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Incenter Circles, Chromogeometry,
and the Omega Triangle

Incenter Circles, and the

Omega Triangle
ABSTRACT

Chromogeometry,

Chromogeometry brings together planar Euclidean geom-
etry, here called blue geometry, and two relativistic ge-
ometries, called red and green. We show that if a trian-
gle has four blue Incenters and four red Incenters, then
these eight points lie on a green circle, whose center is
the green Orthocenter of the triangle, and similarly for the
other colours. Tangents to the incenter circles yield inter-
esting additional standard quadrangles and concurrencies.
The proofs use the framework of rational trigonometry
together with standard coordinates for triangle geometry,
while a dilation argument allows us to extend the results
also to Nagel and Speiker points.

Key words: triangle geometry, incenter circles, rational
trigonometry, chromogeometry, four-fold symmetry, Nagel
points, Spieker points, Omega triangle

MSC 2000: 51M05, 51M10, 51N10

1 Introduction

This paper investigates a surprising connection between

three closely related Incenter hierarchies of a fixed planar
triangle. The framework here is that of Rational Trigonom-
etry ([7], [8]) which allows a consistentniversal trian-
gle geometryalid for any symmetric bilinear form, as de-
scribed in [5] together with the three-fold symmetry of
chromogeometry[9], [10]), which connects the familiar
Euclidean blue) geometry based on the symmetric bilinear
form x1x2 + y1y2, and two relativistic geometriesed and
greer) based respectively on the bilinear forms, — y1y2
andxiys + y1Xe. By working with the rational notions of
guadrance and spread instead of the transcendental notio
of distance and angle, the main laws of Rational Trigonom-
etry allow metrical geometry, and so triangle geometry, to

be developed in each of these three geometries in a paralle

fashion, with mostly identical formulas and theorems.

Upisane kruznice,
trokut

SAZETAK

kromogeometrija i Omega

Kromogeometrija povezuje ravninsku euklidsku geo-
metriju, ovdje zvanu plavom geometrijom, te dvije re-
lativistiCke geometrije, nazvane crvenom i zelenom geo-
metrijom.  Pokazuje se da ukoliko trokut ima Cetiri
plava i Zetiri crvena sredista upisanih (odnosno pripisanih)
kruZnica, tada tih osam tocaka lezi na zelenoj kruznici &ije
je srediSte zeleni ortocentar trokuta. Vrijede i druge dvije
analogne tvrdnje. Tangente na upisane kruZnice stvaraju
nove zanimljive &etverokute i konkurentnosti. Dokazi se
provode u okviru racionalne trigonometrije sa standar-
dnim koordinatama za geometriju trokuta. Transforma-
cija diletacije dozvoljava proSirenje rezultata na Nagelove
i Speikerove tocke.

Kljuéne rije¢i: geometrija trokuta, upisane kruZnice,
racionalna trigonometrija, kromogeometrija, &etverostruka
simetrija, Nagelove totke, Spiekerove totke, Omega trokut

The first results of this paper concern the four Incenters of
a planar triangle in one of the three geometries, and were
announced in [5]. As in that paper, we here refer to all four
meets of the vertex bisectors, or bilines, as Incenters, so
do not distinguish between the classical incenter and the
three excenters. If a trianghy A2Az has four blue Incen-
ters19,12,19 and1, then all four points lie both on eed
incenter circIeCrb with center the red Orthocentklg, and

on agreen incenter circleCé’ with center the green Or-
thocenterHg; this is illustrated in Figure 1. Similarly, if

a triangle has red Incenters, then these lie both on a green
incenter circleCg with centerHg, and a blue incenter circle

G, with center the blue Orthocentef,. If a triangle has
green Incenters, these lie both on a blue incenter c'ﬂ#le
with centerHp, and on a red incenter circig® with cen-

ns

ter H;. Furthermore, ifbothred and green Incenters exist,
then they lie on thesameblue incenter circle, and simi-
llarly for the other colours. The proofs are algebraic, and
rely on non-obvious simplifications found by the help of a
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computer. So the Omega triangle formed by the three Or-of coordinates to place an arbitrary triangle istandard

thocenter€) = HpH;Hg, introduced in [9], has an intimate  position, with vertices af0,0], [1,0] and[0,1]. The var-

connection with the Incenter hierarchies. ious triangle centers and constructions are then expressed
in terms of the coefficients, b andc of the matrix

1 Y b a b
N \ 1. —
T NN\ ’ c= (b c)

T of the resulting new bilinear form. This allows a system-
% \ atic augmentation of KimberlingBncyclopedia of Trian-

1 = = ah gle Cent_ers [@1, [3], [4]) to arbitrary quadratic formsand

-~ VY% 3 general fields

il b A N Standard coordinates also have the advantage of yielding
: b surprisingly simple equations for the three coloured Incen
ter Circles, which turn out to be, after pleasant simplifica-
tions,

G Qp(X) =bp(2x+2y—1)

Figure 1: The four blue Incenters @;A2A; and red and G Qr(X) =br (2x+2y—1)
green Incenter Circles Cy: Qy(X) =bg(2x+2y—1).

These facts relate also to elegant classical properties ofyaver the formulas for the star line® become rather
Euadr?]ngles. In ([11] HaskleII _shovlved Lhat |f|t|vvq qu]Jadrgnglesf formidable, but seem to have interesting algebraic aspects
have the s(,jamel |a?ona trla_mgle, t e_n. a de'_g tlfowtsg Some intriguing number theoretical questions arise when
these qua rangies lie on a singie conic, an in [11] 004dS e inquire into the existence of triangles, over a given field
four_ld a synthetic derivation of the same fes‘!'t- Now it is which have simultaneously blue, red and green Incenters.
ObV'Ol.J.S that the four. Incenters of a triangle, with res.pect.t Studying concrete examples and using empirical computer
any bilinear fqrm, will form gstandarq q“adrar,‘g"? n th"_s investigations of Michael Reynolds [6], we make some ten-
SENsE, meaning that the diagonal "'a”‘-?l'e coincides Wlthtative conjectures on such triangles, both over the rationa
the 0r|g|na_l friangle. As a consequence, |f_b|ue and red I_n- numbers and over a finite prime field. Finally we extend
_centers e.X'St’ theﬂ they must lie on a conic. Ol:rgsserﬂonthe results to Spieker and Nagel points by suitable central
|s.that this conic is actually a green Clrcﬂjé’ =G=G dilations.

}’V'tmcenteMQ]; blue | he f i h In the rest of this introduction we recall basic facts frofh [7
nt € case of biue bncenters, the four tangent lines to the ;4 [5] to formulate triangle geometry over a general bilin-
red Incenter C|rcIeCr_ at the blue Incenters fgrm_a Stan-  gar form. We then specialize to the blue, red and green ge-
dard quadrilateral, implying that they meet in six points ometries, and use standard coordinates to develop formulas

b . . . .
Rig]’ Wh'ﬁh lie twrc: ata time on the three rl]lnes AiAoAs, for points and lines (always one of our key aims), and to
where they are harmonic conjugates with respeéuta, - provide explicit computational proofs of the theorems.
andAg; and similarly the four tangent lines to the green in-

center circlm‘g at the blue Incenters meet in six poimﬁ_ 1.1 Quadrilateralsand quadrangles
on the three lines. This is also seen on the above Figure. . o )
Similarly there is a corresponding result when we look at e begin by reminding the reader of some basic facts from
red Incenters, and at green Incenters. the projective geometry of a quadrangle (four points) or
The six IinesAkR,-b- for i,j,k distinct, are the lines of quadrilateral (four lines), using a visual presentation to
]7 RN ) 1 i . . .
a complete quadrangle, so they meet three at a time a@void the need to introduce notation. _
four quad points QY. Similarly, the six linesA G2 meet In Figure 2 we see four blue lines forming a quadrilateral
I’J " ' |] . . . . .
. b [in this figure colours are not used in a metrical sense, but
three at a time at pointQgy;. Somewhat remarkably, the

‘ lines & — Ob.Ob. dard aril | only as an aide for explanation]. These four blue lines meet
our star lines sy = Qr; Qg; form a standard quadrilateral i, iy qints, also in blue. These six blue points determine

LB, a further three greediagonal lines, forming thediagonal

This paper also illustrates our novel approach to triangle triangle, in yellow, of the original quadrilateral, whose
geometry initiated in [5]; using standard coordinates to es vertices are three green points. Each green point may be
tablish universal aspects of the subject whichwalé over joined via a red line to the two blue points not on either
a general bilinear form This employs an affine change of the two green lines it lies on. This produces six red

6
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lines, which somewhat remarkably meet three at a time atmetric bilinear form on vectors:

four red points, giving th@pposite quadrangle from the
original blue quadrilateral. Note that there is a natural co

v-u=vCu'.

respondence between the four original blue lines and theNon—degenerate means et 0, and implies that ifr- u =

four red points.

Figure 2: A quadrilateral and its opposite quadrangle

The situation is completely symmetric with regard to
points and lines. If we had started out with a quadrilateral
of four red points, we would join them to form six red lines.

0 for all vectorsu, thenv = 0.

Two vectorsv and u are thenperpendicular precisely
whenv-u = 0. Since the matrixC is non-degenerate, for
any vectorv there is, up to a scalar, exactly one veator
which is perpendicular ta Two linesl andm areperpen-
dicular precisely when they have perpendicular direction
vectors.

The bilinear form determines the main metrical quantity:
thequadrance of a vectorv is the number

Qu=v-v

The quadrance between the pointd andB is Q(A,B) =
Qaz- A vectorv is null precisely wherQ, =v-v=0, in
other words precisely whenis perpendicular to itself. A
line is null precisely when it has a null direction vector.
The following basic fact appears in [5].

Theorem 1 (Parallel vectors) Vectors v and u are paral-

These six red lines determine a further three green diagonalg| precisely when

points, forming the diagonal triangle of the original quadr

lateral, whose sides form three green lines. Each green lineQ,Qu = (V- u)?.

meets two of the red lines in two new blue points. These six

new blue points lie three at a time on four blue lines, giving
theopposite quadrilateral from the original red quadran-
gle.

The diagonal green points on a green line are harmonic
conjugates with respect to the two blue points on the sameS(V;U) =1—
line. The diagonal green lines through a green point are

This motivates the following measure of the non-
parallelism of two vectors; thepread between non-null
vectorsv andu is the number

vou? L (vewp?
(V-v) (u-u)’

QQu

harmonic conjugates with respect to the two red lines The spread(v,u) is unchanged if either or u are multi-

through the same point.

plied by a non-zero number. We define tpeead between

There is another more subtle remark to be made here conany non-null lined andm with direction vectorss andu
cerning symmetry: each of the three diagonal points is to bes(l,m) = s(v,u). From Theorem 1, the spread be-

canonically associated to a subdivision of the four origina

tween parallel lines is.OTwo non-null linesl andm are

blue lines into two subsets of two: namely those subsetsperpendicular precisely when the spread between them is

whose joins meet at that diagonal point.
If we start with a triangle, say the yellow triangle in the

1
A circleis given by an equation of the for@ (A, X) =K

Figure formed by three green points and three green linesfor some fixed poinA called thecenter, and a numbekK

then any quadrilateral or quadrangle which has that trian-

gle as its diagonal triangle is callsthndard.

1.2 Quadrance, spread and standard coordinates

called thequadrance. Note that it is not required that a
circle have any pointX lying on it: in this case by enlarg-
ing the field to a quadratic extension we can guarantee that
it does.

In this section we briefly summarize the main facts needed "€ three particular planar geometries we are most inter-

from rational trigonometry in the general affine settinge(se
[71, [8]). We work in the standard two-dimensional vector
space/, consisting of row vectorg= [x,y], over a fieldF.

A linel is given by an equation of the forax+by+c=0,

or equivalently the proportion= (a: b: c).

We assume a metrical structure determined by a non-

degenerate symmetricx22 matrix C: this gives a sym-

ested in come from thielue, red andgreen bilinear forms
given by the respective matrices

a9 el 9 me(ly

The corresponding formulas for thxtue, red andgreen
quadrances between pointé\y = [x1,y1] andAy = [x2, 2]

7
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are and
Qb (AL, A2) = (X2 — x1)> + (¥2 — 1)? s = S(AA2, AAg) = aéc
Q (AL, A) = (X2 —X1)° — (Y2 — y1)° Poa AgA A
=s = —
Qo (A1, A0) =200~ x1) (Y2~ Y1) %2 = s(fofe Ao = g
It will be useful to discuss triangle geometry then in a gen- s3 = s(AzA1, AsAg) = %
eral setting: suppose ovy = levg is a symmetric bi- ¢
linear form, withB a symmetric 2 2 matrix. Suppose Furthermore
¢@:V — V is a linear transformation given by an invert- b2 (a— b)z (c— b)Z
ible 2 x 2 matrix M, so that@(v) = vM = w, with in- l1-s1= ac’ l-%= ad 1-s= od

verse matrixN, so thatwN = v. The new bilinear form I
w1 - W2 = (WiN) o (wWoN) then has matrio = NBN'. Note that the centroid dhaAxAs is

Suppose thaK; XXz is a triangle in the vector spasé G [} }]

which has a distinguished symmetric bilinear fosmwe 3'3]|°

may move this triangle by a combination of a translation

(which does not effect the bilinear form), and a linear trans 1.3  Bilines, Incentersand some other triangle centers

formationg, so that the triangle is in what we calndard A biline of the non-null verteXI is a lineb which passes
form, with points throughlyl, and satisfies(l1,b) = s(b,1,). The existence
AL=[0,0, A,=[1,0 and Ag=][0,1] of biIir_les depe_nds on numbertheoretical considerations of

a particularly simple kind.
and lines . . . .

Theorem 3 (Existence of Triangle bilines) The Triangle
l1=AA3=(1:1:-1) A1A2As3 has bilines at each vertex precisely when we can
l,=A1A3=(1:0:0 find numbers v, w in the field satisfying
l3=AA1=(0:1:0). ac=u?, ad=V?, cd=w 2)
Whatever the initial matrixB, the new bilinear form is In this case we can chooseww so that acd= uvw and
given by du=vw cv=uw and aw=uv. 3)
v-u=vDu" where D=NBN' = <g 2) Q) We now summarize some basic triangle centers of the stan-

dard triangleA1A2Az, assuming the existence of bilines.

for some numbers, b, andc. We may then replace ar- These formulas involve the entriagh, c of D from (1), as
guments involving the general trianghgXoX3 and the  well as the secondary quantitiess andw from (2), satis-
bilinear form o with ones involving the simpler triangle fying (3). The formulas and proofs are found in.[5]
A1A2A3. What we prove for the standard triangieAAs The four Incenters are

with bilinear form given by the matri will be true for 1 1

the original triangle with bilinear form given by the origi- lo= drv—w [—w, V], l1= d—v+w [w, —v],

nal matrixB. 1 1

We will assume thab is invertible, so that l2 = diviw [w,v], I3 = d—v—_w [—w,—V].

A =detD = ac— b? Notice thatl1,1, andlz may be obtained frorty by chang-

ing signs of: bothy andw, justw, and justv respectively.
This four-fold symmetry will hold more generally and note
d=a+c—2b that it means that we can generally just record the val-

. ) i ues oflp. The OrthocenteH, CircumcenterC and De
that appears in many formulas. With these notations, we Longchamps poinkyo (the orthocenter of the double tri-
have the following result from [5].

is non-zero. Another important quantity is timéxed tr ace

angle) are
Theorem 2 (Standard quadrancesand spreads) The b
quadrances and spreads AfA;As are H= A [c—b,a—b] (4)
Q1=Q(A2,Az) =d C:%[c(a—b),a(c—b)]
Q2=Q(A,A3) =¢ 1
Qs = Q(ALA) = a Xo0= 3 [b? — 2bc+ac, b® — 2ab+ad] .
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2 Thelncenter Circletheorem

Here is the main theorem of the paper, illustrated for green

Incenters of the triangld1A>Az in Figure 3. The situa-

tion is completely symmetric between the three geometries

blue, red and green.

N

0t

Figure 3: Green Incenters and the blue and red Incenter
Circles

Theorem 4 (Incenter Circles) If a triangle AjA2A3 has
four blue Incentersg, 2,15 and &, then they all lie both
on ared circIeC,b with center the red Orthocenter,Hand
on agreen circIeCé’ with center the green OrthocentegH
and similarly for the other colours. Furthermore, if both

red and green Incenters exist, then they lie on the same

blue circle, so thatf, = ¢ = (b, and similarly for the
other colours.

Proof. To prove that the four blue Incentels 12,15 and
1 lie on a red circlec? with centerH,, we need show that

Q (Ho18) =Qr (H1?) =@ (He18) = (He18).

First we find the bilinear forms for the blue, red and green
geometries. After translating, and then applying a linear

transformation with the matrisM, we send the original
triangle to the standard trianglAAs. If M1 =N =

(3 5)

green geometries become respectively the matrices

o=(5 6 96 §)

then the bilinear forms for the blue, red and

(ks ¥E)=( o)

o 0\ (a B\

JEXER
ay—Bd -5 ) " \b o

on=(y 86 35 8)

([ 20 cx6+[3y ay bg
T \ad+By 2y by cg

There are interesting relations between the introduced
guantities; for example

anCp = b3 + b,
agCg = bg - b?v

% =8 +a,

arCr = bf — b3, 2

ch=c5+cf
and

apCqg — 2bpbg + chag = 0, — 2bpby 4+ cpay =0,

agCr — 2bgbr +cgar = 0.

The determinants ddy,, D; andDg are respectively

Do = (ad—Py)°, ~ (ad—By)? = -

and the mixed traces are
Y2+ (B-8)%,

dg=2(a—y)(B-9).

Note also the relatiod? = d? + d.

If the original triangle has four blue Incenters, then the
Existence of Triangle bilines theorem shows that we may
choose numbens,, v, Wy satisfying (2) and (3), so that

Ar:Ag:

do = (0 — d = (a—y)*— (B3,

ug = (o®+B?) (V? + &)
= (@®+) (@ +(B-9°)
we= (¥ +8) ((@-v7+(B-37).
The blue Incenters are then
1 1
b_ _ b_ -~
Io_db+vb_Wb[ Wbavb]v Il db—Vb+W [ b, Vb]v
1 1
b_ b_ -~
|2_ db+vb+Wb [Wb,Vb], |3 db_Vb_Wb[ Wh, Vb]
In exactly the same fashion
1 1
r__ _ g__
lo= dr + Vi —W [=wi ] and I dg+Vg Wg[ ngvg]

According to (4), the respective orthocenters are

_ by by
Hp = A—b[Cb—bb,ab—bb], H = A [cr —br,a — by,
b
Hg = A—g[cg—bgaag—bg]-
g
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If we sete, = dp + Vp — Wy then

m:_ br(Cr—br)_i_% br (ar —by)
o A &’ A

_@)
€

—br) &+ Arwh, by (ar — br) & — Arvp)

(br (cr

Ar €
so that

T
Qr (Hnlo) (m) Dy (m)
br r*br

7%) a b <cAr )
& br Cr br (a—br)

+ b )
_W
[ €

ar (br (Cr —br) € + Arwiy) 2+-cr (br (ar —by) eo—Aer)z)
+2br (br (cr —br ) & +Arwp) (br (ar —br ) &y —Arvp)

b2 (ar — 2br +¢r) (arcr — b?) € )

br (a—by)
Y

— br (Cr *br) Wh
- ( [ + €

AZleg (

1
-

Use the relatiod, = a,c; — b? to get

— 20 br (Vo —Wp) (—br2+ar0r) €
+07 (3rW2 -+ Cr V@ — 2br VpWh)

Qr (Hr16) )

7i( b? (ar — 2br +cr) € )

T D2ey \ —20¢br (Vp — W) &+ Ar (arWg + ¢ V2 — 20y vipwhy)
20y (br — ) (ar —br) (Vpdp — VpWp — Wpd)
+ar (br — ¢ )2V +r (a — br)? w2 + bPd, d2

Afey
where we have collected,
(5), to rewrite it.
Replacev? = apdp, W2 = cpdp and vpwp, = Updp and the
values ofay, ¢y, dy, &, by, ¢ in terms ofa, 3,y,d to get the
factorization
2by (br —¢r) (a — br) (Vb — Up — W) dp + & (br — )% apdh

¢ (a — br)? oy + b? (& + & — 2by) d?
—db <2br (br—cr)(a —br) (Vo—Up—Wp) + & (br—Cr)zab)
+¢r (a —br)?co+ b2 (a + ¢ — 2br)
= 20 (ay— BS) (a? —ay+ Y+ B?—BE+ &°— Uy + Vp— W)

wZ andd? of the numerator of

x (02— B2~ ay+PB3) (—y? + &+ ay— Bd) (6)
and also note that
(db + Vb — Wb)% = db (@ + Co + b — 2Up + 2V — 2Wp)
=20 (0% — ay+y+ B? — B8+ — Up+ Vb —Wp) . (7)

Combine (6) and (7), to get the surprisingly simple formula

Qr (Hr.18)

_ (ay—Bd) (o — B2 —ay+B3) (—y*+d*+ay—Bd)
- A

_br@a—b)lbr—c) _ K.

