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grafike.

UPUTSTVA ZA PREDAJU RADA . Znanstveni radovi trebaju biti napisani na engleskom ili njemačkom jeziku, a stručni na
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sgorjanc@grad.hr ema.jurkin@rgn.hr

Svaki autor i koautor dobiva po jedan primjerak časopisa.
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and the Omega Triangle

Incenter Circles, Chromogeometry, and the

Omega Triangle

ABSTRACT

Chromogeometry brings together planar Euclidean geom-
etry, here called blue geometry, and two relativistic ge-
ometries, called red and green. We show that if a trian-
gle has four blue Incenters and four red Incenters, then
these eight points lie on a green circle, whose center is
the green Orthocenter of the triangle, and similarly for the
other colours. Tangents to the incenter circles yield inter-
esting additional standard quadrangles and concurrencies.
The proofs use the framework of rational trigonometry
together with standard coordinates for triangle geometry,
while a dilation argument allows us to extend the results
also to Nagel and Speiker points.

Key words: triangle geometry, incenter circles, rational
trigonometry, chromogeometry, four-fold symmetry, Nagel
points, Spieker points, Omega triangle

MSC 2000: 51M05, 51M10, 51N10

Upisane kružnice, kromogeometrija i Omega

trokut

SAŽETAK

Kromogeometrija povezuje ravninsku euklidsku geo-
metriju, ovdje zvanu plavom geometrijom, te dvije re-
lativističke geometrije, nazvane crvenom i zelenom geo-
metrijom. Pokazuje se da ukoliko trokut ima četiri
plava i četiri crvena sredǐsta upisanih (odnosno pripisanih)
kružnica, tada tih osam točaka leži na zelenoj kružnici čije
je sredǐste zeleni ortocentar trokuta. Vrijede i druge dvije
analogne tvrdnje. Tangente na upisane kružnice stvaraju
nove zanimljive četverokute i konkurentnosti. Dokazi se
provode u okviru racionalne trigonometrije sa standar-
dnim koordinatama za geometriju trokuta. Transforma-
cija diletacije dozvoljava proširenje rezultata na Nagelove
i Speikerove točke.

Ključne riječi: geometrija trokuta, upisane kružnice,
racionalna trigonometrija, kromogeometrija, četverostruka
simetrija, Nagelove točke, Spiekerove točke, Omega trokut

1 Introduction

This paper investigates a surprising connection between
three closely related Incenter hierarchies of a fixed planar
triangle. The framework here is that of Rational Trigonom-
etry ([7], [8]) which allows a consistentuniversal trian-
gle geometryvalid for any symmetric bilinear form, as de-
scribed in [5], together with the three-fold symmetry of
chromogeometry([9], [10]), which connects the familiar
Euclidean (blue) geometry based on the symmetric bilinear
form x1x2+ y1y2, and two relativistic geometries (red and
green) based respectively on the bilinear formsx1x2−y1y2

andx1y2+ y1x2. By working with the rational notions of
quadrance and spread instead of the transcendental notions
of distance and angle, the main laws of Rational Trigonom-
etry allow metrical geometry, and so triangle geometry, to
be developed in each of these three geometries in a parallel
fashion, with mostly identical formulas and theorems.

The first results of this paper concern the four Incenters of
a planar triangle in one of the three geometries, and were
announced in [5]. As in that paper, we here refer to all four
meets of the vertex bisectors, or bilines, as Incenters, so
do not distinguish between the classical incenter and the
three excenters. If a triangleA1A2A3 has four blue Incen-
ters Ib

0, I
b
1, I

b
2 and Ib

3, then all four points lie both on ared
incenter circleC b

r with center the red OrthocenterHr , and
on a green incenter circleC b

g with center the green Or-
thocenterHg; this is illustrated in Figure 1. Similarly, if
a triangle has red Incenters, then these lie both on a green
incenter circleC r

g with centerHg, and a blue incenter circle
C

r
b with center the blue OrthocenterHb. If a triangle has

green Incenters, these lie both on a blue incenter circleC
g
b

with centerHb, and on a red incenter circleC g
r with cen-

ter Hr . Furthermore, ifboth red and green Incenters exist,
then they lie on thesameblue incenter circle, and simi-
larly for the other colours. The proofs are algebraic, and
rely on non-obvious simplifications found by the help of a
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computer. So the Omega triangle formed by the three Or-
thocentersΩ ≡ HbHrHg, introduced in [9], has an intimate
connection with the Incenter hierarchies.
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Figure 1: The four blue Incenters ofA1A2A3 and red and
green Incenter Circles

These facts relate also to elegant classical properties of
quadrangles. In [1] Haskell showed that if two quadrangles
have the same diagonal triangle, then all eight points of
these quadrangles lie on a single conic; and in [11] Woods
found a synthetic derivation of the same result. Now it is
obvious that the four Incenters of a triangle, with respect to
any bilinear form, will form a standard quadrangle in this
sense, meaning that the diagonal triangle coincides with
the original triangle. As a consequence, if blue and red In-
centers exist, then they must lie on a conic. Our assertion
is that this conic is actually a green circleC

b
g = C

r
g ≡ Cg

with centerHg.
In the case of blue Incenters, the four tangent lines to the
red incenter circleC b

r at the blue Incenters form a stan-
dard quadrilateral, implying that they meet in six points
Rb

i j , which lie two at a time on the three lines ofA1A2A3,
where they are harmonic conjugates with respect toA1,A2

andA3; and similarly the four tangent lines to the green in-
center circleC b

g at the blue Incenters meet in six pointsGb
i j

on the three lines. This is also seen on the above Figure.
Similarly there is a corresponding result when we look at
red Incenters, and at green Incenters.
The six linesAkRb

i j , for i, j,k distinct, are the lines of
a complete quadrangle, so they meet three at a time at
four quad points Qb

r j . Similarly, the six linesAkGb
i j meet

three at a time at pointsQb
g j. Somewhat remarkably, the

four star lines sb
j ≡ Qb

r j Q
b
g j form a standard quadrilateral

sb
0sb

1sb
2sb

3.
This paper also illustrates our novel approach to triangle
geometry initiated in [5]; using standard coordinates to es-
tablish universal aspects of the subject which arevalid over
a general bilinear form. This employs an affine change

of coordinates to place an arbitrary triangle intostandard
position, with vertices at[0,0] , [1,0] and[0,1]. The var-
ious triangle centers and constructions are then expressed
in terms of the coefficientsa,b andc of the matrix

C≡
(

a b
b c

)

of the resulting new bilinear form. This allows a system-
atic augmentation of Kimberling’sEncyclopedia of Trian-
gle Centers ([2], [3], [4]) to arbitrary quadratic formsand
general fields.
Standard coordinates also have the advantage of yielding
surprisingly simple equations for the three coloured Incen-
ter Circles, which turn out to be, after pleasant simplifica-
tions,

Cb : Qb (X) = bb(2x+2y−1)

Cr : Qr (X) = br (2x+2y−1)

Cg : Qg (X) = bg(2x+2y−1).

