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ABSTRACT

In the Euclidean plane there are well-known constructions
of points and tangents of e.g. an ellipse c based on the
given axes of c, which make use of the Apollonius defini-
tion of c via its focal points or via two perspective affinities
(de la Hire’s construction). Even there is no parallel rela-
tion neither in a hyperbolic plane nor in an elliptic plane
it is still possible to modify many of the elementary geo-
metric constructions for conics, such that they also hold
for those (regular) non-Euclidean planes. Some of these
modifications just replace Euclidean straight lines by non-
Euclidean circles. Furthermore we also study properties
of Thales conics, which are generated by two pencils of
(non-Euclidean) orthogonal lines.
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Elementarne konstrukcije konika u hiperboličnoj i
eliptičnoj ravnini

SAŽETAK

U Euklidskoj ravnini poznate su konstrukcije točaka i tan-
genata za npr. elipsu c zadanu osima, pri čemu se koristi
Apolonijeva definicija za c preko fokusa ili dva afiniteta
(de la Hireova konstrukcija). Iako ne postoje paralelne
relacije s hiperboličnom niti eliptičnom ravninom, ipak
je moguće modificirati mnoge elementarne konstrukcije
vezane za konike tako da one vrijede za (regularne) ne-
euklidske ravnine. U nekim modifikacijama samo je euklid-
ski pravac zamijenjen s neeuklidskom kružnicom. Također
će se proučiti svojstva Talesovih konika koje su generirane
s dva pramena (neeuklidskih) okomitih pravaca.

Ključne riječi: hiperbolična ravnina, eliptična ravnina,
konika, de la Hire, Apolonije, Tales

1 Introduction: Euclidean focal points

We aim at modifying Euclidean constructions for points
and tangents of conics, such that they hold for conics in
hyperbolic and elliptic planes. In the Euclidean plane, due
to Apollonius, a hyperbola or an ellipse c is defined as
geometric locus, where the focal points of c are the es-
sential givens of c. To construct e.g. an ellipse via the
classical “gardener’s construction” in a hyperbolic plane
necessitates the concept of focus in a hyperbolic resp. el-
liptic geometry. For visualizing the hyperbolic plane we
use F. Klein’s projective geometric model, elliptic geome-
try will be visualized on the sphere.

In a Euclidean plane a focus of a conic can be defined in
several ways:

Definition 1 (Euclidean) Given c = {P} (ellipse resp. hy-
perbola), F1, F2 are (real) focal points, iff PF1 ± PF2 =
const. ∀P ∈ c, (and similar for a parabola c).

Definition 2 (Euclidean) Given c = {P} (ellipse resp. hy-
perbola resp. parabola), Fi are focal points, iff each line
through Fi is orthogonal to its conjugate line through Fi,
(Figure 1).

Figure 1: Conjugate lines through a focus of a conic are
orthogonal.
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Definition 3 (Euclidean) Given c = {P} (ellipse resp. hy-
perbola resp. parabola in the projectively and complex ex-
tended Euclidean plane π), Fi are focal points, iff they are
intersections of tangents of c passing through the (conju-
gate imaginary) absolute points I, J of π.

From Definition 3 follows that an ellipse and a hyperbola
have four focal points, two of which are real and the other
two are conjugate imaginary. For the extension of the con-
cept “focus” to a projective extended hyperbolic or ellip-
tic plane it seems to be an advantage to interpret the pair
of Euclidean absolute points I, J at the ideal line u of π

as degenerate absolute conic ω. Then the four tangents
mentioned in Definition 3 become the common tangents
of ω and c, which intersect also in I, J. Therewith one
might count the pair of absolute points I, J also as an ad-
ditional pair of focal points, such that, from an algebraic-
geometric point of view, one has three pairs of focal points.
A parabola and a circle have one real proper focal point.
For the circle, considered as a limit figure of an ellipse,
this focal point is the centre and counts for four focal
points, while I, J forms the ideal pair of focal points. For
a parabola, considered as a limit figure of a hyperbola, the
ideal point is a real ideal focal point, while the pair I, J
counts twice as imaginary pair of ideal focal points. In
Figure 2 the situation is visualized symbolically showing
conics “near” the limit cases.

Figure 2: Symbolic visualization of the 6 focal points of
limit cases of a conic c.

