4 By using A1 = (0,0,0), A2 = (3,−6,3),
A3 = (9,−9,0), A4 = (12,−6,−6), A5 = (9,0,−9),
A6 = (3,3,−6) points, we can create A2A3A4A5A6 Eu-
clidean and taxicab regular 6−gon. Also dT (A1,A2) =
2
√

6
3 dE(A1,A2) and all the A1, A2, A3, A4, A5, A6 points

are on the x+ y+ z = 0 plane.

Corollary 7 Let
−→
V ∈ {(1,0,0) ,(0,1,0) ,(0,0,1)} . If

there is a rotation whose axis is
−→
V between two consec-

utive sides of a quadrilateral, it is Euclidean and taxicab
regular.

Proof. Let A1A2A3A4 be a Euclidean regular quadrilat-
eral and there is a rotation between [A1A2] and [A1A4].
Since the angle between [A1A2] and [A1A4] is π

2 , the ro-
tation angle is π

2 . Therefore, the rotation is a taxicab isom-
etry [6]. Thus dT (A1,A2) = dT (A1,A4) and dE(A1,A2) =
dE(A1,A4). As a result, the quadrilateral is Euclidean and
taxicab regular. �

Corollary 8 Let A1A2A3 be a Euclidean regular triangle
on one of the ±x±y±z = k planes. If the taxicab length of
one of the sides is

√
2 or 2

√
6

3 times of the Euclidean length,
A1A2A3 is also taxicab regular.

Proof. As it is seen in Corollary 6, there are 6 vectors on
the same plane with the same taxicab length and the angles
between two consecutive vectors are 60o. If we choose 3
vectors whose angles between two consecutive vectors are
120o (see Figure 19), these vectors can create a taxicab
regular 3−gon. �

Figure 19.

Example 5 For A1 = (1,2,−1), A2 = (4,−4,2), A3 =
(7,−1,−4) points, ABC is a Euclidean and taxicab reg-
ular triangle.

In addition, dT (A1,A2) =
2
√

6
3 dE(A1,A2) and A1, A2, A3,

A4, A5, A6 points are on x+ y+ z = 2 plane.

Example 6 For A1 = (0,0,0), A2 = (0,−1,1), A3 =
(1,−1,0) points, ABC is a Euclidean and taxicab regular
triangle.

Furthermore, dT (A1,A2) =
√

2dE(A1,A2) and A1, A2, A3,
A4, A5, A6 points are on x+ y+ z = 0 plane.
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4 Taxicab Regular Polygons in Taxicab 3-
Space

Theorem 6 There do not exist any taxicab regular trian-
gles which are not Euclidean.

Proof. Let ABC be non-Euclidean taxicab regular triangle.
Then s(Â) = s(B̂) = s(Ĉ) = 60o. Thus, ABC is a Euclidean
regular triangle and this is a contradiction. �

Theorem 7 There exist taxicab regular 4−gons which are
not Euclidean.

Proof. Draw an origin-centered Euclidean and taxicab
sphere with a radius 1 (see Figure 20). Let P ∈ ]AE[ line
segment.

Figure 20.

Since part of line [OD] is perpendicular to the x =
0 plane and the AEO triangle is on the x = 0 plane,
[OP]⊥ [OD]. Besides, dE(O,D) = dT (O,D) = dT (O,P) =
1 but dE(O,P) < 1. Because OPH is a right triangle and
dE(O,P) < dE(O,H) + dE(H,P) = dT (O,P) = 1 as it is
shown in Figure 21. According to [6] Proposition 3.1, ev-
ery Euclidean translation is a taxicab isometry. Thus, we
can create a non-Euclidean taxicab regular 4−gon by trans-
lating [OP] , [OD] parts of the lines as in Figure 22. Since
P ∈ ]AE[ line segment, there are many P points. Therefore,
there exist many non-Euclidean taxicab regular 4−gons. �

Figure 21.

Figure 22.

Example 7 Let us consider A(0,0,0), B(2,0,0),
C(2,1,1), D(0,1,1) points. ABCD is a 4−gon. It is clear
that;

[AB]⊥ [BC] , [BC]⊥ [CD] , [CD]⊥ [AD] , [AD]⊥ [AB]

and

dT (A,D) = dT (B,C) = dT (A,B) = dT (C,D) = 2

but dE (A,D) �= dE (A,B). Thus, ABCD is a non-Euclidean
taxicab regular 4−gon.

Theorem 8 When a line segment is given as a side, it is
possible to create a taxicab regular 2n−gons (n ≥ 2) in-
cluding the given side.

Proof. In R3, let us consider now any given line segment
[A1A2] in the taxicab plane. Since all the corners of poly-
gons are planar, a plane E must be chosen which includes
the given line segment to draw a 2n-sided polygon (see
Figure 23). After then, let us draw an A1-centered taxicab
sphere with a radius of dT (A1,A2) (see Figure 24).

Figure 23.

Figure 24.
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It is clear that the plane and taxicab sphere intersect. The
intersection of a plane and a taxicab sphere is a taxicab
circle on plane E as the intersection of a plane and a Eu-
clidean sphere is circle in R3. It is known that the mea-
sure of each interior angle of a regular 2n−gon is π(n−1)

n
radians. It is obvious that (n− 1) line segments AiAi+1,
(2≤ i≤ n), having the same taxicab length dT (A1,A2), can
be drawn such that the measure of the angle between every
two consecutive segments is π(n−1)

n radians, by using the
taxicab circles with center Ai and a radius of dT (A1,A2), as
in Figure 25.
�A2A1An+1 + �AnAn+1A1 = π(n−1)

n . If we continue to
draw line segments A′

iA
′
i+1 which are symmetric to AiAi+1,

1 ≤ i ≤ n, about the midpoint of A1An+1, respectively, we
get a 2n−gon (see Figure 26). Since the symmetry to a
point is taxicab isometry, both taxicab lengths and angle
measures are preserved.
Thus, for 1 ≤ i ≤ n,

dT (Ai,Ai+1) = dT (A′
i,A

′
i+1) = dT (A1,A2) (31)

and

�A1A2A3 = �An+1A′
2A1 = ...

= �An−1AnAn+1 +�A′
n−1A′

nA1 =
π(n−1)

n
.

(32)

Figure 25.

Figure 26.

Due to the equalities (31) and (32), this is a taxicab reg-
ular 2n−gon. Since there are many planes which include
the line segment, it is possible that many taxicab regular
2n−gons can be drawn by using each plane. �
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ABSTRACT

In this paper we introduce a class of curves derived from
a geometrical construction. These planar curves are the
generalization of the less-known sectrix of Ceva. We also
present three variations of the sectrix curves on the sphere
with using the geometrical construction on the sphere,
with the stereographic projection and with a so-called
“rolled” transformation.

Key words: sectrix, folium, Chebyshev polynomial, curves
on sphere

MSC2010: 51N20

Sektrise na sferi

SAŽETAK

U ovom članku uvodimo klasu krivulja izvedenih geometrij-
skom konstrukcijom. Takve ravninske krivulje su generali-
zacija manje poznatih Cevinih sektrisa. Takod-er, prikazu-
jemo tri varijacije sektrisa na sferi, koristeći geometrijsku
konstrukciju na sferi, stereografsku projekciju i takozvano
“valjano” preslikavanje.

Ključne riječi: sektrisa, folium, Chebyshevjev polinom,
krivulje na sferi

1 Sectrix on the plane

The Sectrix of Ceva is a less-known planar curve ([7,
p. 314-315]), that is defined with the polar equation

ρ = a+2a
sinkϕcos(k+1)ϕ

sinϕ
, a > 0, k ∈N, ϕ ∈ [0,2π].

(1)

Figure 1 shows its shape where a = 1 and k = 2. It has two
perpendicular axes of symmetry. In this article we use this
curve in case a = 1.

x

y

1

1

2 3 4 5

Figure 1: Sectrix of Ceva (k = 2).

If k = 1 then we get the so-called Ceva Cycloid (Figure
2). It was devised by Ceva, who termed it the cycloidum
anomalarum ([2, p. 29], [8]). Its polar equation is

ρ = 1+2cos2ϕ, ϕ ∈ [0,2π]. (2)

x

y

1

1

2 3

Figure 2: Ceva Cycloid (k = 1 or n = 2k+1 = 3).

In [3] a geometrical construction was defined from which
a generalization of sectrix of Ceva comes. Let e be a line
given by the origin O and angle α between axis x+ and e,
as the angle of polar coordinates of e (Figure 3). Let the
point A0 coincide with O. Let the point A1 be given on e
such that the distance between the points O and A1 is 1. Let
the point A2 be on axis x such that the distance of A1 and
A2 is equal also to 1 and A2 �= O if it is possible. Then let
the new point A3 be on the line e again such that A2A3 = 1
and A3 �=A1 if it is possible. Recursively, we can define the
point Ai (i ≥ 2) on the line e or on axis x if i is odd or even,
respectively, where Ai−1Ai = 1 and Ai �= Ai−2 if it is possi-
ble. For all α the point Ai exists. Figure 3 shows the first
six points. If α is small enough then Ai is between points
O and Ai+2. Let angle OAi+1Ai be αi, then αi = iα can be
proved easily. If A1 is on the axis x we obtain a similar ge-
ometric construction (Figure 4). These constructions gave
a new proof for some trigonometric connections [5].
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The parametric equation system of the orbits of the points
in [3] is determined not only when the point A1 is on line e,
but also when it is on axis x. In case of vertices An (n ≥ 1)
the parametric equation system of the curves is

xn(α) = cosα Un−1(cosα)
yn(α) = sinα Un−1(cosα),

(3)

and the polar equation of the curves when α ∈ [0,2π] is

ρn(α) = Un−1(cosα), (4)

where Un−1(x) is the Chebyshev polynomial of the second
kind. (Some orbits can be seen on Figure 3 and 4.) The
recursive definition of the Chebyshev polynomials of the
second kind U�(x) is

U0(x)= 1, U1(x)= 2x, U�+1(x)= 2xU�(x)−U�−1(x), �≥ 1.
(5)

When |x| ≤ 1 the substitution x = cosϕ gives the expres-
sions sin�ϕ = sinϕ U�−1(cosϕ) [6].

A
6

A
4

O

x

y

e1

1 3 5A
2

A
3

A
5

2α
2α

αα 3α 3α

4α
4α

5α 5α

A
1

Figure 3: Generalized sectrix of Ceva in case n = 5.
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Figure 4: Generalized sectrix of Ceva in case n = 6.

Figure 5: Folium – curves in case n = 4 and n =−4.

Lemma 1 If n = 2k + 1 the curves defined by equations
(4) and (1) for a = 1 are the same. (Compare the Figures
1 and 3.)

Proof. Since

sin(2k+1)α = sin(k+ k+1)α
= sinkαcos(k+1)α+ coskαsin(k+1)α
= sinkαcos(k+1)α

+coskα(sinkαcosα+ coskαsinα)
= sinkαcos(k+1)α

+sinkαcoskαcosα+ cos2 kαsinα
= sinkαcos(k+1)α

+sinkα(cos(k+1)α+ sinαsinkα)
+cos2 kαsinα

= 2sinkαcos(k+1)α+ sin2 kαsinα
+cos2 kαsinα

= 2sinkαcos(k+1)α+ sinα,

if ϕ = α then we have

U2k(cosα) =
sin(2k+1)α

sinα
=

2sinkαcos(k+1)α+ sinα
sinα

= 1+2
sinkαcos(k+1)α

sinα
.

�
The Cartesian equation of curves (without the point in the
origin) defined with (3) or (4) is

x2 + y2 = U2
n−1



√

x2

x2 + y2


 , (6)

where x2 + y2 �= 0. We extend the equation (6) to negative
values n. The definition of the Chebyshev-polynomials for
negative indexes with definition (5) is

U�−1(x) = 2xU�(x)−U�+1(x), � < 1. (7)

Now, U−1(x) = 0 and Um(x) =−U−m−2(x), (m ≤−2) and
x2 + y2 �= 0 implies n �= 0. If n = 2k+1 then equation (6)
gives the sectrix of Ceva. Otherwise, if n = 2k we get the
union of curves in case n and −n (see Figure 5 and 6).

Figure 6: Union of curves in case n = 4 and n =−4.

Moreover, the polar equation of folium curve is

ρ = cosϕ
(
4asin2 ϕ−b

)
, ϕ ∈ [0,2π], (8)

and the curve defined by equations (4) is the folium
curve if n = −4 and a = 2, b = 4, as U−5(cosα) =
−U3(cosα) = −8cos3 α + 4cosα = −4cosα(2cos2 α −
1) = cosα(8sin2 α−4) (see Figure 5).

43
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Here are some Cartesian equations from (6):

• |n|= 1: x2 + y2 = 1 (circle)

• |n|= 2: (x2 + y2)2 = 4x2 (two circles)

• |n|= 3: (x2 + y2)3 = (3x2 − y2)2

(Ceva cycloid, Figure 2)

• |n|= 4: (x2 + y2)4 = 16x4(x2 − y2)2

(union of foliums, Figure 6)

• |n|= 5: (x2 + y2)5 = (5x4 −10x2y2 + y4)2

(sectrix of Ceva, Figure 1).

The two biggest loops are very similar to the loops of the
lemniscates. In Figure 7 we can see that the angles between
any two lines mi (i = 1, ...,2n) are the multiples of π/(2n),
where mi is a tangent line of the curve in the origin or a
line goes through the origin and one of the extrema of the
curve (x = n or y = ±1). For some more details, for more
figures and for a generalization see [3, 4]. These curves
can also be considered as the generalizations of the well-
known rose curves (see in [1]).

x

y

π

2n

Figure 7: Curve with some properties in case n = 5.