However the formulas for the star linessb
j become rather

formidable, but seem to have interesting algebraic aspects.
Some intriguing number theoretical questions arise when
we inquire into the existence of triangles, over a given field,
which have simultaneously blue, red and green Incenters.
Studying concrete examples and using empirical computer
investigations of Michael Reynolds [6], we make some ten-
tative conjectures on such triangles, both over the rational
numbers and over a finite prime field. Finally we extend
the results to Spieker and Nagel points by suitable central
dilations.
In the rest of this introduction we recall basic facts from [7]
and [5] to formulate triangle geometry over a general bilin-
ear form. We then specialize to the blue, red and green ge-
ometries, and use standard coordinates to develop formulas
for points and lines (always one of our key aims), and to
provide explicit computational proofs of the theorems.

1.1 Quadrilaterals and quadrangles

We begin by reminding the reader of some basic facts from
the projective geometry of a quadrangle (four points) or
quadrilateral (four lines), using a visual presentation to
avoid the need to introduce notation.
In Figure 2 we see four blue lines forming a quadrilateral
[in this figure colours are not used in a metrical sense, but
only as an aide for explanation]. These four blue lines meet
in six points, also in blue. These six blue points determine
a further three greendiagonal lines, forming thediagonal
triangle, in yellow, of the original quadrilateral, whose
vertices are three green points. Each green point may be
joined via a red line to the two blue points not on either
of the two green lines it lies on. This produces six red

6
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lines, which somewhat remarkably meet three at a time at
four red points, giving theopposite quadrangle from the
original blue quadrilateral. Note that there is a natural cor-
respondence between the four original blue lines and the
four red points.

Figure 2: A quadrilateral and its opposite quadrangle

The situation is completely symmetric with regard to
points and lines. If we had started out with a quadrilateral
of four red points, we would join them to form six red lines.
These six red lines determine a further three green diagonal
points, forming the diagonal triangle of the original quadri-
lateral, whose sides form three green lines. Each green line
meets two of the red lines in two new blue points. These six
new blue points lie three at a time on four blue lines, giving
theopposite quadrilateral from the original red quadran-
gle.
The diagonal green points on a green line are harmonic
conjugates with respect to the two blue points on the same
line. The diagonal green lines through a green point are
harmonic conjugates with respect to the two red lines
through the same point.
There is another more subtle remark to be made here con-
cerning symmetry: each of the three diagonal points is
canonically associated to a subdivision of the four original
blue lines into two subsets of two: namely those subsets
whose joins meet at that diagonal point.
If we start with a triangle, say the yellow triangle in the
Figure formed by three green points and three green lines,
then any quadrilateral or quadrangle which has that trian-
gle as its diagonal triangle is calledstandard.

1.2 Quadrance, spread and standard coordinates

In this section we briefly summarize the main facts needed
from rational trigonometry in the general affine setting (see
[7], [8]). We work in the standard two-dimensional vector
spaceV, consisting of row vectorsv= [x,y] , over a fieldF.
A line l is given by an equation of the formax+by+c= 0,
or equivalently the proportionl ≡ 〈a : b : c〉.
We assume a metrical structure determined by a non-
degenerate symmetric 2× 2 matrix C: this gives a sym-

metric bilinear form on vectors:

v ·u≡ vCuT .

Non-degenerate means detC 6= 0, and implies that ifv·u=
0 for all vectorsu, thenv= 0.
Two vectorsv and u are thenperpendicular precisely
whenv · u= 0. Since the matrixC is non-degenerate, for
any vectorv there is, up to a scalar, exactly one vectoru
which is perpendicular tov. Two linesl andmareperpen-
dicular precisely when they have perpendicular direction
vectors.
The bilinear form determines the main metrical quantity:
thequadrance of a vectorv is the number

Qv ≡ v ·v.

Thequadrance between the pointsA andB is Q(A,B) ≡
Q−→

AB
. A vectorv is null precisely whenQv = v · v = 0, in

other words precisely whenv is perpendicular to itself. A
line is null precisely when it has a null direction vector.
The following basic fact appears in [5].

Theorem 1 (Parallel vectors) Vectors v and u are paral-
lel precisely when

QvQu = (v ·u)2 .

This motivates the following measure of the non-
parallelism of two vectors; thespread between non-null
vectorsv andu is the number

s(v,u)≡ 1− (v ·u)2
QvQu

= 1− (v ·u)2
(v ·v)(u ·u) .

The spreads(v,u) is unchanged if eitherv or u are multi-
plied by a non-zero number. We define thespread between
any non-null linesl andm with direction vectorsv andu
to bes(l ,m) ≡ s(v,u). From Theorem 1, the spread be-
tween parallel lines is 0. Two non-null linesl andm are
perpendicular precisely when the spread between them is
1.
A circle is given by an equation of the formQ(A,X) = K
for some fixed pointA called thecenter, and a numberK
called thequadrance. Note that it is not required that a
circle have any pointsX lying on it: in this case by enlarg-
ing the field to a quadratic extension we can guarantee that
it does.
The three particular planar geometries we are most inter-
ested in come from theblue, red andgreen bilinear forms
given by the respective matrices

Cb ≡
(

1 0
0 1

)
, Cr ≡

(
1 0
0 −1

)
and Cg ≡

(
0 1
1 0

)
.

The corresponding formulas for theblue, red andgreen
quadrances between pointsA1 ≡ [x1,y1] andA2 ≡ [x2,y2]

7
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are

Qb (A1,A2) = (x2− x1)
2+(y2− y1)

2

Qr (A1,A2) = (x2− x1)
2− (y2− y1)

2

Qg (A1,A2) = 2(x2− x1) (y2− y1) .

