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ABSTRACT

Learning analytics is focused on the educational challenge
of optimizing opportunities for meaningful learning.

Assessment deeply influences learning, but at the same
time data about assessment are rarely considered and uti-
lized by learning analytics.

Current approaches to analysis and reasoning about peer-
assessment lack rigor and appropriate measures of reliabil-
ity assessment. Our paper addresses these issues with a
geometrical model based on the taxicab geometry and the
use of the scoring rubrics.

We propose and justify measures for calculation of the fi-
nal grade in peer-assessment and related inter-rater and
intra-rater reliability measures. We present and discuss
a geometrical model for two important peer-assessment
scenarios.
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Geometrija za analitike učenja

SAŽETAK

Analitike učenja usredotočene su na obrazovne izazove
vezane uz postizanje svrsishodnog učenja. Vredno-
vanje postizanja ishoda učenja izrazito utječe na učenje.
Med-utim, podaci o procesu vrednovanja vrlo rijetko se ko-
riste u postojećim analitikama učenja. Nadalje, postojeće
implementacije i analize procesa istorazinskog (vřsnjačkog)
vrednovanja nisu zadovoljavajuće. Ovaj rad predstavlja
izradu i upotrebu matematičkog modela za opis i računanje
vezano uz istorazinsko vrednovanje. Razvijeni model za-
sniva se na Manhattan (taxicab) metrici te korǐstenju
rubrika za vrednovanje ishoda učenja. U radu su opisane
i opravdane metode računanja konačne ocjene vřsnjačkog
vrednovanja, mjere pouzdanosti takvog vrednovanja kao
i ocjene za pojedine vrednovatelje. Razvijeni geometrij-
ski model razmatran je u kontekstu dva važna scenarija
istorazinskog vrednovanja.

Ključne riječi: taxicab geometrija, metrika, analitika
učenja

1 Introduction and motivation for research

1.1 Learning analytics and related challenges

Learning analytics (LA) belongs to interdisciplinary sci-
entific fields connected to educational sciences and tech-
nology enhanced learning that has emerged rapidly in last
five years. The most cited definition of LA is ”Learning
analytics is the measurement, collection, analysis and re-
porting of data about learners and their contexts, for the
purposes of understanding and optimizing, learning and
the environment in which it occurs”. In [8] it is stated that
the definition comes from the first international Conference
on Learning Analytics and Knowledge (LAK 2011) and
adopted by the Society for Learning Analytics Research
(SoLAR). Further, Ferguson in [8] states that LA is focused
on the educational challenge: How can we optimize oppor-
tunities for online learning? Even better, we should look
for opportunities for meaningful learning.

Research methods and methodology in LA are still very
much under development. There is a great opportunity
for mathematicians to contribute to development of various
kind of measures and the research of mathematical models.
There is a vocal support for broadening the scope and use-
fulness of LA and special issue in LA is research in student
assessment (cf. [5]).

1.2 Assessment and reliability measures

Assessment is of fundamental importance to students. It
deeply influences learning. At the same time assessment
data are rarely utilized by learning analytics. One of
the possible reasons is that available data is not granular
enough. Fundamental issues of peer-assessment are reli-
ability and validity (cf. [7]). Research on indicators and
metrics to be potentially used in the context of reliabil-
ity and validity of assessment, peer-assessment and self-
assessment, is (currently) very limited.
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1.2.1 MOOC, online learning context

Completely new playground for learning analytics the so
called networked learning [14], e.g. Massive Open On-
line Courses (MOOCs), social learning platforms, online
learning and e-learning in general. In networked learn-
ing the number of participants rapidly increases as well
as the interactions between learners in the form of discus-
sions and mutual learning. Dealing with tens of thousands
of learners in one MOOC it is very natural/appropriate to
use self-assessment for tasks leading to a certificate. This
approach generates huge amount of assessment data but
also asks for sound metrics for calculation of final grade
and for estimates on the reliability of assessment. For our
work in this paper it brings forwards challenging scenario
when we have inexperienced evaluators (scenario A). In
this case we will demand more peer-evaluations per assign-
ment to attain sufficient reliability. The second discussed
scenario corresponds to a situation with expert (or expe-
rienced) evaluators assessing a complex problem solving
task. Here we must take into account that experts’ time
is expensive and their judgments, but their evaluations can
be trusted (scenario B). A number of assessments per as-
signment can be lower in scenario B. Further, in scenario
B we can anticipate for situations that some evaluators are
experts for only some of the assessment criteria. For exam-
ple, an expert in project management and scheduling can
skip assessment for criteria on financial regulation if he/she
lacks the required expertise.