1.1 Sectrix on the sphere

In this subsection we determine the orbit of the point
An (n ≥ 1) with similar conditions as in Section 1 on a
sphere. We consider a sphere with radius 1 with equation
x2+y2+z2 = 1. Let the axes ξ and ψ of the coordinate sys-
tem on it, with origin K(1,0,0), be main circles according
to Figure 8.

e

�

�

�

y

z

x

Figure 8: Construction on the sphere.

Let e also be a main circle through point K and let the rota-
tion angle between the axis ξ and the “line” e be α, where
0 ≤ α ≤ 2π. Moreover, let the distance between two con-
secutive points be d, where 0 < d < π/2.

Figure 9 demonstrates the construction in a plane with
coordinate axes ξ and ψ. (Compare Figures 8 and 9.)
Moreover, Figure 9 shows an odd case when A1 lies on
e and n = 5. Let αi (i ≥ 1) be the angles AiAi−1Ai+1
and Ai−1Ai+1Ai and let 2βi be the angle Ai−1AiAi+1. (If
αi < π/2 then the point Ai (i ≥ 2) is further from the origin
then Ai−2.)
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Figure 9: Construction in the plane with coordinate axes ξ
and ψ.

Let the orthogonal projection of Ai to ξ or e in case if i is
odd or even, respectively, be A′

i. We denote by bi and ai the
spherical segments Ai−1A′

i = Ai+1A′
i and AiA′

i, respectively.
Now we determine the angles αi recursively.

Lemma 2 If i ≥ 2 then

αi = π−2βi−1 −αi−2,

where α0 = 0, α1 = α and βi−1 = arccot(cosd tanαi−1).

Proof: From the triangle A0A1A2 we obtain at point A1 that
α2 = π−2β1 (see Figure 9). We suppose the lemma holds
for any j from 2 up to i−1. From the triangle Ai−2Ai−1Ai
(i ≥ 3) we obtain at point Ai−1 that αi−2 +αi = π−2βi−1
and by the use of the spherical trigonometric identity

cotαi−1 cotβi−1 = cosd

in the right angled triangle Ai−2Ai−1A′
i−1 we get the

lemma. �

From the triangle Ai−1A′
iAi using the spherical trigonome-

try the next lemma holds.

Lemma 3

sinai = sind · sinαi,

tanbi = tand · cosαi.

Theorem 1 follows from the summation of the lemmas.
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Theorem 1 The equation system of the sectrix on the
sphere is

xn(α) = cosψn(α)cosξn(α)
yn(α) = cosψn(α)sinξn(α)
zn(α) = sinψn(α),

where

ξn(α) =

{
2(b1 +b3 + · · ·+bn−2)+bn if n = 2k+1,
1+2(b2 +b4 + · · ·+bn−2)+bn if n = 2k,

ψn(α) = an.

We mention that from the triangle OA′
nAn the equation

sinξn(α) = cotα · tanψn(α)

gives the implicit connection between the coordinates.

By using the parametric equations from Theorem 1, we
obtain the visualizations of the curves in the software
Maple 17 (from Maplesoft). In this article, we improve the
quality of Maple-graphics by re-rendering in the software
POV-Ray.

Figures 10–12 show some curves on the sphere in case
n = 3, 4 and 5.

Figure 10: Sectrix curve on sphere in case n = 3 and
d = π/6.

Figure 11: Sectrix curves on sphere in case n= 4, d = π/6
and d = π/3.

Figure 12: Sectrix curves on sphere in case n= 5, d = π/8
and d = π/4.

1.2 Sectrix curves with stereographic projection

We obtain similar curves on the surface of a sphere with
the stereographic projection of the sectrix. Let the curve
be in plane z =−R and project it from point N(0,0,R) into
the sphere with centre (0,0,0) and radius R (Figure 13).

O

N

P

P’ y

z

x

Figure 13: Stereographic projection.

In this case one can easily gain that the stereographic pro-
jection of a general point P(x,y,−R) from the plane is
P′(cx,cy,1−2c), where c = 4R2/(x2 + y2 +4R2).

Thus the stereographic projection of the curve with equa-
tion (3) is

xn(α) = c(α)cosα Un−1(cosα),
yn(α) = c(α)sinα Un−1(cosα),
zn(α) = 1−2c(α),

(9)

where

c(α) =
4R2

U2
n−1(cosα)+4R2

, α ∈ [0,2π].

Figures 14 and 15 give some examples in case n = 3, 4, 5,
6, 7 and 10 where R = 1 and in the figures we rotated the
curves around axis z for better visualization.
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Figure 14: Stereographic projection of sectrix in case n = 3, 5 and 7.

Figure 15: Stereographic projection of sectrix in case n = 4, 6 and 10.

1.3 Rolled sectrix on the sphere

In this subsection we give curves which are ”rolled” to
sphere. Let the radius of the sphere with centre O(0,0,0)
be R and let the plane of sectrix be the plane z =−R (with
point S(0,0,−R)) according to Figure 16.

O

S

N

P

P’

y

z

x

Figure 16: Rolling of the sectrix onto sphere.

Let P with parameter α be one of the points of the sectrix
defined by (3), take the plane Π incident to the axis z and
parallel to direction α (thus P is on Π) and let P′ ∈ Π be a
point on the sphere so that the length of arc SP′ be equal to
ρn(α) from polar equation (4). In that way we project the
point of the sectrix onto the sphere and the equation system
of the curves (α ∈ [0,2π]) is

xn(α) = Rcos(r(α))cosα,
yn(α) = Rcos(r(α))sinα,
zn(α) = Rsin(r(α)),

(10)

where

r(α) =
Un−1(cosα)

R
− π

2
.

Figures 17 and 18 show some examples of the rolled sec-
trix curves, where the curves are rotated for better visual-
ization.
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Figure 17: Sectrix rolled onto sphere (n = 3, 4, 7 and R = 1).

Figure 18: Sectrix rolled onto sphere (n = 5, 6, 9 and R = 1, 2, 2).
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ABSTRACT

Learning analytics is focused on the educational challenge
of optimizing opportunities for meaningful learning.

Assessment deeply influences learning, but at the same
time data about assessment are rarely considered and uti-
lized by learning analytics.

Current approaches to analysis and reasoning about peer-
assessment lack rigor and appropriate measures of reliabil-
ity assessment. Our paper addresses these issues with a
geometrical model based on the taxicab geometry and the
use of the scoring rubrics.

We propose and justify measures for calculation of the fi-
nal grade in peer-assessment and related inter-rater and
intra-rater reliability measures. We present and discuss
a geometrical model for two important peer-assessment
scenarios.

Key words: taxicab geometry, metrics, learning analytics

MSC2010: 53A35, 91E45, 97B10

Geometrija za analitike učenja

SAŽETAK

Analitike učenja usredotočene su na obrazovne izazove
vezane uz postizanje svrsishodnog učenja. Vredno-
vanje postizanja ishoda učenja izrazito utječe na učenje.
Med-utim, podaci o procesu vrednovanja vrlo rijetko se ko-
riste u postojećim analitikama učenja. Nadalje, postojeće
implementacije i analize procesa istorazinskog (vřsnjačkog)
vrednovanja nisu zadovoljavajuće. Ovaj rad predstavlja
izradu i upotrebu matematičkog modela za opis i računanje
vezano uz istorazinsko vrednovanje. Razvijeni model za-
sniva se na Manhattan (taxicab) metrici te korǐstenju
rubrika za vrednovanje ishoda učenja. U radu su opisane
i opravdane metode računanja konačne ocjene vřsnjačkog
vrednovanja, mjere pouzdanosti takvog vrednovanja kao
i ocjene za pojedine vrednovatelje. Razvijeni geometrij-
ski model razmatran je u kontekstu dva važna scenarija
istorazinskog vrednovanja.

Ključne riječi: taxicab geometrija, metrika, analitika
učenja

1 Introduction and motivation for research

1.1 Learning analytics and related challenges

Learning analytics (LA) belongs to interdisciplinary sci-
entific fields connected to educational sciences and tech-
nology enhanced learning that has emerged rapidly in last
five years. The most cited definition of LA is ”Learning
analytics is the measurement, collection, analysis and re-
porting of data about learners and their contexts, for the
purposes of understanding and optimizing, learning and
the environment in which it occurs”. In [8] it is stated that
the definition comes from the first international Conference
on Learning Analytics and Knowledge (LAK 2011) and
adopted by the Society for Learning Analytics Research
(SoLAR). Further, Ferguson in [8] states that LA is focused
on the educational challenge: How can we optimize oppor-
tunities for online learning? Even better, we should look
for opportunities for meaningful learning.

Research methods and methodology in LA are still very
much under development. There is a great opportunity
for mathematicians to contribute to development of various
kind of measures and the research of mathematical models.
There is a vocal support for broadening the scope and use-
fulness of LA and special issue in LA is research in student
assessment (cf. [5]).

1.2 Assessment and reliability measures

Assessment is of fundamental importance to students. It
deeply influences learning. At the same time assessment
data are rarely utilized by learning analytics. One of
the possible reasons is that available data is not granular
enough. Fundamental issues of peer-assessment are reli-
ability and validity (cf. [7]). Research on indicators and
metrics to be potentially used in the context of reliabil-
ity and validity of assessment, peer-assessment and self-
assessment, is (currently) very limited.
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1.2.1 MOOC, online learning context

Completely new playground for learning analytics the so
called networked learning [14], e.g. Massive Open On-
line Courses (MOOCs), social learning platforms, online
learning and e-learning in general. In networked learn-
ing the number of participants rapidly increases as well
as the interactions between learners in the form of discus-
sions and mutual learning. Dealing with tens of thousands
of learners in one MOOC it is very natural/appropriate to
use self-assessment for tasks leading to a certificate. This
approach generates huge amount of assessment data but
also asks for sound metrics for calculation of final grade
and for estimates on the reliability of assessment. For our
work in this paper it brings forwards challenging scenario
when we have inexperienced evaluators (scenario A). In
this case we will demand more peer-evaluations per assign-
ment to attain sufficient reliability. The second discussed
scenario corresponds to a situation with expert (or expe-
rienced) evaluators assessing a complex problem solving
task. Here we must take into account that experts’ time
is expensive and their judgments, but their evaluations can
be trusted (scenario B). A number of assessments per as-
signment can be lower in scenario B. Further, in scenario
B we can anticipate for situations that some evaluators are
experts for only some of the assessment criteria. For exam-
ple, an expert in project management and scheduling can
skip assessment for criteria on financial regulation if he/she
lacks the required expertise.

1.2.2 Educational Rubrics

In order to increase transparency of assessment criteria and
validity of assessment us of a scoring rubric is highly rec-
ommended (cf. [12]). Further, data from the rubric can be
analyzed and utilized for estimation of reliability. Among
several sets of assessment data, [5] mentions ”achievement
mapped against explicit learning outcomes or assessment
criteria (e.g. rubric results)”.

A widespread definition of the educational rubric describes
it as a scoring tool for qualitative rating of authentic or

complex student work [12]. A rubric consists of grading
criteria and standards of attainment for those criteria (ex-
amples: [3, 4]).

Using rubrics provides several benefits such as increased
consistency of assessment, attainment of the desired valid-
ity in assessment without sacrificing the need for reliability
and promotion of learning [12].

Previous research claims that the use of rubrics in mathe-
matics supports students’ reflection and critical skills (deep
learning) by clearly communicating what is asked from
them [3].

Table 1 illustrates the scoring rubric for one criterium
(whole scoring rubric is available in [3]). It refers to an
assignment in a mathematics course where student had to
relate a real world problem to the course material.

Rubrics are especially useful when more than one
teacher/student is involved in the process of assessment.
Grading can then be implemented as a combination of
teacher’s grading and automated grading. Rubrics are also
vital in the case of a complex task assessment including
problem-based learning, group work or peer-assessment
that are authentic to the skills being tested (cf. [3]). Peer-
assessment is a process where students grade assignments
or tests of their peers based on teacher’s benchmarks
(cf. [16]).

Peer-assessment has several advantages over traditional
(teacher) assessment and a few very strong disadvantages
– comprehensively described and systematized in [4]. One
known disadvantage is the so called “reliability risk” in-
troduced by the fact that students are assessing their own
peers – some of whom may be their friends. The teacher
must be aware of the included risks and anonymize as-
sessment tasks whenever possible (see [4]). Influential pa-
pers [12, 16] claim that the measurement of reliability is a
problem for both peer-assessment and the use of scoring
rubrics.

Table 1: An example: Grading the ”problem description”-criterium with a rubric (only one row of the rubric is shown)

0 points 1 points 2 points 3 points

pr
ob

le
m

de
sc

ri
pt

io
n

poor description,

irrelevant context

problem is de-

scribed but has no

connection to the

prescribed context

description of the

problem is presented

in a clear and inter-

esting fashion but

lacks the relevant

context

problem is described

in a clear and inter-

esting fashion and

is positioned/placed

in a relevant real

context

... . . . . . . . . . . . .
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We have to be aware that at this moment most teachers just
use the available software (like Moodle Workshop) oblivi-
ous whether of the fact that the embedded metrics are not
well justified or even missing (cf. [17]). Our paper ad-
dresses these problems with a geometrical model based on
the taxicab geometry.

1.3 Research questions

We pose three research questions.

RQ1: How to model and implement the grading process
for peer-assessment?

RQ2: How to calculate the grade in peer-assessment?

RQ3: What are the appropriate inter-rater (agreement
among graders) and intra-rater (accuracy of a sin-
gle grader for his several grading efforts) measures
for peer-assessment?

In the following sections we are going to answer above-
mentioned research questions.

2 RQ1 – Problem description and modeling

Let us assume that students’ assignments are graded with
the help of a scoring rubric with n criteria. Students par-
ticipate in an activity for which they are graded by their
peers. Each participant is asked to grade several (i.e. 3) as-
signments, and consequently each student should receive
several gradings for his own assignment.
The set of participating students is enumerated and we
speak of student k, or assignment k (instead of the assign-
ment of student k).