It will be useful to discuss triangle geometry then in a gen-
eral setting: supposev1 ◦ v2 ≡ v1BvT

2 is a symmetric bi-
linear form, withB a symmetric 2× 2 matrix. Suppose
φ : V → V is a linear transformation given by an invert-
ible 2× 2 matrix M, so thatφ(v) = vM = w, with in-
verse matrixN, so thatwN = v. The new bilinear form
w1 ·w2 ≡ (w1N)◦ (w2N) then has matrixD = NBNT .
Suppose thatX1X2X3 is a triangle in the vector spaceV
which has a distinguished symmetric bilinear form◦. We
may move this triangle by a combination of a translation
(which does not effect the bilinear form), and a linear trans-
formationφ, so that the triangle is in what we callstandard
form, with points

A1 ≡ [0,0] , A2 ≡ [1,0] and A3 ≡ [0,1]

and lines

l1 ≡ A2A3 = 〈1 : 1 :−1〉
l2 ≡ A1A3 = 〈1 : 0 : 0〉
l3 ≡ A2A1 = 〈0 : 1 : 0〉 .
Whatever the initial matrixB, the new bilinear form· is
given by

v ·u≡ vDuT where D ≡ NBNT =

(
a b
b c

)
(1)

for some numbersa,b, and c. We may then replace ar-
guments involving the general triangleX1X2X3 and the
bilinear form ◦ with ones involving the simpler triangle
A1A2A3. What we prove for the standard triangleA1A2A3

with bilinear form given by the matrixD will be true for
the original triangle with bilinear form given by the origi-
nal matrixB.
We will assume thatD is invertible, so that

∆ ≡ detD = ac−b2

is non-zero. Another important quantity is themixed trace

d ≡ a+ c−2b

that appears in many formulas. With these notations, we
have the following result from [5].

Theorem 2 (Standard quadrances and spreads) The
quadrances and spreads ofA1A2A3 are

Q1 ≡ Q(A2,A3) = d

Q2 ≡ Q(A1,A3) = c

Q3 ≡ Q(A1,A2) = a

and

s1 ≡ s(A1A2,A1A3) =
∆
ac

s2 ≡ s(A2A3,A2A1) =
∆
ad

s3 ≡ s(A3A1,A3A2) =
∆
cd

.

Furthermore

1− s1 =
b2

ac
, 1− s2 =

(a−b)2

ad
, 1− s3 =

(c−b)2

cd
.

Note that the centroid ofA1A2A3 is

G=

[
1
3
,
1
3

]
.

1.3 Bilines, Incenters and some other triangle centers

A biline of the non-null vertexl1l2 is a lineb which passes
throughl1l2 and satisfiess(l1,b) = s(b, l2). The existence
of bilines depends on number theoretical considerations of
a particularly simple kind.

Theorem 3 (Existence of Triangle bilines) The Triangle
A1A2A3 has bilines at each vertex precisely when we can
find numbers u,v,w in the field satisfying

ac= u2, ad= v2, cd= w2. (2)

In this case we can choose u,v,w so that acd= uvw and

du= vw, cv= uw and aw= uv. (3)

We now summarize some basic triangle centers of the stan-
dard triangleA1A2A3, assuming the existence of bilines.
These formulas involve the entriesa,b,c of D from (1), as
well as the secondary quantitiesu,v andw from (2), satis-
fying (3). The formulas and proofs are found in [5].
The four Incenters are

I0 =
1

d+ v−w
[−w,v] , I1 =

1
d− v+w

[w,−v] ,

I2 =
1

d+ v+w
[w,v] , I3 =

1
d− v−w

[−w,−v] .

Notice thatI1, I2 andI3 may be obtained fromI0 by chang-
ing signs of: bothv andw, just w, and justv respectively.
This four-fold symmetry will hold more generally and note
that it means that we can generally just record the val-
ues of I0. The OrthocenterH, CircumcenterC and De
Longchamps pointX20 (the orthocenter of the double tri-
angle) are

H =
b
∆
[c−b,a−b] (4)

C=
1

2∆
[c(a−b),a(c−b)]

X20 =
1
∆
[
b2−2bc+ac,b2−2ab+ac

]
.

8
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2 The Incenter Circle theorem

Here is the main theorem of the paper, illustrated for green
Incenters of the triangleA1A2A3 in Figure 3. The situa-
tion is completely symmetric between the three geometries
blue, red and green.
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Figure 3: Green Incenters and the blue and red Incenter
Circles

Theorem 4 (Incenter Circles) If a triangle A1A2A3 has
four blue Incenters Ib0, I

b
1, I

b
2 and Ib3, then they all lie both

on a red circleC b
r with center the red Orthocenter Hr , and

on a green circleC b
g with center the green Orthocenter Hg,

and similarly for the other colours. Furthermore, if both
red and green Incenters exist, then they lie on the same
blue circle, so thatC r

b = C
g
b = Cb, and similarly for the

other colours.

Proof. To prove that the four blue IncentersIb
0, I

b
1, I

b
2 and

Ib
3 lie on a red circleC b

r with centerHr , we need show that

Qr

(
Hr , I

b
0

)
= Qr

(
Hr , I

b
1

)
= Qr

(
Hr , I

b
2

)
= Qr

(
Hr , I

b
3

)
.

First we find the bilinear forms for the blue, red and green
geometries. After translating, and then applying a linear
transformation with the matrixM, we send the original
triangle to the standard triangleA1A2A3. If M−1 = N =(

α β
γ δ

)
, then the bilinear forms for the blue, red and

green geometries become respectively the matrices

Db ≡
(

α β
γ δ

)(
1 0
0 1

)(
α β
γ δ

)T

=

(
α2+β2 αγ+βδ
αγ+βδ γ2+ δ2

)
≡
(

ab bb

bb cb

)

Dr ≡
(

α β
γ δ

)(
1 0
0 −1

)(
α β
γ δ

)T

=

(
α2−β2 αγ−βδ
αγ−βδ γ2− δ2

)
≡
(

ar br

br cr

)

Dg ≡
(

α β
γ δ

)(
0 1
1 0

)(
α β
γ δ

)T

=

(
2αβ αδ+βγ

αδ+βγ 2γδ

)
≡
(

ag bg

bg cg

)
.

There are interesting relations between the introduced
quantities; for example

a2
b = a2

g+a2
r , abcb = b2

g+b2
r ,

arcr = b2
b−b2

g, agcg = b2
b−b2

r , c2
b = c2

g+ c2
r

and

abcg−2bbbg+ cbag = 0, abcr −2bbbr + cbar = 0,

agcr −2bgbr + cgar = 0.