1.2.2 Educational Rubrics

In order to increase transparency of assessment criteria and
validity of assessment us of a scoring rubric is highly rec-
ommended (cf. [12]). Further, data from the rubric can be
analyzed and utilized for estimation of reliability. Among
several sets of assessment data, [5] mentions ”achievement
mapped against explicit learning outcomes or assessment
criteria (e.g. rubric results)”.

A widespread definition of the educational rubric describes
it as a scoring tool for qualitative rating of authentic or

complex student work [12]. A rubric consists of grading
criteria and standards of attainment for those criteria (ex-
amples: [3, 4]).

Using rubrics provides several benefits such as increased
consistency of assessment, attainment of the desired valid-
ity in assessment without sacrificing the need for reliability
and promotion of learning [12].

Previous research claims that the use of rubrics in mathe-
matics supports students’ reflection and critical skills (deep
learning) by clearly communicating what is asked from
them [3].

Table 1 illustrates the scoring rubric for one criterium
(whole scoring rubric is available in [3]). It refers to an
assignment in a mathematics course where student had to
relate a real world problem to the course material.

Rubrics are especially useful when more than one
teacher/student is involved in the process of assessment.
Grading can then be implemented as a combination of
teacher’s grading and automated grading. Rubrics are also
vital in the case of a complex task assessment including
problem-based learning, group work or peer-assessment
that are authentic to the skills being tested (cf. [3]). Peer-
assessment is a process where students grade assignments
or tests of their peers based on teacher’s benchmarks
(cf. [16]).

Peer-assessment has several advantages over traditional
(teacher) assessment and a few very strong disadvantages
– comprehensively described and systematized in [4]. One
known disadvantage is the so called “reliability risk” in-
troduced by the fact that students are assessing their own
peers – some of whom may be their friends. The teacher
must be aware of the included risks and anonymize as-
sessment tasks whenever possible (see [4]). Influential pa-
pers [12, 16] claim that the measurement of reliability is a
problem for both peer-assessment and the use of scoring
rubrics.

Table 1: An example: Grading the ”problem description”-criterium with a rubric (only one row of the rubric is shown)

0 points 1 points 2 points 3 points
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We have to be aware that at this moment most teachers just
use the available software (like Moodle Workshop) oblivi-
ous whether of the fact that the embedded metrics are not
well justified or even missing (cf. [17]). Our paper ad-
dresses these problems with a geometrical model based on
the taxicab geometry.

1.3 Research questions

We pose three research questions.

RQ1: How to model and implement the grading process
for peer-assessment?

RQ2: How to calculate the grade in peer-assessment?

RQ3: What are the appropriate inter-rater (agreement
among graders) and intra-rater (accuracy of a sin-
gle grader for his several grading efforts) measures
for peer-assessment?

In the following sections we are going to answer above-
mentioned research questions.

2 RQ1 – Problem description and modeling

Let us assume that students’ assignments are graded with
the help of a scoring rubric with n criteria. Students par-
ticipate in an activity for which they are graded by their
peers. Each participant is asked to grade several (i.e. 3) as-
signments, and consequently each student should receive
several gradings for his own assignment.
The set of participating students is enumerated and we
speak of student k, or assignment k (instead of the assign-
ment of student k).

A particular grading is represented as a point in an n-
dimensional vector space. Let Sk = {S1

k , . . . ,S
m
k } denote

a set of gradings for assignment k where

S1
k = (c(1)k,1, . . . ,c

(1)
k,n)

S2
k = (c(2)k,1, . . . ,c

(2)
k,n)

...

Sm
k = (c(m)

k,1 , . . . ,c
(m)
k,n ).

Optionally, some assignments receive teacher’s grading

Tk = (cT
k,1, . . . ,c

T
k,n).

It is expected to have the teachers grade only a selection of
assignments. If present, teacher’s grading Tk is taken as a
proper (final) grade for assignment k. The intent is to have

teachers intervene (providing Tk) only in cases where re-
ceived peer-assessments for a task k are indicated/detected
as unreliable.