A particular grading is represented as a point in an n-
dimensional vector space. Let Sk = {S1

k , . . . ,S
m
k } denote

a set of gradings for assignment k where

S1
k = (c(1)k,1, . . . ,c

(1)
k,n)

S2
k = (c(2)k,1, . . . ,c

(2)
k,n)

...

Sm
k = (c(m)

k,1 , . . . ,c
(m)
k,n ).

Optionally, some assignments receive teacher’s grading

Tk = (cT
k,1, . . . ,c

T
k,n).

It is expected to have the teachers grade only a selection of
assignments. If present, teacher’s grading Tk is taken as a
proper (final) grade for assignment k. The intent is to have

teachers intervene (providing Tk) only in cases where re-
ceived peer-assessments for a task k are indicated/detected
as unreliable.

Without the loss of generality we assume nonnegative
grades c(k)i, j ≥ 0. Ranges of points for criteria Ci are deter-
mined by the scoring rubric. We encode this as coordinates
of a range vector

r = (r1,r2, . . . ,rn). (1)

Values ri communicate the relative weights of criteria Ci
and must be carefully determined in advance during the
design of the scoring rubric.

We need to calculate:

• the final grade for the assignment

• the measure for (inter-rater) reliability of gradings
given for an assignment k (as deviation/divergence
of the gradings)

• the assessment of the quality of gradings of a partic-
ular grader – (intra-rater, for “grading the grader”).

Inter-rater reliability measures agreement among graders
for grading the same assignment. Intra-rater reliability tells
how good of a grader some is – it measures how k’s per-
formed gradings agree with other (final) grades for these
assignments.

Remark 1. A 3-dimensional array is needed for storing
c(k)i, j data. For example, data of 2000 records is needed if
m = 4 (number of desired peer gradings), p = 100 (class
size) and n = 5 (number of rubrics criteria).
In a MOOC setting a reality is to have data of millions of
record.

2.1 Taxicab geometry

Taxicab geometry is one of non-Euclidean geometries in-
troduced by Hermann Minkowski (1864 – 1909) at the turn
of the 20-th century.
H. Minkowski described a set of metrics that can be used
to measure distance and which satisfies the axioms of the
metric space. These metrics are induced by the so called
p-norms defined for every p ∈R, p ≥ 1 as real scalar func-
tions in n-dimensional space.
Let x,y ∈ Rn with x = (x1,x2, . . . ,xn), y = (y1, . . . ,yn).
p-norm for p ≥ 1 is defined by

‖x‖p =

(
n

∑
i=1

|xi|

) 1
p

, (2)

which induces the associated p-metric

dp(x,y) = |x−y|p. (3)
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3.2 Optimal final grade

We define W (S) and B(S)

W (S) = (w1, . . . ,wn), wi = min
j

c( j)
k,i ,

B(S) = (b1, . . . ,bn), bi = max
j

c( j)
k,i ,

as amalgamation of the worst received grades (W ) and best
received grades (B) respectively. We define the optimal
final grade

O(S) = (o f
1 , . . . ,o

f
n), where o f

i =
1
2
(
W (S)+B(S)

)
.

(9)

Optimal final grade takes into consideration (is sensitive
to) extremes: e.g. additional gradings within an axis-
aligned hyperrectangle (box, see Fig. 3) encompassing the
set S have no effect on a f

k .

O(S)

W (S)

B(S)

Figure 3: A sketch of a 3-dimensional axis-aligned hyper-
rectangle

Note that W (S) and B(S) as two juxtaposed vertices
uniquely determine the hyperrectangle encompassing S .

This approach is inspired by the TOPSIS method (Tech-
nique for Order of Preference by Similarity to Ideal Solu-
tion) in multi-criteria decision making (cf. [10]).

We find the optimal final grade approach adequate in sit-
uations where grading is performed by experts (i.e. sev-
eral teachers), of whom abnormal/wild gradings are not
expected (scenario B). After only a few expert gradings
additional gradings should have little to no effect on the
final grade. Expert’s costs rise linearly, but benefits wane
quickly. For this reason a balance must be struck to avoid
overloading the experts with a workload that will have no
effect.

3.2.1 Relative position of M(S) and O(S)
M(S) is positioned within the axis-aligned hyperrectangle
encompassing W (S), B(S). Therefore

|M(S)−O(S)| ≤ 1
2
|B(S)−W (S)|= 1

2
(|B(S)|− |W (S)|)

(10)

Relatively large |M(S)−O(S)| indicates a skewed data S
with majority of data standing opposite to an outlier point.

The inequality

0 ≤ 2|M(S)−O(S)|
|B(S)|− |W (S)|

≤ 1 (11)

resulting from (10) can be utilized for a normalized mea-
sure of skewness of the set S .

Remark 2. When teacher grading Tk is present, Tk is taken
as a proper grade for assignment k.

Example 1. Grading set S = {S1
k ,S

2
k ,S

3
k} for assignment k

is given in the following table:

C1 C2 C3 C4 Σ
S1

k 3 0 2 2 7
S2

k 2 1 3 3 9
S3

k 2 1 3 2 8

We can calculate the final grade for assignment k with (8)
and (9):

M(S) =
1
3
(7,2,8,7), |M(S)|= 8, (12)

O(S)=
1
2
(
(2,0,2,2)+(3,1,3,3)

)
=

1
2
(5,1,5,5) , |O(S)|= 8.

(13)

Note that looking at the total grade these assessment
match, but they are far from agreement on granulated
grades. Summative difference is 2. Obviously, final grades
can differ if calculated with mean and optimal value final
grade. But, it can happen, as illustrated by this example,
that agreement among evaluators is low.

Suppose a teacher intervenes with

C1 C2 C3 C4 Σ
Tk 2 1 2 2 7

.

Now Tk is a proper (final) grade for assignment k.

Gradings closer to the final grade (which is Tk in this
case) are considered to be of better quality, and respective
graders should be rewarded with more points for grading
well. Here, for example, S3

k is the closest to the final grade
Tk with d(S3

k ,Tk) = 1. S1
k and S2

k both have taxicab distance
from Tk of 2 points.
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4 RQ3 – What are the appropriate inter-
rater and intra-rater measures for peer-
assessment?

Main objectives regarding RQ3 are:

i. detection of inadequate grading set by measuring the
agreement within a grading set,

ii. grading (rewarding) the grader proportionally to the
measure quality of his effort.

4.1 The need for higher granularity of assessment
data

We illustrate this with an example of “bad” grading that is
visible only when analyzed at the higher level of detail.

Example 2. Let’s consider example gradings S1 and S2:

C1 C2 C3 C4

∑

S1 3 0 2 2 7

S2 1 1 3 3 8

granular

d(S1, S2) = 5

summative

∆ = 1

Difference of totals (summative difference) for S1 and S2 is
only 1 point, but the taxicab distance (sum of differences)
is 5 points. Although gradings S1 and S2 seem coherent at
the summative level, these gradings indicate a low quality
of assessment(s) when observed at greater level of detail
(criteria level).

We will use a set diameter as a measure for detection of in-
consistent gradings. Grading set with a large diameter sug-
gests inconsistent and possibly unreliable peer-assessment.
A diameter of a set of gradings S = {S1, . . . ,Sn} is defined
as
diamS = maxi, j d(Si,S j).

diamS is also a diameter of a sphere encompassing S .
Note that, unlike in the Euclidean geometry, the encom-
passing sphere of the set S is not unique (see Fig. 4).
Any sphere of diameter d(A,B) within the lightly shaded
region of Fig. 4 is an encompassing sphere of {A,B}. This
region is the intersection of two taxicab hyperspheres of
radius d(A,B) with centers A and B.

Let e > 0. A grading S is acceptable for an acceptable er-
ror e if the radius of the smallest encompassing sphere of
S is smaller than e, i.e. if
diamS < 2e.

A

B

Figure 4: Encompassing taxicab sphere for A, B

4.2 Normalization

For the purpose of standardization (for comparison of re-
sults) and for easier application and interpretation of re-
sults by non-expert users (where acceptable error e can be
set and recommended on a normalized [0,1] scale) we in-
troduce the normalization of the taxicab norm.
We define the norm | |′ for the points within the hyper-
rectangle encompassing O and r

|a|′ = 1
|r|

(
a1, . . . ,an

)
, (14)

where r is the range vector (see equation (1)). Both | |′
and the induced metric |x−y|′ map to [0,1] on the (O,r)-
hyper-rectangle.

Since relative weights of criteria have already been taken
into account in the design phase of the scoring rubric the
normalization is simple. Any concerns about disparate
sizes of ri in some rubrics have to be addressed during the
design of the scoring rubric.

Now we can use the relative acceptable error e′ = e
|r| in-

stead of e.

5 Implementation of the grading process

5.1 Simple grading process

Let e > 0 be acceptable error. Let S be a grading set for
assignment k. Let g be a grading method (mean value final
grade or optimal final grade).
If S is acceptable, a final grade g(S) is assigned for assign-
ment k. If S is not acceptable, we ask for teacher’s grading.

5.1.1 Advantages and disadvantages of the simple grad-
ing process

In a situation with a cluster of gradings of poor quality, a
single grading of good quality can be enough to demand
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Blaženka Divjak
e-mail: blazenka.divjak@foi.hr

Marcel Maretić
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Family of Surfaces Heltocat

ABSTRACT

In this paper the Heltocat family of surfaces is defined ac-
cording to [5]. It is shown that the surfaces defined by
the family are minimal and form an isometric deformation
from the helicoid to the catenoid. The visualizations and
computations were made by using the programs Sage and
Mathematica.

Key words: minimal surface, Gaussian curvature, mean
curvature, Heltocat family of surfaces
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Familija ploha Heltocat

SAŽETAK

U radu je prema [5] definirana familija ploha Heltocat. Za
plohe iz definirane familije se pokazuje da su minimalne i
da čine izometričnu deformaciju od helikoida do kateno-
ida. Za vizualizaciju ploha i račune su korǐsteni programi
Sage i Mathematica.

Ključne riječi: minimalna ploha, Gaussova zakrivljenost
plohe, srednja zakrivljenost plohe, familija ploha Heltocat

Ovaj se članak temelji na seminarskom radu kojeg je pod
voditeljstvom doc. dr. sc. Sonje Gorjanc, u okviru kole-
gija Diferencijalna geometrija na poslijediplomskom stu-
diju Grad-evinskog fakulteta Sveučilišta u Zagrebu, izradila
studentica Elizabeta Šamec.

1 Uvod

Neka je U ⊂ R2 otvoren i povezan skup te neka je vektor-
ska funkcija�r : U → R3 dana formulom:

r(u,v) = x(u,v)�i+ y(u,v)�j+ z(u,v)�k (1)

gdje su x,y,z : U → R realne funkcije klase C1(U). Fik-
sirajmo (u0,v0) ∈ U . Krivulje u → r(u,v0) zovu se u-
krivulje, dok se krivulje v → r(u0,v) zovu v-krivulje pa-
rametrizacije r.

Skup točaka euklidskog prostora

M = {T ∈ R3|T = (x(u,v),y(u,v),z(u,v)),(u,v) ∈U},

nazivamo plohom, a ured-eni par (U,r) parametrizacijom
plohe M . Ploha M može se zadati i s tri parametarske
jednadžbe:

x = x(u,v), y = y(u,v), z = z(u,v), (2)

gdje su x,y,z : U → R diferencijabilne skalarne funkcije iz
izraza (1), [8].

Točka plohe je regularna ako u njoj postoji jedinstvena
dirna (tangencijalna) ravnina. Za regularnu točku T ∈ M
tangencijalna ravnina sadrži tangente s diralištem u T svih
onih krivulja koje leže na plohi M i prolaze točkom T .
Točke plohe u kojima takve tangente ne formiraju ravninu
nazivamo singularnim točkama plohe. Normala plohe M
u njenoj regularnoj točki T je pravac kroz T koji je okomit
na tangencijalnu ravninu plohe u točki T . Ravnine koje
sadrže normalu n plohe M u regularnoj točki T nazivamo
ravninama normalnih presjeka kroz T . Presjek ravnine
normalnog presjeka s plohom je neka krivulja na plohi.

U točki T zakrivljenost krivulje normalnog presjeka
odred-enog tangentom t nazivamo normalnom zakriv-
ljenošću plohe u smjeru tangente t u točki T i označavamo
ju Kt . Funkciju K : [0,π] → R, K(ϕ) = Kt , koja za točku
T ∈ M svakom smjeru tangente pridružuje zakrivljenost
odgovarajućeg normalnog presjeka nazivamo funkcijom
normalne zakrivljenosti plohe M u regularnoj točki T .
Glavne zakrivljenosti K1 i K2 plohe M u njenoj regular-
noj točki T su minimum i maksimum funkcije K(ϕ), [4].

Tangente u ravninama normalnog presjeka za koje je nor-
malna zakrivljenost ekstremna nazivamo glavnim smjero-
vima plohe u točki T i označavamo p1 i p2, a krivulje koje
su presjek njihovih ravnina normalnog presjeka i plohe na-
zivamo glavne krivulje u točki T . Primjer su meridijani i
paralele rotacijskih ploha.
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Slika 1: Funkcija normalne zakrivljenosti [10]

Za normalnu zakrivljenost u smjeru t vrijedi relacija

K(ϕ) = K1 cos2 ϕ+K2 sin2 ϕ,

gdje je ϕ kut izmed-u tangente t i glavnog smjera p1 (vidi
sliku 1).

Tangente u ravninama normalnog presjeka za koje je nor-
malna zakrivljenost jednaka 0 nazivamo asimptotski smje-
rovi plohe. Asimptotske krivulje na plohi su one kojima su
tangente asimptotski smjerovi. Primjer asimptotskih linija
su pravci na plohama.

Srednja zakrivljenost plohe u njenoj točki T definirana je
pomoću glavnih zakrivljenosti plohe K1 i K2 sljedećom for-
mulom

H(T ) =
1
2
(K1(T )+K2(T )). (3)

U singularnim točkama srednja zakrivljenost nije defini-
rana.