The determinants ofDb,Dr andDg are respectively

∆b = (αδ−βγ)2 , ∆r = ∆g =−(αδ−βγ)2 =−∆b

and the mixed traces are

db = (α− γ)2+(β− δ)2 , dr = (α− γ)2− (β− δ)2 ,

dg = 2(α− γ)(β− δ) .

Note also the relationd2
b = d2

r +d2
g.

If the original triangle has four blue Incenters, then the
Existence of Triangle bilines theorem shows that we may
choose numbersub,vb,wb satisfying (2) and (3), so that

u2
b =

(
α2+β2)(γ2+ δ2)

v2
b =

(
α2+β2)((α− γ)2+(β− δ)2

)

w2
b =

(
γ2+ δ2)((α− γ)2+(β− δ)2

)
.

The blue Incenters are then

Ib
0 =

1
db+ vb−wb

[−wb,vb] , Ib
1 =

1
db− vb+wb

[wb,−vb] ,

Ib
2 =

1
db+ vb+wb

[wb,vb] , Ib
3 =

1
db− vb−wb

[−wb,−vb] .

In exactly the same fashion

I r
0 =

1
dr+ vr−wr

[−wr ,vr ] and Ig
0 =

1
dg+vg−wg

[−wg,vg] .

According to (4), the respective orthocenters are

Hb =
bb

∆b
[cb−bb,ab−bb] , Hr =

br

∆r
[cr −br ,ar −br ] ,

Hg =
bg

∆g
[cg−bg,ag−bg] .

9
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If we seteb ≡ db+ vb−wb then

−−→
Hr I

b
0 =−

(
br (cr −br)

∆r
+

wb

eb
,
br (ar −br)

∆r
− vb

eb

)

=− 1
∆reb

(br (cr −br)eb+∆rwb,br (ar −br)eb−∆rvb)

so that

Qr

(
Hr , I

b
0

)
=

(−−→
Hr I

b
0

)
Dr

(−−→
Hr I

b
0

)T

=
(

br (cr−br )
∆r

+wb
eb

br (ar−br )
∆r

− vb
eb

)(ar br

br cr

)( br (cr−br )
∆r

+ wb
eb

br (ar−br )
∆r

− vb
eb

)

=
1

∆2
r e2

b

(
ar (br (cr−br )eb+∆rwb)

2+cr (br (ar−br)eb−∆rvb)
2

+2br (br (cr −br )eb+∆rwb) (br (ar−br)eb−∆rvb)

)

=
1

∆2
r e2

b




b2
r (ar −2br +cr)

(
arcr −b2

r
)

e2
b

−2∆rbr (vb−wb)
(
−b2

r +ar cr
)

eb
+∆2

r
(
arw2

b+crv2
b−2br vbwb

)


 .

Use the relation∆r = arcr −b2
r to get

Qr

(
Hr , I

b
0

)
(5)

=
1

∆2
r eb

(
b2

r (ar −2br +cr )e2
b

−2∆rbr (vb−wb)eb+∆r
(
arw2

b+crv2
b−2br vbwb

)
)

=

(
2br (br −cr )(ar −br )(vbdb−vbwb−wbdb)

+ ar (br −cr)
2 v2

b+cr (ar −br )
2 w2

b+b2
r dr d2

b

)

∆2
r eb

where we have collectedv2
b,w

2
b andd2

b of the numerator of
(5), to rewrite it.
Replacev2

b = abdb, w2
b = cbdb and vbwb = ubdb and the

values ofab,cb,db,ar ,br ,cr in terms ofα,β,γ,δ to get the
factorization

2br (br − cr)(ar −br)(vb−ub−wb)db+ar (br − cr)
2abdb

+ cr (ar −br)
2cbdb+b2

r (ar + cr −2br)d2
b

= db

(
2br (br−cr)(ar−br)(vb−ub−wb)+ar (br−cr)

2ab

+cr (ar −br)
2cb+b2

r (ar + cr −2br)db

)

= 2db(αγ−βδ)
(
α2−αγ+ γ2+β2−βδ+ δ2−ub+ vb−wb

)

×
(
α2−β2−αγ+βδ

)(
−γ2+ δ2+αγ−βδ

)
(6)

and also note that

(db+ vb−wb)
2 = db (ab+ cb+db−2ub+2vb−2wb)

= 2db
(
α2−αγ+ γ2+β2−βδ+ δ2−ub+ vb−wb

)
. (7)

Combine (6) and (7), to get the surprisingly simple formula

Qr

(
Hr , I

b
0

)

=
(αγ−βδ)

(
α2−β2−αγ+βδ

)(
−γ2+ δ2+αγ−βδ

)

∆r

=
br (ar −br) (br − cr)

∆r
≡ Kr .

We may now repeat the calculation to see that
Qr
(
Hr , Ib

1

)
= Qr

(
Hr , Ib

2

)
= Qr

(
Hr , Ib

3

)
= Kr , showing that

indeed the four blue Incenters lie on the red circleC b
r with

quadranceKr and centerHr . Note that the expression for
Kr depends only on the matrixDr .Now a similar derivation
shows that

Qg

(
Hg, I

b
i

)
=

bg (ag−bg) (bg− cg)

∆g
≡ Kg, i = 0,1,2,3.

Hence the four blue Incenters also lie on a green circleC b
g

with quadranceKg and centerHg. Similarly we find that
if a triangle has four red Incenters, then they lie on a blue
circleC r

b with centerHb and quadrance

Qb
(
Hb, I

g
i

)
= Qb (Hb, I

r
i ) =

bb (ab−bb) (bb− cb)

∆b
≡ Kb

as well as on a green circleC r
g with centerHg and quad-

ranceKg (the same one as above!) Similarly if a triangle
has four green Incenters, then they lie on a blue circleC

g
b

with centerHb and quadranceKb, as well as on a red circle
C

g
r with centerHr and quadranceKr . The proof is com-

plete. �

4

4

8

8

A

H

H

H

b

g

r

A
A

1

2
3

g

r
b

C

C

C

Figure 4: Three Incenter Circles Cb, Cr and Cg.

We now callCb = C
r
b = C

g
b ,Cr = C

b
r = C

g
r andCg = C

b
g =

C r
g the blue, red and greenIncenter Circles respectively. In

Figure 4 we see a (small) triangleA1A2A3 with its Omega
triangleHbHrHg and the three Incenter Circles, whose re-
spective meets give the twelve blue, red and green Incen-
ters.