Oy

10

We may now repeat the calculation to see that
Qr (Hr,1?) = Qr (Hr,12) = Qr (Hr,18) = K;, showing that
indeed the four blue Incenters lie on the red circfewith
guadrance; and centeH,. Note that the expression for
K; depends only on the matriX . Now a similar derivation
shows that

Qo (M) = 20200 ®

Ag

9~ Co) 0,123

= }<g7

Hence the four blue Incenters also lie on a green ckfé’le
with quadrancey and centeiHg. Similarly we find that

if a triangle has four red Incenters, then they lie on a blue
circle ¢, with centerHy, and quadrance

by (ap — bp) (bp — Cv)
Dy

Qb (Hb, 1?) = Qo (Hp, 1) = =Kp

as well as on a green circlg] with centerHy and quad-
ranceKy (the same one as above!) Similarly if a triangle
has four green Incenters, then they lie on a blue cic@e
with centerH, and quadrancky,, as well as on a red circle

¢? with centerH, and quadranc&;. The proof is com-

plete. O
Figure 4: Three Incenter Circles C; and G,.
We nowcallGy =G = &3, G = P = P and Gy = P =

(g the blue, red and greéncenter Circlesrespectively. In
Figure 4 we see a (small) triangla A2Az with its Omega
triangleH,H;Hg and the three Incenter Circles, whose re-
spective meets give the twelve blue, red and green Incen-
ters.

2.1 Equationsof Incenter Circles

Theorem 5 (Incenter Circlesequations) In standard co-
ordinates with X= [x,y], the blue, red and green Incenter
circles, when they exist, have respective equations

Go:Qp(X) =bp(2x+2y—1)
G Qr (X) =b (2X+ 2y — 1)
Cg:Qg(X) =bg(2x+2y—1).
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Proof. The derivation of these equations, using the formu-
las established above for the orthocentérsind coloured
Incenters, is somewhat involved algebraically, althoungh t
basic idea is simple. We show how to find the equation
of the red Incenter Circlgy, with centerH,, which four

blue Incenters and four green Incenters lie on if they ex-

ist. From the definition of a red circle, we get the equation
Qr (Hr,X) = K;, and then substitute the valueshf and
K to get
br r*br

by (cr —br) by (a; —by) ar by 7(1, L

& X 75 Y)\b ¢ br(a{br) _

br (ar —br) (br —cr)

Y

1

or after expansion
1 (a (b (o —br) = Ax)®+c (br (B — by) — Ary)?
A7

< +2br (br (¢r —br) — Arx) (br (& —br) — Ary)
br (ar —br) (br —cr)
Ay

)

This may be rewritten, usinfy, = a;¢; — b,2, in the form

A%(Arza,x2 + 2020 xy + A2cy? + A b? (ar — 2br +¢r)
— 20y x — 20?byy) = by (& — by) (by — ) .

Now cancel;, and rearrange to get

Drar X420 br Xy & y*— 20 by x— 20 br y-+by (8 & —b?) =0

or more simply

ax? + 2byxy+ Y2 — 2bix— 2by+ by =0

which has the form stated in the theorem. The same kindtangent lineg®

of calculation establishes the formulas fgyandCy. O

Note that the equations for the Incenter Circ{g@s¢; and
(g allow them to be definedthether or nothe correspond-

ing Incenters exist! Incenters then exist precisely as sneet H
of these Incenter Circles: for example the blue Incenters

18,12,18,12 are just the meets af and(y, if these exist in
the field in which we work.
2.2 Tangent lines of Incenter Circles

Now we consider tangent lines to Incenter circles. Fig-
ure 5 shows the four blue Incenters &fAyAs3, together

with the red and green Incenter Circles passing through

them, namely(; and (. At each of the four Incenters,
i = 1,2,3,4 we have the tangent lin¢$ andty; to the red
and green Incenter Circle$ and (g respectively.

Figure 5: Incenter tangent meets

Theorem 6 (Incenter tangent meets) The tangent lines
th,th,t2,t2% to the red Incenter circle; at the blue In-
centers form a standard quadrilateral, as do the tangent
lines ,t0,t%,t5 at the green Incenter circley. The

same holds for the red and green Incenters, if they exist.

This implies that the mee®; = titP andR), = totY, lie
onl; = A2As3, and are harmonic conjugates with respect to
A, and Ag. Similarly RS, = titl, and RY, = t2t2 lie on

I = A1Az, and are harmonic conjugates with respediio
andAg; andRg; = trytes andRY, = it lie onls = AuAg,
and are harmonic conjugates with respeciAtoand A;.
The pointsGg; = tgotgy andGB; = toytgs lie only, and are
harmonic conjugates with respectAg andAs. Similarly
G, = tiotg, andGh; = ti;td; lie onl, and are harmonic
conjugates with respect & andAg, andG; = tgto; and

G, = toytg, lie onl3, and are harmonic conjugates with
respect toA; andA;.

Proof. We prove the result for the me&i%} of the green
oi associated to the blue Incenters; the other

cases are similar. We find the joins of a blue Incemfer
and the green Orthocentidy to be

(bg—ag) byt + (Cg—bg) agvh + (ag—bg) bgw :
<(Cg_bg)bgdb+ Cg—Dg) bgVp + (8g—bg) CgWh

; < 5
(bg—Cg) bgVp + (bg—ag) bgwh
( (
( (
11

glo=
(bg—ag) bgdp — (Cg—Dg) agVh — (ag—Dg) bgw
(Cg—bg) bgds — (cg—bg) bgVp — (8g—bg) CgWh :

— (bg—cg) bgVb — (og—ag) bgwp
(bg—ag) bgdp + (Cg—Dg) agVh — (ag—Dg) bgw
(Cg—bg) bgds + (Cg—bg) bgVp — (8g—bg) CgWh :

(bg—Cg) bgVp — (bg—ag) bgwh

(bg—ag) bgdp — (Cg—Dg) agV + (ag—Dg) bgw
(Cg—bg) bgds — (cg—bg) bgVp + (8g—bg) CgWh :
— (bg—cg) bV + (bg—ag) bgwp

b_
Hgl1 =

b
Hgl?

b_
Hglz =
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The tangent ling} is the line green perpendicularityl?  The fact thatA, A, G}, G35 form a harmonic range etc.
passing throughb. These we may calculate to be is an immediate consequence of a well known fact about
standard quadrilaterals in projective geometry, since we

(8g—bg) Up + bgVip + (3g—20) Wp + dpby—Cp ag bg have shown that the point;, A, and Az are diagonal
go—< (Cg—bg) Uy + (209 —Cg) Viy—bgWh + dybg + 8 (bg —Cg) > points of the quadrilateral formed by the four green tan-

b (—Vp +Wp — dp) gent lines. O

(ag—bg) Up—bgVh— (ag—2bg) Wy + bt —Cp ag bg) :
t81_< (cg—bg) Up— (2bg — Cg) Vi + bgW, + dpbg + ap (bg—Cg)
bg

> Following the construction of the red lines in the introduc-
by (Vp —wWp —dp)

tory section on Quadrangles and quadrilaterals, we join a
(ag—bg) Uy + bV — (ag—2bq) W + byt —Cp ag pointGPj with the triangle poinfx opposite to the triangle
tgz_< (cg—byg) Up + (2bg— cg) vb+bgwb+dbbg+ab (bg—cg): > line that it lies on; giving six linegyG}:

by (—Vi — Wp — )

(bg —Cg) (—Up+Vp+ap) :

. —(ag—bg) up— bng+(ag 2bg) W + bgdy — s (ag—Dyg)
t93_<—(cg by ) up— (2bg—Cg) Vp—bgWp, + dybog + &y (byg cg):>.

(ag—bg) (Up + Wy —Cp) >

bg (Vo +Wp — dp) 0
We could verify directly that these four lines form a stan- A1GB,=
dard quadrilateral. But we prefer to verify that the meets
of these four tangent lines agree with the following meets

< (bg —Cg) (Up+ Vb +ap) :
ntiines b L
with the side lines oA AzAg : AoGE, < g (—Vb+Wp —p) :

(bgfag) (Up +Wp +Cp) I>
0

(bg—Cg) Up+ (cg—20g) Vip+ bgWp —bgdy+ap (g —bg):
bg (Vo — Wy + dp)
bg (—Vp +Wp +dp) :

(Cg—Dg) up+ (Cg—20g) Viy+ bgW + bgdy + & (bg —Cg) :
by (Vb —Wp — dp)

GOl_tbot 1 =t Oll
= )\— [(bg—Cg) (~Up+ Vb + @), (ag—bg) (~Up—Wp+Cp)]  AcCls=
Ghs= 93 = tgz|1

1 AgGls=

= [(bg— Cg) (Ub+vb+ab) ;(8g —bg) (Up + Wb + Cp)]

Goz_tbot 2—t 0|2—

(ag*bg)ub+bgvb+(ag 2bg) W +bgdy+Cp (bg—ag) :
bg (Vo —Wp +0dp) :
bg (—Vp +wWp —dp)

[0, bg (—Vb + Wb — db)] AgGh, = by (Vo wb—db)

(

)\_
02 Vi +Wp + dp)

\/\/\/\/

1
Gha =t =toyla = s [0, bg (—Vp + Wp + db)]

1
Gl =t0th, =215 = by (Vo — W + dp) , 0
037 908 0 ?\03[ ol )0 Theorem?(Quad points) The triples {A1G5;, AxG2,,
b b b b b
G12 = 92 - tgll3 - [bg (Vb — Wp — ) , O] 2} {A1(323aA%GoszzGos}* {Al_GorAZGwA?»Gos}
A12 and {A1G],, AoGh,, AsGE,}  of lines are concur-
Where rent in the respective points JQQY,Qf, and
Qgs, called the blue/green quad points. The
triples  {A1RD;, AR5, AsRD, ), { ARB3, AoRG,. AsRSs
+ (BoPg — @nCy + Cpag — Colog) {ALRS;, A2R; AsRE,} and { AR, AoRS,, AsRY, | are
A23 =(ag— Cg) Up+ (bg — cg) Vb also concurrent in the respective point§,@®P;, Q% and
+ (ag — bg) Wh + (apbg — anCq + Coag — Cobg) Qb,, called theblue/red quad points. Similar results hold

Aoz = (b — Cg) Up + (Gg — 2bg) Vi + bty for the red and green Incenters, if they exist.

+ (ang - Zabbg + bebg - Cbbg)

Ao1=(Cg —ag) Up + (bg — Cg) Vb + (g — ag) W

Proof. We verify this for the blue/green quad points: this

A13 = (Cg — Pg) Up + (Cg — 2bg) Vi + bW
+ (2apbg — apcy — 2bpbg + cpbyg)

Aoz = (ag — bg) Up + bng + (ag — 2bg) Wh
+ (apbg — 2bpbg — Chag + 2cpbg)

Ao = (bg — ag) Up + bng + (ag — 2bg) Wh
+ (2bpbg — apbg + chag — 2cpbyg) -

12

is a consequence of the projective geometry of the com-
plete quadrilateral we mentioned in the first section—if the
original four tangent lines are regarded as the blue lines
in Figure 6, then the quad poin(ggj correspond to the
red points. However we want to find explicit formulas and
check things directly. The quad poi@gj is naturally as-

sociated to the Incentde?. After some calculation, we find



KoG-18-2014

N. Le, N. J. Wildberger: Incenter Circles, Chromogeometng the Omega Triangle

that these are
b
Q= ?\_Z [(bg — Cg) (dpup — (bp — Cp) Vi) ,

(

(ag — bg) ((Co — ) W + Co)]
(
)

Qg = ;)—?[(bg — Cg) ((ap — bp) Vb + @) ,
(ag — bg) (dolp + (8 — bp) Wp)]
Qb = 221(c —bo) (2 — ).
(bg — ag) (bpws — CpVh)]
bg

Qgs = [(bg—Cg) (—dpUp + (0l + bp) Vb —8pWh + apdh),

(bg— ag) (dpUp—CoVh + (db + bp) Wh—Cidb)]

where

Ao = (bg — Cg) (bgdh + (bp — Cb) (8g — bg)) Up
— (bg — Cg) (bpbg + Chag — 2cpbg) Vi
— by (ag — by) (bp — Cp) W + Cobg (ag — bg) dy
A1 = (ag — bg) (bydp + (ap — o) (bg — Cg)) Up
+ by (bg — Cg) (ap — bp) Vb
+ (ag—byg) (2apbg —aCg —bubg) W + apbg (bg—Ccg) dp
A2 = by (bg — Cg) (ag — bg) Up
+ bg (bbbg + Cpag — bng — Cbbg) Vb
—bg(@pbg+bpag— ancg—bybg) Wh —anch (0g —Cg) (g —bg)
A3 = ((db+ by) (b5 + agCq) —aghg (20, + bp) —bybyCy) Un
+ (g ((bg — cg) (ap — bp) + Cp (289 — bg)) — CraGCq) Vi
+ ((dp+ by) (bg — ag) by — apag (bg — cg)) Wh
+ bs (@ (dp—Cp) — Co) +bg(Coag(dp+ ap)— anCqy(db—Cp))
— agCqanCo.
We may then check directly that for exam;@go is inci-
dent withAsG?, by computing

((bg —ag) up + bV + (ag — 2bg) Wp — g0 +Cs (ag — bg) ) -
, (bg (bg —cg) (dpup — (b — Cb)Vb)>
Ao

by (8g — bg) (o — bb) W + o)
Ao

+bg(Vb—Wb—db)<

+bg (—Vp +Wp +dp)

dopU2 + (b — ap) UpWp — byl
b (3~ bg) (B~ ¢y ( —CoVp + bpVpWo + Ch (8 — by) Vi

( — (bg —¢g) (bgds + (b —cp) (8g —bg) ) b )

+ (bg — ¢g) (bpbg + Chag — 2csbg) vy
+bg (ag — bg) (bp — ) Wh — Cobg (ag — bg) db
=0

since dbug + (bp — ap) UpWp — bpdpup — vag + bpVeWp +
Cp (ap — bp) vp = 0 by using (2), and similarly for the other
indices. In a parallel fashion, we find that the four blue/red
quad pointsQPj have exactly the same formulas as the

ng, except for the replacemerdg — a;, by — by and
cg — Cr, and similarly for the other colours red and green.

Figure 6: Quad points and star lines

Now introduce theblue star line s? to be the join of the
corresponding blue/red quad pot@f(j and the blue/green
quad poilegj, and similarly for the other colours. There
are then four blue star line, s, 3 andsb.

The blue star point B is the meet of the two blue star
linessP ands?, that isBj; = ’s?, and similarly for the other
colours.

Note that following the introductory section on Quadran-
gles and quadrilaterals, we use the correspondence be-
tween theQ}};; and the tangent linet§;; and the Incenters

P to match up the indices.

Theorem 8 (Star quadrilateral) The four blue star lines

form a standard quadrilateraf}’3s3. This holds also for
the other colours.

Proof. The proof we have is surprisingly complicated. The
star Iiness‘j’ have quite involved formulas; for example we
find that
=P =
EodyUp + FoCoVh :
bgbr ((bb*%)2+cbdb>‘
“(aghr —bgar —agCr + cga; +byCr — Cgbr ) doup
—2cpbgbr (aghy —bgar —ager + cgar +bgcr —cgbyr ) (by—Cp) dpWy |

< —ap (br —cr) (g — cg) (aghr —bgar) ((bb—Cb)2+Oodb> W >

+2apCp (br — ¢r) (bg — Cg) (aghr —bgar ) (bp — cp) dy

—bghr dy (aghr — bgar — agCr + cgay + bgCr — cghy) -

( . (((bb — Og)2+cbdb> Up — 2Cy (bb — Cb)Vb) >

13
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whereEg andFy are both homogeneous polynomials of search. So we tentatively conjecture ttiegre are no such
degree 6 in the variables, b; andc;, with the former hav- triangles

ing 32 terms and the latter 46 terms. After some trial and In any case, to get an explicit example we use an alge-
error we can present these in the somewhat pleasant, bubraic extension field of the rationals; so k{80 we mean

still mysterious, forms: an appropriate symbol in the extension fi@o{\/@) etc..
Note that although our use of square roots is entirely alge-
Eo = —bgby (agCr — Cgar — bgCr + Cgby ) - braic, our representation of these square roots as approx-
. (bﬁ+4cﬁ+abcb— 6bnCp) imate rational numbers (we prefer to avoid discussion of

“real numbers”), necessarily brings approximate aspect

+bgbr (aghr — bgar) (bf + 26§ + ancy — 4bneo) into our diagrams

— 20 (agcgb? - arCrbS + agar Cr g — agcgay br) (bp—Cp)

and

Fo= (agCghf —arc:b + agarcrbg — agcgarby ) -
- (b5 — 4bnCp + 25 + anCp)
+ bgby (agCr — cgar — byt + Cghy) -
- (—5bf — 4ch + 2aphy, — 3a,Cy + 100,Ch)
— 2bghy (agbr — bgar) (bp — Cv) (8p — 2bp + Cp) -

We can then calculate the blue star points, for example

: (((bb —c)’ + deb) Up — 2Cp (bp — Cp) Vb)

Boz=

)

Eodpub + FoCoVb Figure 7: An example triangl&; XoX3

from which clearlyBos lies onls. The computations are Example1 One may check that the basic Triangle with
similar for the other indices, and the other colours. O points

ici : X = [-21/59,-58/59, X;=[-13/3,2 and
3 Explicit examples and some conjectures 1=[-21/ /59, Xp=[-13/3,2

31 Anexampleover Q(v/30,/217,/7411/2470,/82297) X8 =[35/3,-8/5]

We will now explore in detail a particular triangle which in  Q(v/30,v/217,/741,1/2470/82297 has both
has both blue, red and green Incenters; for us this is notblue, red and green Incenters. After translation
only an important tool for checking the consistency of our by (21/59,58/59) we obtain X; = [0,0], Xz =
formulas, but also a way to get a sense of the level of com-[—704/177,176/59 and Xz = [2128/177,—-182/295.
plexity of various constructions. In fact this kind of exgili The matrix N and its inverse M, where
calculation of examples is much to be encouraged in this

: i X . . 704 176
§ubj_egt: e§peC|aIIy as Wo_rl_<|ng over.con(_:rete fields, mc!ud N — (—2@ 9 ) _ <cx B> and
ing finite fields and explicit extension fields of the ratio- T 95
nals, allows us to appreciate the number theoretic aspects
of our geometrical investigations. For example, finding a 1
triangle with blue, red and green Incenters approximately "' — N™"= (
is easy with a geometry package: finding a concrete exam-
ple and working out all the points precisely is more chal- respectively senfl, 0] and[0, 1] to X» and X3, and X, and
lenging. X3 to [1,0] and [0,1]. From now on we discuss only the
In particular we were unable, despite a reasonable com-standard triangleA; AoAz associated tX; XoXg; to convert
puter search, to findny triangles with purely rational  back into the original coordinates, we would multiply by N
points that have blue, red and green Incenters! We wouldand translate by—21/59, —58/59). The bilinear forms in
like to thank Michael Reynolds for his contributions to this these new standard coordinates, for the blue, red and green

13 5
)
264 42

14
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geometries respectively, are given by matrices

- 1 0 774400 777884 ap bb
owen(o V= (e g~ (3 o)
B 1 0 216832 720227 a br
oo V- (g wind)-( <)
B 0 1 247808 2000768 ag bg
o N o= (il i)~ 2)

The determinants of D, and Dy are A, = 22140736and

97140736 6724
Ar = Ag = — 57055, While the mixed traces arg,e-= 5z,

dr = 82 and ¢y = —22°. The orthocenters o AxAz are

|

[7105 377]
g =

8825537 84337 | 8783322755537
1019520 25488|’ 1121472025488|’

3894 177|°
Blue, red and green Incenters exist ovef =

Q(Vv30,v/217,1/741,1/24701/82297) and we may

choose

, _ 1875104 14432 = 873628
= 7313200 T 177 "®T T4425
17248 2464
196
W= 425\/217\/82297
19712 2816 448
Ug = =5 15\/2470 Vo= "o V30, wg= 295\/741

oarsaad 4032553/217+ 20461/217/82297
- +210343/82297+ 76618507,
3 soas( 7V217/82297- 2923,/217
—133/82297-30049

Sa
I

- 203 247 35 3211
7758V 741- 3894\/_0Jr 389V 2470— e }
| 1335V/2470- £,V/30+ 15 1239v 141- 17
- 247 203 3211
04"/ 30— 7788V 741+ 3894\’ 2470~ e }
T77V/30+ 13351/2470~ 1239V 41— 17
247 203 3211
— Z04V/30— 7788V 741- 3894V 2470— e }
| —15V/30— 1335V/2470- 1535V 741 177
- 247 203 3211
3a9aV/30+ 7788V 741 3894V 2470~ e
T77V/30— 1335V 2470+ 1535V 741 129

[lyrs)
I

Na
Il

wa
I

The Incenter circle quadrances are

18154129609 11681819191

® = 728196100 ° f T 7728196100
1182272

97 710443

The blue, red and green Incenter Circles themselves have

Then the four blue Incenters, the four red Incenters and the respective equations

four green Incenters ok AxAz respectively are

|b— _7161 @} |b:[ﬁ _E}
7| 590413 1710384 118
b= 761 E} |b— [iﬂ @}
27 12112 168 37 | 270 27

sriagaad 4032553/217— 20461/217/82297 ]
" +210343/82297- 76618507,

o s5576(2923,/217— 71/217/82297
+133,/82297- 30049
soavgaad 20461/217,/82297— 4032 553/2_17

+210343/82297- 76618507,
=557e(7V217\/82297—- 2923/217
+133,/82297- 30049
5 aa5qad 4032553/217+ 20 461\/2_17\/82297

" —210343/82297- 76618507,
2= sos76l 7V217/82297+ 2923,/217
—133,/82297- 30049

=
[

48400004 — 19447 128y 28376 929°
+19447 128+ 19447129 — 9723560= 0

19360 — 62524y+ 121032
+62524+ 62524/ — 31262=0

1936004 — 2572 2406ty + 4032553°
42572240+ 2572 24§ — 1286 120= 0.