Without the loss of generality we assume nonnegative
grades c(k)i, j ≥ 0. Ranges of points for criteria Ci are deter-
mined by the scoring rubric. We encode this as coordinates
of a range vector

r = (r1,r2, . . . ,rn). (1)

Values ri communicate the relative weights of criteria Ci
and must be carefully determined in advance during the
design of the scoring rubric.

We need to calculate:

• the final grade for the assignment

• the measure for (inter-rater) reliability of gradings
given for an assignment k (as deviation/divergence
of the gradings)

• the assessment of the quality of gradings of a partic-
ular grader – (intra-rater, for “grading the grader”).

Inter-rater reliability measures agreement among graders
for grading the same assignment. Intra-rater reliability tells
how good of a grader some is – it measures how k’s per-
formed gradings agree with other (final) grades for these
assignments.

Remark 1. A 3-dimensional array is needed for storing
c(k)i, j data. For example, data of 2000 records is needed if
m = 4 (number of desired peer gradings), p = 100 (class
size) and n = 5 (number of rubrics criteria).
In a MOOC setting a reality is to have data of millions of
record.

2.1 Taxicab geometry

Taxicab geometry is one of non-Euclidean geometries in-
troduced by Hermann Minkowski (1864 – 1909) at the turn
of the 20-th century.
H. Minkowski described a set of metrics that can be used
to measure distance and which satisfies the axioms of the
metric space. These metrics are induced by the so called
p-norms defined for every p∈R, p≥ 1 as real scalar func-
tions in n-dimensional space.
Let x,y ∈ Rn with x = (x1,x2, . . . ,xn), y = (y1, . . . ,yn).
p-norm for p≥ 1 is defined by

‖x‖p =

(
n

∑
i=1
|xi|
) 1

p

, (2)

which induces the associated p-metric

dp(x,y) = |x−y|p. (3)
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Specifically, for p = 1 the induced metric is

d1(x,y) =
n

∑
i=1
|xi− yi| ,

better known as taxicab or Manhattan distance.

Taxicab geometry was named by Karl Menger in 1952. at
the exhibit at the Museum of Science and Industry of
Chicago. The justification for the name is straightforward
– it measures distances traveled by a car in a city whose
streets are laid out in a rectangular grid. Note that the short-
est path in taxicab geometry is not unique (see Fig. 1).

For x,y ∈ Rn, 1 < r < p, the following inequality holds

‖x‖p ≤ ‖x‖r ≤ n
1
r− 1

p ‖x‖p , (4)

meaning that p-norms are equivalent. Specifically, this
gives

d2(x,y)≤ d1(x,y)≤
√

n · d2(x,y). (5)

Euclidean distance to a taxicab driver represents air dis-
tance, e.g. it provides a lower bound for the length of a
minimal trip between A and B. On the other hand, taxicab
distance is the exact distance that needs to be traveled from
A to B in a grid.

The taxicab metric d1 will be denoted as d from now on.

A

B

Figure 1: 2-dimensional illustration of shortest taxicab
paths between A, B

Hypersphere in the n-dimensional taxicab space with cen-
ter C(c1,c2, . . . ,cn) and a radius r is a locus of points satis-
fying

n

∑
i=1
|xi− ci|= r . (6)

A 2-dimensional taxicab circle is shown inscribed in the
Euclidean circle of the same radius in the Fig. 2.

r

C

Figure 2: Euclidean and taxicab 2-dimensional sphere with
center C and radius r

We argue that taxicab metric is adequate as a foundation
for our model of LA of peer-assessment as possible rubric
gradings are points laid out in hyper-rectangular grid.
Taxicab metric is (topologically) equivalent to (but simpler
than) Euclidean metrics. It is linear, e.g. distance on the
criteria level contributes exactly the same amount to the
total taxicab distance.

Finally, the total amount of points awarded for an assign-
ment with a final grade G = (g1, . . . ,gn) is exactly the 1-
norm of G

|G|= g1 +g2 + · · ·+gn , gi ≥ 0. (7)

3 RQ2 – How to calculate the final grade in
peer-assessment?

We propose and analyze two approaches for the calcula-
tion of the final grade. Let S = {S1

k , . . . ,S
m
k } denote a set of

peer gradings for assignment k.