2.1 Equations of Incenter Circles

Theorem 5 (Incenter Circles equations) In standard co-
ordinates with X= [x,y], the blue, red and green Incenter
circles, when they exist, have respective equations

Cb : Qb (X) = bb(2x+2y−1)

Cr : Qr (X) = br (2x+2y−1)

Cg : Qg (X) = bg(2x+2y−1).

10
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Proof. The derivation of these equations, using the formu-
las established above for the orthocentersHr and coloured
Incenters, is somewhat involved algebraically, although the
basic idea is simple. We show how to find the equation
of the red Incenter CircleCr , with centerHr , which four
blue Incenters and four green Incenters lie on if they ex-
ist. From the definition of a red circle, we get the equation
Qr (Hr ,X) = Kr , and then substitute the values ofHr and
Kr to get

(
br (cr−br )

∆r
− x br (ar−br )

∆r
− y
)(ar br

br cr

)( br (cr−br )
∆r

− x
br (ar−br )

∆r
− y

)

=
br (ar −br) (br − cr)

∆r

or after expansion

1
∆2

r

(
ar (br (cr −br)−∆rx)

2+ cr (br (ar −br)−∆ry)
2

+2br (br (cr −br)−∆rx)(br (ar −br)−∆ry)

)

=
br (ar −br) (br − cr)

∆r
.

This may be rewritten, using∆r = arcr −b2
r , in the form

1
∆r

(∆2
r arx

2+2∆2
r brxy+∆2

r cry
2+∆rb

2
r (ar −2br + cr)

−2∆2
r brx−2∆2

r bry) = br (ar −br)(br − cr) .

Now cancel∆r , and rearrange to get

∆rarx
2+2∆rbrxy+∆rcry

2−2∆rbrx−2∆rbry+br
(
arcr−b2

r

)
=0

or more simply

arx
2+2brxy+ cry

2−2brx−2bry+br = 0

which has the form stated in the theorem. The same kind
of calculation establishes the formulas forCb andCg. �

Note that the equations for the Incenter CirclesCb,Cr and
Cg allow them to be definedwhether or notthe correspond-
ing Incenters exist! Incenters then exist precisely as meets
of these Incenter Circles: for example the blue Incenters
Ib
0, I

b
1, I

b
2, I

b
3 are just the meets ofCr andCg, if these exist in

the field in which we work.

2.2 Tangent lines of Incenter Circles

Now we consider tangent lines to Incenter circles. Fig-
ure 5 shows the four blue Incenters ofA1A2A3, together
with the red and green Incenter Circles passing through
them, namelyCr andCg. At each of the four IncentersIb

i ,
i = 1,2,3,4 we have the tangent linestb

ri andtb
gi to the red

and green Incenter CirclesCr andCg respectively.

A

t

t

t

t

t

t

t

t

I
I

I

R
G

R

G

R

G

R

G
R

G
R
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A
b

b

b

b

b

b

b

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b
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r

g

g

g

r

r

r

r

g

g

1

2
0

01
01

03

03

13

13

23

23
02

02
12

12

3

3

1

3

1

2

0

0

2

1

2

3

C

C

Figure 5: Incenter tangent meets

Theorem 6 (Incenter tangent meets) The tangent lines
tb
r0, t

b
r1, t

b
r2, t

b
r3 to the red Incenter circleCr at the blue In-

centers form a standard quadrilateral, as do the tangent
lines tbg0, t

b
g1, t

b
g2, t

b
g3 at the green Incenter circleCg. The

same holds for the red and green Incenters, if they exist.

This implies that the meetsRb
01≡ tb

r0t
b
r1 andRb

23≡ tb
r2t

b
r3 lie

on l1 = A2A3, and are harmonic conjugates with respect to
A2 and A3. Similarly Rb

02 ≡ tb
r0t

b
r2 andRb

13 ≡ tb
r1t

b
r3 lie on

l2 = A1A3, and are harmonic conjugates with respect toA1

andA3; andRb
03 ≡ tb

r0t
b
r3 andRb

12 ≡ tb
r1t

b
r2 lie on l3 = A1A2,

and are harmonic conjugates with respect toA1 and A2.
The pointsGb

01 ≡ tb
g0t

b
g1 andGb

23 ≡ tb
g2t

b
g3 lie on l1, and are

harmonic conjugates with respect toA2 andA3. Similarly
Gb

02 ≡ tb
g0t

b
g2 andGb

13 ≡ tb
g1t

b
g3 lie on l2, and are harmonic

conjugates with respect toA1 andA3, andGb
03≡ tb

g0t
b
g3 and

Gb
12 ≡ tb

g1t
b
g2 lie on l3, and are harmonic conjugates with

respect toA1 andA2.

Proof. We prove the result for the meetsGb
i j of the green

tangent linestb
gi associated to the blue Incenters; the other

cases are similar. We find the joins of a blue IncenterIb
i

and the green OrthocenterHg to be

HgIb
0 =

〈(bg−ag)bgdb+(cg−bg)agvb+(ag−bg)bgwb :
(cg−bg)bgdb+(cg−bg)bgvb+(ag−bg)cgwb :

(bg−cg)bgvb+(bg−ag)bgwb

〉

HgIb
1 =

〈(bg−ag)bgdb− (cg−bg)agvb− (ag−bg)bgwb :
(cg−bg)bgdb− (cg−bg)bgvb− (ag−bg)cgwb :

−(bg−cg)bgvb− (bg−ag)bgwb

〉

HgIb
2 =

〈(bg−ag)bgdb+(cg−bg)agvb− (ag−bg)bgwb :
(cg−bg)bgdb+(cg−bg)bgvb− (ag−bg)cgwb :

(bg−cg)bgvb− (bg−ag)bgwb

〉

HgIb
3 =

〈(bg−ag)bgdb− (cg−bg)agvb+(ag−bg)bgwb :
(cg−bg)bgdb− (cg−bg)bgvb+(ag−bg)cgwb :

−(bg−cg)bgvb+(bg−ag)bgwb

〉
.