The four tangent Iineg} are

go— 1570:-11823:8323
127512:—33761:58261
18216:-11823:8323
1570:4823: 8328

(
(=
(=
(=

15
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The meets of these four tangent lines agree with the follow-and they meet at the blue star points

ing meets with the side lines AfAxA3 :

OBy = 5, — [ 3500 9893
01 =loolg1 =tool1 = | 73353 73303
o . _ [ 3500 9893
2 = tgplgs = lgpl = | 6393 6393
1189
G2 = tgoter = tgol2 = _ ’—1689}
[ 1189
b b _
G t1t3—t1|2— _0,—689:|
[ 8323
b
G03_t0t3—t0|3— I —1570, :|
[ 8323
b b
G2 =13 :tg“3::_18216 ]

The blue/red quad pointsfassociated tog, 17, 13,15 re-
spectively are

»  [18005811535 1212966955
Qm___21082889161_21082889161
» [ 180058115351212966955
Q”“_"9330605209 9330605209]9
»  [180058115351212966955
QQ“_149287339091492873390$
» _ [180058115351212966955
Q“___453422282794534222827$'

The respective blue/green quad poin& Qre

Qb B '_ 41615001176277
90 | 2654777 2654777
Qb B '_ 4161500 1176277
917 | 125477771254777
Qb _ [ 4161500 1176277
927 |109777771097777
Qb B [ 4161500 1176277
937 |208707772087077
The blue star lines are then
= Qoo =
(1796063533088 : 8688045740391034074074039
(272084614990:11993435740391034074074039
(272084614990:8688045740391034074074039

(1796063533088:11993435740391034074074039

16

Boy = [165269500000761 989459 O4E
| 927258959049927 258959 04
Bys — __ 165269500000761989459 04E
| 596719959049596 71995904
Bop — _0 1034074074 03; - { 1034074074 OSE
|’ 868804574039’ 7119934357403
Bos — (1034074074039 } o {1034 074074039 ]
1796063533088 |’ 272084614990

Note the pleasant rationality of the previous objects.

3.2 Anexampleover 13

Now we look at an example over a finite field.

Theorem 9 (Null quadrancesincenters) Suppose that
the fieldF contains an element i, wheré £ —1, and
the characteristic oF is not2. If

_ bp(ap—bp)(bp—co) , _ br(ar—by)(br —c)
Kb = — Kr —

AT TAY
by (8g —bg) (bg — C) —0

Ag

then the standard Triangl&; A2A3 has four distinct blue,
red and green Incenters.

Proof. If Ky, = 0 then from the definition of the blue incen-
ter circle Gy, which isQp (Hp, X) = Kp, G, is a null circle,
so it is a product of lines. Similarly, ik, = 0 then( is a
null circle, and ifKg = 0 then(y is a null circle. These
null lines have distinct direction vectofd,+i), (1,+1)
and(1,0),(0,1) respectively, and they are never parallel
since cha(ff) # 2, soi # +1. Therefore, any two null cir-
cles meet in exactly four points. O

Here is an example found by Michael Reynolds [6] which
illustrates explicitly the above theorem.

Example2 The triangle XijXoX3 with points X =
[3,4], X2 =[1,9] and X = [12, 3] in F13 has four blue, red
and green Incenters. 1R;3 the squares ar€,1,3,4,9,10
and12, and in particular—1 = 12 = 5% is a square. After
translation by(3,4) we obtainX; = [0,0], X, = [11,5] and
X3 =[9,12]. The matrix N and its inverse M

(11 5 1 (10 11
(5 %) ez )

12 7
send|[1,0] and [0, 1] to X, and X3, and X, and X to [1,0]
and|[0, 1] respectively. The bilinear form in these new stan-
dard coordinates for the blue, red and green geometries
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respectively are

- )

1
Db:N(O

(1 o\, (50
N (o SV -( 2)
(0 1\ (6 8
Dg—N(l O)N _<8 8).

We can see immediately thag K K, = Kg = 0 from the

definitions
b —byp) (bp—cC
Qo (Hp, lir) = o 2 Ab)(b )
b
br (& —by) (br — ¢
Q (i) = XERIB =)
r
Qg(Hg,Iir):bg(ag_bAg)(bg_Cg)ng, i=0,1,2,3.
|
The four blue, red and green Incenters respectively are
I0=[4.8, 11=[36], 13=[810, I13=[114]
lo=1[10.9], 13=[82], 13=[65, I3=[412
I§=19,8, 19=1[53], 1§3=[1211, 1§=[2,4

and the blue, red and green Incenter Circles respectively
have equations

G:(y—x+1)(x+3y—1)=0
G 1 (x—6y) (x+6y) =
Gy (X+2y—2)(x+5y—5)=0.

From Michael Reynolds’ computer investigations, we ten-
tatively conjecture that for finite field¥, where p =
3mod4 there areno triangles which have both blue, red
and green Incenters, and for finite fieldg wherep =
1mod4 blue, red and green Incenters exists precisely
whenKy, = K = Kg =0, as in the above example.

4 Spieker circlesand Nagel circles

Now we recall from [5] that the central dilatidn ; , about

the centroid takes the Orthocenter to the Circumcenter, am{l

the Incenters to th&pieker centers In standard coordi-
nates
(1/2)[1-x1~

3 12([xy]) = Y-

The inverse central dilatiod_, takes the Orthocenter to
the De Longchamps pointg%, and takes the Incenters to
theNagel pointsIn standard coordinates

72([X7y]) = [1_2X31_2y]

Theorem 10 (Spieker circles) If a triangle has four blue
Incenters §,19,15 and 1B, then the four blue Spieker cen-
ters all lie both on a red Spieker circle with center the red
Circumcenter ¢ and on a green Spieker circle with center
the green CircumcenterCIf both say blue and red Incen-
ters exist, then all 8 blue and red Spieker points lie on the
same green circle. The same holds for the other colours.

Proof. We see that if we use the central dilation formula
to transform Incenter circles centred at the Orthocenters,
we get the Spieker circles centred at Circumcenters, so this
theorem is a direct consequence of the Incenter circles the-
orem and the fact that a dilation preserves circles of any
colour. O
Here are the formulas for the coloured Circumcenters in
standard coordinates:

Co=or- = [Cb(ab bp) , ap (Co — bp)]
C=5p 1 [Cr(ar br),a (¢ —br)]
Cg—_[ (ag—bg) ,ag (cg — by)]

Figure 8: Blue, red and green Speiker circles

Theorem 11 (Nagel circles) If atriangle has four blue In-
centers §,12,15 and I, then the four blue Nagel centers

Il lie both on a red Nagel circle with center the red De
ongchamps point 2%, and on a green Nagel circle with
center the green De Longchamps pointgX If both say
blue and red Incenters exist, then all 8 blue and red Nagel
points lie on the same green circle. The same holds for the
other colours.

Proof. In the same fashion as in the previous theorem, if
we use the inverse central dilatidn, to transform Incen-

ter circles centred at the Orthocenters, we get the Nagel
circles centred at De Longchamps points. O

17
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Figure 9: Blue, red and green Nagel circles

Here are the formulas for the blue, red and green De
Longchamps points:

1

1
X = —
20r A,

1
Xo0g = Ay b5 — 2bgCy -+ agCq, b — 2aghy + agCy] -

[bf — 2brer +arcr, bf — 2acby + acc |

relations between the
Circumcenters and De

In Figure 10 we see the
three coloured Orthocenters,

Longchamps points. The lines joining these are the three [6]

coloured Euler lines. Note that the centroids of the trian-

gles of Orthocenters, Circumcenters and De Longchamps [7]

points all agree with the centro@ of the original triangle
A1A2A3. We conclude with a simple observation about De
Longchamps points.

<
-

Figure 10:Blue, red, green Orthocenters, Circumcenters
and De Longchamps points

Theorem 12 (Orthocentersas midpoints) For any tri-
angle, a coloured orthocenter H is the midpoint of the two
De Longchamps points;Xof the other two colours.

18

Proof. This follows by considering the action of the central
dilation d_» which takes the circumcent€y to the ortho-
centerH;, and the orthocentdfi; to the De Longchamps
point Xxq . O
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The Arbelos with Overhang Arbelos s privjeskom

ABSTRACT SAZETAK

We consider a generalized arbelos consisting of three semi- Promatra se poopceni arbelos koji se sastoji od tri
circles with collinear centers, in which only two of the three polukruZnice s kolinearnim sredistima, pri ¢emu se dvije
semicircles touch. Many Archimedean circles of the ordi- on njih dodiruju. Mnoge Arhimedove kruZnice obi¢nog
nary arbelos are generalized to our generalized arbelos. arbelosa su poopcene za poopceni arbelos.

Key words: arbelos, arbelos with overhang, Archimedean

circles Kljuéne rijeci: arbelos, arbelos s privjeskom, Arhimedove
MSC2010: 51M04, 51N20 kruZnice
1 Introduction stated. Letd’ (resp. B') be a point on the half line with

endpointO passing through (resp.B), and lef A'O| = 24’
Thearbelosis a plane figure consisting of three mutually (resp. |B'O| = 2b) (see Figure 1). Ley = (AB), and let
touching semicircles with collinear centers. It has three & be the circle touching the semicirc{&’O) externally
points of tangency. In [5], [7] and [9], we have considered vy internally and the perpendicular B passing through
a generalized arbelos callectallinear arbelosconsisting O from the side opposite to the poiBt The circIeESE3 is
of three circles with collinear centers, in which one of the defined similarly.
circles touches the remaining two circles, but the two cir-
cles do not touch in general. Thereby the collinear arbelos
has two points of tangency.

In this paper, we consider the remaining case. We con-
sider a configuration consisting of three semicircles with
collinear centers, in which only two semicircles touch,,i.e

it has only one point of tangency. Many Archimedean cir-
cles of the ordinary arbelos are generalized to our general-
ized arbelos, but also several new Archimedean circles of g 3 0 A A
the ordinary arbelos are induced by this.

Figure 1

2 An arbeoswith overhang N _ _
Proposition 1 The two circlesy, and 6& are congruent if

Let O be a point on the segmeAB with |AQ| = 2a and andonlyifd—a="b'—b.

|IBO| = 2b. We use a rectangular coordinate system with

origin O such that the coordinates of the poiAtandB are Proof. Letr be the radius obj,. The center of the circle
(2a,0) and(—2b,0), respectively. For two point8 andQ, with a diamete”A’O or AB, the center 0y and the foot of
(PQ) andP(Q) denote the circle with diamet®Q and the perpendicular from this point t&B form a right triangle.
circle with centelP passing througkp, respectively. How-  Hence by the Pythagorean theorem, we get

ever if their centers lie on the lin&B, we consider them

as semicircles lying in the region> 0 unless otherwise (r+d)?—(r—a)?=((a+b)—r)?—(r—(a—h))%

19
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Notice that if the foot of perpendicular coincides with the
center of the circle with a diamet&'O or AB, then one

of the triangles degenerates to a segment. But the equatio

still holds. Solving the equation we get= ab/(a’ +b).
Similarly, &, has radiusib/(a-+b’). Therefore the two cir-

cles are congruent if and onlyaf + b=a-+1b'. O

Let a = (AO), B = (BO), and leta’ =a+h, b’ =b+h
with —min(a,b) < h. We relabel’, b/, A, B, &, andESE3 as

an, bn, An, Bn, & andéﬁ, respectively and letip = (ARO)
andpp = (BrO). The configuration consisting of the three
semicirclesay, Bn andy is denoted by(an, Br,y). We call
(an,Bh,y) anarbelos with overhang hand (ap, Bn,Y) is
said to have overharlg The ordinary arbelo&, 3,y) has
overhang 0. The perpendicularAd passing througld is
called the axis, which overlaps with tlyeaxis.

5 ¥
§
W, " Sy

B, B By 0

Figure 2

Ar A A,

Now the circlesd; and éﬁ have the same radiug, =
ab/(a+ b+ h) by Proposition 1. The two circles are a
generalization of the twin circles of Archimedes of the
ordinary arbeloga,f3,y). Circles of radiusrR are said
to be Archimedean circles df,, Bn,y) or Archimedean
with respect tqay, Br,y). Also we say thatap, Br,y) has
Archimedean circles of radiugl. The common radius
of Archimedean circles ofa, 3,y) is denoted bya, i.e.,
ra =ab/(a+Db).

We define A and B; as the points with coordinates
(2ab/bp,0) and (—2ab/ap,0), respectively. Lety have
pointsV andW in common with the semicirclesy, and
Bh respectively in the cade> 0 (see Figure 2). The points
V andW have coordinates

(2ab/bn, f(a,b)/bn) and(—2ab/an, (a,b) /an),
respectively, wherd (a,b) = 2,/abh(a+b+h). There-

fore the pointsA; andB; are the feet of perpendiculars
fromV andW to the lineAB, respectively. By the coordi-
nates oV andW, we get tawyWOB= tan/VOA There-
fore /AWOB= /VOAholds.

The circle touching internally and the segmeAB at the
pointO has radius &4 [11]. The fact is generalized as fol-
lows.

Proposition 2 If h > 0, the radius of the circle touching
internally and the segments OV and O\NZriQ.

20

Proof. Letr and(0,c) be the radius and the coordinates of
the center of the touching circle. Then we get

T )24+c%=(a+b-r)2 (1)

Also by similar triangles, we get

r ab

- =Cos/VOA= | —————. 2
(a+h)(b+h) @)

Eliminating ¢ from (1) and (2), and solving the resulting
equation for with h > 0, we getr = 2rf. O

Letas = (AfO) andBs = (BfO). Archimedean circles of
the ordinary arbelo&x ¢, 3, (A¢B)) have radius

(ab/bp)b  ab h

ab/bh+b  a+b, A

Similarly Archimedean circles of the ordinary arbelos
(a,Bt, (ABt)) have the same radius. Hence we get:

Proposition 3 The ordinary arbeloi(as,B, (A¢B)) and
(a,Bt, (ABt)) share Archimedean circles witla,, Bn, ).

The circle touching the axis at the poi@tfrom the side
opposite to the poinB and also touching the tangent ®f
from the pointA is an Archimedean circle of the ordinary
arbelos(a, B,y), which is denoted b\ in [4]. Hence by
Proposition 3, we get the following proposition. By this
proposition we can construct the pot (alsoBs) evenin
the casé < O (see Figures 7 and 14).

Proposition 4 The point A coincides with the point of in-
tersection of the line AB and the external common tangent
of B and the Archimedean circle ¢, Br,Yy) touching the
axis at the point O from the side opposite to the point B.

Since |AB;| : |ABy| = a: a, holds, we get the following
proposition, which also enable us to construct the points
At andBgs in the casé < 0.

Proposition 5 The point B divides the segment Al the
ratio a: |h| internally or externally, according as & 0 or
h<O0.

3 Several twin circles

In this section we show that several twin circles exist for
(an,Bn,Y), if h> 0. Letus assumle > 0, and let{ be the
circle touching the semicircles externallyay, internally
and the segmem;V from the side opposite to the poiat
(see Figure 3). L&t be the circle touching the semicircles
a externallyan andy internally. Also lete§ be the circle
touchingay, andy externally and the axis from the side op-
posite to the poinB. The cwclessl, 82 ande3 are defined
similarly. The following proposition has a straightforwar
proof that is omitted.
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Proposition 6 If h > 0, the following statements hold.
(i) The circlesf andsﬁ5 have the same radius

11 h 1yt 1yt
a b ab h ~\rl ' h '

(i) The circlese§ andsg have the same radius

L A A
a b h “\ra h '

(iii) The circlese§ andsg have the same radius #b.

and label the images with an overline (see Figure 5). The
x-coordinates of the point&, B, As andBs are b, —2a,

2by, and—2ay, respectively, and the circig = (A¢ Bt) has
center(b —a,0) and radiusa, + b, Let (x5,y5) andrz be

the coordinates of the center of the cirdland its radius.
The circled touchesa and B, which are the perpendicu-
lars toAB passing through the poindsandB, respectively.
Therefore we gets =b—aandrz =a+b. Sinced touches

yr externally and th&-coordinates of their centers are the
same, we get

Y5 =an+bh+r5=2(a+b+h).

The proposition also shows that the sum of the curvaturesSNCeE is the line perpendicular to the lire and passes

of the circlese§ ande§ equals the curvature of the circle
&f.
1

B

Figure 3

4 Bankoff circles

The circle orthogonal to the semicircles 3 and to the
circle touchinga and 3 externally andy internally is an
Archimedean circle ofa,3,y) called the Bankoff triplet
circle, which is denoted bW in [4]. The maximal circle
touching the external common tangentoénd and the
arc ofy cut by the tangentinternally is an Archimedean cir-
cle of (a,B,y) called the Bankoff quadruplet circle, which
is denoted by\, in [4]. In this section we generalize the
two circles (see Figures 4 and 6). Lygt= (A¢Bs).

Theorem 1 The following two circles are Archimedean
with respect tqay, Br,Y), and coincide.

(i) The circle orthogonal to the semicircles 3 and to the
circle touchinga andf3 externally andys internally.

(ii) The circle orthogonal to the semicircles, s and to
the circle touchingxs and 3¢ externally andy internally.

Proof. Let 6 be the circle touching andp externally and
yi internally, and le€ be the circle denoted by (i). We in-
vert the figure in the circle with cent€ and radius 2/ab,

through the point of tangency afands, itis parallel toAB
and passes through the centebofence the distance be-
tweenAB and the farthest point anequals 4b/y; = ZrR.
Therefores is Archimedean with respect toy, B, y). The
part (i) is proved similarly. O

Figure 4

(]

By
By B 0 A
Figure 5

>
>

We call the circle in Theorem 1 the Bankoff triplet circle
of (n, Bn. Y)-

21
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Theorem 2 If E is the external common tangent of the
semicirclesx andfy, or ap andp, then the maximal circle
touching £ and the arc ofy cut by £ (the part ofy be-
tween the two points of intersectionyo&nd £) internally

is Archimedean with respect {on, Bn, Y).

Proof. We prove the cas& being the common tangent of
o andPp. The other case is proved similarly. Letbe the
distance betweeft and the centers of, and letT be the
point of intersection of the line® andAB. If T lies in the
regionx > 0, let|AT| =t. By similar triangles, we get

a/(t+a)=d/(t+a-+b)=bn/(t+2a+by).

Eliminatingt and solving the resulting equations fhrwe
getd = a+b—2rl. Therefores is an Archimedean cir-
cle of (an,Bn,y). The caseT lying in the regionx < 0
is proved similarly. IfE£ and AB are parallel, thera =
b+h=dandrfl =ab/(2a) = b/2. Therefore we also get
d=a+b—2rh. O

op

Bh B o A
Figure 6

5 Miscelaneous Archimedean circles

Proof. Sincelq has coordinate§0,2v/ab), the point di-
viding the segmenAsly in (i) has coordinates

bn-2ab/b, a-2v/anb _ (oh oh an
a+by, ~ a+by AEA D )

This proves (i). The point of intersection pfand Am(O)

has coordinate{ZrR,Z (a— r,'})(b+r,'1)). This proves

(ii).

Figure 7

For a circle or a semicircl®, its center is denoted b@;.
The farthest point o® from AB lying in the regiony > 0
is denoted byfs. If the segment3,Tg and T, Oy intersect
at a pointP, the circle(PTy) is an Archimedean circle of
(a,B,y), which is denoted bWaq in [4]. The fact is gener-
alized (see Figure 8).

Theorem 4 The segments,[Tg, TaTg, and 1,0y intersect
at a point P, which dividesq[Tg and Ty Tg, in the ratios
bn : @ and b: a, internally, respectively. The circi®Ty) is
Archimedean with respect oy, Bp, Y).

Proof. The points dividingTq, Tg in the ratioby : a inter-

In this section we consider miscellaneous Archimedean nally andTGTBh in the ratiob : a, internally have the same

circles of (ap, Bh,y) obtained from points dividing given
segments in the ratia : by or a, : b internally, some of

which seem to be new even for the ordinary arbelos. Let
| be the point of intersection of the axis and the semicir-

cley. The minimal circle touching the axis and passing
through the point of intersection of the semicircleand
the segmenAl is an Archimedean circle @fx, 3,y), which

is denoted by\g in [4]. Also the minimal circle touching

the axis and passing through the point of intersection of

the semicirclesy and A(O) is an Archimedean circle of
(a,B,y), which is denoted bV in [4]. The two facts
are generalized. LeAy and By, be the midpoints of the
segment®A, andBB;, respectively (see Figure 7).