3.1 Mean value final grade

Traditionally the final grade is calculated as an arithmetic
mean of available gradings:

M(S) = (a f
1 , . . . ,a

f
n), where a f

i =
1
m

(
m

∑
j=1

c( j)
k,i

)
. (8)

M(S) is a center of mass of the set S . Mean value final
grade is sensitive to all available data (gradings). We can
say that it is mostly sensitive to quantity, and less sensitive
to extremes (outliers). Mean value final grade ”respects
the decision of the majority”. More data produces better
results. We consider it appropriate for scenario A.
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3.2 Optimal final grade

We define W (S) and B(S)

W (S) = (w1, . . . ,wn), wi = min
j

c( j)
k,i ,

B(S) = (b1, . . . ,bn), bi = max
j

c( j)
k,i ,

as amalgamation of the worst received grades (W ) and best
received grades (B) respectively. We define the optimal
final grade

O(S) = (o f
1 , . . . ,o

f
n), where o f

i =
1
2
(
W (S)+B(S)

)
.

(9)

Optimal final grade takes into consideration (is sensitive
to) extremes: e.g. additional gradings within an axis-
aligned hyperrectangle (box, see Fig. 3) encompassing the
set S have no effect on a f

k .

O(S)

W (S)

B(S)

Figure 3: A sketch of a 3-dimensional axis-aligned hyper-
rectangle

Note that W (S) and B(S) as two juxtaposed vertices
uniquely determine the hyperrectangle encompassing S .

This approach is inspired by the TOPSIS method (Tech-
nique for Order of Preference by Similarity to Ideal Solu-
tion) in multi-criteria decision making (cf. [10]).

We find the optimal final grade approach adequate in sit-
uations where grading is performed by experts (i.e. sev-
eral teachers), of whom abnormal/wild gradings are not
expected (scenario B). After only a few expert gradings
additional gradings should have little to no effect on the
final grade. Expert’s costs rise linearly, but benefits wane
quickly. For this reason a balance must be struck to avoid
overloading the experts with a workload that will have no
effect.

3.2.1 Relative position of M(S) and O(S)
M(S) is positioned within the axis-aligned hyperrectangle
encompassing W (S), B(S). Therefore

|M(S)−O(S)| ≤ 1
2
|B(S)−W (S)|= 1

2
(|B(S)|− |W (S)|)

(10)

Relatively large |M(S)−O(S)| indicates a skewed data S
with majority of data standing opposite to an outlier point.

The inequality

0≤ 2|M(S)−O(S)|
|B(S)|− |W (S)| ≤ 1 (11)

resulting from (10) can be utilized for a normalized mea-
sure of skewness of the set S .

Remark 2. When teacher grading Tk is present, Tk is taken
as a proper grade for assignment k.

Example 1. Grading set S = {S1
k ,S

2
k ,S

3
k} for assignment k

is given in the following table:

C1 C2 C3 C4 Σ

S1
k 3 0 2 2 7

S2
k 2 1 3 3 9

S3
k 2 1 3 2 8

We can calculate the final grade for assignment k with (8)
and (9):

M(S) =
1
3
(7,2,8,7), |M(S)|= 8, (12)

O(S)=
1
2
(
(2,0,2,2)+(3,1,3,3)

)
=

1
2
(5,1,5,5) , |O(S)|= 8.

(13)

Note that looking at the total grade these assessment
match, but they are far from agreement on granulated
grades. Summative difference is 2. Obviously, final grades
can differ if calculated with mean and optimal value final
grade. But, it can happen, as illustrated by this example,
that agreement among evaluators is low.

Suppose a teacher intervenes with

C1 C2 C3 C4 Σ

Tk 2 1 2 2 7
.

Now Tk is a proper (final) grade for assignment k.

Gradings closer to the final grade (which is Tk in this
case) are considered to be of better quality, and respective
graders should be rewarded with more points for grading
well. Here, for example, S3

k is the closest to the final grade
Tk with d(S3

k ,Tk) = 1. S1
k and S2

k both have taxicab distance
from Tk of 2 points.
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4 RQ3 – What are the appropriate inter-
rater and intra-rater measures for peer-
assessment?

Main objectives regarding RQ3 are:

i. detection of inadequate grading set by measuring the
agreement within a grading set,

ii. grading (rewarding) the grader proportionally to the
measure quality of his effort.

4.1 The need for higher granularity of assessment
data

We illustrate this with an example of “bad” grading that is
visible only when analyzed at the higher level of detail.