2 Introduction: de la Hire’s construction of
an ellipse and extensions

In the Euclidean plane π let an ellipse c be given by its
axis segments. Then, due to Philippe de la Hire, one con-
structs points and tangents of an ellipse via two orthogonal
perspective affine transformations of c to its two vertex cir-
cles, see Figure 3.

Figure 3: De la Hire’s construction of an ellipse via two
orthogonal affinities.

Remark 1 It might not be so well-known that de la Hire’s
construction of an ellipse can easily be modified to con-
struct a hyperbola c given by its axis rectangle (resp. its
half axis segments a, b) using two perspective collineations
κi : c 7→ ci. Thereby ci is the (twice counted) vertex circle
of c and the centres Ci of κi are the vertices of c, see Fig-
ure 4. Using e.g. the vanishing line v1 of κ1 one finds the
first image O1 of the point O of c. Let P0 be an arbitrary
point on ci and let P1 be the second intersection point of ci
with line O1 ∨P0, and P2 the second intersection point of
ci with line O∨P0, then the mappings P0 7→ P1, P0 7→ P2
are involutions and P1 7→ P2 is a projectivity on the circle
ci. Therewith the pencils {C1P1} and {C2P2} are projec-
tive pencils and generate, according to J. Steiner, a conic.
If the point O1 is outside ci, then this conic is a hyperbola
with vertices Ci. If the point O1(6=Ci) is inside ci, then the
conic c becomes an ellipse with vertices Ci.

Figure 4: Modified de la Hire’s construction of a hyper-
bola via two perspective collineations.
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This construction principle is also applicable for construct-
ing a parabola c given by its focal point F and its directrix
line l, resp. its vertex C. The construction becomes very
simple, if one uses the circle c1 with centre F and radius
r = |FC| as collinear image of c. The diameters d of c1
different form the axis of the parabola c intersect c in pairs
of points with orthogonal tangents intersecting in a point
S ∈ l, see Figure 5. The tangents of c1 in the intersection
points d ∪ c1 intersect the vertex tangent of c in points of
this pair of parabola tangents and d ⊥ FS according to fo-
cus Definition 2.

Figure 5: Modified de la Hire’s construction of a parabola
via two perspective collineations.

3 Conics in the hyperbolic and elliptic plane
based on focus Definition 1

Starting with two real focus points Fi and the length of the
main axis of a conic c it is possible to perform the usual
Euclidean construction of points and tangents of c also in
a (projectively extended) hyperbolic or an elliptic plane π,
see Figure 6.

Figure 6: “Gardener’s construction” of an ellipse in the
Euclidean and a hyperbolic plane.

Note that a segment in a regular non-Euclidean plane has
two midpoints Mi and therefore one gets two conics to a
given proper pair of focal points and main axis length.
It turns out that also focus Definition 2 remains valid in
non-Euclidean planes, see Figure 7.

Figure 7: In a non-Euclidean plane pairs of conjugate
lines through a focus of a conic are orthogonal.

4 Conics in the hyperbolic and elliptic plane
based on de la Hire’s construction

Obviously it is possible to perform de la Hire’s construc-
tion (Figure 3) line by line also on the sphere just by avoid-
ing the interpretation of orthogonal perspective affinities,
see Figure 8. Central projection of the spherical figure
from the midpoint of the sphere onto e.g. the plane of
the main vertex circle of the spherical ellipse c gives the
Euclidean version of de la Hire’s construction.

Figure 8: Spherical version of de la Hire’s construction of
an ellipse.

Similarly we can perform de la Hire’s construction line by
line also in the hyperbolic plane, see Figure 9. Note that
in a (regular) non-Euclidean plane a conic c in general has
three midpoints, which are the vertices of the polar trian-
gle common to c and the absolute conic (resp. the absolute
polarity). In Figure 9 we show a case with three real mid-
points, labelled as M1, M2, M3. We call M1 the proper
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midpoint and M2, M3 ideal midpoints. In Figure 9 conic c
has real axes a, b and reality of the axes is a necessary (and
sufficient) condition to perform de la Hire’s construction.
Furthermore, as long as the correspondence between ver-
tex circle and axis is not explicitly given one has two pos-
sibilities for de la Hire’s construction and gets two conics
as results. (Also in the Euclidean case one could permute
the two perspective affinities and would get the second so-
lution.)