Theorem 3 (i) If |4 is the point of intersection of the axis
and the semicircléA,B), then the point dividing the seg-
ment Alq in the ratio a: by, internally lies on the semicircle
a and its distance from the axis 2s5.

coordinatega— b,a-+b— 2rR). O

Ty

B, B
Figure 8
In the theorem, the endpoints of the diamete(R¥,) par-

allel to AB divide the segment§, Ty andT,Tg in the ratios
a: b andb: ay internally, respectively.

Theorem5 Let Ty, and T; be the reflected images of the

(i) The distance between the axis and the point of inter- points §, and T in the line AB, respectively. The follow-

section of the semicircles,#0) andy is ZrR.

22
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(i) Let C be the internal center of similitude of the semi- Leta(z) andB(z) be the semicircles constructed in the re-

circlesy and ap. If D is the point of intersection of the
lines CT, and AT, then D divides AJ in the ratio b: ay
internally and the circle touchingt or AB at the point

giony > 0 touching the axis at the poif@t and having the
centers with coordinatgga 0) and(—zh,0), respectively
for a real number!. Let C(m,n) be the circle touching the

A and passing through D is Archimedean with respect to semicirclesy internally ando(m) andp(n) at points differ-

(0th, Bn, Y)-
(i) The segmentsAg, ATg, and T, O intersect at a point

H, which divides ATg in the ratio a: by internally AT,
and T,0 in the ratio g, : b internally, respectively. The cir-
cle touchingx or AB at the point O and passing through H
is Archimedean with respect {on, Bn, Y).

(iii) If E is the point of intersection of the segmen&gl‘p
and OT, then E divides (;I;Ty and Of intheratioa, : b
internally and the circle touching or the line QT4 at
the point | and passing through E is Archimedean with

respect ta(op, Bn, Y).

Proof. The pointC has coordinate$2aayn/(2a+ by,),0)
(see Figure 9). If we regarfl as a circle, therC coin-
cides with the internal center of similitude @fand the
Archimedean circle ofay, B,y) touchinga at the point
Ainternally. HenceD has coordinatea—rfi,r). This
proves (i). The points dividing Tg in the ratioa: by in-
ternally, ATz, and Ty O in the ratioa, : b internally have
the same coordinatés, rl). This proves (ii). The points
dividing OTy and ToﬁhTy in the ratioay, : b internally have
the same coordinatéa —r,a—rf). This proves (ii). 0

Figure 9

The circle touchingdB at O and passing through in (ii)
is the Bankoff triplet circle of ap, Bh, Y).

6 Archimedean circlestouchingy

ent fromO such that the points of tangency atm), yand
B(n) lie counterclockwise in this order for real numbens
andn. The radius ofC(m,n) is expressed as follows [12,
Theorem 1]:

ab(ma+ nb)

mé&? + nb? + mnab (3)

Let ap(z) andBnh(z) be the semicircles constructed in the
regiony > 0 touching the axis at the poi@ and having
the centers with coordinaté¢sa,,0) and(—zh,, 0), respec-
tively for a real number. Let Gy(m, n) be the circle touch-
ing the semicircles internally andan(m) and pr(n) at
points different fromO such that the points of tangency
on ap(m), y andBr(n) lie counterclockwise in this order
for real numbersn andn.

Theorem 6 The circleGiy(m,n) has radius

ab(ma, + nbxy)
maa, + nbh, + mnab,”

(4)

Proof. Notice thatan(m) = a(ma,/a) and Br(n) =
B(nby/b). Replacingnandn by ma,/a andnby /b respec-
tively in (3), we get (4). O

Theorem 7 The circle Gh(m,n) is Archimedean with re-
spect to(an, B, y) if and only if

1 1
= 1. (5)
Proof. The theorem follows from Theorem 6, because
ab(ma, + nby) .
maa, + nbb, +mnab, A
(Mm-+n—mn)asbnr -
maa, + nbh, + mnaby,

Corollary 1 The following circles are Archimedean with
respect ta(ap, Bn,Y)-

(i) The circle touching the semicircles,®) and B,(O)
externally andy internally.

(iiy The circle touchingy internally and the two distinct
circles of radius a + by touching the axis at the point O
externally.

Proof. The part (i) follows from the fachAn(O) = ap(2)

In [12], we gave necessary and sufficient conditions that aandBy,(O) = Bn(2) (see Figure 10). The part (ii) follows

circle touching the semicirciginternally is Archimedean
with respect tqa, 3,y). In this section we generalize this.

1The notations are slightly changed from [12]

from the fact thatn = (an + bn)/an andn = (ap + bn)/bn
satisfy (5). O
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The circle described in (i) is a generalization of Schoch 7 Wo00's Archimedean circles

circle of the ordinary arbelos which is denoted\Wys in
[4]. The circle described in (ii) is a generalization of the
Archimedean circle of the ordinary arbelos in [10].

Letyh = (AnBp). If m> 0 (resp.m < 0), letPgy, (m) be the
external (resp. internal) center of similitude of the seémic
clesan(m) andy,. Similarly the pointPg, (m) is defined.

Theorem 8 The points R, (m) and B (n) coincide if and
only if (5) holds.

Proof. The semicirclesin(m) andy, have radiima, and
an + br and centers withx-coordinatesna, and ay, — by,
respectively. HencBqy, (m) hasx-coordinate

(@8 +bn)man —man(an—bn)  2mayby
—Ma, + (& + bn) an+bn—ma,’
Similarly Pg, (n) hasx-coordinate
(a8 +bn)(=Nnbn) —nbh(an—bn) _ —2nanbn
—nbn+ (an+ bn) an+bn—nby’
While
2manby, B —2nanby,
an+by—ma, a,+by—nby
~ 2(m+n—mn)(an-+ bp)anby
(@n +bn —may) (an +bn —nby)
Therefore the proof is complete. O

Corollary 2 The circle Gy(m,n) is Archimedean with re-
spect to(ap,Bn,y) if and only if the points g, (m) and
Pg, (n) coincide.

B, (0) = By(2) (2) =A,(0)
oy =Ap

B, B @] A
Figure 10om=n=2

Ay

If the external common tangents frgmto bothay,(m) and
Bn(n) exist, then the circlet,(m,n) is Archimedean with
respect to(an, Bn,y) if and only if the two tangents coin-
cide (see Figure 10).
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We assumea # b in this section. Peter Woo found that the
circle touchingo(z) andp(z) externally with center on the
linex= (b—a)ra/(b+a) is Archimedean with respect to
(a,B,y) for a non-negative real numbeif4]. The line is
called the Schoch line @fx, B,y). The fact was generalized
for a real number > —ra/(a+b) in [12]. We generalize
this.

A circle is said to touchun(z) appropriately if it touches
on(z) externally in the case > 0 and it touches the re-
flected image oty (2) in the lineABinternally in the case
z< 0. The same notion of appropriate tangency applies to
Bn(z). Lets, = (bnh—an)rk/(bn+an). We call the line
X = &, the Schoch line ofap, B, Y)-

5 Schoch line of (o, Br,Y)
h

Op

Figure 11:z< 0

Theorem 9 Let & be the circle touchingiy(z) and Bn(2)
appropriately and having its center on the Schoch line of
(an,Bn,y) for a real number z£ 0. The following state-
ments hold.

(i) The circled is Archimedean with respect toi, B, Y).

(ii) The circled exists if and only if-anbn/(an + bn)? <
z<0Qor0<z.

Proof. If r is the radius ob andl is they-coordinate of its
center (see Figure 11), then we get

(zan+1)? = (S —2z&)? = (2bn + 1) — (s +2l0)* =12, (6)

Solving the equation for, we getr = sy(bn + apn) /(b —
an) = rR. This proves (i). From (6) we also get

2 _  4anbnsh(sh+ (bh—an)2)
(an—bn)?
 4a2bd(anbn + (an+bn)?%2)
B (@ + bn)?
Thereford satisfying (6) is real if and only if-anbn/(an+
bn)? < z< 0 or 0< z This proves (ii). O
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Notice that the circl® in Theorem 9 is not uniquely de-
termined ifa = b. We get an infinite set of Archimedean
circles of (an,Bh,y), whose centers lie on the line=

S, by the theorem. However the Archimedean circle of
(ath, Bn,Y) With center(sn, 2anbny/anbn/ (an + bn)?) is not

a member of this set. In fact, there are infinitely many
circles passing throug® with center on this line. But it

seems to be natural to consider this circle as a member ofarbeloi coincide. The rest of (iii) is obvious.

this set.

8 Dilation

In [8], we have shown that if is a dilation with cente®,
the circle touching the semicircl¢A°O) externally(AB°)
internally and the axis from the side opposite to the pBint
is an Archimedean circle df, 8,y), whereA° andB° are
the images oA andB by o, respectively. In this section
we generalize this fact.

Bn

Oy

B° B} 0
Figure 12t =2/3

ATA A,

Theorem 10 Let o and 1 be the dilations with center O
and A with the same ratio of magnification t, respectively.
Then the following statements are true.

() The circle touching the semicirclgg\yO) externally
(AB?) internally and the axis from the side opposite to the
point B is Archimedean with respect tap, Bn, ).

(ii) Ift > a/(a+by), then((AfO), (BfO), (AB°)) is an ar-
belos with overhang {a— a, and has Archimedean circles
of radius .

(iii) Ift = a/ap, then((A7O), (B},0), (AB)) coincides with
(a,Bt, (ABs)), and the points Band B’ also coincide with
the point B.

Proof. Let r be the radius of the touching circle in (i) (see
Figure 12). Then we get

(tan+1)%— (tan—r)? = (bt+a—r)%— ((—bt+a) —r)2

Solving the equation, we get= rR. This proves (i). It >
a/(a+bp), then|AB]| = 2t(a+ by) > 2a = |AQ|. Hence
the pointBj, lies on the half line with endpoir® passing
throughB. While |A7O| — |AQ| = 2(ta, — a) and|B{,0| —
|B°O| = 2t(a+ bn) — 2(tb — a) = 2(tan — a). Hence the
configuration ((A7O), (BfO), (AB?)) is an arbelos with

overhangan —a. The rest of (ii) follows from (i). Ift =
a/ap, the pointsA andAy coincide, i.e.{AfO) = a. While
a/an>a/(an+b)=a/(a+hbn) holds. Therefore we getan
ordinary arbeloga, (BfO), (AB?)), whose Archimedean
circles have radius} by (i). While (a,Bt,(AB)) is
also an ordinary arbelos having Archimedean circles of the
same radius by Proposition 3. Therefore the two ordinary
O

9 New type of Archimedean circles

Quang Tuan Bui has found a pair of new type of
Archimedean circles such that the endpoints of the diam-
eter parallel to the linéB lie on a given circle [1], which
has been rediscovered by us [6]. One of the circles is ob-
tained as follows: If the lind, Oy intersects the semicircle

y at a pointS and the linesSAandSOintersect the semi-
circle a at pointsT andU respectively, the circléTU) is
Archimedean with respect @, 3,y). The fact is general-
ized (see Figures 13 and 14). Notice that rR >0 and
a—rf >0.

S
(4,B)
B h
a
U T
B, B By Oﬁh o O(x;,A_/‘ A Ay
Figure 13

Theorem 11 (i) Let S be the point of intersection of the
semicircle(A,B) and the the line g, Oq,,. If T is the point
dividing the segment SAn the ratio (h+rf) : (a—rR)
internally and U is the point of intersection of the line SO
and the semicircle, then T lies orax and the line TU is
parallel to AB and the circl§TU) is Archimedean with
respect ta(ap, Bh, ).

(i) Let S be the point of intersection of the semicifé&,)
and the line §O4. If the line SO intersects the semicircle
ot ata pointU and the line parallel to AB passing through
U intersectxn ¢ at a point T again, then the circleTU) is
Archimedean with respect o, Bh, Y).

Proof. The pointSin (i) has coordinatesan,g(a,b)),
where g(a,b) = y/an(an+2b). Hence the pointsT
andU have coordinatega + ri,g(a,b)rf /b) and (a—
rk,g(a,b)rfl /b), respectively. This proves (i). The point
U in (i) hasx-coordinateab/bp — rR. This proves (ii). O
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Proof. Let K be the point in (i) lying oo, and Tg, Og; -
Then|KOq, |2 = a2 — (an — ab/bn)2. ThereforeglKO,|? —
(a+b)2 = |OyOq; |>+|KOq, |2 — (a+b)% = (ab/bn — (a—
b))? + a2 — (an — ab/bp)? — (a+ b)? = —2ab. Therefore
K generates Archimedean circles @,f,y) with y by
Lemma 1. The part (ii) follows from the fact that the
powers of the poin® with respect tqAGg), (AnOg, ) and
(BnOq, ) are the same. O

Figure 14
Notice thatth+rf) : (a—rf) =b:aif h=0.

B(I)

10 Power type Archimedean circles

From now on we consider all the semicircles with centers
on the lineAB as circles. If two congruent circles of radius

r touching at a poinD also touch a given circl@ at points
different fromD, we say thaD generates circles of radius

r with , and the two circles are said to be generate®by
with 8. If the two generated circles are Archimedean with
respect tdan, Bh,Y), we say thab generates Archimedean
circles of(ap, B, y) with d. )
Frank Power has found that the poifi, generates Figure 16

Archimedean circles ofa,f3,y) with the circley [13]. . . . . .
. . Recall that is the point of intersection of the axis and the
Quang Tuan Bui has found that the circlésOy), (BOu) circleylying in the regiory > 0. Quang Tuan Bui has also

and the axis bel_ong 0 _the same intersecting penc_zll of cir- found that the points of intersection of the circ{@©) and
cles and the points of intersection generate Archimedean : ; . :
B(1) generate Archimedean circles(af, B, y) with the cir-

circles of(a, B,y) with y [3]. We generalize the two facts. y [2]. LetJ be the point of intersection of the circle

The following lemmais needed [7], B(I) and the lineAB lying in the regionx > 0. If a< b,
Lemma 1 For a circle 3 of radius r, a point D generates  we can choosh so that 4y, < |OJ| holds. Then the circles
circles of radiusg|DOs|? — r?|/(2r) with &. An(O) andB(1) have no points in common. L&t be the

) . ) perpendicular to the linAB from the center of the circle
The parts (i) and (ii) of the next theorem are generaliza- xa

' ’ - n- Quang Tuan Bui’s result is generalized as follows.
tions of Power’s result and Bui’s result, respectively (see

Figure 15). Theorem 13 (i) The circles A(O), B(I) and the line%xg
belong to the same pencil of circles. If the pencil is inter-
secting, the points of intersection generate Archimedean
circles of(ap, Br,y) with each of the circleg anda,.

(i) The circles A(O), Bn(l) and the lineXy belong to the
same intersecting pencil of circles, and the points of inter
section generate Archimedean circles(aff3,y) with the
circley.

Proof. The circlesA,(O) andB(l) are expressed by the
. equations
Figure 15

2 2
Theorem 12 (i) If the circleay and the line §; Oy, have a (x—2an) +y2 = 43 (7)
point in common, the point generates Archimedean circles and
of (a,B,y) with y.
(ii) The circles(AGg), (BOq), (AnOg; ), (BnOq;) and the (X+2b)? +y? = 4b? + 4ab, (8)
axis belong to the same intersecting pencil of circles, and
the points of intersection generate Archimedean circles of respectively (see Figure 16). Subtracting (8) from (7) and
(a,B,y) withy. rearranging, we get = rk. ThereforeA,(O), B(l) and
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% belong to the same pencil of circles. Let us assume [4] C. W. DODGE, T. SCHOCH, P. Y. Woo, P. Yiu,

that the pencil is intersecting and is one of the points Those ubiquitous Archimedean circlédath. Mag.
of intersection. Letr be the foot of the perpendicular 72 (1999), 202-213.

from K to AB. Then |KF|2 = 4al — (rh —2a,)?. Then o _
|KOy|2 (a+ b)? ( —(a—b))?+ |KF[2— (a+b)2 = [5] H. OKUMURA, Lamoenian circles of the collinear ar-
—2(a+b)rf. ThereforeK generates Archimedean circles belos,KoG 17 (2013), 9-13.

of (an,Pn,y) with y by Lemma 1. The rest of (i) follows
from |[KOq, |> — a2 = (rfl —an)?+ |KF|?—a2 = 2a,rf}. We
prove (ii). The circlesAn(O) andB(l) are expressed by

[6] H. OKUMURA, Archimedean twin circles in the ar-
belos,Math. Gaz97 (2013), 512.

the equations [7] H. OKuMURA, Archimedean circles of the collinear
arbelos and the skewed arbeldsGeom. Graphl7

(x—(2a+h))?+y? = (2a+h)? (9) (2013), 31-52.

and [8] H. OKUMURA, Dilations and the arbeloblormat60

(X+2b+h)?+y? = (2b+h)?+ 4ab, (10) (2012), 4-8.

ThereforeAn(0), By(l) and % belong to the same pen- the collinear arbelokoG 16 (2012), 17-20.

cil. Substitutingx = rR in (9), and usinga+ h> 0, we get
y?=(2a+h)2—(r} — (2a+h))?=rf(2(2a+h) —rR) >
rh (2a—rf) > 0. ThereforeAn(O) and Ky intersect. The
rest of (ii) can be proved similarly as the proof of (i).

[10] H. OKUMURA, M. WATANABE, Remarks on Woo'’s
Archimedean circlesForum Geomz7 (2007), 125-
128.

Let K be one of the points of intersection in (ii), and let [11] H. OkUMURA, M. WATANABE, The twin circles of
F be the foot of the perpendicular frok to AB. Then Archimedes in a skewed arbe'ogorum Geom4
KF[Z=r3(2 (2a+h)—fA) TherefOfGH@yI2 (@+b)*= (2004), 229-251.

(

rh —(a—b))?+|KF2— (a+b)2 = —2ab. This proves

(ii). O [12] H. OKUMURA, M. WATANABE, The Archimedean
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Distances and Central Projections
ABSTRACT

Given a point P in Euclidean space R3 we look for all
points Q such that the length PQ of the line segments PQ
from P to Q equals the length of the central image of the
segment. It turns out that for any fixed point P the set of
all points Q is a quartic surface ®. The quartic @ carries
a one-parameter family of circles, has two conical nodes,
and intersects the image plane Tt along a proper line and
the three-fold ideal line py of Ttif we perform the projective
closure of the Euclidean three-space. In the following we
shall describe and analyze the surface ®.

Key words: central projection, distance, principal line,
distortion, circular section, quartic surface, conical node

MSC 2010: 51N20, 14H99, 70B99

1 Introduction

It is well-known that segments on lines which are parallel
to the image plan& or, equivalently, orthogonal to the fi-
bres of anorthogonal projectiorhave images of the same
length,i.e., they appear undistorted, see [1, 4, 5, 7]. The
lines orthogonal to the fibres of an orthogonal projection
are usually callegrincipal linesand they are the only lines
with undistorted images under this kind of projection.

In case of aroblique parallel projectioni.e., the fibres of

the projection are not orthogonal (and, of course, not par-

allel) to the image plane, the principal lines are still par-
allel to the image plana. Nevertheless, there is a further
class of principal lines in the case of a parallel projection
| : R® — R2 As illustrated in Figure 1, we can see that
in between the parallel fibrefp and fg of two arbitrary
points P and Q on a principal linel || T we can find a
second segment emanating fré?rand ending aQ with
PQ= PQ =P'Q. (Here and in the following we write”’

for the image point oP instead ofi(P).) In case of an
orthogonal projection, we hav@ = Q, cf. Figure 1.

28

Udaljenosti i centralna projekcija
SAZETAK

Za danu to¢ku P u euklidskom prostoru R3 traZe se sve
totke Q takve da je duljina PQ duZine PQ jednaka duljini
njezine centralne projekcije. Pokazuje se da je za &vrstu
tolku P skup svih to¢aka Q kvartika ®. Kvartika ® sadrzi
jednoparametarsku familiju kruZnica, ima dvije dvostruke
tocke, te sijece ravninu slike Tt po jednom pravom pravcu
i tri puta brojanom idealnom pravcu pp ravnine Tt (proma-
tra se projektivno prosirenje trodimenzionalnog euklidskog
prostora). U radu se opisuje i istraZuje ploha ®.

Kljuéne rijeéi: centralna projekcija, udaljenost, glavni
pravac, distorzija, kruZni presjek, kvartika, dvostruka to¢ka

o’ n
= =
| | I
I P d_ o
I A
o Jo

Figure 1: Principal lines: orthogonal projection (left),
oblique parallel projection (right).

In both cases, the orthogonal projection and the oblique
parallel projection, the principal lines are mappemgru-
entonto their images.

What about the central projection? Let R3\ {O} — 1

be the a central projection with center (eyepoidtand
image planat For the sake of simplicity, we shall write

P’ instead ofk(P). Again the lines parallel tat serve as
principal lines. Of course, the restrictien of k to a line

| || Ttis a similarity mapping. The mapping is a congru-

ent transformation if, and only i, C 1t because it is the
identity in this case.