11
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The tangent linetb
gi is the line green perpendicular toHgIb

i

passing throughIb
i . These we may calculate to be

tb
g0=

〈(ag−bg
)

ub+bgvb+
(
ag−2bg

)
wb+dbbg−cb

(
ag−bg

)
:(

cg−bg
)

ub+
(
2bg−cg

)
vb−bgwb+dbbg+ab

(
bg−cg

)
:

bg (−vb+wb−db)

〉

tb
g1=

〈 (
ag−bg

)
ub−bgvb−

(
ag−2bg

)
wb+bgdb−cb

(
ag−bg

)
:(

cg−bg
)

ub−
(
2bg−cg

)
vb+bgwb+dbbg+ab

(
bg−cg

)
:

bg (vb−wb−db)

〉

tb
g2=

〈−
(
ag−bg

)
ub+bgvb−

(
ag−2bg

)
wb+bgdb−cb

(
ag−bg

)
:

−
(
cg−bg

)
ub+

(
2bg−cg

)
vb+bgwb+dbbg+ab

(
bg−cg

)
:

bg (−vb−wb−db)

〉

tb
g3=

〈−
(
ag−bg

)
ub−bgvb+

(
ag−2bg

)
wb+bgdb−cb

(
ag−bg

)
:

−
(
cg−bg

)
ub−

(
2bg−cg

)
vb−bgwb+dbbg+ab

(
bg−cg

)
:

bg(vb+wb−db)

〉
.

We could verify directly that these four lines form a stan-
dard quadrilateral. But we prefer to verify that the meets
of these four tangent lines agree with the following meets
with the side lines ofA1A2A3 :

Gb
01 ≡ tb

g0t
b
g1 = tb

g0l1

=
1

λ01
[(bg−cg)(−ub+ vb+ab),(ag−bg)(−ub−wb+ cb)]

Gb
23 ≡ tb

g2t
b
g3 = tb

g2l1

=
1

λ23
[(bg− cg) (ub+ vb+ab) ,(ag−bg)(ub+wb+ cb)]

Gb
02 ≡ tb

g0t
b
g2 = tb

g0l2 =
1

λ02
[0,bg(−vb+wb−db)]

Gb
13 ≡ tb

g1t
b
g3 = tb

g1l2 =
1

λ13
[0,bg(−vb+wb+db)]

Gb
03 ≡ tb

g0t
b
g3 = tb

g0l3 =
1

λ03
[bg(vb−wb+db) ,0]

Gb
12 ≡ tb

g1t
b
g2 = tb

g1l3 =
1

λ12
[bg(vb−wb−db) ,0]

where

λ01 =(cg−ag)ub+(bg− cg)vb+(bg−ag)wb

+(abbg−abcg+ cbag− cbbg)

λ23 =(ag− cg)ub+(bg− cg)vb

+(ag−bg)wb+(abbg−abcg+ cbag− cbbg)

λ02 =(bg− cg)ub+(cg−2bg)vb+bgwb

+(abcg−2abbg+2bbbg− cbbg)

λ13 =(cg−bg)ub+(cg−2bg)vb+bgwb

+(2abbg−abcg−2bbbg+ cbbg)

λ03 =(ag−bg)ub+bgvb+(ag−2bg)wb

+(abbg−2bbbg− cbag+2cbbg)

λ12 =(bg−ag)ub+bgvb+(ag−2bg)wb

+(2bbbg−abbg+ cbag−2cbbg) .

The fact thatA2,A3,Gb
01,G

b
23 form a harmonic range etc.

is an immediate consequence of a well known fact about
standard quadrilaterals in projective geometry, since we
have shown that the pointsA1,A2 and A3 are diagonal
points of the quadrilateral formed by the four green tan-
gent lines. �

Following the construction of the red lines in the introduc-
tory section on Quadrangles and quadrilaterals, we join a
pointGb

i j with the triangle pointAk opposite to the triangle

line that it lies on; giving six linesAkGb
i j :

A1Gb
01=

〈 (
ag−bg

)
(ub+wb−cb) :(

bg−cg
)
(−ub+vb+ab) :

0

〉

A1Gb
23=

〈(bg−ag
)
(ub+wb+cb) :(

bg−cg
)
(ub+vb+ab) :

0

〉

A2Gb
02=

〈 bg (−vb+wb−db) :(
bg−cg

)
ub+

(
cg−2bg

)
vb+bgwb−bgdb+ab

(
cg−bg

)
:

bg (vb−wb+db)

〉

A2Gb
13=

〈 bg (−vb+wb+db) :(
cg−bg

)
ub+

(
cg−2bg

)
vb+bgwb+bgdb+ab

(
bg−cg

)
:

bg (vb−wb−db)

〉

A3Gb
03=

〈(ag−bg
)
ub+bgvb+

(
ag−2bg

)
wb+bgdb+cb

(
bg−ag

)
:

bg (vb−wb+db) :
bg (−vb+wb−db)

〉

A3Gb
12=

〈(bg−ag
)
ub+bgvb+

(
ag−2bg

)
wb−bgdb+cb

(
ag−bg

)
:

bg (vb−wb−db) :
bg (−vb+wb+db)

〉
.

Theorem 7 (Quad points) The triples {A1Gb
23,A2Gb

13,
A3Gb

12},
{

A1Gb
23,A2Gb

02,A3Gb
03

}
,
{

A1Gb
01,A2Gb

13,A3Gb
03

}

and
{

A1Gb
01,A2Gb

02,A3Gb
12

}
of lines are concur-

rent in the respective points Qbg0,Q
b
g1,Q

b
g2 and

Qb
g3, called the blue/green quad points. The

triples
{

A1Rb
23,A2Rb

13,A3Rb
12

}
,
{

A1Rb
23,A2Rb

02,A3Rb
03

}
,{

A1Rb
01,A2Rb

13,A3Rb
03

}
and

{
A1Rb

01,A2Rb
02,A3Rb

12

}
are

also concurrent in the respective points Qb
r0,Q

b
r1,Q

b
r2 and

Qb
r3, called theblue/red quad points. Similar results hold

for the red and green Incenters, if they exist.

Proof. We verify this for the blue/green quad points: this
is a consequence of the projective geometry of the com-
plete quadrilateral we mentioned in the first section—if the
original four tangent lines are regarded as the blue lines
in Figure 6, then the quad pointsQb

g j correspond to the
red points. However we want to find explicit formulas and
check things directly. The quad pointQb

g j is naturally as-

sociated to the IncenterIb
j . After some calculation, we find

12



KoG•18–2014 N. Le, N. J. Wildberger: Incenter Circles, Chromogeometry,and the Omega Triangle

that these are

Qb
g0 =

bg

λ0
[(bg− cg) (dbub− (bb− cb)vb) ,

(ag−bg) ((cb−bb)wb+ cbdb)]

Qb
g1 =

bg

λ1
[(bg− cg) ((ab−bb)vb+abdb) ,

(ag−bg) (dbub+(ab−bb)wb)]

Qb
g2 =

bg

λ2
[(cg−bg) (abwb−bbvb) ,

(bg−ag) (bbwb− cbvb)]