Example 2. Let’s consider example gradings S1 and S2:

C1 C2 C3 C4

∑

S1 3 0 2 2 7

S2 1 1 3 3 8

granular

d(S1, S2) = 5

summative

∆ = 1

Difference of totals (summative difference) for S1 and S2 is
only 1 point, but the taxicab distance (sum of differences)
is 5 points. Although gradings S1 and S2 seem coherent at
the summative level, these gradings indicate a low quality
of assessment(s) when observed at greater level of detail
(criteria level).

We will use a set diameter as a measure for detection of in-
consistent gradings. Grading set with a large diameter sug-
gests inconsistent and possibly unreliable peer-assessment.
A diameter of a set of gradings S = {S1, . . . ,Sn} is defined
as
diamS = maxi, j d(Si,S j).

diamS is also a diameter of a sphere encompassing S .
Note that, unlike in the Euclidean geometry, the encom-
passing sphere of the set S is not unique (see Fig. 4).
Any sphere of diameter d(A,B) within the lightly shaded
region of Fig. 4 is an encompassing sphere of {A,B}. This
region is the intersection of two taxicab hyperspheres of
radius d(A,B) with centers A and B.

Let e > 0. A grading S is acceptable for an acceptable er-
ror e if the radius of the smallest encompassing sphere of
S is smaller than e, i.e. if
diamS < 2e.

A

B

Figure 4: Encompassing taxicab sphere for A, B

4.2 Normalization

For the purpose of standardization (for comparison of re-
sults) and for easier application and interpretation of re-
sults by non-expert users (where acceptable error e can be
set and recommended on a normalized [0,1] scale) we in-
troduce the normalization of the taxicab norm.
We define the norm | |′ for the points within the hyper-
rectangle encompassing O and r

|a|′ = 1
|r|
(
a1, . . . ,an

)
, (14)

where r is the range vector (see equation (1)). Both | |′
and the induced metric |x−y|′ map to [0,1] on the (O,r)-
hyper-rectangle.

Since relative weights of criteria have already been taken
into account in the design phase of the scoring rubric the
normalization is simple. Any concerns about disparate
sizes of ri in some rubrics have to be addressed during the
design of the scoring rubric.

Now we can use the relative acceptable error e′ = e
|r| in-

stead of e.

5 Implementation of the grading process

5.1 Simple grading process

Let e > 0 be acceptable error. Let S be a grading set for
assignment k. Let g be a grading method (mean value final
grade or optimal final grade).
If S is acceptable, a final grade g(S) is assigned for assign-
ment k. If S is not acceptable, we ask for teacher’s grading.

5.1.1 Advantages and disadvantages of the simple grad-
ing process

In a situation with a cluster of gradings of poor quality, a
single grading of good quality can be enough to demand
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supervision (and rectify the situation). Also, simple grad-
ing is computationally very simple (of linear complexity).
On the other hand, one outlying grading is enough to
”spoil” the grading set. Therefore, simple grading process
demands supervision even when it would be easy to detect
and eliminate an outlier.
Simple grading does not scale well. It can quickly become
too work-intensive and overwhelming for the teacher even
when the majority of gradings is performed by the peers
and LMS. Simple grading is adequate for a face-to-face
blended classroom and online classes of manageable size
(scenario A).

5.2 Autonomous approach to grading

For scenario B we suggest a semi-autonomous approach –
where we search for a maximal acceptable subset S ′ of S of
minimal diameter. We must set the lower bound N (critical
size) for #(S ′) (number of assessments in S ′). Teacher’s
intervention will be asked for only if no such S ′ can be
found.

This approach is described step-by-step in algorithm 1.

Algorithm 1: Semi-autonomous Grading Process
input : Set of gradings S = {S(1), . . . ,S(m)},

acceptable error e≥ 0
grading calculation method g
critical size N (i.e. N = 3)

output: Final grade or indicate gradings S as invalid

1 find a maximal S ′ ⊆ S with acceptable error
2 if #(S ′)≥ N then
3 find S ′′ of minimal diameter such that #(S ′′) = #(S ′)
4 return g(S ′′) as a proper grade for assignment k

else
5 Ask for teacher intervention (grading)

5.2.1 Advantages and disadvantages of the semi-
autonomous grading process

One outlying grading is not enough to ”spoil” the com-
puted grade. Discarding this grade can produce an accept-
able set S ′ from which the final grade can be computed.
However, a cluster of bad gradings can prevail without de-
manding supervision, resulting in the wrong final grade be-
ing awarded. Additionally, as our intent is to reward good
graders, in the case when good graders form a smaller clus-
ter, they could even be unfairly ”penalized” for their effort.
Autonomous grading is somewhat computationally more
intensive than the alternative method (diam for pairwise
distances must be calculated for each subset tested).