Figure 9: De la Hire’s construction of an ellipse in a hy-
perbolic plane.

5 Conics in the hyperbolic and elliptic plane
have, in general, six focal points

In the hyperbolic plane it is possible that a conic c has three
real pairs of focal points Fi. This is the case, if c and the
absolute conic u have four real tangents in common form-
ing a quadrilateral, see Figure 10. All conics c (except u)
touching this quadrilateral are hyperbolic confocal. The
diagonal triangle of the common tangent quadrilateral is
the common midpoint triangle (M1,M2,M3) of all confo-
cal conics. Let c1 be one of the conics and let P be one of
its points. Then it is of interest, whether the “gardener’s
construction” based on different pairs of focal points will
deliver the same conic c1:

From Projective Geometry (see e.g. [1]) follows that the
pairs of lines (PF1,PF2), (PF3,PF4) and (PF5,PF6) are
pairs of a hyperbolic involutoric projectivity, which has the
tangent t and normal n of c in P as (orthogonal) fixed lines.

The common tangents of a general real conic c and the
imaginary absolute conic u of an elliptic plane occur in
two conjugate imaginary pairs, such that only one pair of
focal points is real.

Figure 10: Confocal pencil of conics with 6 real focal
points in the hyperbolic plane.

Concluding we state that all real pairs of focal points of a
conic c in a hyperbolic plane are equivalent with respect
to focus definitions 1, 2 and 3.

6 The orthoptic of a conic in hyperbolic and
elliptic planes

The orthoptic of a given curve c is the set of points, from
which one can draw orthogonal tangents to c, see [8]. In
a Euclidean plane it is well-known that ellipses c have a
real orthoptic circle, hyperbolas have a real or imaginary
orthoptic circle, too. (For an equilateral hyperbola c in
the projective extended Euclidean plane the pair of asymp-
totes is the only pair of real orthogonal tangents, such that
the orthoptic degenerates into the centerpoint of c alone.)
Parabolas have an orthoptic line, the directrix line. So we
can say that conics c have an orthoptic Möbius circle con-
centric to c. Figure 11 shows the case of an ellipse in the
Euclidean plane. In addition the “pedal curve” for the foci
as poles is depicted, too. This pedal curve is the main ver-
tex circle of c. Furthermore we note that this pedal circle is
the same for each of the two foci of an ellipse or hyperbola.
For a parabola this pedal curve is the vertex tangent, such
that also the pedal curve of a conic c for a focus as pole is
again a Möbius circle.

Figure 11: Orthoptic circle o of an ellipse and its pedal cir-
cle for the foci as poles.
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Figure 12: In a hyperbolic plane π the intersections Ti of
a tangent t to an ellipse c with the main vertex circle a and
the focal points Fi are concyclic.

In a hyperbolic plane π it turns out that the main vertex
circle a is not the pedal curve of c with respect to a focus
as pole, but the intersections Ti of a tangent t to an ellipse
c with the main vertex circle a and the focal points Fi are
points of a circle, see Figure 12.
Similar to the Euclidean case there is a “Poncelet-circle”
p concentric with an ellipse c, containing the vertices of
quadrangles subscribed to c. These quadrangles have met-
ric properties with respect to hyperbolic geometry, but the
circle p is not the hyperbolic orthoptic curve of the conic
c, see Figure 13. This is obvious because of
Poncelet’s Theorem: If a closed n−gon is subscribed to
a conic p and inscribed to another c, then there exist in-
finitely many such n−gons.
In the Euclidean case p coincides with the orthoptic o and
all Poncelet 4-gons are rectangles.

Figure 13: An ellipse c in a Euclidean or non-Euclidean
plane possesses a concentric circle p containing the ver-
tices of Poncelet quadrangles subscribed to c.

The presented results show that in a (regular) non-
Euclidean geometry neither the orthoptic of a conic nor its
pedal curve for a focus as pole can be a concentric circle.

Theorem 1 The orthoptic curve of a conic c in a non-
Euclidean plane π is a concentric conic o.

Proof by applying the absolute polarity to conic c, which
maps c to a conic c′: The tangent t ′ ⊥ t of c maps to an
intersection point T ′ ∈ T ∩ c′, see Figure 14.