Gaussova (potpuna ili totalna) zakrivljenost plohe u točki
T odgovara produktu glavnih zakrivljenosti,

G(T ) = K1(T ) ·K2(T ).

Ploha je u prostoru jednoznačno odred-ena lokalnim inva-
rijantnim veličinama koje se zovu prva i druga diferenci-
jalna forma. Prva diferencijalna forma služi za mjerenja
na plohi kao što su duljina luka, kut izmed-u dviju krivu-
lja plohe, površina omed-enog dijela plohe i sl. Prema [1],
prvu diferencijalnu formu možemo preko duljine luka de-
finirati s

I = ds2 = (dr)2 = Edu2 +2Fdudv+Gdv2,

gdje je r(u,v) vektorska funkcija koja odred-uje plohu, a
koeficijenti prve diferencijalne plohe tj. Gaussove osnovne
veličine prvog reda su odred-ene s

E =r2
u = ru · ru,

F =ru · rv, (4)

G =r2
v = rv · rv.

Druga diferencijalna ploha može nam dati odgovor na pi-
tanje kakvog je oblika ploha u okolini neke točke na nje-
noj površini proučavanjem svojstava krivulja na plohi koje
prolaze tom točkom. Definirana je s

II = Ldu2 +2Mdudv+Ndv2.

Koeficijenti druge diferencijalne plohe tj. Gaussove os-
novne veličine drugog reda odred-eni su preko Weingarte-
nove funkcije W koja je prema uvjetu regularnosti u svakoj
točki različita od 0, pa slijedi

L =
1

W
[ru,rv,ruu] ,

M =
1

W
[ru,rv,ruv] , (5)

N =
1

W
[ru,rv,rvv] , W =

√
EG−F2,

gdje [a,b,c] označava mješoviti produkt vektora a, b i c.

Znajući kako su definirani koeficijenti prve i druge diferen-
cijalne forme, srednju zakrivljenost plohe H zapisujemo
kao

H(T ) =
EN −2FM+GL

2(EG−F2)
. (6)
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Gaussovu zakrivljenost preko koeficijenata prve i druge di-
ferencijalne forme možemo zapisati

G(T ) =
LN −M2

EG−F2 .

Lokalna izometrija f : M →M je preslikavanje med-u plo-
hama koje čuva mjerenja na plohama. Lokalnu izometriju
zamišljamo kao preslikavanje koje savija plohe, ali pritom
čuva unutarnju udaljenost izmed-u točaka. Lokalna izome-
trija čuva skalarni produkt i normu tangencijalnih vektora,
odnosno Gaussove osnovne veličine prvog reda [11]. Vri-
jedi i obrat. Ako je r : U → R3 regularna injektivna para-
metrizacija od M i r : U →R3 parametrizacija od M , tada
je preslikavanje f = r ◦ r−1 lokalna izometrija ako i samo
ako vrijedi

E = E, F = F , G = G. (7)

2 Minimalna ploha

Ukoliko je srednja zakrivljenost plohe jednaka nuli (H =
0) plohu nazivamo minimalnom plohom. Za minimalnu
plohu vrijedi da je K1 = −K2. Minimalna ploha, parame-
trizirana u obliku (x,y, f (x,y)), zadovoljava Lagrangeovu
nelinearnu parcijalnu diferencijalnu jednadžbu

(1+ f 2
y ) fxx −2 fx fy fxy +(1+ f 2

x ) fyy = 0.

Rješavanjem Langrangeove jednadžbe možemo dobiti rav-
ninu kao trivijalno rješenje (najjednostavniju minimalnu
plohu) ili neko od netrivijalnih rješenja. Prva netrivijalna
rješenja, katenoid i helikoid, dobivena su u 18. stoljeću.
Danas pomoću računala i simboličkih matematičkih pro-
grama možemo dobiti niz analitički definiranih minimalnih
ploha odnosno rješenja Lagrangeove jednadžbe. Kao po-
jednostavljenje, za plitke plohe, Lagrangeova se jednadžba
može aproksimirati linearnom, Laplaceovom jednadžbom

fxx + fyy = 0.

Ipak, u grad-evinarstvu se takve plohe rijetko koriste zbog
minimalnog odstupanja od ravnine uslijed kojeg nemaju
dovoljnu zakrivljenost ni geometrijsku krutost u smjeru
okomitom na plohu. Minimalne plohe koje koristimo u
grad-evinarstvu, u prirodi se javljaju kao oblici koje po-
prima opna od sapunice razapeta na žicu savijenu u za-
danu prostornu krivulju. Opna će uvijek poprimiti najma-
nju površinu od svih ploha koje zadovoljavaju iste rubne
uvjete. Prije nego što je numerička analiza postala moguća
razvojem računala, ova se pojava koristila u izradi fizikal-
nih modela.

Slika 2: Fizikalni model konstrukcije od sapunice
(slika preuzeta sa stranice [12])

Na minimalnoj su plohi naprezanja jednaka u svakoj točki
i u svim smjerovima tangencijalne ravnine uslijed čega je i
nosivost materijala svuda jednoliko iskorištena [6].

3 Helikoid

Ako zamislimo točku na uspravnom kružnom valjku kako
jednoliko kruži oko njegove osi, a istovremeno se jedno-
liko giba u smjeru te osi dobit ćemo krivulju koju nazivamo
kružna zavojnica, a u parametarskom obliku možemo ju
zapisati

x(u) = acosu, y(u) = asinu, z(u) = bu,

u ∈ R, a > 0, b �= 0,

gdje je a polumjer zavojnice (polumjer valjka), a 2bπ ko-
rak zavojnice. Korak ili visina hoda zavojnice je visinska
razlika dviju njezinih točaka koje leže na istoj izvodnici
valjka, a parametri u im se razlikuju za 2π.

Zavojnica je geodetska linija valjka tj. ona je najkraća li-
nija na valjku koja spaja njegove dvije točke, ukoliko te
točke ne leže na istoj izvodnici valjka.

Normale zavojnice koje ortogonalno sijeku zavojnu os
(glavne normale) tvore uspravnu pravčastu plohu koju na-
zivamo helikoid. Helikoid je uz ravninu jedina pravčasta
minimalna ploha, [5]. Pravci koji leže na helikoidu su
asimptotske linije te plohe - linije duž kojih je normalna
zakrivljenost jednaka 0. Parametarske jednadžbe ove plohe
su

x(u,v) = avcosu, y(u,v) = avsinu, z(u,v) = bu, (8)

(u,v) ∈ R2,a > 0,b �= 0.
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a b

Slika 3: Zavojnica na valjku (a) i toj zavojnici pridružen
helikoid (b)

Za točku (u0,v0), zavojnica polumjera av0 je u-linija heli-
koida, dok su v-linije helikoida pravci.

Pomoću formula (4) i (5) možemo za helikoid odred-en je-
dnadžbama (8) izračunati Gaussove osnovne veličine pr-
vog i drugog reda

E = a2v2 +b2, F = 0, G = a2,

L = 0, M =
a2b√

a4v2 +a2b2
, N = 0. (9)

Prema izrazu (6) slijedi da je srednja zakrivljenost jednaka
nuli čime je dokazano da je helikoid minimalna ploha.

Glavne zakrivljenosti K1 i K2 helikoida u točki T (u,v) su
suprotnih vrijednosti i iznose

K1,K2 =± a
a2 +u2 .

4 Katenoid

Nit ovješena o dvije nepomične točke na horizontal-
nom razmaku i opterećena vertikalnim raspodijeljenim op-
terećenjem po cijeloj duljini u ravnotežnom položaju za-
uzima zakrivljeni oblik koji nazivamo lančanica, [9]. Je-
dan od klasičnih zadataka računa varijacija je traženje kri-
vulje koja spaja dvije zadane točke i čijom se rotacijom
oko danog pravca dobije ploha minimalne površine. Euler
je 1744. pokazao da je ta krivulja lančanica, a rotacijska
ploha koja nastaje naziva se katenoid. Ako u ravnini yz
lančanicu zadamo parametarskim jednadžbama

y(v) = acosh
v
a
, z(v) = v, v ∈ R, a > 0,

njezinom rotacijom oko osi z nastat će katenoid dan
sljedećim parametarskim jednadžbama:

x(u,v) = acosh
v
a

cosu

y(u,v) = acosh
v
a

sinu (10)

z(u,v) = v, (u,v) ∈ [−π,π]×R, a �= 0.

Slika 4: Katenoid nastaje rotacijom lančanice

Katenoid je rotacijska ploha, njegovi meridijani
(lančanice) te paralele (kružnice) su glavne krivulje te
plohe - krivulje duž kojih je normalna zakrivljenost eks-
tremna. One su ujedno i u-linije odnosno v-linije plohe, a
to znači da je parametrizacija (10) takozvana glavna para-
metrizacija.

Ukoliko je parametrizacija katenoida zadana jednadžbom
(10), osnovne veličine prvog reda mogu se izračunati kako
je prikazano u uvodu i iznose:

E = a2 cosh2 v
a
, F = 0, G = cosh2 v

a
, (11)

L =
1
a
, M = 0, N =−acosh2 v

a
sech2 v

a
.

Vrijedi H = 0, odnosno katenoid je minimalna ploha. Ka-
tenoid je, uz ravninu, jedina rotacijska ploha koja je mini-
malna, [5].

5 Pridružena familija minimalne plohe

Poznat je rezultat da svaka ploha konstantne srednje za-
krivljenosti dopušta izometričnu deformaciju, tj. postoji
familija izometričnih ploha u koju je uključena takva ploha
kao što se može naći u [3]. Plohe konstantne srednje za-
krivljenosti (posebno su tu uključene minimalne plohe)
spadaju u kategoriju takozvanih Bonnetovih ploha koje su
proučavane još u 19. stoljeću, [2]. Prateći [5], poglavlje
31, opisat ćemo metodu kojom se svaka minimalna ploha
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KoG•19–2015 E. Šamec, I. Kodrnja: Familija ploha Heltocat

ulaže u familiju izometričnih minimalnih ploha, njoj pri-
druženu familiju i pogledati kako ta familija izgleda za he-
likoid odnosno katenoid.

Za parametrizaciju r : U → R3,U ⊂ R2 definiramo
sljedeće:

1. r je izotermalna parametrizacija ako vrijedi

ruru = rvrv = λ2, rurv = 0,

pri čemu je λ : U → R diferencijabilna funkcija.

2. r je harmonička parametrizacija ako vrijedi

ruu + rvv = 0.

3. Harmoničku izotermalnu parametrizaciju nazivmo
minimalna izotermalna parametrizacija. Regularna
minimalna izotermalna parametrizacija definira mi-
nimalnu plohu i svaka minimalna ploha ima mini-
malnu izotermalnu parametrizaciju.

Primjer regularne izotermalne parametrizacije je parame-
trizacija katenonida (10) za a= 1 (označimo ju s k), budući
da vrijedi

kuku = kvkv = cosh2 v, kukv = 0.

Parametrizacija helikoida (8) nije niti izotermalna niti har-
monička. No, znamo da je helikoid minimalna ploha,
prema tome postoji minimalna izotermalna parametriza-
cija. Ako uvedemo zamjenu varijabli

u = u, v = asinhv

u (8) dobivamo novu parametrizaciju helikoida:

h(u,v) = (asinhvcosu,asinhvsinu,bu), b �= 0. (12)

Ova parametrizacija je minimalna izotermalna za a2 = b2 i
vrijedi

huhu = hvhv = a2 cosh2 v, huhv = 0.

Parametrizacije r i s zadovoljavaju Cauchy-Riemannove
uvjete ako vrijedi

ru = sv i rv =−su,

a takve parametrizacije nazivamo konjugirano har-
moničke.

Ukoliko reparametrizirani helikoid (12) rotiramo za π
2 pri-

mjenom matrice transformacije

R =




cosθ −sinθ 0
sinθ cosθ 0

0 0 1


 ,

dobit ćemo parametrizaciju rotiranog helikoida:

hR
(u,v) = (asinusinhv,−cosusinhv,bu), b �= 0. (13)

Slika 5: Svijetloplavi helikoid (8) i tamnoplavi
rotirani reparametrizirani helikoid (13)

Parametrizacija (13) i parametrizacija k katenoida (10) za
a = 1 su konjugirano harmoničke parametrizacije budući
da vrijedi

hR
u = kv = (cosusinhv,sinusinhv,1),

hR
v =−ku = (sinucoshv,−cosucoshv,0).

U [5] je opisana metoda koja bilo kojoj minimalnoj
izotermalnoj parametrizaciji nalazi njoj konjugirano har-
moničku. Za parametrizaciju (10) tom metodom se dobiva
točno parametrizacija (13).

Ako su r i s konjugirano harmoničke izotermalne para-
metrizacije, tada definiramo 1-parametarsku familiju ploha
t → R (t) s parametrizacijama

R (t) = cos tr+ sin ts (14)

koju nazivamo pridružena familija ploha. Preslikavanje
t → R (t) je izometrička deformacija - sve plohe u familiji
R (t) su minimalne i imaju istu prvu fundamentalnu formu,
tj. lokalno su izomorfne.

6 Familija Heltocat

Heltocat je ured-ena familija ploha H (t), t ∈ [0, π
2 ] danih

sljedećim parametarskim jednadžbama:

x(u,v) = cos t sinhvsinu+ sin t coshvcosu,

y(u,v) =−cos t sinhvcosu+ sin t coshvsinu, (15)

z(u,v) = cos tu+ sin tv, (u,v) ∈ R×R.

Ukoliko varijablu t izjednačimo s 0, funkcija heltocat daje
helikoid koji odgovara rotiranom reparametriziranom he-
likoidu (a = 1,b = 1) definiranom izrazom (12). Za t =
π
2 heltocat prelazi u katenoid (a = 1) definiran izrazom
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(10). (Time je objašnjen naziv ove familije - helicoid to
catenoid). Ova familija je pridružena familija helikoida
odnosno katenoida u smislu definicije (14).