Remark 3. Note that S declared acceptable by the simple
approach is also acceptable by algorithm 1. Therefore, we

may consider that the simple method reflects the cautious
approach to the grade calculation, whereas algorithm 1
attempts to be as autonomous as possible.

Remark 4. S with a tight cluster of gradings of poor qual-
ity passes as acceptable by both approaches. A good prac-
tice would be to give the student the opportunity to contest
the received final grade as a safety net for catching errors.

6 RQ3 –How to model the evaluation for
peer-assessment?

Let G1, . . . ,Gm be gradings of different assignments per-
formed by student k. Let Fi be a final grade for the task
graded by Gi (Fi and Gi are grades for assignment i). Let
e > 0 be radius of acceptable grading (acceptable error).
Let di = d(Gi,Fi).

taxicab e-sphere

G

F

G′

e

Figure 5

Fig. 5 shows an example of an e-sphere around F with two
peer-assessments G i G′. The idea is to award the student
who produced grading G that lies within the sphere pro-
portional to e−d(F,G). On the other hand, a student who
produced grading G′ will not receive points for his grading
because G′ lies outside of this sphere.

If we intend to award a maximum of A points for the task
of peer-assessment grader k can be awarded Ai points for
his grading Gi, where Ai is calculated by the following for-
mula

Ai(di) :=





A
me

(
e−di

)
, di < e

0 , di ≥ e
.

If Gi is within the e-sphere around Fi, student k is rewarded
an amount of points proportional to (e−di) for each Gi for
a maximum of A/m (see fig. 6).
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di

distance from Fi

e

A/m

0

p
o
in
ts

a
w
a
rd

ed Ai(di)

Figure 6: Award Ai for grading Gi with di = d(Gi,F)

Finally, grader k is awarded a total of A(k) points for his
effort with gradings G1, . . . ,Gm where A(k) = ∑

m
i=1 Ai(di).

6.1 Analysis of acceptable error

e must be set in advance (arbitrarily). But after all the data
has been collected (after peer-assessment) we can analyze
e to see how good was our aim for e. More precisely, we
could analyze what would be the expected gain of ”lazy”
peer-assessment.

A good practice in general for addressing this issue is
to ask for mandatory written argumentation/explanation
along each grade in peer-assessment.

Remark 5. We have analyzed data gathered in a course
UPC at FOI, University of Zagreb. We argue that grading
at the summative level is not granular enough for making
judgments about the quality of the grade, as was illustrated
in example 2.

Calculated Pearson correlation of summative and granular
difference for data in our case study is 0.57. This indi-
cates that a significant proportion of gradings may seem
reliable at the summative level, while being inconsistent at
the criteria level (the exact proportion is 12/62 for the UPC
course).

7 Conclusion and future research

Peer-assessment and its analysis present an interesting
challenge in LA. It is an important topic in LA because
peer-assessment actively enhances the learning process
and contributes to deeper learning. Peer-assessment is be-
coming a necessity in a MOOC setting. The obvious ap-
peal of peer-assessment is the delegation of assessment
workload from teacher to students. In a MOOC traditional
forms of teacher’s assessment quickly become impractical
because of the vast number of participants. However, even
with peer-assessment teachers remain heavily involved as

now they must conduct and supervise the assessment pro-
cess.

The assessment of complex problem-solving tasks is
the recommended application of the discussed peer-
assessment model. Mechanical grading (easily performed
by a computer or LMS) is not applicable in the context
of complex problem solving. We have presented a well
founded LA model of peer-assessment. Issues and con-
cerns that arise in peer-assessment are dealt with and mea-
sured with a mathematical model based on the use of scor-
ing rubric. Finally, a framework for rewarding the graders
for their peer-grading effort is proposed. Measures regard-
ing reliability in this mathematical model are based on the
taxicab geometry.

We look forward to opportunities for the testing of our
model. Also, we are interested in applicability of this
model in other settings: i.e., a similar use case is evaluation
of project applications and applicability of taxicab geome-
try in decision making. An interesting feature to consider
would be to allow partial gradings, because even experts
are not experts for assessing all criteria.

Also, we are currently working on a implementation of
our model of peer-assessment. We intend to release it as
a plug-in for the Moodle LMS.
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