Figure 14: In a hyperbolic plane π to an ellipse c there ex-
ists a concentric orthoptic conic o.

7 Thales conics as orthoptics of a segment

A segment can be regarded as a singular conic c. Applying
Theorem 1 follows:
The non-Euclidean orthoptic curve of a segment c is a con-
centric conic o, the “Thales-conic” of c.
The orthoptic o of segment c is generated by projective
pencils of lines and therefore it is a conic.

Remark 2 N. Wildberger calls the orthoptic of a segment
its “thaloid”. As the Euclidean case is called “Thales-
circle” we prefer the concept “Thales-conic” comprising
also the Euclidean case, c.f. [6]. For generalisations of the
classical Thales-circle to Thales-surfaces see also [7].

The orthoptic o of segment c is generated by projective
pencils of lines and therefore it is a conic. It also allows a
kinematic generation, see Figure 15: The orthogonal slider
cross Σ3 defines a forced motion keeping the two rods Σ1,
Σ2 orthogonal, which rotate at the fixed poles P01, P02. Via
the three-pole theorem of Aronhold (see [9]) it is possible
to construct the instantaneous pole P03 and therewith also
the tangents of o.

Figure 15: Kinematic construction of points and tangents
of a Thales-conic in a hyperbolic plane.
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8 Bodenmiller’s theorem and its non-
Euclidean counterparts

As an application of the concepts Thales-conic and orthop-
tic conic we start with the Euclidean theorem of Boden-
miller and study non-Euclidean versions of it. The theorem
reads as follows, see e.g. [2] and Figure 16:

Theorem 2 (Bodenmiller) Given a general quadrilateral
in the Euclidean plane, then its three diagonal segments
have Thales-circles belonging to a pencil of circles.

Usually one calls the (real, coinciding or conjugate imag-
inary) common points of the Bodenmiller-circles the
“Bodenmiller-points” of the quadrilateral. There are sev-
eral extensions of this theorem, see also [2]:

(1) The midpoints of the Bodenmiller-Thales-circles are
collinear with the Gauss-line g. (The Gauss-line of
a quadrilateral contains the centres of all regular and
singular conics c touching the quadrilateral; such a
set of conics is called a ‘dual pencil of conics’. The
Gauss-line g is an affine geometric concept!)

(2) The common cord b of the three Bodenmiller-
Thales-circles of a quadrilateral Q contains four or-
thocentres Oi of the four partial triangles of Q. (Ob-
viously b is orthogonal to the Gauss-line g and it
contains, in algebraic sense, 6 remarkable points of
Q.)

(3) The pencil of Bodenmiller-Thales-circles of a
quadrilateral Q consists of the orthoptics to the con-
ics of the dual pencil of conics to Q.

Even though statement (3) is obvious and easy to prove, it
seems not to be mentioned explicitly in relevant references:
For the proof we use a linear combination of two diago-
nal segments of Q, interpreted as singular conics of the
dual pencil to Q and get a certain conic c of this pen-
cil. The same linear combination of the corresponding
Bodenmiller-Thales-circles then gives the orthoptic circle
of that c.

Now the question arises, what about the Bodenmiller state-
ments in non-Euclidean geometries?

Theorem 3 (Non-Euclidean Bodenmiller)
Given a quadrilateral Q, then the Thales-conics over the 3
diagonal segments belong to a pencil of conics.

With a special linear combination of two singular conics
(i.e. two diagonal segments) of the dual pencil of con-
ics to Q one might get the third singular conic. Ap-
plying the same linear combination to the corresponding
“Bodenmiller-Thales-conics” will give the Bodenmiller-
conic of the third diagonal segment, see Figure 17. We
call the common points of the Bodenmiller-Thales-circles
again “Bodenmiller-points”.

Figure 16: Bodenmiller-circles, Bodenmiller-points and
Gauss-line of a quadrilateral.

Figure 17: Quadrilateral Q in a hyperbolic plane and its 3
Bodenmiller-Thales-conics. Its Bodenmiller-conic b con-
tains 4 Bodenmiller-points Bi, the absolute poles of the
sides of Q and 4 orthocentres Oi of the partial triangles
of Q.

Furthermore we conclude with the same arguments that
the pencil of Bodenmiller-Thales-conics consists of the
orthoptic conics to the dual pencil of conics touching
quadrilateral Q, thus extending statement (3) also to non-
Euclidean cases.