From Figure 2 we can easily guess that even in the case
of central projections there are more line segments than



KoG-18-2014 B. Odehnal: Distances and Central Projections

those in the image plame having central images of the Based on the canonical scalarproduct, we can compute the
same length. Once we have chosen a pBirmn the fi- length||v|| of a vector by ||v|| = 1/ (v, V).
bre fp throughP’ we can find up to two point®, Q on

the fibre f through@ such thaP’@ =PQ=PQholds 2 The set of all endpoints
as long aP fo < P’Q. The pointsQ andQ coincide ex-

actly if Pio = P'Q. Finally, there are no poin® andQ if In the following we assume that there is the central pro-
Pfo > PQ. ' jectionk : R — m= R? with theimage planert where

R := R3\ {O} and O ¢ mt shall be the center of the
projection,i.e., the eyepoint The principal (vanishing)
P’ point H € 1t is 1rs closest point to the eyepoif® and
d := OH = Oris called thedistanceof k. ThereforeH
is the pedalpoint of the normal from the eyepdto the
image planat
Let us assume thd& € R® \ {1t} is a point in Euclidean
three-space (neither coincident wi@ nor in ). With
P’ = [O,P]NnTt we denote the-image ofP. The set of
all pointsQ e mwith a certain fixed distancee R\ {0}
from P’ is a circlecp s in the image plane centered aP’
with radiuss, see Figure 3.

0
Figure 2: Some of infinitely many segments of length s @
with the same image’® and, therefore, also
of length s.

In the case of a central projectien only the lines in the
image plane are mappedngruentnto their images. All
the other lines which carry segments whose images are of
the same length aneot mapped congrueminto their im-
ages. Just one segment on all these lines hkasraage of
the same length.

Note that if eitheiQ or P equaldO the line[P, Q] is mapped

to a point. Thus = PQ# P'Q since the latter quantity is
undefiend for eithe®’ or P’ does not exist.

Assume further thaP # O is an arbitrary point in Eu-
clidean three-space. Now we can ask for the set of all
pointsQ at fixed distance, say< R\ {0}, such that

o Figure 3: Line segments imand their equally long preim-
s=PQ=PC Q) ages.

whereP’ := k(P) andQ = k(Q) andsc R\ {0}. The We find all possible preimages @ on the quadratic cone
left-hand equation of (1) can also be skipped. Then, we ['ps = Cp sV O of k-fibres through all points og 5. The
are looking for all pointxQ being the endpoints of line  preimages shall satisfy

segments emanating fromwhose central image has the o

same length. It is clear that the set of@lis an algebraic s=PQ =PQ

surface. In Section 2 we shall describe and analyze this )

surface in more detail. Section 3 is devoted to the study of 2nd, therefore, they are located on a Euclidean spheye
algebraic properties of this surface. Surprisingly, thjset ~ centered aP with radiuss. Consequently, we can say:

of quartic surface does appear among the huge number of ) PP
quartic surfaces in [3]. Theorem 1 The set of all points @ R®> withPQ=P'Q =

i 3 . .
In the followingx = (x,y,2)T € R® are Cartesian coordi- S K\ {0} for some point R R*"\ {mi} is a quartic space

nates. For any two vectorsandv from R3 we denote the ~ CUrve g being the intersection of a sphéye; (centered at
canonical scalarproduct by P with radius s) with a quadratic conler ¢ whose vertex

is the eyepoint O and the circlexg (lying in 1T, centered
(U, V) = UxVx + UyVy + UzVy. at P'sk-image P, and with radius s) is a directrix.
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The quartic curvey mentioned in Theorem 1 has always Figure 5 shows the one-parameter family of quartic curves
two branches, since the two points on each genefatof mentioned in Theorem 1.

e s are the points of intersection of the generdigmwith Figures 5 and 6 show the quartic surfagenentioned in

the spheré&ps. Thereforeq is in general not rational. An Theorem 2.

example of such a quartic is displayed in Figure 4 where
the spher&ps and the coné€ p s are also shown.

Figure 5: The linear one-parameter family of spherical
guartic curves covers a quartic surface.

—

Figure 4: The quatrtic curve g of possible endpoints of line
segments starting at P with length s and equally
long image segments. The curve q is the in-
tersection of the quadratic conép s and the
sphereXps.

Not even in the casg®, P]_LtandP € ttan exeption oc-

curs: q happens to be the union of two circles (rational
curves). However, the union of rational curves is (in gen-
eral) not rational. In the first case> s is a cone of revolu-

tion andZps is centered on the cone’s axis. Consequently,

g degenerates and becomes a pair of parallel circles on bott
surfaces. In the second case the quayisalso the union

of two circles, namlegy s and a further circle olps and |
Mps.

Figure 4 shows an example of such a quartic curve (in
the non-rational or generic case) carrying the preimages
of possible endpoint®.

As the lengths of PQ as well as ofP’Q’ can vary freely,
there is a linear family of quartic curves dependingson
Thus, from Theorem 1 we can deduce the following:

Figure 6: The quartic surface& with its circles in planes
parallel to 1t has a singularity at O and P®
intersectgtin the line | and the ideal line pof

Theorem 2 The set of all points Q being the endpoints . the latter with multiplicity three.

of line segments PQ starting at an arbitrary pointeP
R\ {r} with PQ= P'Q is a quartic surfacep. 3 Thequartic surface

Proof. There exists d1,1)-correspondence between the In order to describe and investigate the quartic surfbce
pencil of quadratic coneBp s and the pencil of spheres we introduce a Cartesian coordinate system: It shall be

>ps. Consequently, the manifold of common poirits,, centered aH, the x-axis points toward©, and 1t shall
the set of points common to any pair of assigned surfacesserve as théyz-plane. ThusO = (d,0,0)" and the im-
is a quartic variety, cf. [6]. O age planatis given by the equation= 0.
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For any poinP € R3* with coordinate vectap = (§,n,0)"
with § # d the central imagé := k(P) = [O,P|NTtis
given by
dn  dz \'
/I

Obviously,P =P if Pe m i.e, & = 0. The points in the
plane

T Xx=d 3)

have no image in the affine part of the plame There-
fore, the planet, is calledvanishing plane The planer,
contains the cente® and is parallel tart at distanced.
Performing the projective closure & the images of all
points oftg, \ {O} are the ideal points at gathering ort's
ideal linepy .

Let now Q be the variable endpoint of a segment starting
at P. The pointQ shall be given by its coordinate vector
x = (x,¥,2)T. Then, an implicit equation ad is given by

(4)

Using Eq. (2) we can write Eq. (4) in terms of coordinates
as

®: PQ -PQ =0.

®: d?((n(d—x) —yd)%+
+((d—x) — )% =
(x=8)*+(y—n)*+(z—20)?) -
&% (d —x)?
whered:=d—¢&.

(5)

4 Propertiesof @

A closer look at the equation @b as given by Eq. (5) al-
lows us to formulate the following theorem which holds in
projectively extended Euclidean spagé&

Theorem 3 Letk : R* — 1tbe a central projection from
a point Oc R3 to a planert Z O and let further P R3*

and multiply byxs‘. The intersection of the (projectively)
extended surfac® with the ideal plane: X =0 is given
by insertingXy = 0 into the homogeneous equation®f
which yields the equations of a quartic cycle

@ XE(XZ4+ X2+ X2)=Xg=0. (6)

The first factor of the latter equation tells us that the ideal
line p, of the image plan&: X; =0is a part ofp= wN®
and has multiplicity two. In order to be sure that is a
double line on®, we compute the Hessian(#) of the
homogeneous equation @ and evaluate at

p2=(0:0:X2:X3)

(with X : X3 # 0 : 0 or equivalentlyX? + X2 # 0). This
yields

H(®) =28%(X3+X3) (7)

oo Qo
cNoNeNo}

—d 0
1 0
0 0
0 0

which shows that all but two partial derivatives®k ho-
mogeneous equation do not vanish algagThereforep,
is a double line orp.

The second factor of the left-hand side of (6) defines the
equation of thabsolute coniof Euclidean geometry with
multiplicity one. Thus® is uni-circular. O

A part of the double lingy, is shown in Figure 7 which
shows a perspective image of the surfdcand the circles
and lines orp.

be a point in Euclidean three-space. The set of all points Corollary 1 In the case R 1, i.e., & = 0, the surfaced

Q satisfying

PQ=PQ
(where P =k (P) and { = k(Q)) is a uni-circular alge-
braic surface®d of degree four. The ideal line;pof Ttis a
double line ofd.

Proof. The algebraic degre® can be easily read off from
Eq. (5).

In order to show the circularity ab, we perform the pro-
jective closure oR3 and writed’s equation (5) in terms of
homogeneous coordinates: We substitute

Xx=XXgt y=XoXyt, z=XaXg !

is the union of the image plarre(a surface of degree one)
and a cubic surface.

Proof. If P € 1, we have = 0. Inserting§ = 0 into Eq.
(5) we find

X([IX[|?(x — 2d) — 2(x— d)(ny + {2) + d)) =0

Obviously,® is the union of the plana (with the equation
x = 0) and a cubic surface. O
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Figure 7: A perspective image of the situation in space:
The ideal line p of the image planetofk is a
part of the double curve ab. The two parallel
lines | and m meet in the common ideal point
L € pz. The two planestand x= 2d serve as
tangent planes ob along p and meetb along
p2 with multiplicity three and | and m appear as
the remaining linear part.

Proof. Each planar section of the affine part®fis an al-
gebraic curve whose degree is at most 4. As we have seen
in the proof of Theorem 3, the ideal lin® of the image
planerttis a two-fold line in®. Thus, the intersection of
(the projectively extended) surfadewith any plane paral-

lel to Ttalso contains this repeated line. The remaining part
r of these planar intersetions is at most of degree 2.

The planes parallel tat meet the absolute conic of Eu-
clidean geometry at the@ibsolute pointsvhich induce Eu-
clidean geometry in these planes. Since the absolute conic
is known to be a part of, the curves are Euclidean cir-
cles (including pairs of isotropic lines and the jgia of

the two absolute points as limiting cases). The equations
of the intersections of with planes parallel tat can be
found by rearrangin@’s equation (5) consideringandz

as variables in these planes. The coefficients are unieariat
functions inx and we find

X(x— 2d)8%(y? + )+
+25(d — x)(8x+ d&) (ny + {2)+
+(d = x)28%((p,p) + X(x— 2¢))

—-d?’(n+¢%) =0

The essential monomialg, 7, y, andz are underlined in

(8)

The spheres of the one-parameter family of concentric order to emphasize them. Note that the monorwyialoes

spheres centered & carrying the one-parameter family
of quartic curveq) C ® intersect® along the quartics
and the absolute circle of Euclidean geometry. At the lat-

ter the spheres are in concact with each other and with the

quartic surfacabd. This can easily be shown by comput-
ing the resultants ofb’s and the spheres’ homogeneous
equations with respect &. From this resultant the factor
X2+ X2+ X2 splits off with multiplicity 2. In other words:

@ and all spheres abo& share an isotropic tangent cone
with vertex atP.

The shape of the curven @ together withn2 422 # 0,
i.e, P¢[O,H], tells us:

Theorem 4 A plane x= k (k € R) parallel to the image
planettintersectsp along

1. the union of a circle whose center lies on a rational
planar cubic curvey and the two-fold ideal line pif
k+#0,d,2d,¢&,

2. the union of a line | and the three-fold line fif
k=0,

3. the union of a line njj | and the three-fold line pif
k=2d, and

4. the union of a pair of isotropic lines and the two-fold
line ppifk =d,&.
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not show up. Since coé#’) = coeff(y?) the curves in Eq.
(8) are Euclidean circles.

1. We only have to show that the centers of the cir-
cles given in Eq. (8) o in planesx = k (with
k#£0,d,2d,&) are located on a rational planar cubic
curve. For that purpose we conside’s inhomoge-
neous equation (5) as an equation of conics in the
ly,Z] plane. By completing the squares in Eq. (8), we
find the center of these conics. Keeping in mind that
xvaries freely inR \ {0,d, 2d, &} we can parametrize
the centers by

X

n(d —x)(d§ + dx—x§)
ox(2d — x)

X)(d& 4 dx—x&)
ox(2d — x)

which is the parametrization of a rational cubic
curve. The cubic passes througtandP which can

be verified by inserting eithec=d orx=_&. In or-

der to show thamm is planar, we show that any four
points ony are coplanar. We insett # 0,d,2d,§
with i € {1,2,3,4} into (9) and show that the in-
homogeneous coordinate vectors of the four points
y(ti) are linearly dependent for any choice of mutu-
ally distinctt;.

() 9)

2(d—




KoG-18-2014

B. Odehnal: Distances and Central Projections

From
1 V(tl)l
1 yta) | _
det 1 yite)T | 0
1 xyz
we obtain the equation
ny—nz=0

of the plane that carriggs

Figure 8 shows the cubic curwe with its three
asymptotes.

2. The image plane: x = 0 of the underlying central
projectionk touches (the projective extended sur-
face) ® along the ideal lingx; of . This can be
concluded from the following: We write down the
quadratic form

XTH(®)X = Xg (X1 —2dX) =0

with H(®) being the Hessian from (7) and =
(X07X17X2,X3)T being homogeneous coordinates.
(Non-vanishing factors are cancelled out.) This form
gives the equations of the two planes thropglthat
intersect® along p, with higher multiplicity than
two, i.e., in this case with multiplicity three. Thus,
the multiplicity of the linep, considered as the in-
tersection ofltand® is of multiplicity three and a
single linel of multiplicity one remains. This line is
given by

I (2d—&)(p,p) — d*’€=28(ny+{2)

wherey andz are used as Cartesian coordinates in
the image planet

3. In a similar manner we find the lima which is the
only proper intersection ap with the planex = 2d:

m: d(2d2 — 5d€ + 4€2) — &(p,p) =
=28(ny+22)

The plane of the cubic curweis orthogonal to the
linesl andm.

. In case ofk = &, the plane runs through. Again,
the ideal linep; splits off with multiplicity two. The
remaining part is the pair of isotropic lines through
P with the equation

x=& (y—n)?+(z—-0?*=0.

The same situation occurs@ti.e., x = d where the
isotropic lines have the equation

x=d, y¥+Z=0. 0

Figure 8: The cubic curve carries the centers of all cir-
cles on®. lts ideal doublepoint0:0:n: Q)
is the ideal point of the lines orthogonal to
[ || m. The tangent of c at the third ideal point
(0:1:0:0 passes through P. The three dashed
lines arey's asymptotes.

The circles as well as the linen the quartic surfac® can
be seen in Figures 6, 9 and 8. In Figure 8, a small piece of
the linem shows up.

Remark 1 In the case of P [O,H], or equivalently,
n?+ ¢? = 0 the lines | and m coincide with the ideal line
of mand, thusytin @ is the ideal line oftwith multiplicity
four. The same holds true for the plane-2d if P € [O, H].

Remark 2 The planestand x= 2d behave like théan-
gentsof a planar algebraic curve ¢ at an ordinary double
point D because these tangents intersect ¢ at D with multi-
plicity three. This cannot just be seen from Figure 7.

The linesl andmfrom the proof of Theorem 4 are parallel
to each other but skew and orthogonal to the [@gP] as
long ast (& —2d) £0. If § =0 or& = 2d, we have the case
mentioned in Remark 1 arldandm are ideal lines. They
are still skew to[O, P] but orthogonality is not defined in
that case.

The set of singular surface points @rtontains only points
of multiplicity two. A more detailed description of the set
of singular surface points is given by:

Theorem 5 The set of singular surface points dnis the
union of eyepoint O, the object point P, and the ideal line
p2 of the image planegt The eyepoint O and the object
point P are conical nodes of.
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Proof. The ideal line offtis a line with multiplicity two
on®. The planegt: x= 0 andx = 2d intersect® along
this ideal line with multiplicity three as shown in the proof
of Theorem 4. Therefore, the points ois ideal line are
singular points considered as points®n

The pointsO andP are singular surface points @nsince
the gradients o> vanish at both points:

grad ®)(d,0,0) = (0,0,0)"
and
gfad‘b)(ﬁaﬂl) = (O, O= O)T

Now we apply the translation, : O+~ (0,0,0)T to @, i.e,,
the singular poin® moves to the origin of the new coor-
dinate system. The equation®fdoes not alter its degree.
However, the monomials in the equation®fare at least
of degree two in the variables y, z. If we remove the

monomials of degree three and four, we obtain the equa-

tion of a quadratic conEg centered aO. Its equation (in
the new coordinate system, but still labelled, 2) reads

Mo d28%(x,x)+2d?dx(ny+L2) =
=(&*+&(2d+&)(p,p)+&3(d +3))x2.

o is the second order approximation®dfat O. Sincel o
is a quadratic cone the singular pots a conical node,
see [2].

In order to show thal is also a conical node @b we ap-
ply the translationt, : P+ (0,0,0)T. Again we usex,

Figure 9: The two singular points O and P are conical
nodesj.e., the terms of degree two dfs equa-
tion when translated to O or P are the equations
of quadratic cones.The circular sectionsifie
in planes that meet the quadratic corfes and
I'p along circles.

If P € [O,H] (butP # O,H), then® is a surface of revolu-
tion with the equation

X(x— 2d) (X, X) + &(§ — 2x)(x—d)?— d*>** = 0 (11)

wheren? + 22 # 0 in contrast to earlier assumptions.

y, z as the new coordinates and the quadratic term of theThe set of singular surface points @contains only points

transformed equation @b given by
Mp: &(84d)&(x,x)+2d%dx(ny+{2)+
+d?({p,p) — & — 282)x* = 0.

is the equation of a quadratic cohg centered aP. Con-
sequentlyP is also a conical node (cf. [2]). O

Remark 3 The homogeneous equations of the quadratic

coneslp and 'p are the quadratic forms whose coeffi-

cient matrices are (non-zero) scalar multiples of the Hes-
sian matrix of®’s homogeneous equation evaluated at O

and P.

Figure 9illustrates the two quadratic coriesandlp. The
planes parallel tat (exceptx = k with k € {d, &}) intersect
both quadratic condsp andl'p along circles.

If P=P but[0,P] LT i.e, P mandP # H, then® is the
union of the image plangand a cubic surfac® with the

equation
(x—2d)(x,x) =2(x—d)(ny+&z) — d’x. (10)

The cubic surfacé has only one singularity & which is
a conical node.
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of multiplicity two. A more detailed description of the set
of singular surfaces points is given by:

Theorem 6 The set of singular surface points dnis the
union of eyepoint O, the object point P, and the ideal line
p2 of the image planet The eyepoint O and the object
point P are conical nodes of.

Proof. The ideal line offtis a line with multiplicity two
on®. The planegt: x= 0 andx = 2d intersect® along
this ideal line with multiplicity three as shown in the proof
of Theorem 4. Therefore, the points ois ideal line are
singular points considered as points®n

The pointsO andP are singular surface points @nsince
the gradients o> vanish at both points:

grad ®)(d,0,0) = (0,0,0)"
and

gradCD) (Ev T],Z) = (Oa 0, O)T

Now we apply the translation : O+~ (0,0,0)T to @, i.e,,
the singular poinD moves to the origin of the new coor-
dinate system. The equation®fdoes not alter its degree.
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However, the monomials in the equation®fare at least

of degree two in the variables y, z. If we remove the
monomials of degree three and four, we obtain the equa-
tion of a quadratic conEp centered aO. Its equation (in

the new coordinate system, but still labelled, 2) reads

Fo: d?&%(x,x)+2d23x(ny+{2) =
= (8"+&(2d+8)(p,p) +&3(d + &) )x°.

o is the second order approximation®dfat O. Sincel o

is a quadratic cone the singular potis a conical node,
see [2].

In order to show thaP is also a conical node @b we ap-

ply the translatiort, : P+~ (0,0,0)T. Again we usex,

y, z as the new coordinates and the quadratic term of the

transformed equation @b given by Figure 11: ® is the union ofitand a cubic surface of revo-
lution touchingrtat H if P=H.

Mp: &(8+d)&(x,x)+2d2dx(ny-+{2)+

+d?({p,p) — & — 282)x* = 0. References
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Non-standard Visualizations of Fibonacci Num-
bers and the Golden Mean

ABSTRACT

Fibonacci numbers and the Golden Mean are numbers and
thus O-dimensional objects. Usually, they are visualized in
the Euclidean plane using squares and rectangles in a spi-
ral arrangement. The Golden Mean, as a ratio, is an affine
geometric concept and therefore Euclidean visualizations
are not mandatory. There are attempts to visualize the
Fibonacci number sequence and Golden Spirals in higher
dimensions [11], in Minkowski planes [12], [4] and in hy-
perbolic planes (again [4]). The latter has to replace the
not existing squares by sequences of touching circles. This
article aims at visualizations in all Cayley-Klein planes and
makes use of three different visualization ideas: nested
sets of squares, sets of touching circles and sets of trian-
gles that are related to Euclidean right angled triangles.