Osnovne veličine prvog i drugog reda za H (t) su

E = cosh2 v, F = 0, G = cosh2 v,

L =−cosh2 vsech2vsin t, M = cosh2 vsech2v cos t,

N = cosh2 vsech2v sin t.

Glavne zakrivljenosti K1 i K2 plohe H (t) u točki T (u,v) su

K1,K2 =±sech2v, ∀t,

stoga su sve plohe ove familije minimalne.

Prva diferencijalna forma i glavne zakrivljenosti jednake
su za sve plohe u familiji Heltocat (ne ovise o varijabli t)
što potvrd-uje da su sve plohe minimalne i lokalno izome-
trične.

Slika 6: Transformacija helikoida u katenoid
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KoG•19–2015 E. Šamec, I. Kodrnja: Familija ploha Heltocat

Slika 6 prikazuje plohe H (t) za t = nπ/16, n = 0,1, . . . ,8,
a (u,v) ∈ [0,2π]× [−2,2]. Crnom bojom istaknute su u-
krivulje, a bojom cijan v-krivulje ploha. Vidimo da se
asimptotske linije helikoida preslikavaju u glavne linije ka-
tenoida (zavojnice u kružnice, pravci u lančanice).

Pogledajmo u-linije plohe H (t) i pokažimo da su one za-
vojnice. Za fiksirane t = t0 i v = v0 u-linija plohe H (t0)
ima parametarske jedandžbe u sljedećem obliku:

x(u) = acosu+bsinu,

y(u) = asinu−bcosu, (16)
z(u) = cu+d, u ∈ [−π,π],a,b,c,d ∈ R.

Zavojnica je karakterizirana činjenicom da leži na valjku
te činjenicom da ima konstantan kut nagiba prema osi tog
valjka. Uspravni valjak kojem je os z i polumjer r ima jed-
nadžbu x2 + y2 = r2, pa uvrštavanjem vrijednosti iz (16)
dobivamo

x2(u)+ y2(u) = a2 +b2 = sin2 t0 + sinh2 v0,

te zaključujemo da ova u-linija leži na valjku polumjera√
sin2 t0 + sinh2 v0. Tangenta u-linije u točki (u0,v0) ima

vektor smjera jednak

t = (−asinu0 +bcosu0,acosu0 +bsinu0,c),

dok os z ima vektor smjera z = (0,0,1). Računamo kut
nagiba izmed-u osi z i tangente t u točki (u0,v0)

cosϕ =
|tz|
|t||z|

=
c√

(a2 +b2 + c2)
,

a ta je vrijednost konstantna s obzirom na u. Za-
ključujemo da je svaka u-linija plohe H (t) zavojnica polu-
mjera

√
sin2 t0 + sinh2 v0, a budući da je c = cos t korak te

zavojnice je 2πcos t.

7 Samopresjeci ploha H (t), 0 < t < π/2

U [5] je spomenuto (bez dokaza i objašnjenja) da svaka
ploha H (t), 0 < t < π/2, ima krivulje samopresjeka čiji se
dijelovi jasno uočavaju na tri plohe sa slike 6.

Za plohu danu parametrizacijom r : U → R3, U ⊂ R2,
točke samopresjeka su one za koje je zadovoljeno:

r(u1,v1) = r(u2,v2), (17)
(u1,v1) �= (u2,v2), (u1,v1),(u2,v2) ∈U,

tj. to su one točke za koje parametrizacija nije injektivna.

Računanje samopresjeka ploha je bitno kod CAD pro-
grama i računalnog 3D modeliranja ploha, posebno kod
modeliranja offset ploha. Taj problem nije jednostavan

i razvijene su numeričke i algebarske metode za traženje
samopresjeka ploha s racionalnom parametrizacijom, [7].
Nažalost, kako plohe promatrane familije nisu racionalne,
nije bilo moguće primijeniti neku od gore spomenutih me-
toda. Stoga rješavanje ovog problema ostavljamo za neki
budući rad.

U pokušaju da odredimo krivulje samopresjeka, nismo mo-
gli koristiti uvjet singularnosti plohe (ru(u,v)× rv(u,v) =
0). Njegova primjena na plohe (15) daje kompleksna
rješenja (npr. sinhv =±i).

Pregledavanje velikog broja grafičkih prikaza navelo nas je
na sljedeće hipoteze:

• Samopresjeci ploha H (t), 0 < t < π/2, su neke nji-
hove u-linije i ima ih prebrojivo mnogo na svakoj
plohi.

• To su one u- linije ploha za koje vrijedi
r(u1,v) = r(u2,−v).

Iz jednadžbi r(u,v) = r(u+ x,−v) dobili smo sljedeće re-
lacije za varijable x i v na linijama samopresjeka:

x = 2v tan t,

sinx =
2sin2t sinhvcoshv

cosh2v− cos2t
. (18)

a b

Slika 7: Ploha H (7π/16) nad područjima [−4π,π] ×
[−1,1] i [−4π,π] × [−2,2], s istaknutim u-
linijama za v = 0.625 (plavo) i v = 1.25 (crveno).
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ABSTRACT

There are images in History of Art, Science, Technique,
Humanities, which are milestones. Las Meninas is one
of these. Several levels of reading and deepening have
been proposed by historians and theoreticians, and many
interpretations have been made. Yet the very sophisti-
cated construction of this masterpiece seems to escape
any univocal hypothesis, making it as well astonishing as
enigmatic.

Our interest in this extraordinary opera stems from the
fact that it belongs to that special category of paintings
whose meaning is inextricably based on and linked to their
projective structure; therefore, aware of the wideness of
the implications, we will mainly focus on its geometric
and graphic feature.

Key words: Diego Velázquez, Alcázar de Madrid, perspec-
tive, geometry and graphics, photogrammetry, projective
geometry, descriptive geometry, optics, catoptrics
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Kad slike postavljaju stvarnost
Perspektivna alkemija u Velázquezijevoj
Las Meninas

SAŽETAK

Postoje djela prekretnice u povijesti umjetnosti, znanosti,
tehnici i humanistici. Takvo djelo je i slika Las Meni-
nas. Povjesničari i teoretičari su predložili nekoliko razi-
na “čitanja” i istraživanja djela te su se pojavila brojna
tumačenja. Izgleda da još uvijek vrlo sofisticirana kon-
strukcija ovog remek djela nije pod jednoznačnom hipote-
zom što ga čini jednako zadivljujućim koliko i zagonetnim.

Naše zanimajnje za ovo izvanredno remek djelo proizlazi
iz činjenice da slika pripada posebnoj kategoriji djela čije
se značenje temelji i neraskidivo je povezano s njihovom
projektivnom strukturom. Stoga, svjesni opsežnosti im-
plikacija mi ćemo se fokusirati na njezin geometrijski i
grafički značaj.

Ključne riječi: Diego Velázquez, Alcázar de Madrid, per-
spektiva, geometrija i grafika, fotogrametrija, projektivna
geometrija, deskriptivna geometrija, optika, katoptrika

1 Introduction

Painted by Diego Rodrı́guez de Silva y Velázquez in 1656,
this imposing painting (318 x 276 cm) shows an intrigu-
ing scene taking place in a lazy afternoon in the Galerı́a de
Mediodı́a of the Alcázar de Madrid. Strangely enough we
basically see the painter in person at work beyond a large
canvas, the Infanta Margarita Theresa of Spain, her Maids
of Honour and other members of the Royal entourage, in-
cluding a dwarf, a midget and a dog. Apart from the last
two, all the characters are looking fixedly at us with curios-
ity, while we are looking into their space, that is, quite un-
usually, the studio of the painter. In this dialog of glances,

looking more closely and attentively we surprisingly dis-
cover the image of the King Felipe IV and Queen Mariana
de Austria, which is reflected in a small mirror hanging
in the middle of the rear wall, also they looking towards
us. Above, two big mythological paintings appear, show-
ing the hard punishments that await those who dare to chal-
lenge gods.

Any attempt to undertake a philological reconstruction of
the geometric space of the scene has to deal with at least
two issues. On the one hand the sophisticated perspective
pattern of the painting, including the representation of mir-
ror and reflection effects, and the crucial fact that the large
canvas appearing in the painting, slightly rotated and tilted,
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faces the artist, therefore its figurative content remains a
secret. On the other hand, the fact that the real room rep-
resented in the painting was located in the south western
wing of the castle, known as Cuarto del Prı́ncipe Major,
which burned during the big fire of Christmas Eve in the
year 1734. On the bases of the available information, we
aim to compare the presumable shape of the painted room
as it results from the perspective reconstruction based on
the depicted space, with the presumable shape of the real
space hypothesized on the base of some historical plans,
especially that of Juan Gómez de Mora date back to 1626,
and some information about other important changes su-
pervised by the same Velázquez afterwards. In this pro-
cess, the reflection in the mirror will provide a valuable aid
for the geometrical reconstruction, but at the same time it
will set a limit to the investigation.

2 A glance at the painting

Based on the available information, mainly coming from
the book El Museo Pictórico, y Escala Óptica by Acisclo
Antonio Palomino de Castro y Velasco, the painting has
been painted in 1656. It is a big oil on canvas, 2,76 meters
wide and 3,18 high, nowadays placed at the Prado Museum
in Madrid [12]. At its time, it was known as La Familia
(The Family) and hung in the Royal Alcazar de Madrid for
about eighty years, until 1734 when the castle burned dur-
ing Christmas Eve. Due to the fire both left and right edges
were damaged and consequently these marginal areas were
cut and removed, while the high temperature caused the
loss of pigment in some parts, including one cheek of the
Infanta Margarita, as well as some diffused alterations of
the original colours. It was soon restored and cleaned by
the painter Juan Garcia de Miranda and included in the
royal collection in 1748. In 1772 it was in the new Royal
Palace of Madrid with the title La Familia de Felipe IV
(The Family of Philip IV). Half a century later, in 1819
it was finally included in the collection of the Prado Mu-
seum, where it received his final name, Las Meninas, about
twenty years later, in 1843. The last restoration took place
on 1984 and nowadays it is still visible at the Prado Mu-
seum (Figure 1) [13].

Curiously, the present name takes its origin from two sec-
ondary characters, namely the two young Maids of Hon-
our, that is, Las Meninas, who appear in the painting at the
two sides of the Infanta Margarita (1651-1673), at the time
aging five, the young daughter of King Felipe IV (1605-
1665) and Queen Mariana de Austria (1634-1696), who
stands shiningly at the centre of the scene, blond and white
dressed. Thanks to Palomino, who had the opportunity to
talk with persons that had been in touch or that simply had
known the members of the royal court, and based on other

Figure 1: Las Meninas, 1656: space and scene (source
of image [12], text by author)

historical sources, we have information about all the per-
sons portrayed in the painting, which makes understand-
able the situation and helps us to get the feeling of the
scene. The maid on the left is Marı́a Augustina Sarmiento
de Sotomayor, who is offering the Infanta a red cup on a
silver plate, the one on the right is Isabel de Velasco. The
two young girls are attending the young princess. Beyond
them, almost in the shadow, close to the balconies, we see
Marcela de Ulloa and Diego Ruiz de Ancona, enrolled as
guardadamas, that is, in charge for the surveillance of the
maids, silently discussing with each other, in a way that
contributes to giving the scene the special atmosphere of
a private family meeting. On the foreground we see an-
other group composed by the German dwarf Mari Bárbola,
and the Italian midget Nicolastico Pertusato, who is joking
with a big indolent dozy dog. Dwarfs and midgets were
very familiar at royal court at that time. They were consid-
ered as fool of God and had the task to cheer up court and
guests, but they were also considered talented with a super-
natural wisdom, symbols of divine mercy, then they were
among the fewest allowed to tell the King truth, no mat-
ter how much unwelcome it could be, without any conse-
quence. In the very foreground the dog, symbolizes loyalty
and devotion, he is growing drowsy but he is also garrison-
ing the threshold of the gate to the painted space. On the
left side, just beyond the kneeling maid, we see the painter,
Diego Velázquez (1599-1660), standing, imperious and at-
tentive, at work in front of the huge canvas, whose pictorial
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surface we can not see directly. It shows in a key moment
of pause, looking in our direction as he was taking infor-
mation about his subject in order to proceed or complete
his work. At that time he was aposentador major, a kind
of Marshal and Master of Ceremonies of the castle, at the
service of King, the highest grade in this role. We will
know a bit more about him in the following paragraph. On
the opposite side, beyond the door of the rear wall, another
aposentador is on the mid steps of a short staircase. He
is Don José Nieto Velázquez, who apart from the name
did not have any family ties with Diego Velázquez. He
was the person in charge of staying at hand of the Queen,
opening and closing the doors to give her way. Since he is
managing with a drapery, it has been written that he was
preparing the way to the Queen, who was on the point of
leaving the room, consequently what we see in the painting
might be the end of the painting session. But it is also pos-
sible, on our opinion, that he was just coming to see the ad-
vancement of the session, or just leaving before the session
started. These latter hypotheses seem quite convincing if
we look at the sense of waiting pervading the space, em-
phasized by the bowing maid on the right, as well as by the
attentive glances of the bystanders gazing into our space.
The last two members of the group, smaller than one could
expect, appear as busts in a frame located in the middle of
the rear wall. They are King Felipe IV and Queen Mari-
ana. The boundary of the rectangular area from which their
profiles arise, and the less sharp outlines and colours, tell
us that they appear in a mirror, which is one of the most
interesting aspects and one of the most discussed points of
this masterpiece, besides being one of the major focuses of
our projective investigation.