As a counterpart to the extension (2) of Bodenmiller’s the-
orem we find the following:

Theorem 4 (non-Euclidean version of Bodenmiller
property (2)) Given a general quadrilateral Q in a hyper-
bolic or elliptic plane π, then (in algebraic sense) the four
Bodenmiller-points Bi, the four absolute poles of the sides
of Q, and the four orthocentres Oi of the partial triangles of
Q are points of a single conic b, the “Bodenmiller-conic”
of Q, (see Figure 17).

Remark 3 We mentioned that in the Euclidean case the
Bodenmiller-line b contains 6 points, the two Bodenmiller-
points and the four orthocentres of the partial triangles of
quadrilateral Q. If we add the ideal line u to b, thus re-
ceiving a “singular Bodenmiller-conic”, then we find the
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Euclidean absolute points as well as the ideal points of the
directions orthogonal to the four sides of Q as additional
points on the singular Bodenmiller-conic (b∪ u). There-
with we find 12 remarkable points of a quadrilateral on
its Bodenmiller-conic in all cases, the Euclidean and non-
Euclidean planes.

It still remains to ask for the non-Euclidean counterpart
of the Gauss-line g of a quadrilateral Q. Each diagonal
segment has two non-Euclidean midpoints and it is not
surprising that these all together 6 points belong to one
conic, which we might call “Gauss-conic” g of Q. But
note that this Gauss-conic does not contain the midpoint
triplets of the regular conics c of the dual pencil of conics
to Q! Therefore this conic cannot act as a suitable counter-
part for the Euclidean Gauss-line. Let us add the absolute
pole of each diagonal di to its midpoint pair M1, M2 as the
third midpoint M3 of a singular conic, see Figure 18. So
we have set of 9 midpoints, which define a one parameter
set of cubic curves.

This gives rise to following:

Conjecture (non-Euclidean version of Gauss-line prop-
erty (1)) Given a general quadrilateral Q in a hyperbolic
or elliptic plane π, then the midpoint triplets of all conics
touching Q belong to a cubic curve, the “Gauss-cubic” g3.

To prove this conjecture one might again use the idea of
linear combining two singular conics: In the dual pencil
of conics touching Q we use a pencil parameter t such
that the singular conics correspond to parameter values
0, ∞, 1. To each of these special parameter values there
will be a point triplet (M1,M2,M3) (t = 0,1,∞) of mid-
points forming the basis points of a pencil of cubics. By
a continuity argument with t ∈ R it will be possible to
find an ordering within the triplets. Then {M1(t)} =: g1,

{M2(t)}=: g2, {M3(t)}=: g3 are three parameterized arcs
of curves which are conjectured to belong to one cubic of
the pencil.

9 Concluding remarks

Even though there exist already many results on “ele-
mentary non-Euclidean geometry”, see for example recent
KoG-issues, there are still many open questions concern-
ing circles and conics connected with triangles, quadran-
gles and quadrilaterals. In this article we focussed on the
concept orthoptic of a conic and, as a special case, the
Thales-conic to a segment and applied the results general-
izing theorems for quadrilaterals, which are well-known in
Euclidean geometry, namely the theorems of Bodenmiller
and Gauss.

Still open questions are e.g. the focus loci of (dual) pen-
cils of conics, Wallace-Simson’s theorem, its extension to
quadrilaterals as well as its connections with Miquel’s the-
orem. One also could look for conics which have one or
more properties of an equilateral hyperbola. Especially in
higher dimensional non-Euclidean spaces (see [3]) there is
little known about classical elementary geometry and one
will find a large field of activity there.

Maybe this topics seem not to be “mathematical main-
stream”, but as C. Kimberling’s incredibly growing list
of now more than 7000 remarkable points of a triangle
shows, see [5], there is a worldwide community dealing
with what can be called “advanced elementary geometry”.
This might justify that paper, too.

After finishing this paper the author found an announce-
ment of a book concerning conics, see [4], which will be
available in Spring 2016 and also contains a chapter about
conics in non-Euclidean geometries.

Figure 18: Quadrilateral Q in a hyperbolic plane and its Gauss-conic g, which does not contain the midpoint triplets
of the conics touching Q.
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