Key words: Cayley-Klein geometries, Fibonacci numbers,
Golden Mean

MSC 2010: 51M04, 51M10, 51F20, 11B39

Nestandardne vizualizacije Fibonaccijevih brojeva
i zlatni rez

SAZETAK

Fibonaccijevi brojevi i zlatni rez su brojevi, stoga su to
0-dimenzionalni objekti. Najéesc¢e se vizulaiziraju u eu-
klidskoj ravnini, pomoc¢u kvadrata i pravokutnika u spi-
ralnom poretku. Zlatni rez, kao omjer, je pojam afine
geometrije pa euklidske vizualizacije nisu nuZne. Postoje
pokusaji vizualizacije Fibonaccijevog niza i zlatne spirale
u visim dimenzijama [11], u ravninama Minkowskog [12],
[4], i u hiperboligkim ravninama, takoder [4], gdje se nepo-
stojeci kvadrati zamjenjuju kruznicama koje se dodiruju.
Cilj ovog rada je vizualizacija u svim Cayley-Kleinovim
ravninama uz koristenje triju razli¢itih ideja: grupiranih
skupova kvadrata, skupova kruZnica koje se dodiruju i
skupova trokuta koji su analogni euklidskim pravokutnim
trokutima.

Kljuéne rijeci: Cayley-Kleinove geometrije, Fibonaccijevi
brojevi, zlatni rez

1 Euclidean Visualizations

In the Euclidean plane there are mainly three cases:

(a) The standard visualization by nested sets of Golden
In this paper we continue a study of visualizing the classi- Rectangles and gnomon squares, see Figures 1, 2 and e.g.
cal sequence of Fibonacci numbers and Golden Spirals [4][1], [4], [14]. Inscribing quarter circles into the gnomon
and aim at visualizations in general Cayley-Klein planes. squares results in discrete spiral€3tcontinuity.

Figure 1: Set of Fibonacci squares Figure 2: Nested set of Golden rectangles and quater cir-

cle biarc spiral
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(B) In [4] the_authors propose to use a chain of circle_s a? + b2 = 2
where each circle touches the former two circles, see Fig-
ures 3, 4. This type of visualization even allows generally I b2 +c2 =d?
normed planes (MinkO\_/vski _planes) and a_lso a hyperbolic E e g2 [ | ¢+ d? = e?
plane as places of action, i.e. planes without a (proper) W gt d? +e? = f2
concept of squares.
a=b=1:
1,1,2345, s i 112,358, ..

Figure 5: Natural numbers and Fibonacci numbers de-
rived from Pythagoras’ formula

While the left column leads to the so-called root-spiral and
triangles with catheteg/n,1 and the hypotenusgn+ 1,
see Figure 6, the right column leads to cathetes 1, vF
and the hypotenusgF 1, see Figure 7. Again, we get a
‘limit’ triangle with side ratio

a:bic=F_1:VF iR (2)

Figure 3: Set of touching Fibonacci circles and Fibonacci  Such a triangle might as well be called Golden (right-
spiral polygon of circle centres angled) Triangle. Figure 8 shows the spiral polygon de-
rived from such Golden Triangles.

Figure 4: Set of “Golden Circles” and spiral polygon of

circle centres Figure 6: The classical “root spiral

From the construction of touching circles in Figure 3 fol-
lows that we get a limit triangle of circle centres with side
ratio

1
aibiC=|3|+13(|:|71+F|+1):F.+2=1:(1+E):(p

=(14+9):(2+9) : (1+29). Q)

Figure 4 contains a nested set of such triangles with side
ratio (1).

Figure 7: Fibonacci number root spiral

(y) In this paper we propose an additional way of visual-
izing Fibonacci numbers and Golden spirals using sets of
Pythagoras triplets and right angled triangles akin to the
classical root spiral. Similar to Fibonaccis rule Pythagor
formula adds two numbers and gives a new one. This in
mind, one can generate the set of natural numbers as well
as the Fibonacci sequence via iterative processes applied
to the classical formula of Pythagoras, see Figure 5. Figure 8: Golden Root Spiral Polygon
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While in the Euclidean plane triangles with side ratio (2) 3.2 Visualizations in (affine) normed planes (so-called

are right angled by themselves, this is not the case in the
hyperbolic plane. But as long the triangle in-equation for

Minkowski planes)

the side ratio (2) remains valid this third type of visualiza See [1], [12] and Figures 10, 11.

tions is also possible in a wide range of settings as it is
shown in the following chapters. It should be mentioned

that the ratio (2) is supposed to be connected with some of

the ancient Egyptian pyramids, c.f. the concepts “Kepler
triangle” and “Golden Pyramid”, see [14].

2 The Golden Mean and the Fibonacci-
sequence

There is such a huge number of publications dealing with

the Golden Mean and Fibonacci numbers and the topic has
become common knowledge among mathematicians that

one can refrain from citing more than a few basic books
on that theme, e.g. [1], [9] and the Wikipedia article [14]
which contains a long list of references.

Fibonacci numbers and the Golden Mean vapase num-
bers, therebypis a root ofx? —x— 1 = 0 and the result of
the “most irrational continued fractionj= 1+ —r. Be-

1+1-

ing numbersthese objects are 0-dimensional. As a “ratio
of 3 collinear pointsg has a 1-dimensional visualization
and it is an affine geometric concept independent from any
Euclidean structure. Obviously, 2-dimensional visualiza
tions in the Euclidean plane using squares or circles can-
not be mandatory! Visualizations in other settings are at
least possible and might even enjoy some aesthetic value

Such non-standard visualizations also give some deeper in-

sight into the interplay of visualization assumptions and
the structure of the places of action. This might justify the
following considerations.

3 Other places of action

At first we collect those visualizations in places of actions
already treated in references and show some figures:

3.1 Higher dimensional Euclidean visualizations

See [11] and Figure 9.

Figure 9: Nested set of Golden Prisms with cubes as
gnomon figures and a Golden helix biarc spiral
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Figure 10: Minkowski geometric analogue to Figure 2.
(Applying translationst; to the partial arcs
¢ of concentric Minkowski circles under the
end-point is start-point condition results in a
Minkowski circular bi-arc spiral)

Figure 11: Minkowski geometric analogue to Figure 4. (Se-
guence of touching Golden Minkowski-circles
and Golden Triangles in a Minkowski plane
with hexagons as circles.
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3.3 Visualizations in a hyperbolic plane time-like (with a negative length). Therefore one needs to
) modify the side ratio concept gfe-Golden Rectangles by
See [4] and Figure 12. using absolute values as

As there are no similarities and no squares in a hyperbolic

plane one cannot use the visualization methmd (n [4] la|:|b|=1:0. (3)

the authors propose methofd) (and handle the different

radii of the Golden circles via a hyperbolic scaled line. For Furthermore, the biarc spiral curve in Figure 13 consists of
visualizing the circle chain they use the F. Klein model of a general conic section arcs and notpefquarter circles.
hyperbolic plane and base the construction on an arbitraril

given scale on a hyperbolic line, see Figure 12.

Figure 13:“Affine Golden biarc spiral”, “affine Golden
Rectangles” and “squares” in an affine plane,
which is endowed with a suitable affine coordi-
nate frame.

Method @) does not work: It is not possible to construct
a real space-likpe-circle (i.e. a Euclidean equilateral hy-
perbola with predifined directions of asymptotes), which
touches two mutually touching space-lige-circles. Their
centres would have to form triangles with side length ratio

The hyperbolic case encourages us to look for visualiza- (2)- Fora<b < cwe would havea+b < c, expressing
tions also in other Cayley-Klein planes. Of course, one that in thepe-plane the triangle inequality would not held.
faces the problem of finite length of lines in e.g. the el-
liptic plane, while a line in affine planes and the hyper-
bolic plane has infinite length. It turns out that also some
affine Cayley-Klein planes need greater modifications of
the three visualisation schemes, as shown in the next chap
ters. For an overview of all Cayley-Klein planes see e.g.

Figure 12: A sequence of tangent Golden circles and
Golden triangles in the hyperbolic plane.

This is why method ) is problematic, too. It would
have to be modified according to the norm-function of the
pe—plane by absolute values similar to (3). But as there
exist the (continuous) group gfe-rotations, the group of
translations and the group of dilatations, one can at least
constructpe—spirals as orbits of a one-parameter group of

31 pe—similarities. Generating such a discrete spiral polygon
with the pe-similarity factorg (or /@) then leads to a vi-
4 Visualisations in Cayley-Klein planes sualization of a Goldeperoot spiral, see Figure 14.

4.1 Affine cases N

4.1.1 The Euclidean case [N

///
1 AL A AP
" V& 55 /

See Chapter 1.

4.1.2 The pseudo-Euclidean cape-Case)

Here, the visualization method) by squares does work. |
The constructions are based on affine parallelograms, ¥ —
which, by a suitably chosen affine coordinate frame can /-
be called affine squares, affine Golden rectangles, see [4 i

and Figure 13.

Note that, from the pseudo-Euclidean point of view, one _ .
side of Golden Rectangles is space-like, while the other is Figure 14: Golden pseudo-Euclidean spiral polygon
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4.1.3 The isotropic casé-¢ase)

In the projective extension of an isotropic plane the ideal
line u and ideal pointJ act as absolute figure. Choosing
an affine coordinate fram@;E, F) with O,F,U collinear
andE,F as unit points of the axes= OE,y = OU al-
lows to measure thiedistance of two point®(xp,yp) and
Q(Xq,Yo) asd(P,Q) := [xg — xp|. If P,Q are collinear with

U, one uses$yg — Yp| as a substitute for their vanishiig
distance and calls it “spacing (Sperrung)”. Obviously it is
possible to construct a nested set of “Golden Rectangles”
in a seemingly spiral arrangement, see Figure 15, but this
affine spiral arrangement does not suit to an isotropic kpira
(c.f. [7]). This way, visualization methodif works well.

Figure 16: Golden isotropic spiral polygon

B The set of points with fixed distance to a given point
is a pair ofy-parallel lines, so-called isotropic lines. This
circle concept is not useful for our purpose. Let us con-
sider the following circle concept: Ancircle is a conic
section touching the absolute linein the absolute point

U. In our model of the-planei-circles are parabolas with
y-parallel diameters. The Euclidean parameter is a proper
replacement of the concept “radius”, because inemcles

are either similar or one is the translated of the other. Itis
not possible to construct drcircle that touches two mu-
tually touchingi-circles in proper points. At least one of Figure 17: i-circular biarc spiral to an i-spiral polygon
the tangent points must be the ideal pdiht Therefore

visualization methodR)is not viable. 4.1.4 The duape-plane

The dual pe-plane is also called quasi-hyperbolic plane
(gh-plane). Its absolute is a pair of real lined, whereby
one (sayf =: u) can act as “line at infinity’'u of a pro-
jective embedding of the affine plane. Therefore, we can
discuss this case in this sub-chapter. In this modelgita
plane the absolute involution with the fixed lined sim-
ply becomes the (Euclidean) reflection at the properdine
Strictly speaking, theh-plane is just one half-plane with
respect te, but as we did in th@e-plane case we also con-
sider the projective embedding of thi-structure. Apply-
ing a suitable regular polarit® to the pseudo-Euclidean
plane one receives this model of the projectively embedded
gh-plane, where the two half-planes represent the space-
like world and the time-like world. The fixed linerepre-
Figure 15:Nested set of Golden Rectangles and squares insents one set of light-like lines. It is easy to translate-con
an isotropic plane. cepts concerning ratios (of collinear points) and anglés (o

Similarto th teisgpiral pol lines) togh-ratios of lines andjh-angles of points. Parallel
(¥) Similar to thepe-case one can generateigspiral poly- lines occur as points on a line parallel to e and orthogo-

gon (see [7]) and can use it for the construction of a Golden 5] jines map to points on lines symmetriceosuch that
i-root spiral, see Figure 16. For such a spiral polygon evenrectangle$ABCD) occur as trapecigbcd) with two sides
Cl-smoothi-circular bi-arc spirals are possible, see Figure parallel and symmetric te. In particular, squares map to
17. parallelograms.
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For thepe-plane visualization method( can be based on  squares in the el-plane, such that visualisation meftod
Figure 13, if we modify the side ratios of the Golden Par- cannot be performed. Because of the finite length of ellip-
allelograms according to (3). So we receive a visualization tic lines method 3) works well up to a certain number
(a) in thegh-plane by dualizing Figure 13, see Figure 18. of circles, see Figure 19. By choosing a suitably small unit
for the scaling of the elliptic line this number can be any
finite numbem. For visualization purposes, this might be
v \ AN _f— / sufficient. If theel-circle radius would exceed the length
| AN/ / | of a line one had to replace it by a circle with a radius
y— B modulo 1, what makes visualization very confusing. For
1 A \ ] e.g. a chain of goldeel-circles on the sphere model of the
, - el-plane it could be an idea to start with the largest possible
el-circle, i.e. a great circle, and work from large to small,
see Figure 20.

2 a1

)\
\
n
e
o

Figure 18: Golden gh-polygon according to visualization
method ¢) by squares and rectangles (by du- Figure 19:Chain of Fibonacci circles in the projective
alizing the figure at top). model of the elliptic plane.

In Figure 18 the pointa, b represent the sides of the limit-
guadrangle and their connection represents the pole of the
spiral polygon (at right). Thereby the ratio afwith re-
spect toag, ag reads as

r(a,a;,ap=r(a,ag,a)=...=1:(3—0)
=1/5(2+@) = 0.723... (4)

Visualization method[) does not work here: In this model
gh-circles occur as parabolas with common tangetitis
impossible to construct non-trivial triples of mutuallyufe
ward) touching parabolas having a common tangent. Sim-
ilarly, also methody) is not suited tajh-planes.

Figure 20:Chain of Golden Circles on the Euclidean

4.2 Projective cases sphere representing the elliptic plane
4.2.1 The hyperbolic plane (see 3.3) 4.2.3 The dual Euclidean plane
Here we just refer to [4] and Figure 12 in 3.3. is also called quasi-elliptic plangéplane). Its absolute

figure is a pair of conjugate imaginary lineg with a real
intersection pointJ. A very convenient model of a ge-
Place of action is the full projective plane endowed with an plane in the (projectively extendend) plane of visual per-
elliptic absolute polarity. There are no similarities ar@d n  ception (represented by a sheet of paper, the PC-screen or

4.2.2 The elliptic planed]-plane)
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the blackboard) takes U as a proper point and i and j as
the fixed lines of the (Euclidean) “right angle involution” 1
in the pencil of lines with suppotl (see Figure 21 left).

We use homogeneous Euclidean coordinates in both, the ql
projectively enlarged Euclidean plareefflane) and thege-
plane. The transfer from theeplane to thege-plane can be
carried out by the (regular) polariQ : P—L defined by
the regular imaginary conic sectiog + x2 +x3 = 0 and
the transformation matrix

Figure 21: ge-distance of non-parallel points (left) and of
parallel points (right)

10 0 (a) The dual of a Euclidean rectangle with sides
To=|0 10 (5) a1,by,ap, by is a quadranglé\;, By, Az, B, the diagonals
0 0 1 e, f are orthogonal and intersectlih (see Figure 22). For

the dual of a Euclidean square the poikts= (A1B1) N

In the e-plane the parabolic distance measure in the point (A,B,) andF := (A;B,) N (A2B1) additionally are on or-
set P and the elliptic angle measure in the line set L are de-thogonal lines through .

scribed by the usual Pythagoras formula (6) and Brauner's
formula (7), see [2]:

d(P.Q) = \/(xg—Xp)2 + (o — Yp)2 (6)
with x = %,y: XX.—f and
tanl(pv q) = \/(_Cr(pv pLaqaql)a (7)

with pt e-orthogonalp, etc. These measures become a
parabolicqe-angle measure in the line set L and an ellip-
tic ge-distance measure in the point set P afeplane.

In our visualization of theje-plane thege-distance of two
pointsP, Q which are non-collinear witk appears as the
Euclidean angle between the lind$,UQ, see Figure 21

Figure 22: ge-rectangles are quadrangles with orthogonal
diagonals through U.

So it is possible to transfer directly the Euclidean nested

(left). Thus the formulae (6), (7) just exchange their roles set of Golden Rectangles to the-plane, see Figure 23.
Note that, similar to the isotropic casge-circles are not
defined as (planar) point sets having constant distance from
a centre point, but as conic sections touching the com-
plex absolute lines i and j. This means that, in our vi-
sualization of age-plane, the absolute poitt is a com-
mon (Euclidean) focus of the conic sections representing
of ge-circles. One can choose one of the ge-circles as unit
circle c and, similar to the isotropic case, extend the dis-
tance measure also to two parallel poiRtS(U ), that are
collinear withU : That additional distance can again be
namedspacing(Sperrung. It is defined by the difference

of ratios as

Figure 23:Nested set of Golden qe-rectangles and a
Golden ge-spiral polygon.

(B) As age-circle is a conic section havind as one of
its foci. Figure 24 shows that it is possible to construct
a sequence ofie-circles, each touching the former two.
Dealing withradii, however, would require a definition of
ge-circles as aje-distance set, which is not possible. This
is why visualization method3) does not work.

d(R'S) := [r(SE,U)—r(RE,U)|, 8)

with the pointE € c acting asunit pointonUR, see Figure
21 (right).
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Figure 24: A chain of ge-circles, one touching the two for-
mer ge-circles.

(y) To transfer the Euclidean Golden Root Spiral (Figure
8)) into thege-plane model we have to construct a trilat-
eral with angle ratiep: \/@: 1. As Euclidean rotations with
centreJ are admitted, it becomes possible to also construct
ageanalog to the Golden Root Spiral, see Figure 25.

Figure 25: A Golden quasi-elliptic root spiral.

5 Conclusion and Outlook

The main subject of this paper is to show that visualiza-
tions of mathematical objects do not have to be performed
in the classical Euclidean plane. Visualizations in other
settings, like the Cayley-Klein planes or even spaces of
higher dimensions, are justified as well. As an example we

visualized the Golden Mean and the Fibonacci sequence in
models of all possible Cayley-Klein planes. When doing
so, visualisation methods based on typical Euclidean fig-
ures and properties have to be replaced by other methods.
In this paper we propose three methods, which all work
well in the Euclidean case. To transfer these methods in
Cayley-Klein planes we use models conveniently adapted
again to the plane of visual perception. Convenient means
that constructions can be performed with available graph-
ics software tools. In our paper we used Cinderella 2.8 for
the figures. This CAD-software is distinguished by provid-
ing (planar) hyperbolic and elliptic geometry construatio
tools, too (see e.g. [15]). In some, but not all, Cayley-
Klein planes we get visualizations of the Golden Mean and
the Fibonacci sequence with modifications of the proposed
Euclidean concepts.

Metallic Means generalize the Fibonacci sequence and the
Golden Mean, see e.g. [13], [8]. The three presented meth-
ods could also be applied to visualize (generalized) Metal-
lic Means. But as they all are defined as positive solu-
tions of quadratic equations there will not occur essdptial
new results. Van der Laans and Rosenbuschs cubic gen-
eralizations of the Golden Mean have three-dimensional
(Euclidean) visualizations by nested sets of boxes, thus
generalizing the methodi} using squares and rectangles,
see e.g. [5], [6] and [10]. Higher dimensional visualiza-
tions by nested sets of boxes are also known for Metallic
Means, see [11]. For visualizations in non-Euclidean and
Minkowski-spaces the methof)((with hyper-spheres in-
stead of circles, see [4]) seems to be natural and it is often
the only possible method. Thereby one has to construct a
chain of hyper-spheres, where thi touches the former
(n-1) hyper-spheres and their radii are proportional to Fi-
bonacci numbers or elements of a geometric sequence. If
we choose the radii according to a geometric sequence with
proportionality factorp or e.g. the Silver Mean one might
call the occurring simplices of the centres of consecutive
hyper-spheres Golden resp. Silver simplices.
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Primjena linearne i nelinearne jednadzbe
provodenja topline u obradi digitalne slike

Application of Linear and Nonlinear Heat Equ-
ation in Digital Image Processing

ABSTRACT

We will explore the application of partial differential equ-
ations on digital images. We will show how to use the
heat equation to eliminate noise in an image, highlight
important elements and prepare it for possible further pro-
cessing. We also show known heat equation’s theoretical
results in a methodical sequence and then derive simple
numerical schemes based on the finite differences method.
Guided by the idea of image structure preservation, for
example edge preservation, the central part of this article
introduces Perona-Malik equation as an example of a no-
nlinear heat equation. We conclude by comparing linear
and nonlinear heat equation application on a couple of test
images.

Key words: heat equation, Perona-Malik equation

Primjena linearne i nelinearne jednadzbe
provodenja topline u obradi digitalne slike

SAZETAK

IstraZivat ¢emo primjenu parcijalnih diferencijalih jedna-
dZbi u obradi digitalne slike. Primjenjujemo jednadzbu
provodenja topline kako bismo na slici uklonili Sum, istak-
nuli vazne elemente i pripremili je za eventualnu daljnju
obradu. Metodi¢kim slijedom dajemo teorijske znacajke
linearne difuzije, a zatim izvodimo jednostavne numericke
sheme temeljene na metodi konaénih razlika. Vodeni
idejom ocuvanja struktura na slici, primjerice rubova, u
sredi$njem dijelu &lanka uvodimo Perona-Malikovu jed-
nadZbu kao primjer nelinearne jednadzbe provodenja to-
pline. ZavrS8avamo s usporedbom primjene linearne i neli-
nearne jednadzbe provodenja topline na testnim slikama.