Qb
g3 =

bg

λ3
[(bg−cg)(−dbub+(db+bb)vb−abwb+abdb),

(bg−ag) (dbub−cbvb+(db+bb)wb−cbdb)]

where

λ0 = (bg− cg)(bgdb+(bb− cb)(ag−bg))ub

− (bg− cg)(bbbg+ cbag−2cbbg)vb

−bg(ag−bg)(bb− cb)wb+ cbbg (ag−bg)db

λ1 = (ag−bg) (bgdb+(ab−bb)(bg− cg))ub

+bg(bg− cg) (ab−bb)vb

+(ag−bg)(2abbg−abcg−bbbg)wb+abbg(bg−cg)db

λ2 = bb(bg− cg) (ag−bg)ub

+bg(bbbg+ cbag−bbcg− cbbg)vb

−bg(abbg+bbag−abcg−bbbg)wb−abcb(bg−cg)(ag−bg)

λ3 =
(
(db+bb)

(
b2

g+agcg
)
−agbg (2db+bb)−bbbgcg

)
ub

+(bg ((bg− cg)(ab−bb)+ cb(2ag−bg))− cbagcg)vb

+((db+bb)(bg−ag)bg−abag (bg− cg))wb

+b2
g(ab(db−cb)−cbdb)+bg(cbag(db+ab)−abcg(db−cb))

−agcgabcb.

We may then check directly that for exampleQb
g0 is inci-

dent withA3Gb
12 by computing

((
bg−ag

)
ub+bgvb+

(
ag−2bg

)
wb−bgdb+cb

(
ag−bg

))
·

·
(

bg
(
bg−cg

)
(dbub− (bb−cb)vb)

λ0

)

+bg (vb−wb−db)

(
bg
(
ag−bg

)
((cb−bb)wb+cbdb)

λ0

)

+bg (−vb+wb+db)

=

bg
(
ag−bg

)(
bg−cg

)( dbu2
b+(bb−ab)ubwb−bbdbub

−cbv2
b+bbvbwb+cb (ab−bb)vb

)




−
(
bg−cg

)(
bgdb+(bb−cb)

(
ag−bg

))
ub

+
(
bg−cg

)(
bbbg+cbag−2cbbg

)
vb

+bg
(
ag−bg

)
(bb−cb)wb−cbbg

(
ag−bg

)
db




= 0

sincedbu2
b + (bb−ab)ubwb − bbdbub − cbv2

b + bbvbwb +
cb (ab−bb)vb = 0 by using (2), and similarly for the other
indices. In a parallel fashion, we find that the four blue/red
quad pointsQb

r j have exactly the same formulas as the

Qb
g j, except for the replacementsag −→ ar , bg −→ br and

cg −→ cr , and similarly for the other colours red and green.
�
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Figure 6: Quad points and star lines

Now introduce theblue star line sb
j to be the join of the

corresponding blue/red quad pointQb
r j and the blue/green

quad pointQb
g j, and similarly for the other colours. There

are then four blue star linessb
0,s

b
1,s

b
2 andsb

3.
The blue star point Bi j is the meet of the two blue star
linessb

i andsb
j , that isBi j ≡ sb

i sb
j , and similarly for the other

colours.
Note that following the introductory section on Quadran-
gles and quadrilaterals, we use the correspondence be-
tween theQb

g j; and the tangent linestb
g j; and the Incenters

Ib
j to match up the indices.

Theorem 8 (Star quadrilateral) The four blue star lines
form a standard quadrilateralsb

0sb
1sb

2sb
3. This holds also for

the other colours.

Proof. The proof we have is surprisingly complicated. The
star linessb

j have quite involved formulas; for example we
find that

sb
0 = Qb0

g Qb0
r =

〈

E0dbub+F0cbvb :


bgbr

(
(bb−cb)

2+cbdb

)
·

·(agbr −bgar −agcr +cgar +bgcr −cgbr )dbub
−2cbbgbr (agbr−bgar −agcr +cgar +bgcr−cgbr )(bb−cb)dbvb

−ab (br −cr )(bg−cg)(agbr −bgar )
(
(bb−cb)

2+cbdb

)
wb

+2abcb (br −cr )(bg−cg)(agbr −bgar )(bb−cb)db




:

(
−bgbr db (agbr −bgar −agcr +cgar +bgcr −cgbr) ·

·
((

(bb−cb)
2+cbdb

)
ub−2cb (bb−cb)vb

)
)

〉

13
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whereE0 andF0 are both homogeneous polynomials of
degree 6 in the variablesai,bi andci , with the former hav-
ing 32 terms and the latter 46 terms. After some trial and
error we can present these in the somewhat pleasant, but
still mysterious, forms:

E0 =−bgbr (agcr − cgar −bgcr + cgbr) ·
·
(
b2

b+4c2
b+abcb−6bbcb

)

+bgbr (agbr −bgar)
(
b2

b+2c2
b+abcb−4bbcb

)

−2cb
(
agcgb2

r −arcrb
2
g+agarcrbg−agcgarbr

)
(bb−cb)

and

F0 =
(
agcgb2

r −arcrb
2
g+agarcrbg−agcgarbr

)
·

·
(
b2

b−4bbcb+2c2
b+abcb

)

+bgbr (agcr − cgar −bgcr + cgbr) ·
·
(
−5b2

b−4c2
b+2abbb−3abcb+10bbcb

)

−2bgbr (agbr −bgar) (bb− cb)(ab−2bb+ cb) .

We can then calculate the blue star points, for example

B03=




(
bgbrdb(agbr−bgar−agcr+cgar+bgcr−cgbr)·
·
((

(bb− cb)
2+ cbdb

)
ub−2cb(bb− cb)vb

)
)

E0dbub+F0cbvb
,0




from which clearlyB03 lies on l3. The computations are
similar for the other indices, and the other colours. �

3 Explicit examples and some conjectures

3.1 An example over Q
(√

30,
√

217,
√

741,
√

2470,
√

82297
)

We will now explore in detail a particular triangle which
has both blue, red and green Incenters; for us this is not
only an important tool for checking the consistency of our
formulas, but also a way to get a sense of the level of com-
plexity of various constructions. In fact this kind of explicit
calculation of examples is much to be encouraged in this
subject: especially as working over concrete fields, includ-
ing finite fields and explicit extension fields of the ratio-
nals, allows us to appreciate the number theoretic aspects
of our geometrical investigations. For example, finding a
triangle with blue, red and green Incenters approximately
is easy with a geometry package: finding a concrete exam-
ple and working out all the points precisely is more chal-
lenging.
In particular we were unable, despite a reasonable com-
puter search, to findany triangles with purely rational
points that have blue, red and green Incenters! We would
like to thank Michael Reynolds for his contributions to this

search. So we tentatively conjecture thatthere are no such
triangles.
In any case, to get an explicit example we use an alge-
braic extension field of the rationals; so by