3 The painter

As widely recognized, Diego Velázquez is considered as
the leading artist of the Spanish “Golden Age” (Figure 2).
His curriculum includes not only pictorial masterpieces but
also a relevant number of public offices and appointments
under the kingdom of Felipe IV. Born in Seville on June
1599, he was at the royal court since 1623, at his twen-
ties, having a special feeling with the King since the be-
ginning. It is told that, especially in the old age, he used
to visit the painter in his studio, frequently waiting there
for long hours looking at him painting. When Velázquez
died at the beginning of August 1660, Felipe wrote mov-
ing words expressing his solitude and grief for the loss of
the esteemed artist, adviser and confident. Velázquez was,
indeed, a deeply cultured artist, at same time very brilliant
in political, administrative stuffs, and management. His li-
brary was very rich and full of international books and trea-
tises. Thanks to his sensibility and active efforts, the royal

Figure 2: Diego Rodrı́guez de Silva y Velázquez. Self por-
trait, about 1640 (left, source of image [13]). In Las Meni-
nas, 1656 (right, source of image [12]) (Images cropped by
author)

collection of art masterpieces had a significant increase un-
der his tutorship. He was in touch with great artists, espe-
cially Pieter Paul Rubens, getting from him a deep pictorial
influence and important works for the archives of Spain. To
further enrich the art collection Diego Velázquez also vis-
ited Italy twice, selecting and importing in Madrid impor-
tant sculptures, paintings and documents. Again Palomino,
the official biographer of the Spanish artist of that time,
whose contribution is often compared with the one offered
by Vasari for Italian Renaissance, helps us to know detailed
information about him, especially in the period from 1650
and 1660. Palomino completed the biography in 1724,
only six decades after the death of the artist, therefore he
could get direct information about the painter from people
who had the opportunity to meet him in person, includ-
ing Juan de Alfaro y Gámez, one of his artistic disciples
[4]. There are not so many other words to spend about
Velázquez’s universally recognized outstanding career as a
painter. Instead, here we would look at a special part of his
story as a public man, which is related to the red cross ap-
pearing on his chest in Las Meninas. At the time when he
painted Las Meninas, he was at the apex of his public ca-
reer, attending several royal offices. He was, indeed, Pintor
de camera, kind of personal painter of the King, Ayuda de
camera, that is a kind of personal counsellor and assistant
of the King, Aposentador de palacio, or the marshal of the
Alcazar de Madrid, that is, the castle of the King of Spain,
and from 1652 Superintendente de obras particulares, or
superintendent to special works, like managing royal art
collections and architectural works in the castle. In short,
he was also a kind of artistic supervisor and managing di-
rector of the King.
Nevertheless, his biggest ambition was not yet been satis-
fied. At that time indeed, he was struggling in the middle of
a personal fight to become a member of the Orden de Santi-
ago, which was the most prestigious monastic-military or-
der, whose reputation was echoing since its foundation in
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XII century. Symbol of the members was, precisely, a red
cross on the chest. Well, almost incredible the sequence
of facts concerning Velázquez’s admission to this Order,
which also demonstrates the tenaciousness of the painter.
The story starts in 1650, six years before Las Meninas was
painted and before the birth of the Infanta Margarita, when,
after the death of his first wife Isabel de Borbón (1602-
1644) and of his young son Balthasar Carlos (1629-1646),
Felipe IV was starting forming a new family with Mariana
de Austria. In this year, Velázquez obtained the support
from the Secretary of State of the Pope. From that moment,
it will have taken other eight years to obtain the royal nom-
ination, the document with which the King tried to solve
the pending suit. Las Meninas was painted during the wait
for this royal document. But once obtained the royal pa-
per, the request was reviewed and rejected by the Council
of Military Orders, after investigation about painter’s ge-
nealogy and social condition. To deny the admission, they
highlighted the basic contradiction between the painter’s
“God-given talent” and his “man-made hierarchy of court”.
Obstinate as never before, Diego Velázquez brought a legal
action against this result, and a big trial started up involv-
ing 148 witnesses. The main point was about nobility. In
order to demonstrate his noble origin, he pushed many wit-
nesses to affirm that he had never worked for money, since
he did not need it because of his aristocratic genealogy.
At the end, it was not difficult to discover the falseness
of these proofs, which made the situation even worse. At
this point, in a short time between 1658 and 1659, a new
endorsement by Pope and, to redundantly reinforce it, the
ennoblement by King, removed the obstacle once and for-
ever. In the same year of 1659, on November 28, Diego
Rodrı́guez de Silva y Velázquez was finally admitted to the
Orden de Santiago, eight months before he passed away
[4]. Thus, what about the red cross depicted on his chest
in Las Meninas? Legend tells that it should have added by
direct hand of King Felipe IV after the death of his beloved
“painter and courtier”.

4 Architectural set
The room we see in the painting is no longer an existing
room. It was destroyed in the fire of that fatal night dur-
ing the Christmas Eve of 1734, which just started from
the south-western wing of the Castle (Figure 3), where the
room was located as a part of the Cuarto Bajo del Principe,
that is, an apartment at the ground floor belonging to the
Cuarto del Rey, the western part of the Castle in use by the
King and for his private activities and public ceremonies.
This room, also known as Galerı́a de Mediodı́a, which
means southern gallery, was pleasantly warm, especially
during winter time, then kings since Felipe II liked to
spend time there during the most freezing days of the year

Figure 3: Alcázar de Madrid, XVII century, by anonymus
(source of image [13], cropped by author)

Figure 4: Galerı́a de Mediodı́a, axonometry (source of
image [2], cropped and coloured by author)

(Figure 4). Since 1646 the room was also the atelier of the
painter, as the paintings represented in the canvas testify.
The Alcázar de Madrid was founded in IX Century as a
Muslim fortress and had done several significant transfor-
mations over time. One of the most impressive transfor-
mations took place between 1640 and 1650, in part under
Velazquez’s direction, when the great royal gallery at the
first floor decorated with mirrors and named Salón de los
Espejos was realized, together with the contiguous Sala
Ochavada, an octagonal room adorned with precious stat-
ues, some of them coming from Italy, and directly con-
nected by a staircase with the Galerı́a de Mediodı́a at the
lower floor [2]. There are no evidences of this staircase in
the coeval maps, but only in Las Meninas, which shows a
view of a stepped ramp beyond the rear wall, where José
Nieto stands on looking at the scene and preparing the way
to the Queen. The reason why Las Meninas is also one of
the historical sources taken into account by the scholars in
relation to the history of Alcazar.
The main iconographic sources basically consist of a plan
by Juan Gomez de Mora, date back to 1626, thirty years
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Figure 5: Galerı́a de Mediodı́a (yellow area) in the
Alcázar de Madrid, by Juan Gomez de Mora, 1626 (source
of image [1], cropped by author)

Figure 6: Front of the Galerı́a de Mediodı́a (yellow area),
southern wing of Alcázar de Madrid (source of images [1],
both cropped by author). Views by Pedro Texeira Albernaz,
1656 (above), and Luis Meunier, 1666 (below)

before the painting (Figure 5), and a plan by Teodoro Arde-
mans, realized in 1705. They are both quite far from the
time of the painting here discussed, but they are anyway
helpful to understand architectural structure and propor-
tions of the room. A view from 1656 by the cartographer

Figure 7: Galerı́a de Mediodı́a, the geometrical set. De-
tail of the plan (source of image [3]) and front (source of
image [1]). Unit: pie castellano, 1 pie = 27.86 cm (com-
position and diagram by author)

Pedro Texeira Albernaz and a view from 1666 by Luis
Meunier help us to complete the picture, being useful to
analyse the consistency between the faade and the interiors
(Figure 6). There are also maquettes of the castle, the most
well-known realized after 1630 and now at the Museo Mu-
nicipal, in Madrid. A recent, complete and detailed histor-
ical reconstruction of the castle and its transformations is
nowadays available, thanks to the book Alcázar de Madrid,
by José Manuel Barbeito, published in 1992 [1].
The geometry of the room appearing in Las Meninas is
clear from the mentioned map of Juan Gómez de Mora. It
shows a long room with seven balconies along the southern
wall, the one appearing on the right in the painting (Figure
7). At the time when the plan was drawn a thin partition
divided the room in two parts, marked in the plan with
numbers 25 and 12, the latter included in the apartment
of Prince Balthasar Carlos, also said El Cardenal Infante.
When the young Prince died, the partition was removed
and the room became the studio of Diego Velázquez. The
eastern wall, corresponding to the rear wall appearing in
the painting, only shows one gate to a gallery in a massive
wall, but not the other gate, where José Nieto appears in
Las Meninas, neither the staircase on which he is stand-
ing (Figure 8). Gate and staircase could have been real-
ized during the big transformation occurred between 1630
and 1650, when the Torre del Sumiller, that is, the huge
tower connected to the room and its massive wall, were
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demolished. The western wall represented in the 1626’s
map, shows two gates, one of them close to the wall with
balconies and almost specular to the Nieto’s gate visible in
the painting, for this reason supposed to hold the viewpoint
from which the scene was depicted. Northern wall does not
appear in the painting, but it has been useful to understand
the symmetry of the room, which has been helpful in re-
constructing the sequence of the balconies in spite of the
graphic approximations in the map.

Concerning metrics, we had to refer to the unit in use at
the time, clearly indicated in the drawing, which is pie
castellano, or the castilian foot, so that 1 pie = 27.86
cm. The size of the room is 75× 20 pies, which means
about 20.90 × 5.57 mt. Taking advantage from the fact
that width and height of one of the walls, namely the east-
ern wall, appear frontally in the painting, the height of
the room has been deduced by a simple proportion, and
then compared with the available drawings of the façade.
Other important information comes from an Inventory of
the paintings recorded in 1686 [3]. Starting from the ceil-
ing, this list describes all the paintings hanging above and
in between the balconies (Figure 9), including precise in-
formation about their sizes. All the paintings are by Juan
Baptista del Mazo, the Velázquez’s son in law, some orig-
inal, mostly are copies of Rubens. In Las Meninas they
appear strongly foreshortened by the effect of perspective
distortion, which affects the representation of that side of
the room. As the inventory includes the description of the
frames, we considered the metrical information as related
to the outline of the frames and not to the real dimensions
of the canvases, about which there are no explicit infor-
mation. New multiple units are mentioned in the inven-
tory, namely 1 vara = 83.5 cm, 1 tercia = 27.5 cm, 1
quarta = 20.5 cm. In total, four types of frames are men-
tioned. Above the balconies, seven long frames measuring
3 varas × 3 quartas, copies of Rubens, showing images
of birds, animals and landscapes. In between, five small
original paintings by Mazo measuring 1

2 vara×3 quartas,
displaying wild boar, small dogs, and again animals and
landscapes. Below, other six smaller copies by Rubens,
measuring 1

2 varas×2 tercias, with the Labor of Hercules.
Below these and finally, six higher copies of Rubens, mea-
suring 2 tercias ×1+ 1

2 varas, showing the philosophers
Heraclitus and Democritus, Hercules slaying the seven-
headed Hydra, Mercury, Saturn, and Diana. Magnified by
the frontal view, hanging up on the rear wall under the ceil-
ing, are two big copies of Rubens realized by Mazo, telling
mythological stories. The one on the left, burned during
the fire, is about Minerva Punishing Arachne, the other is
about Apollo’s victory over Marsyas. Besides the men-
tioned works, the framed mirror between the two doors and
the big canvas on which Velázquez is at work, complete the
set. On the ceiling, two lamps appear, and some evident

Figure 8: South eastern entrance and staircase (source
of image [12], cropped by author)

Figure 9: Distribution of paintings on the walls (source
of image [12], cuts and diagrams by author)
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humidity stains, a clear proof of one of the major persisting
problems that Alcázar had to face during its existence, well
documented in the archives and often cause of restoration
as well as of profound architectural transformations [1].
Nowadays the Royal Palace of Madrid stands on the same
place of the Alcázar de Madrid.

5 Graphics, or, “the truth of tone”

Talking about painting necessarily implies to take into ac-
count the primary role of Graphics. No matter what sub-
ject and story are, and what the organization of shapes is,
at the end a painting is made of pigments on a canvas, and
these pigments makes the story alive. Discussing about
graphic aspects is not the main purpose of this work, any-
way we could not avoid to note how much they are in a
masterly manner interlinked with geometry of space, spa-
tial perception, location of characters, and symbolism in
this art masterpiece. Besides how the scene is shaped and
its proportions on the canvas, the whole atmosphere of the
event is here dominant, based on a refined chromatic com-
bination of factors [7]. First of all the dimension of the
room is emphasized thanks to a wide use of dim light ef-
fects, and of their contrast with brighter areas and silhou-
ettes. The soft colour of the ground and the absence of
any flooring, drive the attention on the human characters
and the space around, far from the traditional iconogra-
phy of tiled perspective grounds, which in this case would
have interfered with the contemplation of the very points
of the scene. Velázquez pushes our sight up to the space
in front of us instead of on graphic nets under our feet.
We can then appreciate the illuminated foreground, as if
we also were invested by the light incoming through the
opened shutters of the balcony on the right. The opposite
happens on the left, due to the huge brown back side of
the canvas where the painter’s work is supposed to be in
progress. Then a dark penumbra pervades the whole depth
of the room. This area is really wide, if we consider that
the entire upper half of the painting is shown as an empty
space (Figure 10). It has been a really superb choice to
take this risk, but in a way it seems this upper half part is
the space of Art and Myth, indeed, almost the total amount
of paintings lay in this superior area. It is remarkable that
almost all these paintings are perfectly recognizable, being
masterly reproductions of those that hung in the room. The
lower half of the painting is where the scene with people
takes place (Figure 11). Then, in the dark rear wall dark-
ness is again broken, firstly by the reflected image of the
royal couple in the mirror, mid of the wall, and most of all
by the very bright spot of light filtering through the door
where José Nieto stands, light coming from an undefined
space beyond the room. These oases of light work as a
tonal balance in the painting, the latter being located ex-

actly in front of the supposed designated location for the
perspectival viewpoint. Great attention is paid on graphic
resolution and tones according to the distances, as explic-
itly recommended since the Leonardo da Vinci’s perspec-
tiva aerea. Compared with the figures of the persons in the
foreground, the silhouette of José Nieto, as well as those
of King and Queen, appearing under the red drapery of a
gate, are less defined. This latter could also have been a
strategy, either due to a certain reluctance of the King to
show in sharp portraits during his mature age, reasonable
also in consideration of the very young age of his wife, or
and at the same time to affirm the minor role of the atten-
dant of Queen in comparison with the role of the painter
himself as an attendant of King. Light and colours also
help to recognize hierarchies among the portrayed persons
(Figure 12). Fully direct light, indeed, only reaches the In-
fanta Margarita, at the time aging five and being the only
daughter of the royal house still alive, first descendant for
Felipe IV and Queen Mariana. Shining as the hope of the
reign, she is blond and white dressed, while vivid red de-
tails, like the round big brown eyes, brooches in the hear
and on the corset, as well as the red cup, exalt her bright
figure even more. Not by chance, she is at the centre of the
scene. Other characters, although showing faces, are never