Kljuéne rije¢i: jednadZba provodenja topline, Perona-
Malikova jednadzba

MSC2010: 68U10

Parcijalne diferencijalne jednadzbe uvele su novi pogled varijablat > 0, a prostorna € U, gdje jeU C R" otvoren

na obradu digitalne slike. UspjeSnost metoda koje ih skup. Nepoznata je funkcija: U x [0,00) — R, u(x,t), a

koriste nije iznendujuta, buduti da su takve jednadzbe operatoA djeluje nau obzirom nax, odnosnd\u = Axu =

polu€ile uspjeh i u drugim podrucjima, primjerice fizici, Y[ ;uxyx. Ovajednadzba poznataje i pod nazivdifuzij-

kemiji, elektrotehnici, graditeljstvu i drugdje. Dostupn ska jednadba

su opsezni matematicki rezultati, 5to omogucuje stvar

nje jednostavnih numerickih algoritama koje emo uovom 1 1 Fizikalna interpretacija difuzijskog procesa

Clanku predstaviti. Metode temeljene na parcijalnim dife

rencijalnim jednadzbama jedne su od metoda u obradi slikePoimanje fizikalnih procesa koji izjednacuju koncentjaci

koje imaju najbolje matematicke temelje, a razumijevanje izmedu povezanih podrucja prili€no je intuitivno. Ono se

ovih metoda vodilo je otkri€u brojnih novih. moze matematicki formulirati Fickovim zakonom koji za
jednu prostornu dimenziju glasi

1 Linearna jednadzba provodenja topline F__adu 2
dx’

U nastavku ¢e nam od interesa biti linearna jednadzbaggie je tokF kolitina supstance po jedinici prostora i vre-

provadenja topline, menu (npr. u%os"), A je difuzijski koeficijent,u je koncen-

U —Au=0, Q) trlacija (npr. u%) te x varijabla. Opceniti Fickov zakon
asi

uz koju idu i prikladni pocetni i/ili rubni uvjeti koje tem g

kasnije navesti. Ovdje pretpostavljamo da je vremenskaF = —Alu. 3)
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Tok F je uzrokovan gradijentom koncentracije Odnos
izmedu F i Ou opisan jedifuzijskom matricom Akoja je

pozitivno definitna. Slucaj kada $ui (u paralelni naziva
seizotropan a u optemneizotropnonslucaju,F i Cu nisu

paralelni.

Difuzija premjesta masu bez gubitaka postojece ili stvar

parametrom standardne devijacie= 2t. Vrlo je za-
nimljivo te bismo to ovdje htjeli posebno istaknuti, da iz
toga slijedi da je primjena jednadzbe praemja topline
ekvivalentna poznatoj tehnici Gaussovog iztiyanja di-
gitalne slike. Takav postupak poznatije filtar koji se kbiris
za izglalivanje slika teZzinskim usrednjavanjem vrijednosti

nja nove. Ta Einjenica moZe se opisati jednadzbom konti- Unutar odréenog podrucja (npr. konvolucijom). Upravo

nuiteta
u = —divF.

Ako (3) umetnemo u jednadzbu kontinuiteta dobivaaito
fuzijsku jednaidbu

u = div(AOu),

to je upravo linearna jednadzba prdeaja topline ako je

A =1 jedinicna matrica. U obradi slika koncentraciju iz
ovih razmatranja mozemo poistovjetiti s intenzitetomeboj

na odrelenom mjestu na slici (piksel).

1.2 Pcetno-rubni problem

Neka jeT > 0, definiramo parabolicki cilindar
Ur =U x (0,T],

i parabolicki rub

Mt =Ur —Ur.

U nastavku Zelimo rijeSiti pocetno-rubni problem

(4)

Uu—Au=0 naUr
u=g nal .

Iz klasi¢ne teorije parcijalnih diferencijalnih jedraid [2]
poznat je sljedeti rezultat.

Teorem 1 Jedinstvenost na ograni¢enim domenama)

Neka je ge C(I't). Tada postoji najviSe jedno rjeSenje

u e C2(Ur)NC(Ur) problema (4).

iz toga dolazi ideja koriStenja difuzije u obradi slike.

Zaklju€ujemo uvodni teorijski dio, a u nastavku c¢emo pret
hodna teorijska saznanja primjeniti u obradi digitalnkesli

1.3 RjeSenje metodom kon&nih razlika

Zelimo potetni problem (4) rijesiti numericki. S obzino
na to da je slika zapravo matrica, u nastavku uzimamo da
jeUr =10,p] x [0,q] x (0, T]. Tada (4) ima oblik

(6)

U = Uxx+Uyy NaUr
u=g nal .
Pocetnu diferencijalnu jednadzbu ¢emo primjenom Taylo
rovog teorema zamijeniti s diferencijskom jednadzbom.
Diskretiziramo pravokutnikO, p] x [0,q], gdje sup i q
dimenzije slike, s ciliem uspostavljanja odnosa izime
¢vorova u diskretnoj mrezi i piksela na slici, iztheko-
jih je u obje prostorne dimenzije jedini¢na udaljenost: Pr
mjenom Taylorovog teorema parcijalne derivacije zamje-
njujemo konacnim razlikama

ul<+17uik‘j
)

~ sl

U ~ =5

K K ook

U g =208 U
AX2 )

K K ok

U o Ui 2U U

e Ay \v-a

Sto uvrstavanjem u (6) daje

Uyx ~

]
At Ax? Ay?

k+1 k k k k k k k
Uj U Uhag T2 Yo 2U U

Valja napomenti da je rieenje na neograni¢enim dome-Zelimo promatrati evoluciju slike kroz vijeme u diskret-

nama, uz uvjet da je funkcijg neprekidna i ograni¢ena,

nim vremenskim koracima, $to zna€i da nas za danu sliku

takoder jedinstveno ali i glatko zato Sto je dobiveno ko- zanima vrijednost piksela na istom mjestu u iduéem vre-

nvolucijom

u(x,t) = - A{ne*%g(y)dy (xeR"t>0) (5)

(4mt)"/2

Vidimo da rjeSavanje jednadZbe prelemja topline za-

menskom koraku. S obzirom na to dafje = Ay = 1 do-
bivamo,

k+1 _  k k k k k k
ui,j —Ui,j'i‘At —4ui,j+ui+l’j+ui,l’j+ui’j+l+ui!j,1}.

pravo znaci konvoluiranje poCetne temperaturne digtrib  Prethodnarazmatranja mozemo i jednostavno implementi-
cije, odnosno potetnog uvjeta s Gaussovom funkcijom srati u programskom paketu SCILAB

1SCILAB je besplatni program otvorenog koda za znanstvedomanje i numericke simulacije koji se koristi u znanastidustriji. SCILAB ima
gotovo istu sintaksu kao i MATLAB, a viSe o programu se mp#zenaci nawww.scilab.org
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(d)T=50

(b)T=5

(e) T=100

() T=20

(f) T =300

Slika 1: Otapanje p@etne slike (a) s viremenskim korakaim= 0.1. Na slikama (b), (c), (d), (e) i (f) T predstavlja proteklo

vrijeme.

1.4 Simulacije

2 Nelinearna difuzija

Posljednji dio ovog odjelika prikazuje koriStenje dosad Unato¢ tome §to je linearna difuzija jednostavna i primje
izvedenih zaklju¢aka na testnoj slici Lena. U program- njiva, ima nekoliko mana. OCiti problem kod takvog, Ga-

skom kddu ucitavamo sliku i zatim primjenjujemo izve-

denu shemu.

u0 = imread(’Lena.eps’);
[p,ql=size(ul);

for t = 0:dt:T
for i=2:(p-1)
for j=2:(q-1)
U_Xx =
(u0(i+1,j)-2%u0(i,j)+u0(i-1,3));
uyy =
(u0(di,j+1)-2%u0(i,j)+u0(i,j-1));
u(i,j) = u0(di,j) + dt*(u_xx+u_yy);
end
end
ul=u;
end

ussovog izgldivanja nalazi se u tome $to ne samo da iz-
gladuje Sum, vet zamutuje vazne elemente slike poput ru-
bova, Cineti ih tako tezim za pronalazenje i analizgan
Zeljeli bismo razviti alat koji nam omogucuje uklanjanje
Suma na nacin koji bi zatim olak3ao pronalazenje rulbhova
ostalih elemenata slike. To znaci da se difuzija treba-odvi
jati samo unutar zasebnih podrucja koja se nalaze na slici,
»POStujuci” njihove postojete rubove. Potrebno je difuz
prilagoditi tako da njeno djelovanje nije jednoliko na eije
loj slici, ve€ ovisi 0 pojedinim pikselima i njihovim okali
nama.

2.1 Perona-Malikova jednadzba

Ideja koju su prvi uveli Perona i Malik u [4] je prilagodba
jednadzbe prowtenja topline tako da difuzivnost ovisi o

promjenama na slici. Prisjetimo se difuzijske jednadzbe i
prethodnog odjeljka. Za difuzivnostuzeli smo jedini¢nu
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matricu i time dobili jednadzbu provenja topline. NoA Za f uzmimo funkciju
ne mora biti jedini¢na, €ak niti konstantna. Vidjet ced® o
te nam upravo odabir prikladne difuzivnostiomoguciti (55 = 1+§'
postizanje trazenih svojstava difuzije. Kao sto je spome

nuto, zelimo potaknuti izgkiivanje unutar podrucja, za

Neka je funkcija toka dana s

razliku od izglalivanja preko granica podrucja. To bismo ®(s) =s. f(&?) =s- LSZ = Aé«zﬁ;
mogli postici tako da vrijednost difuzivnosti bude 1 unuta Y
podrucja, a O (ili barem blizu 0) na granicama. Difuzija Ce Derivacija ove funkcije je

se tada odvijati unutar svakog od podrucja zasebno, ne pre- N(2A2)

lazeti granice. Na Zalost, ne mozemo unaprijed znag gdj P'(s) = A127

se na slici nalaze rubovi. Jedino Sto mozemo jest ocije- Dakle, ova funkcija postize ekstrem kadasfe= A2. Kako

niti koliko se, s obzirom na zadani piksel, njegova okolina . :
mijenja. je A > 0imamo

Neka_lj_e fu_nkC|_JaE = I_E(x, y) Jedna takya 0(.:Jena definirana ®(s) <0, |3 > A,
na slici. Bilo bi poZeljno d& ima svojstva:
@'(s) >0, |s| <A
1. E(x,y) = 0 unutar svakog zasebnog podrucja

2. E(x,y) = Ke(x,y) u svakoj rubnoj totki podruja, Perona-Malikova jednadZba za jednu dimenziju glasi

gdje je e jedinini vektor normale na rub u tocki
(x,y), aK lokalni kontrast odnosno razlika izm#u U = (f(sz) . ux)

intenziteta sive slijeva i zdesna od ruba. X

= f/(U2) - 2y + F(U2) - Uy
DifuzivnostA mozemo odabrati tako da bude funkcija koja 5 12
ovisi 0 ocjeni koju smo upravo naveli, odnosno nekA je - (f (W) + F(u) - ZUX) " Uhox
f(||E||2). Prema dosada3njim razmatranjinAehi trebala = @ (Uy) - Uy
biti nenegativna padajuca funkcija takva dafj@®) = 1.
Na taj nacin difuzija ¢e se odvijati uglavhom unutar po-
dru€ja i nece imati utjecaja na rubovima gdje je ocjéna
velika. Sretom, vidjet cemo da upravo najjednostavnija
ocjena, gradijenE = [u daje izvrsne rezultate. Uzevsi u
obzir prethodno dosli smo do Perona-Malikove jednadzbe,

u = div (f(|0u/?)0u) naUt @)

u=g nalt Ovdje sun i & koordinate paralelne(Su i okomite nallu,
redom, Sto znaci da je difuzijanaprijedduz tangenti na
rieSenjeu, aunaprijed-unatragluz smjeralu. O¢ekujemo
da €e blizu ruba na slidilu biti velik, 3to znac€i difuziju

Za velike vrijednosti koeficijen®’(uy) o€ito postaje nega-
tivan, Sto vodi na difuzijwnatrag U dvodimenzionalnom
slucaju bismo, kao u [1], dobili

U = @ (|0uf)unn + £ (|0 uge.

Zbog trazenih svojstava funkcije difuzivnosti koje se
najcesce koriste su

f(?) = 152 (8) unatrag u smjeru gradijenta, rezultat Cega je izoStijavan
1+ 5 rubova umjesto njihova zamucenja. Prethodno navedeno
i objasnjava kako Perona-Malikova jednadzba ne samo da
2 Cuva rubove, vet ih i dodatno istice.
f(&)=e 22, 9)

gdje jeA > 0. Obje funkcije su monotono padajuce i Definicija 1l ([9])

f(s?) =1zas=0,i (") = O kadas — . Problem jedobro uvjetovarako ima jedinstveno riesenje

koje neprekidno ovisi o @etnim uvjetima. Za problem

2.2 Teorijski rezultati za jednodimenzionalni model koji nije dobro uvjetovan Keemo da jéoSe uvjetovan

Promotrimo sada jednodimenzionalni problem

w = div (f(u2)ux) naU x (0, ) Poznato je da je difuzija unatrag loSe uvjetovana. Prema
ou tome, postojanje difuzije unatrag u Perona-Malikovoj je-
0 naou x (0, ) - (10) " gnadzbi sugerira da bi i ta jednadzba mogla biti loge uvje
u=g naU x {t =0} tovana.
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Definicija2 (Slabo rjeSenje za jednodimenzionalni koja uklju€uje funkciju koja je rjeSenje jednadzbe. gbo
slucaj, [9]) toga je potrebno pojednostavniti izraz iz problema (7).

Za lokalno integrabilnu funkciju (x,t) kazemo da jeslabo ~ R@cunamo:

. v . _ . . ~ . 2 2
rje§enjd3erona h{lallkovejednjazbg gko jefy (U= +ug) dx b — div(f(|Du|2) . Du)
uniformno ogranten za ograri@eni t i ako za svaku funk-

ciju @ CY(R x R, vrijedi - div(f (V2 +2)- [uy, uy])

//[(gu—(g(f(u)z()ux] dxdt=0. —(f@+@)u) +(FE+8) ) (11)

y
U [3] je pokazano da ako postoji slabo rjeenje jedno- Racunanjem parcijalnih derivacija te primjenom Schwar-
dimenzionalnog problema, pogetni uvjet mora biti be- zovog teorema slijedi

skonacno puta diferencijabilan u podrucjima gdje sejadvi

difuzija unatrag (| > A). To pokazuje da je moguce U =f'(U;+u) (ZUxex+2UyUVX) U+ F (UZ + U U

da slabo rjeSenje uopcte ne postoji. OCito su afine funk-
cije oblikau(x,t) = ax+ b rjeSenja, no one su nestabilne u
smislu da ako promjenimo poCetni uvjet proizvoljno malo,  —2f/(u2 +- uf,) (U)Z(UXXJF Uy Uy + uf,uyy)
rjieSenje mozda nece postojati.

+ f/(uf 4+ u)) (Zuxuxy+ 2uyuyy) Uy + (UZ -+ ) uyy

+ (UG + Ud) (U + Uyy).
Teorem 2 (Nepostojanje rjeSenja za jednodimenzionalni

o Pojednostavljena Perona-Malikova jednadzba je jedno-
slucaj)

stavna za programsku implementaciju.
Za danig takav da jeg'(x) = 0 nadU i g'(x) > A na
samo jednom kompaktu U, na primjerg'(x) > A na T = 20
Q= (Xo,Yo) CC U i |g(X)] <A naU\Q, jednodimen- 4t = 0.2;

zionalni problem (10) nema globalnog slabog rjeSenja u lambda = 1;
Cclu). £ =0(s) 1/(1+s/lambda"2);
df =e(s) -((1/lambda~2)/((1+s/lambda"2)"2));

Teorem 3 (Jedinstvenost lokalnog slabog rieSenja zajed- . . _ o.4¢.7

nodimenzionalni slucaj) for i=2: (p-1)

for j=2:(q-1)
ux=(u0(i+1,j)-u0(i-1,3))/2;
uy=(u0 (i, j+1)-u0(i, j-1))/2;

Pretpostavimo da su i v lokalna slaba rjeSenja (10) na
Ut s jednakim pocetnim uvjetimg, gdje jeg analiticka

funkcija, (g')? — A? ima samo jednostruke nultocke i difu- uxx=(00 (i+1, 1) -2%u0 (i, ) +u0(i-1,1));
zivnostf je analiticka funkcija. Tada ja(x,t) = v(x,t) na uyy=(u0(i,j+1)-2%u0 (i, j)+u0(i,j-1));
Ut. uxy=(u0(i+1, j+1)-u0(i+1,j-1)-u0(i-1,j+1)

+u0(i-1,j-1))/4;

Kao 8to vidimo iz prethodnih osnovnih teorijskih rezudtat (i, §)=u0(i, ) +2xdtx. ..

teorija postaje prilicno sloZzena ¢ak i za jednodimenaiai ((Af (ux~2+uy™2) * (UX*UXXHFUKHLYFUYY*UY+2HUXFUY*UXY) )
slucaj, 5to nije ni tudno s obizrom da se radi o nelinegrno + f (ux~2+uy”~2) * (uxx+uyy)) ;
parcijalnoj diferencijalnoj jednadzbi. end

end

Pogledajmo sada prakticnu primjenu Perona-Malikove w0=u;
jednadzbe, kao 5to smo ucinilii s linearnom jednadZbom end

2.3 Rjesenje metodom kon&nih razlika
Uz dulji protok vremena dobivamo jaci utjecaj na pocetnu

Programska implementacija analogna je onoj za linearnusliku. Rezultati dobiveni eksperimentima prikazani su na
difuziju iz prethodnog odjeljka. lako nije odmah vid- slici 2. Primje€ujemo o€uvanje rubova i uklanjapna-
ljivo kako ona izgleda, buduci da koristimo difuzivnost tih* elemenata na slici.
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(a) Originalna slika (b)T=20 (c) T=50 (d) T=100

Slika 2: Otapanje p@etne slike (a) koristd Perona-Malikovu jednatbu s vriemenskim korakofit = 0.2. Na slikama (b),
(c)i(d) T predstavlja proteklo vrijema, = 1.

UnatoC tome 5to je algoritam osjetljiv na rubove, nakon bismo vidjeli kako nelinearna difuzija Cuva rubove, za ra-
dovoljno vremena neki rubovi, inate nedovoljno jasni, ne- zliku od linearne koja nekriticno "otapa” cijelu sliku. 3e

staju u stapanju s okolinom. tni podaci dobiveni su presjekom slike Lene u smpeosi,
dakle graf predstavlja intenzitet sive duz jedne od harizo
2.4 Usporedba s linearnom difuzijom talnih linija na testnoj slici. Usporedbu ova dva modela

vidimo na slici 3. Na slici 4 dajemo usporedbu modela na
Za kraj dajemo usporedbu djelovanja linearne i nelinarne dvodimenzionalnim podacima, odnosno na slici glave do-
difuzije. Prvo koristimo jednodimenzionalne podatke da bivenoj magnetskom rezonancom.

200 200
100 . 100
0 : : : : : 0 : : : : :
0 100 200 300 400 500 0 100 200 300 400 500
200 200
100 | WUW
0 : : : : : 0 : : : : :
0 100 200 300 400 500 0 100 200 300 400 500
200 200
100 _ muw
0 : : : : : 0 : : : : :
0 100 200 300 400 500 0 100 200 300 400 500
200 200
100 1 muw
0 : : : : : 0 : : : : :
0 100 200 300 400 500 0 100 200 300 400 500
200 200
100W
0 100 200 300 400 500 0 100 200 300 400 500

Slika 3: Usporedba Perona-Malikove jednZak (lijevo) i linearnog modela (desno).
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(a) Originalna slika

(d) Linearna difuzija, T = 200 (e) Nelinearna difuzija, T = 200

Slika 4: Usporedba linearne i nelinearne difuzije na sliku dobivenagnetskom rezonancody, = 0.2, a T predstavlja
proteklo vrijeme.
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The Moon Tilt llusion
ABSTRACT

The moon tilt illusion is the startling discrepancy between
the direction of the light beam illuminating the moon and
the direction of the sun. The illusion arises because the
observer erroneously expects a light ray between sun and
moon to appear as a line of constant slope according to
the positions of the sun and the moon in the sky. This
expectation does not correspond to the reality that obser-
vation by direct vision or a camera is according to perspec-
tive projection, for which the observed slope of a straight
line in three-dimensional space changes according to the
direction of observation. Comparing the observed and ex-
pected directions of incoming light at the moon, we derive
a quantitative expression for the magnitude of the moon
tilt illusion that can be applied to all configurations of sun
and moon in the sky.