Figure 10: Las Meninas, upper pictorial area (source
[12], cropped by author)

Figure 11: Las Meninas, lower pictorial area (source
[12], cropped by author)
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Figure 12: Las Meninas, graphic features of characters
(source [12], cropped and composed by author)

fully illuminated, like in the case of the dwarf, or in the
light but only showing a profile, like in the case of the
maids of honour. Very secondary characters are even more
far from light, like the two tutors of the maids. The midget
and the dog show detailed feature because they are in the
very foreground, but not so much in the light, which comes
from the upper area of the balcony. Velázquez’s silhou-
ette is definitely imposing in the composition. Not as
much important as the Royal Family, the pictorial feature
makes anyway impossible not to be attracted by his im-
age. Apart from the proud and aristocratic pose, his lo-
cation in a uniform penumbra weakens the light contrasts
on his face, which is clear and defined, together with his
hands. This kind of fore-ground effect achieved in a mid-
ground position is also emphasized by the total black uni-
form he dresses, since this black area makes the image of
his face and hands emerging from the shady atmosphere
around. Of course much other could be told about the ex-
pressiveness of the characters, or on the chromatic tech-
niques adopted and developed by Velázquez, including the
special blue pigment used in this painting, but all this is
beyond our specific task and competences. Only one thing
more about light and shadows: what time is it? Although
we will not go in search for the sunlight angles of inci-
dence, considering that the balconies on the right were ori-
ented towards South, and that light runs towards the scene,
the depicted event might have taken place in an early after-
noon. On our opinion the light blade casting on the floor
from an apparently opposite direction through the gate in
the rear room does not contradict this hypothesis, being the
normal effect of light in the space beyond the wall, entering

the darkest part of the room, something we are quite famil-
iar with in our real life. Because of all this and much other
that we will not tell in this paper, this painting has been
considered one of the best examples of “truth of tones”,
using Kenneth Clark’s words, ever realized in the history
of painting [5].

6 Geometry, or, “the bones of truth”

Talking about painting also implies Geometry, at differ-
ent levels of investigation. In our case, at least two levels:
topology of composition, and projective structure. Con-
cerning composition, a dynamic equilibrium emerges from
position and orientation of the static images on the can-
vas (Figure 13). The wide empty part of the room repre-
sented in the upper half part of the canvas, where we see
the gallery of paintings on the walls symbolizes, have we
already mentioned, the higher level of Art, giving at the
same time gravity and weight to the human characters in
the lower part, pushing them firmly on the floor, balancing
the absence of visual references on this horizontal plane.
Primary and secondary characters can be identified, related
in various ways one another. Infanta, mirrored images of
King and Queen, and painter at work, define a first pri-
mary group. Without these members of the royal family
the painting would not make sense, without the painter it
could not have been made. Infanta and the two maids form
another group, a wing dynamically growing up and bear-
ing anti-clockwise from left to right, where genuflexion
and courtesy of maids suggest a balanced rotational mo-
tion about the Infanta, and the sloping axes of their busts
form an ideal protective triangular shelter above the young
princess. Velázquez and José Nieto are corresponding fig-
ures garrisoning the beginning and the end of the space of
the room, keeping King and Queen between them, simi-
larly to what Maids of Honour do with the princess. More-
over, Velázquez, José Nieto, and the dog, are the endpoints
of an ideal triangle around the Infanta, meaning again a
sense of protection and defence. It is important to high-
light the role of these three figures in emphasizing the per-
spective effect and in helping to appreciate the long ex-
tension of the room. Velázquez and dog’s heads are also
the endpoints of a line touching the Infanta’s head. Two
dynamic crossing curves are formed, the first including
maids, princess and guardadamas, the second including
Velázquez, the maid on the right and the group of dwarf,
midget, and dog. This latter group contributes to stabiliz-
ing the lower right area of the painting, balancing the vi-
sual weight of the huge canvas on the left. The gesture of
distraction played by the midget Nicolastico joking with
the dog, releases a little the brake of tension, working in
favour of a familiar atmosphere. The dozy dog would also
tell about the serene security of the place, and by extension,
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Figure 13: Las Meninas, rhythm and composition (source
of image [12], diagrams by author)

Figure 14: Las Meninas, a special framing into the whole
frame (source of image [12], cropped by author)

of the kingdom. Once one look at this very close zone,
some details drive the sight again in opposite directions,
like the position of the Nicolastico’s leg towards left, and
his inclined arm, aligned with and echoed by the Nieto’s
arm keeping the drapery at the end of the room, so re-
calling the main perspective direction. X-ray analysis of
the painting also revealed an afterthought in the inclination
of painter’s head, which was leftwards in the first version.
Maybe this change is also in order to keep the dynamism

of the composition, either in relation to the opposite in-
clined outline of the canvas in front of him, or in relation
to the inclinations of the other figures. Moreover, much
other could be said about the geometry of glances looking
at the eyes of each member in the scene, and mainly in
relation with our direction of sight. Other interesting rela-
tionship is in the alternation of single figures and couples in
the sequence from left to right from Velázquez to King and
Queen, Nieto, and the guardadamas, a kind of horizontal
rhythm reducing the strong effect of perspective. Another
significant fact we noticed is that Velázquez, Infanta Mar-
garita, Royal Couple in the mirror, the Maids of Honour
and Nieto, together with the two big paintings above the
doors and their legendary stories, and in part the canvas on
which Velázquez is at work, lay inside the boundaries of
the rear wall, whose ideal frame works as a picture apart in
the whole picture (Figure 14).

Concerning projective structure, the main vanishing point,
and consequently the viewpoint, is eccentric and laid in
the surrounding of the right arm of Nieto, emphasizing the
southern area of the room, closer to the sun light. The ec-
centric effect is reinforced by the diagonal foreshortenings
of the lamps on the ceiling. Consistently with the other
aspects here discussed, this choice also contributes to giv-
ing a dynamic impact to the image. The spatial depth of
the room can be subdivided in three main stages (Figure
15). The very background beyond the rear wall, or the
space in which the staircase and Nieto appear, illuminated
by a dazzling light. Hypotheses on this space have been
formulated, supposing that a monumental staircase to the
main floor would be there, connecting the room with the
main floor upstairs [11]. In relation to our purposes, we
see that this undefined space tells us that there is some-
thing else, something shining, beyond the room, therefore
it either works as a perspective safety-valve avoiding claus-
trophobic effects, or metaphorically, suggesting the idea of
the depicted room as a small space in a wider reign. A “po-
etic” projective licence, maybe the only deviation from the
purely perspective rules in order to have a better picture, is
in the upper side of door, which is not visible as it should
be (Figure 16). Another stage can be recognized between
the rear wall and about half of the visible part of the room,
more or less until the position of the two guardadamas.
This mid-ground is totally empty. Closer to us is the fore-
ground, where eight out of eleven depicted people show,
together with the dog. Here the big canvas introduces an
oblique perspective, avoiding the risk of a motionlessness
perception of the gallery. The distribution of the three cou-
ples, that is, sovereigns, guardadamas, dwarf and midget,
also helps to visually mark the three foreshortening stages
of the space, again fostering a dynamic perception. As we
can see, a very sophisticated system of topologic and pro-
jective aspects has been build up in this painting, perfectly
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Figure 15: Las Meninas, perspective stages in the picto-
rial space (source of image [12], diagram by author)

Figure 16: Las Meninas, a perspective “licence” (source
of image [12], cropped and marked by author)

integrated with a magisterial graphic feature. But there is
more in this painting making it so unique: a mirror. Re-
flection is then included in this perspective, that is, another
perspective into the perspective representation [7, 9]. As
we said, King Felipe IV and Queen Mariana de Austria
appear there, smaller than Nieto despite mirror hangs on
the wall at same distance from our point of sight, which
is a proof that they show in a mirror. What we see on the
mirror, indeed, is the projection of the virtual image of the
Royal Couple, geometrically formed beyond the surface
of the mirror, at the same distance of that from the mirror
King and Queen were into the real room in that moment.
That is supposed to be, in front of the painter who was

depicting them, while he and the other bystanders were at-
tentively looking at them. As well as they seem looking at
us. Based on this hypothesis, the sight point of Las Meni-
nas should be the same viewpoint of the King. Of course,
many authoritative hypotheses have been proposed, since
we can not see what Velazquez is actually painting on his
big canvas. Our goal will be about proving the projective
consistency of what we see depicted on the canvas. Or, the
consistency of Geometry, as the “bones of truth”.

7 Projective proof

Projective analysis and graphic reconstruction have been
carried on a digital copy of the painting imported in a CAD
system. Some tolerances have been considered, due to the
incomparable major resolution of CAD visualization in re-
lation to the real painting. We sometimes thought that pen-
cil and strokes, ruler and compasses, might have been bet-
ter tools to use. On the other hand, CAD system would
have allowed us to carry on 1:1 perspective investigations,
and to store all the constructions in one file, reason why we
decided to stay on it, working in the consciousness of the
mentioned technical gap. The perspective reconstruction is
made of two parts, one of them related to the reconstruc-
tion of the Galerı́a de Mediodı́a, the other one focusing on
mirror and its reflected image.
Compared with the richness of the composition, the paint-
ing offers a limited set of perspective elements. Apart from
the clear front view of the rear wall with the mirror, whose
dimensions were known, together with those of the two big
canvas hung on it, the only usable foreshortened geomet-
rical element are balconies and the paintings hung on the
wall on the right. The first check has been about extending
the depth lines in search for the main vanishing point of the
structure. Initially, we tried to assume that this point was
on the finger of the left hand of Nieto, consequently imply-
ing a horizon line passing through the baseline of the mir-
ror reflecting the royal busts as well as through Velázquez’s
brush. This looked very convincing at the beginning, espe-
cially from a metaphoric point of view, as if also Nieto,
the second aposentador, was involved, together with the
aposentador major, in the perspective construction, by in-
dicating that crucial vanishing point. Nevertheless, at the
end of more accurate investigations, the choice of a little
higher vanishing point appeared more correct (Figure 17),
either because of its better connection with the whole per-
spective pattern, or, and most of all, because the projec-
tion of the right half of the baseline of the rear wall on
the baseline of the canvas, nearly shows the correspond-
ing real length, according to the historical map of the room
(Figure 18). This means that Velázquez could use the base-
line of the canvas as a perspective ground line. As we can
see, the right endpoint of this segment actually lays outside
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the boundary of the canvas. However, we decided to trust
on this point, reasonably supposed to be part of the can-
vas before it was cut on the two sides after the fire, as we
mentioned before. It was pivotal in this decision the recog-
nition of a quite invisible point in the foreground, visible
between Nicolastico’s legs, which is the intersection point
between the floor and the left jamb of the first balcony, only
partially included in the image. This point, connected with
the graphically reconstructed lower right corner of the rear
wall, generates a line extensible to the vanishing point in
question. The last issue, definitely convincing us, was the
importance that the ground line would have at that time to
carry on perspective constructions.

Figure 17: Horizon line, first hypothesis (below), final hy-
pothesis (above) (source of image [12], cuts and diagram
by author)

Figure 18: The assumed basic perspective pattern
(source of image [12], diagram by author)

Figure 19: Basic angles for the perspective reconstruc-
tion (source of images [1], [3], cuts and diagrams by au-
thor)

Figure 20: Basic angles, transcription on the painting
(source of images [12] diagrams by author)

Once set the main bundle of lines, we had to work now on
the foreshortenings in order to find the main distance and
locate the viewpoint for the perspective reconstruction. To
do this two angular data, that is, two directions were re-
quired. Since we already had the main vanishing point,
related to the direction of the visual axis and orthogonal
to the picture plane, we only needed another known di-
rection recognizable in the painting. Given the absence of
any geometrical reference on the floor, it was necessary to
go back again to the information available from the 1626
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plan by Juan Gomez de Mora [1, 3]. Whereas not the en-
tire room is represented in the painting, whereas it was not
possible to trust on the width of the windows drawn in the
map because of the graphic imprecision, whereas it was
not possible to estimate the width of balconies because of
the unknown dimension of the chamfers in the painting, it
was decided to consider an auxiliary diagonal running on
an area having half the length of the room, extended from
the midpoint of the medial balcony to the rear wall. Once
drawn on the map, we could measure the true angle that
this line formed with the southern wall (Figure 19). The
same diagonal has been traced in perspective on the ceil-
ing in the painting (Figure 20), and extended to the hori-
zon line to find its vanishing point, which finally allowed
us to draw a circle whose chord on the vertical visual axis
was as long as the required main distance of the perspec-
tive construction. As a further proof, we repeated the pro-
cedure on the vertical plane of the wall, considering as a
perspective reference for the metric data one of the paint-
ings hung on between the balconies. At the end only a
slight difference arose between the little shorter distance
obtained with this additional construction, and the previ-
ous one, which we actually adopted (Figure 21). Now the
main distance and the related distance circle allowed us
to apply homological procedures for a true-to-size graphic
reconstruction of the depicted elements (Figure 22). In ad-
dition, we also wanted to reconstruct the part of the room
outside the pictorial space, that is, the part invading now
our own space, corresponding to the area where King and
Queen were during the painting session (Figure 23). Con-
cerning metrics, we used to convert pies in centimetres,
while the scale of graphic reconstruction, was 1:1, as we
already said. The reconstruction confirmed the projective
correspondence between the real room as it is drawn in the
map and the depicted room, as well as the reliability of
people, dog and furniture (Figure 24). Based on these pa-
rameters, the picture plane would be located at two thirds
of the width of the first gate partially visible in the painting,
measured from the painter’s position, while the Royal Cou-
ple would be seated just behind the door located in front of
the painter. Width and position of this door has been of
course deduced only from the map that, as we saw, can be
a little inaccurate in this kind of details. On our opinion,
this door would be specular to the opposite one where we
see Nieto, what should make the visual field more corre-
sponding to what the painting suggests.