Key words: moon tilt, perspective projection, illusion

lluzija nagiba mjeseca
SAZETAK

lluzija nagiba mjeseca zapanjujuéi je raskorak izmedu svje-
tlosne zrake koja osvjetljava mjesec i smjera sunca. Ona se
povecdava, jer promatra pogrsno olekuje da zraka svjetla
izmedu sunca i mjeseca bude pravac konstantnog koefici-
jenta smjera s obzirom na poloZaj sunca i mjeseca na nebu.
Ovakvo ocekivanje ne odgovara stvarnosti kod koje je pro-
matranje s direktnom osi pogleda, ili s kamerom, u skladu s
perspektivom (centralnim projiciranjem) za koju se proma-
trani koeficijent smjera pravca u trodimenzionalnom pros-
toru mijenja s obzirom na os pogleda. Usporedujuéi pro-
matrane i o¢ekivane smjerove zrake usmjerene na mjesec,
izvodimo kvantitativan izraz za veli¢inu iluzije nagiba
mjeseca koji se moZe primijeniti na sve poloZaje sunca i
mjeseca na nebu.

Kljuéne rijeci: nagib mjeseca, perspektiva, iluzija

MSC 2000: 51NO5

1 The Nature of the lllusion

The photograph in Figure 1 provides an example of the
moon tilt illusion. The moon’s illumination is observed to
be coming from above, even though the moon is high in
the sky and the sun had set in the west one hour before thid
photo was taken. The moon is 4&bove the horizon in
the southeast, 80% illuminated by light from the sun strik-
ing the moon at an angle of 1&above the horizontal, as
shown by the arrow drawn on the photograph. Our intu-
ition (i.e., the incorrect perception that creates thesitn)

is that given the relative positions of the sun and the moon,
the light from the sun should be striking the moon from S )
below. The moon tilt illusion is thus the perceived discrep- Figure 1: Photograph of the moon filt illusion. Picture
ancy between the angle of illumination of the moon that we taken one hour after sunset, with the moon in
observe (and can capture photographically with a camera the southeast and sun already set in the west.
pointed at the moon) and the angle that we expect, based Camera pointed upwardé5” from the horizon

on the known locations of the sun and the moon in the sky. with bottom of camera parallel to the horizon.

.
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Rather surprisingly, little mention of the moon tilt illusi 2 System of Coordinates and Definitions

(much less a detailed explanation of why it occurs) can be

found in astronomy books. Minnaert [1] gives a passing Our analysis of the moon tilt illusion is based upon the
reference: “...the line connecting the horns of the moon, known locations of the sun and moon in the sky. We
between its first quarter and full moon, for instance, does adopt topocentric coordinates (instead of right ascension
not appear to be at all perpendicular to the direction from anq declination) for the sun and moon, denoted by azimuth
sun to moon; we apparently think of this direction as be- () L and altitude ). The altituden is the angle between
ing a curved line. Fix this direction by stretching a piece o sun (or moon) and the observer's local horizon. Rec-

Ef string tautollnt front O?If(.)u: €ye, h_(l)lwever unllkgly LLmtzat)(] ognizing that the altitude angle) is the complement of
ave seemed fo you at first you will Now perceive that the polar anglef]), we may rewrite azimuth and altitude

condition of perpendicularity is satisfied”. A photograph . . . .
taken by Lodriguss [2] shows a waxing moon and the set- (¢.n) as spherical coordinatesg). Spherical coo_rdlnates .
for the sun and moon are converted to Cartesian coordi-

ting sun in the same photo. The angle of 2@tween the . .
direction of the moon’s illumination and the direction of nates to allow vector manipulations such as dot and cross
products.

the sun provides a striking illustration of the moon tilt il-
lusion. An article by Scholkopf [3] documents the illu-
sion in an experimentinvolving 14 subjects by havingthem 2.1 Moon Pointer and Moon Tilt Angle

indicate their expectation of how the moon'’s illumination ) ) ] o

should be oriented with respect to the position of the (vis- The moon pointer is defined as the ved@? in Figure 2,
ible) sun. He reports that an average discrepancy df 12 WhereCis the center of the moon and the ved@#? has the

is perceived by the subjects between the observable versugbserved slope of the moon-sunline at p@nhe demar-
expected orientation of the moon’s bright limb. Schott’s cation between illuminated and dark portions of the moon
website entitled “ ‘Falsche’ Mondneigung” (‘False’ Moon is called the terminator. Lin&B connects the two “horns”
Tilt) [4] is devoted to the moon tilt illusion, and features of the terminator through the moon’s cen@&rThe moon
illustrations and useful links. A paper by Glaeser and pointerCPis the perpendicular bisector of lifeB.

Schott [5], approaching the phenomenon via the princi-
ples of photography, shows that the magnitude of the il-
lusion could in theory be measured through comparison of

a close-up shot of the moon with a photograph containing «_

P
both sun and moon, with the camera directed in a specified ™2 e

direction between them (although no equations are given). \f’ b
However, as they point out, in practice it is not feasible T T
since even a wide-angle lens cannot capture both sun and &

moon in a photo with azimuth differences for which the

-,

illusion can be most clearly observed (betweeri @86d

180°). Berry [6] proposed a zenith-centered stereoscopic
projection of the celestial sphere onto a flat surface with
the moon tilt illusion defined as the angle between the pro- Figure 2: Definition of moon pointer witlx angle. From

jected great circle and a straight moon-sun line drawn on left to right,a = 40° (75% illumination),a = 0°
the flat surface “mimicking how we might see the sky when (50% illumination),a = —30° (25% illumina-
lying on our back looking up”. Apparently there still per- tion).

sists a lack of consensus in the literature about the expla-
nation of the moon tilt illusion and disagreement about the The moon tilta is the signed angle of the moon’s pointer
best way to measure it. with the horizontal, positive upward and negative down-

In this paper, our aim is to derive a quantitative expression Ward. An equation for calculating this angle from the lo-
for the magnitude of the moon tilt illusion experienced by cations of the sun and moon is given in Section 4. Using
an upright observer that is straightforward to apply to all the construction in Figure 2, the angienay be found ex-
configurations of sun and moon in the sky. We model the perimentally by taking a picture of the moon with the opti-
viewer's expectation of the direction of incoming light us- cal axis of the camera pointed at the moon and the bottom
ing vector geometry, which is appropriate for treating 3D of the camera oriented horizontally. For example, for the
straight lines such as the sun-moon light ray. photo in Figure 1o = 17°.

1in physics, the azimuthal angle is defined as positive fonterclockwise (CCW) rotation from due nortk-direction), with the Cartesian coor-
dinates satisfying the right-hand rule. In navigationjratth is defined as positive in the clockwise (CW) directione Will use the CCW notation for
calculations but revert to the more familiar navigation&V @irection for the presentation of results in Section 5.
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3 Cause of Moon Tilt lllusion human eye or a camera. The light ray from the sun that llu-
minates the moon is invisible in the sky, but we can observe
When we view the light ray at the moon, which is the only its slope with the horizontal where it intersects the moon
place we can photograph its direction, the slope with the from the direction of the moon’s illumination. The deriva-
horizontal 1) that we observe is exactly what one would tion of the tilt angle ¢) between the observed incoming
expect from the principles of perspective projection that direction of light and the horizontal is straightforward bu
form the basis of human vision or photography. lengthy and is not given here because the equation for the

The cause of the moon tilt illusion is simply that the ob- Observed tilt from the vertica( is already well known.

server is not taking into account the rules of perspective et ¢, be the azimuth of the moon ang the azimuth of
that dictate that the observed slope of the light ray will the sun; letAp = |@s — @m|; let nm be the altitude of the
change when he turns his head to observe the moon angnoon andns the altitude of the sun. The angle of the
sun. This perceptual disconnect occurs because the obmoon’s tilt from the horizontal may be derived from an

server cannot see the light ray itself, but only its starting equation for the position angle of the moon’s bright limb
position at the sun and the angle at which it strikes the [g], [g]:

moon. Without any other visual cues to provide more in-

formation, he is perceptually unable to envision how the any = CONsSiNAQ

slope of a visible line overhead changes with viewing an- COSNmSiNNs — COSNsSINN M COSAQ
gle due to perspective projection.

The changing-slope effect due to perspective projection is
apparent in a video [7] which scans a long, straight string
of lights along the Thames near London’s Tower Bridge.

All of the lights are at roughly the same distance from sinAQ
the ground. The moving video camera shows the observedanX =
slope of the string of lights varying continuously with cam-

era motion: first sloping upwards from the ground on the The desired angle with the horizontal)(is the comple-
left, then with zero slope in the middle, and finally sloping ment ofy so:

downwards to the right. For the moon illusion, the path
of the light ray is invisible and we can observe its slope
only at one end. If the sun-moon light ray were visible, | tana =
we would see a straight line of varying slope just like the
video and the illusion would vanish.

Knowing that light travels in straight lines in space butfo 4.2 Expected Moon Tilt (3)
getting’ that slope changes as the head turns along a line, . ) ] . ]
the observer expects that when he scans from sun to moorftn observer bases his expectation of the incoming direc-
he would see a straight line of constant slope, even thoughfion of light at the moon on his knowledge of the 3D po-
his head has moved. On the basis of this explanation, weSitions of the sun and moon as they appear to him in the
calculate the observed angle of the moon tilf énd com- sky, i.e., according to their height difference and horizon
pare it with the expected anglB)(of the moon tilt based  tal distance apart. For example, in Figure 1, the upright
upon the known positions of the moon and the sun in the vViewer sees the light illuminating the moon from above,
sky. The difference between the observed and expectedut he expects the light to come from below the horizontal,
angles §) quantifies the moon tilt illusion. since the moon is higher than the sun. In the sky, there is
an absence of visual cues by which the viewer could eval-
) uate the distance of an object; thus the direction of light
4 Observed and Expected Slope of Incoming  from sun to moon is assessed from their relative altitudes

(1)

X in this equation is called the position angle of the mid-
point of the moon'’s bright limb measured from the north
point of the disk. This may be written:

(2)

cosnmtanns — sinnmCcosAQ

cosnmtanns — sinnNmCcosAQ
sinA@

®3)

Light and azimuths as though sun and moon were equidistant
from the viewer. We represent this expected direction of
4.1 Observed Moon Tilt @) light as a 3D vectow, given by the difference of the unit

vectors from the observer to the s@dnd the moonrf):
The principles of 2D perspective projection govern the
viewing of a 3D line between two objects overhead by the v=5—-mh (4)

2This assumption is a natural consequence of the 2D pergpamijection basis of human vision. Since objects areeptefl bigger or smaller when
closer or farther away, objects of apparent equal size wijublged as equidistant, in the absence of additional visued such as clarity or brightness.
We note that even if observers take into account that thessommuch farther away from the earth than the moon, they willestperience an illusion by
not considering perspective distortion. For example, feetting sun they would expect the moon (in any position) tdllminated from the horizontal,
leading to an illusion equal to the obsenedilt.
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The observer naively expects to viewwithout any per-
spective distortion. If the observer faced the verticahpla
containing the sun and moon directly, the slope of this
plane is simply the height difference of sun and moon di-
vided by the horizontal distance between them. However,
the observer must face the moon for his observation of the
illusion. (If our eyes deviate from the azimuth of the moon,
theobservedanglea of the moon tilt would change). With
knowledge of the position of the sun and the moon relative
to his orientation facing the moon, the observer expects his
view of v as it strikes the moon to be determined by this
orientation. This is simply the orthogonal projectionvof

on the vertical plane at the moon. The veatarormal to

the vertical projection plane is:

(5)

wheremy andm, are thex andy components of the unih
vector. The unit normal vector is:

n n

n=ma&+my

n= W = 7@ (6)
The projectiorv, on the vertical plane is:

Vp=V—Vp (7
wherevy, is perpendicular to the vertical plane with:

Vp = (v-A)A (8)

The horizontal unit vector lying in the vertical plane is
= Ax2. Since the tangent of an angle between two vec-

tors is equal to the ratio of the cross and dot products, it

follows that the desired angfebetweenv, andh is given

by:
©)

This formula forf3 was chosen to avoid having to normal-
izevp. As shown in Appendix A, Eqg. (9) may be written in
terms of the Cartesian components of the unit moon vector
rm and the unit sun vectdr

|8z —my| /Mg 4
Sy — §My

As shown in Appendix B, conversion of the Cartesian com-
ponents of the moon and sun vectors to angles yields:

tanp = (10)

|sinnm — sinn|

tanp = - cosnssin(Ag)

(11)
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This equation fof applies to waxing and waning moonsin
both hemispheres. The nuisance of insuring that the angle
is in the right quadrant can be avoided by writing Eq. (11)
in the form:

(sinnm — sinns)

tanp =— cosnssin(Ag)

(12)

where itis understood thAtp= |@s — @ and|Ag| < 180°.

The sign convention for th@ pointer is the same as for
the a pointer: a positive value fo corresponds to a di-
rection upward from the horizontal and a negative value
corresponds to a direction downward from the horizontal,
pointing east or west depending on the location of the sun.
Typically the altitude of the moon is higher than that of the
sun and3 is negative.

4.3 Magnitude of Moon Tilt lllusion

The moon tilt illusion is defined as the differencdy be-
tween the slope angle of the observed moon-sun lie (
and slope angle of the expected moon-sun Ije (

o0=0a-

(13)

We may apply this equation to the photograph in Fig-
ure 1. The locations of the sun and moon are the alti-
tudesnm, = 45°, ns = —15°, and an azimuth difference
Ap = 128. The illumination of the moon in the pho-
tograph is 80%, which agrees with the calculated value
[9]. From Eg. (3),a = 17°, which is confirmed by the
photograph. Eq. (12) givgs= —52° and from Eq. (13),
0=17—(-52) = 69, consistent with the viewer’s expec-
tation that the incoming light should be strongly angled
from below the horizontal.

5 Discussion

We have presented a method for calculating the magnitude
of the moon tilt illusion as the degree differend® be-
tween the observed direction of the incoming light and the
expected direction of incoming light. The model identifies
sun/moon configurations ranging from no illusion (when
the sun and moon are either close together or both on the
horizon) to the strongest illusion (at the equator, when the
moon is above the horizon and the azimuthal difference
between moon and sun is 180
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Figure 3: Moon tilt illusion for waxing phases in northern hemisphesein is setting due west. Red line is observed slope
and blue line is expected slope of moon-sun line. Azimuttsaned CW from north.

We focus on cases where the sun and the moon are botfThe limits ofd, the magnitude of the illusion, aré @or a
visible in the sky, as this allows the observer to evaluate th new moon and 180for a full moon. Near new moon, the
positions of each. The moon is visible at twilight. Shown angle is too small to be visible with the naked eye. For the
in Figure 3 is a chart for a waxing moon with a setting sun crescent moon with under 9@zimuth difference between

in the northern hemisphere. The magnitude of the moonsun and moon, the magnitude of the illusi@) {s small

tilt illusion is &, the degree difference between the ob- and the illusion is unimpressive, since the observed (red)
served (red) arrow and the expected (blue) arrow. A set ofand expected (blue) light directions are both below the hor-
four charts for waxing or waning moon in the northern and izontal. At half moon (sun-moon azimuth difference of
southern hemisphere could be constructed to cover all sim-90°, moon at 180 on the chart), the discrepancy between
ilar situations. Whether or not a particular configuratisni the observed and expected directions becomes very notice-
visible depends on the latitude of the observer. For exam-able since the observed light direction (red) is horizontal
ple in Figure 3 for a waxing moon, the horizontal “boat” but the expected light direction(blue) is from below. For
crescent moon at high altitude in the west is observed nearthe gibbous moon at sunset or sunrise with azimuth differ-
the equator but not in temperate zones. The chart is for theence greater than 90the illusion becomes striking since
sun setting due west, which occurs at all latitudes during the moon is unambiguously lit from above the horizontal
the spring and fall equinoxes. Since the moon tilof B) and the position of the sun is below the horizontal. The
depends on thdifferenceof azimuths @), correctionscan  illusion is particularly impressive at sunset when the gib-
be made for the sun setting at azimuths other thari BY0  bous moon is at high altitude in the southwest or at sunrise
translating the entire set of images horizontally to thétrig when the gibbous moon is at high altitude in the southeast
or left. (both cases for the northern hemisphere). If illumination
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exceeds about 90 percent, the direction of the red moon
pointer may become difficult for the observer to discern.

Notation

m | moon vector OM
In addition to the setting sun configuration in Figure 3, an- n | normal vector to vertical plane
other interesting case occurs when the sun and moon are s | sun vector OS
at the same (non-zero) altitude. Although the moon is lit x,y,z | Cartesian coordinate vectors
from above the horizontal, the observer would expect to v | moon-sun direction, Eq. (4)
see the light travel horizontally from the sun to the moon. ~ Vn | Projectionofvonn
Our model give = 0 andd = a. Vp | projection ofv on vertical pla}ne . .
In Figure 3, we note that for a particular elevation and set- o | observed angle of moon pointer with horizontal
. . B | expected angle of moon pointer with horizontal
tlng sun at 270, the expected beta is the same at moon 0 | difference of observed and expected angles of moon
azimuths of (189 + x) and (180 - x) degrees. For exam- pointer with horizontal
ple, at 60 elevation, the angle of the blue sun-moon arrow n | altitude of moon or sun
is —50.8° at moon azimuths of 135and 225. Moving 8 | polar angle of moon or sun in spherical coordinates
from right to left at fixed altitude on Figure 3, the blue ar- @ | azimuth of moon or sun
row moves CCW at first but switches to a CW movement X | position angle of moon’s bright limb
after passing the 18tazimuth. Looking at Figure 3, in- " | “hat” symbol for unit vector
stead of symmetry about 180one might expect the blue
arrow indicating the direction of the sun to continue turn-
ing CCW when moving right to left at constant altitude. References

However, Figure 3 is a 2D representation of the 3D posi-
tion of the sun relative to the moon. As the moon-sun az- [q]
imuth difference increases beyond®3tom right to left at
constant altitude, the sun moveshindthe observer, caus-

ing the projected slope of the moon-sun vector to move in (2]
a CW direction. Facing the elevated moon and with the
setting sun directly behind him, the observer would expect
the light to illuminate the moon from below. The actual
illumination is directly from above. Thus on the equator at
sunset and particularly at high moon altitudes for which the
moon is lit from above, observers experience a spectacular
moon tilt illusion of magnitude 180

Eq. (12) for the calculation of the expected arfgtdepends
upon the locations (azimuth and altitude) of the moon and
sun in the skyf is the angle of the sun-moon vector with
the horizontal as projected upon a vertical plane perpen- 5]
dicular to the azimuth of the moon. Consider some of the
limits for 3 which are independent of the projection plane
used for its calculation and depend only on the geometry of

the configuration. When the moon and sun have the same [6]
altitude, = 0. When the moon and sun have the same az-
imuth with the moon above the syh= —90°. In the limit

as the moon approaches the sun (new mdds)a for any
angle of approach. When the moon has a non-zero altitude
and the moon-sun azimuth difference is 18the moon-

sun vector strikes the moon from below so tRat —90°.
Values off3 from Eq. (12) conform to these limits.

(3]

(4]

[7]

(8]
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Appendix A. B from vector components

Reduce the vector equation:

|V (hx2)|

tanp = - (7x2)

to component form.

Vp=V—(v-N)N
Vp X (Ax2) = (Vp-2)A — (vp-A)2Z
But v, is perpendicular té so:
Vp x (Ax2) = (vp- 2)R
= (v-2)hi—(v-A)(h-2)h
=(v-2)

becausé is perpendicular t@.

N)

N
>

v=38—m=(5c— M)XK+ (sy— M)y + (S, — ;)2
Vp x (AXZ)| = V- 2| = |Ve| = |5z — my|

The denominator is the scalar triple product:

( -(Ax2)]

-(A

>
N>
N
o>

— (V-A)[

Vp- (Ax2)

< <

X
X

N>
N

becausé - ("x2) = (A xh)-z=0.

nx 2= (m,m,0)x (0,0,1) = (my,—m,,0)

V- (Nx2) = [(sc—my), (sy —my), (S — my)] - (my, —my, 0)

= &My — My

In terms of the normalized vectér
V- (ﬁxz) — M
\/ Mg+ mg

Substituting results for the numerator and denominator of
tanp:

Sz —my| /Mg +mg
tanp = O
SIMy — §IMy

Appendix B. B from altitude and azimuth angles

Convert the component formulation f@rto altitude and
azimuth angles of the sun and the moon:

Sz —my| /Mg +mg
Sy — §My

Cartesian coordinates of the observer-moon and observer-
sun unit vectors are:

tanp =

m = mX +myy + m,2
S= s&k+ s+ s2

In terms of altitudes and azimuths:

My = COSNMCOSPm; My = COSNmMSINPy; My = SiNNm
Sx = COSNsCOSPs; Sy = COMNsSINGs; Sz =SiNNs

SO:

M -+ NG = COS™ Ny COS Gy + COS Ny SINF @y = COS Ny

\/”&"’”ﬁzcosﬂm

(S,— M) = sinNs— sinNNm

SxIMy — S,M = COSN s COSPs COSNmSiNGPn
— COsSINP;COSNMCOSPm
= COSNsCOSNm(SIN@mCOSPs — COSPm SINGs)
= COSNsCOSNmSIN(AY)

whereAQ = (¢m— ¢).

tan — |Sz— Mg | /% + 1§ _ COSm|Sinns — sinnpm|
SImy — SyMy COSNsCOSNmSIN(AQ)
_|sinnm —sinn| O
cosnsSin(Ag)
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