The pictorial set was in this way completely reconstructed
(Figure 25). The last proof concerned the credibility of
the reflected image of King Felipe and Queen Mariana.
To make the proof it was first of all necessary to find the
oblique plane to which the canvas belongs, and to deter-
mine its virtual specular outline beyond the mirror. This
latter outline was determined by imposing symmetric van-

ishing elements, corresponding to those of the plane of the
canvas represented in the painting, according to the dis-
tance circle. To complete the test, point of the reflected
image of the King, namely a point between the eyes, was

Figure 21: In search for the perspective set: auxiliary
circles and distance circle (dawn by author)

Figure 22: Homology at work. Space and sight point: de-
tail of the true-to-size reconstructions (drawn by author)
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translated from the virtual image of the mirrored oblique
plane of the canvas, to the oblique plane of the canvas in
front of Velázquez. The translation run on a depth line, be-
longing to a vertical plane perpendicular to the mirror in
the real wall. As a final result, the point matches the can-
vas, meaning that the image of King and Queen we see in
the mirror can really be the reflex of their portrait painted
on the canvas, so that the sovereigns could see and follow
the pictorial work going on in real time (Figure 26). By the
way, since the portrait in the mirror seems complete, Las
Meninas might represent the end of the pictorial session,
then justifying the arrival of Nieto from the opposite side
of the room. Taking advantage of homology, the graphi-
cally deduced true-to-size of the canvas shows that the hy-
pothesized real position of the face of the King painted on
the canvas, would be about one meter far from the oblique
edge and about one and half meter high from the ground,
which seems perfectly at hand for a painter about one me-
ter and seventy centimetres tall portraying a man sitting at
the mentioned distance from him. The perspective analy-
sis of the painting has been also proposed to the students of
my elective course Geometrical Complements of Graphic
Representation at the School of Architettura e Societá of
Politecnico di Milano in the academic year 2014-2015.
During the course, as double check, physical models (Fig-
ure 27) and digital animations (Figure 28), where for the
sake of “projective philology” gaps in the 3D models cor-

respond to hidden areas in the painting, have confirmed this
hypothesis. On the other hand, it would have been easy for
Velázquez to set the elements and the chair for the royal
husband and wife in the correct position in the real space
beforehand as a proof, since this room was his atelier.
Concerning the adopted methodology, it has to be said
that for the graphic reconstruction we used the modern
homological method of Projective and Descriptive Ge-
ometry, which during the XVII Century was still under
development. In addition, the use of rabatment, which
we used to have the true profiles available on the same
plane, requires and enormous graphic space, especially for
the auxiliary constructions. For sure the method adopted
by Velázquez was one allowing him to have all the ba-
sic auxiliary constructions on the canvas, maybe also to-
gether with the help of optical instruments, a matter that
could be explored in new researches. Anyway, his strong
background in perspective, optics and catoptrics is clear
from his paintings. Moreover, it has been highlighted that
he took care of his own education in these fields. At
his death, indeed, 154 books were found in his library,
mostly about math, geometry, optics, astronomy, includ-
ing treatises and books by Luca Pacioli, Aguilonius, Dürer,
Witelo, Guidobaldo Del Monte, Serlio, Benedetti, Zuc-
caro, Cousin, Barbaro, Tartaglia, Euclid, Alberti, Egna-
tio Danti, Vignola, Leonardo da Vinci, Cespedes, together
with graphic instruments and a series of mirrors [7].

Figure 23: Behind the canvas, inside our own space: perspective reconstructions (drawn by author)
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Figure 24: Las Meninas, the whole projective analysis (drawn by author)
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Figure 25: Las Meninas, reconstruction of pictorial set and visual field: plan and section (drawn by author)

Figure 26: Las Meninas, into the enigma of mirror via homological investigation (drawn by author)
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Figure 27: Las Meninas, physical replica. Photographic view from the designated sight point (model and image by
Aamir Ahmed Patel and Abhay Kaushik)

Figure 28: Las Meninas, “philological” digital replica: gaps in the 3D model correspond to hidden part in the painting
(frames from an animation by Aamir Ahmed Patel and Abhay Kaushik)
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8 Conclusion
At this point, some comments about reason and meaning
can be proposed. At a first glance the painting is shock-
ing for the intriguing and flooring set as well as the picto-
rial virtuosity. But there is even more behind. Velázquez
painted Las Meninas in his mature age, few years before
he passed away, and thanks to his multiple offices across
Art and Court he had a clear vision of the world around
him [4]. He knew and showed the double side of reality,
serious and mocking, light and dramatic, ironic and melan-
choly. Las Meninas is about all these. And its iconography
is as precisely calibrated as a treatise, superbly integrating
various aspects and levels. The representation of meaning
follows a dynamic equilibrium, as well as we already saw
in the pictorial composition, even more emphasized by the
alternation of bright and dark areas in the pictorial space.
All the basic hierarchical ranks of the Court and typologies
of human beings appear on the canvas, in an interesting or-
der, since backstage is of a dog, together with a midget and
a dwarf, while King and Queen are the smallest figures,
little dimed because of the reflection in the mirror. In op-
posite, the most shining figure is that of Infanta Margarita,
at very barycentre of the scene, may be the real main sub-
ject of the painting, representing the future and the hope
of the reign. This fact can not be clear without considering
the heavy series of mourning afflicting the King, at his sec-
ond wedding and having Margarita as his only son at that
moment. On the other hand he was getting old, something
consistent with his fading image in the mirror.
However, mirror is a pivotal enigmatic point in Las Meni-
nas, and the duplication of the pictorial space a recurring
obsession for the painting. We can mention Christ at the
house of Martha and Mary, painted nearly four decades be-
fore, integrating two spaces in the same painting, or Venus
and Cupid, better known as Venus Rokeby, painted seven
years before, a nude where the face of the goddess is re-
vealed into a small mirrored handed by Cupid. Some com-
parisons have been carried on with The Arnolfini Portrait
by Jan van Eyck, realized more than two centuries before,
in 1434. Anyway, considering the different typology of re-
flection, in van Eyck generated by a curved mirror, and
apart from the superficial evidence of the presence of a
mirror depicted in the scene, we do not see other signifi-
cant similarities. Like in the Venus Rokeby, in fact, both
subjects and their mirrored images appear on the canvas,
while in Las Meninas we see only the mirrored image, but
not the King and the Queen. To find the reason, it has been
suggested to search into the literary genre of the speculum
principis, or the mirror of prince, inspired by an ancient
Roman tradition starting with Isocrate’s To Nicocles, in-
cluding booklets and manuals focusing on how to educate
a Prince [10]. The basic idea was that mirror never fails,
and that reality looked through a mirror can be dominated,

like in the case of Perseus and Medusa Gorgon. At the
time this literary genre was widely diffused in the Euro-
pean area. In Spain, it was known ad espejo de principe,
where vices and virtues were compared and analysed by
using various literary formulas and expedients. In the mod-
ern era some reference works were Il Cortegiano by Bal-
dasar Castiglione in 1528, Agudeza y arte de ingenio, and
El criticon by Balthasar Gracian, respectively in 1648 and
1651. About Italy we could remind De Principatibus by
Nicolò Machiavelli, date back to 1513. But it seems that
the main reference to Velázquez was the book Idea de un
principe politico Christiano, that means the ideal Christian
political prince, written in 1640 by Don Diego de Saave-
dra Fajardo, who was minister and ambassador, closely in
touch with the King of Spain, and most of all, knight of
the Order of Santiago, the Order that Velázquez was strug-
gling to join at the time, as we saw before (Figure 29).
Back to Las Meninas, mirror could allow king and queen
to be there and not there at the same time, in the purity
of a reflected image without contaminations with the real
space. In other words, they could be there as a reflected
image to represent the pure principle of being sovereigns,
that is, as the mirror of their darling Princess (Figure 30).

Figure 29: Frontispiece of the book “Idea de un principe
politico Christiano”, written in 1640 by Don Diego de
Saavedra Fajardo (source of image [13])
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Figure 30: The Infanta Margarita, darling daughter of
Felipe IV and Mariana de Austria, seen through the pin-
hole of the model (picture by Georg Glaeser)

The mirror is also connected with the two copies of Rubens
hung above, namely Minerva Punishing Arachne, on the
left, and Apollo’s Victory over Marsyas on the right. They
tell mythological stories of the dramatic consequences
on humans who dared to challenge gods. As we know
Arachne was turned in a spider and Marsyas ended up be-
ing flayed. What is also interesting to see is the corre-
spondence in genders, since the feminine story is set above
Queen and the masculine above King, to remind the lim-
ited power of human beings, no matter how much is their
role in this world. But since Apollo is patron of Arts and
Minerva’s patron of Wisdom, their presence also symbol-
izes a wider admonishment, involving Velázquez himself,
who is just at work on a painting. At the time, indeed,
painters and were considered artisans working with hands,
to whom the shift to high society was impeded. Proof is
the hard work Velazquez was still doing, in spite of his
multiple prestigious offices at Court, to be accepted as a
member by the Order of Santiago. The two mythological
stories seem then to have, first of all, a double meaning, as
auspices for a divine protection as well as defences from
the ire of deities due to the arrogance and haughtiness of
the painter. He knew there might have been reasons for
that. Why?
At the end, Royal Family, officers and servants show in
his atelier. There are similar cases of pictorial scenes lo-
cated in painters’ ateliers, among the most well known we
could remind The Arkidukes Albert and Isabella Visiting
a Collector’s Cabinet in 1623 by Jan Brueghel the Elder
and Hieronymus Francken, and The Gallery of Cornelis
van der Geest Visited by the Regents in 1628 by William
van Haecht [8]. Nevertheless, the mood in Las Meninas is

quite different, and definitely stronger. We see the painter
himself looking into our space and our eyes, together with
several other people in the painted space, in a way that his
figure can not be removed without trivializing the scene.
His silhouette stands out over the other characters, impe-
rious and concentrated, despite the light penumbra around
him. Considering the size on the canvas, it is large and
detailed enough to be cut out as a self-portrait apart. Any-
way, the additional and maybe most significant meaning
comes from the fact that the painter in person is acting
in the community of sovereigns, dignitaries, and deities.
Moreover, he also involved goddes in his work, in a way
that they could see the work in progress on the canvas, as
if it was something worthy of their consideration and wor-
ries. This point is related to Velázquez’s main aim, that is,
release and redemption of painting and painters. Challeng-
ing task, in Las Meninas it seems fully realized, at the point
that painting itself brings together history and mythology,
which is not possible to achieve outside the boundaries of
Art, in this case, of Painting. Where perspectival and opti-
cal interplays are of crucial importance to achieve the goal
[7-10]. In this sense, as proposed in the title of this paper,
we see the alchemic contribution of perspective in mak-
ing Image able to set a reality. In this case, as a kind of
augmented reality, enriched by supernatural presences and
new meanings. That is, more than what would be possible
to realize in the tangible space of the every day life. From
the Golden Age of the Spanish Painting, Velázquez carried
on in this painting a revolutionary enhancement, for some
extents comparable to the one carried on in Italy by Leon
Battista Alberti during the XV Century. This makes this
masterpiece relevant not only for Art, but also in a wider
social, cultural, and historical sense.

Therefore, and not only for technical reasons, we believe
that the scene depicted in Las Meninas has not been sim-
ply outlined from a whole image reflected in a big mirror
put in front of the artist, which would have implied an im-
itation, given that painting would be explicitly shown here
as a creation. An intellectual, besides manual, creation,
or, re-creation. Secondarily, a specular image would have
weakened that exclusive mirror of prince effect provided
by the specular image of the royal couple. In a way, there
should have not been room for mirrored image as model
of virtues, apart from the sovereigns. Another point rein-
forcing this hypothesis comes from the observation of the
canvas in front of Velázquez, whose content we can only
suppose but not see directly. In our opinion, this is one of
the strongest metaphors incorporated in this pictorial man-
ifesto, telling us that art is not revealed, if not to the artist,
goddess wishing. In which is also an eternal enigma of
Art. One more reason to avoid mere imitations of images
reflected by a mirror. Art is a fleeing construction of genius
and intelligence. In conclusion we have no other chances
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but agree with Jonathan Brown’s opinion: “A painting as
rich in ambiguity as it is in subtlety, Las Meninas has long
been recognized as a masterpiece of Western art, a picto-
rial tour de force rarely equalled and never surpassed. But
when we attempt to explain its greatness, we soon realize
how it seems to evade the grasp both of intuitive and ra-
tional understanding”. Nevertheless, the prospective mea-
ger expected results have been largely offset by the wealth
of experience resulting in the geometric study and graphic
analysis of this, which is not only a masterpiece of ge-
nius, but also a superb educational example of scientific

and artistic dedication as well as professional ennobling.
Would we be able to achieve comparable goals in our re-
search, educational, and professional field nowadays?
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