√
30 we mean

an appropriate symbol in the extension fieldQ
(√

30
)

etc..
Note that although our use of square roots is entirely alge-
braic, our representation of these square roots as approx-
imate rational numbers (we prefer to avoid discussion of
“real numbers”), necessarily brings anapproximate aspect
into our diagrams.
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Figure 7: An example triangleX1X2X3

Example 1 One may check that the basic Triangle with
points

X1 ≡ [−21/59,−58/59], X2 ≡ [−13/3,2] and

X3 ≡ [35/3,−8/5]

in Q
(√

30,
√

217,
√

741,
√

2470,
√

82297
)

has both
blue, red and green Incenters. After translation
by (21/59,58/59) we obtain X̃1 = [0,0], X̃2 =
[−704/177,176/59] and X̃3 = [2128/177,−182/295].
The matrix N and its inverse M, where

N =

(
− 704

177
176
59

2128
177 − 182

295

)
=

(
α β
γ δ

)
and

M = N−1 =

( 13
704

5
56

95
264

5
42

)

respectively send[1,0] and[0,1] to X̃2 andX̃3, andX̃2 and
X̃3 to [1,0] and [0,1]. From now on we discuss only the
standard triangleA1A2A3 associated toX1X2X3; to convert
back into the original coordinates, we would multiply by N
and translate by(−21/59,−58/59). The bilinear forms in
these new standard coordinates, for the blue, red and green

14
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geometries respectively, are given by matrices

Db=N

(
1 0
0 1

)
NT =

( 774400
31329 − 7778848

156645
− 7778848

156645
113507716

783225

)
=

(
ab bb

bb cb

)

Dr =N

(
1 0
0 −1

)
NT=

( 216832
31329 −7202272

156645
− 7202272

156645
112911484

783225

)
=

(
ar br

br cr

)

Dg=N

(
0 1
1 0

)
NT =

(
− 247808

10443
2000768
52215

2000768
52215 − 774592

52215

)
=

(
ag bg

bg cg

)
.

The determinants of Db, Dr and Dg are ∆b =
97140736

87025 and
∆r =∆g =− 97140736

87025 , while the mixed traces are db =
6724
25 ,

dr =
6076
25 and dg =− 576

5 . The orthocenters ofA1A2A3 are

Hb=

[
−8825537

1019520
,−84337

25488

]
,Hr =

[
87833227
11214720

,
55537
25488

]
,

Hg =

[
7105
3894

,
377
177

]
.

Blue, red and green Incenters exist overF =
Q
(√

30,
√

217,
√

741,
√

2470,
√

82297
)

and we may
choose

ub =
1875104
31329

, vb =
14432
177

, wb =
873628
4425

ur =
17248
156645

√
82297, vr =

2464
885

√
217

wr =
196
4425

√
217

√
82297

ug =
19712
52215

√
2470, vg =

2816
295

√
30, wg =

448
295

√
741.

Then the four blue Incenters, the four red Incenters and the
four green Incenters ofA1A2A3 respectively are

Ib
0 =

[
−761

590
,
220
413

]
Ib
1 =

[
5327

10384
,− 25

118

]

Ib
2 =

[
761
2112

,
25
168

]
Ib
3 =

[
5327
270

,
220
27

]

I r
0 =




1
22429440(4032553

√
217−20461

√
217

√
82297

+210343
√

82297−76618507),
1

50976(2923
√

217−7
√

217
√

82297
+133

√
82297−30049)




I r
1 =




1
22429440(20461

√
217

√
82297−4032553

√
217

+210343
√

82297−76618507),
1

50976(7
√

217
√

82297−2923
√

217
+133

√
82297−30049)




I r
2 =




1
22429440(4032553

√
217+20461

√
217

√
82297

−210343
√

82297−76618507),
1

50976(7
√

217
√

82297+2923
√

217
−133

√
82297−30049)




I r
3 =




−1
22429440(4032553

√
217+20461

√
217

√
82297

+210343
√

82297+76618507),
−1

50976(7
√

217
√

82297−2923
√

217
−133

√
82297−30049)




Ig
0 =

[ 203
7788

√
741− 247

3894

√
30+ 35

3894

√
2470− 3211

7788,
13

1239

√
2470− 29

177

√
30+ 20

1239

√
741− 100

177

]

Ig
1 =

[ 247
3894

√
30− 203

7788

√
741+ 35

3894

√
2470− 3211

7788,
29
177

√
30+ 13

1239

√
2470− 20

1239

√
741− 100

177

]

Ig
2 =

[
− 247

3894

√
30− 203

7788

√
741− 35

3894

√
2470− 3211

7788,

− 29
177

√
30− 13

1239

√
2470− 20

1239

√
741− 100

177

]

Ig
3 =

[ 247
3894

√
30+ 203

7788

√
741− 35

3894

√
2470− 3211

7788,
29
177

√
30− 13

1239

√
2470+ 20

1239

√
741− 100

177

]
.

The Incenter circle quadrances are

Kb =
18154129609

28196100
, Kr =−11681819191

28196100

Kg =
1182272
10443

.

The blue, red and green Incenter Circles themselves have
respective equations

4840000x2−19447120xy+28376929y2

+19447120x+19447120y−9723560= 0

19360x2−62524xy+12103y2

+62524x+62524y−31262= 0

193600x2−2572240xy+4032553y2

+2572240x+2572240y−1286120= 0.

The four tangent lines tb
g j are

tb
g0 = 〈1570 :−11823 : 8323〉
tb
g1 = 〈−127512 :−33761 : 58261〉
tb
g2 = 〈−18216 :−11823 : 8323〉
tb
g3 = 〈−1570 : 4823 : 8323〉.
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The meets of these four tangent lines agree with the follow-
ing meets with the side lines ofA1A2A3 :

Gb
01 ≡ tb

g0t
b
g1 = tb

g0l1 =

[
3500

13393
,

9893
13393

]

Gb
23 ≡ tb

g2t
b
g3 = tb

g2l1 =

[
−3500

6393
,
9893
6393

]

Gb
02 ≡ tb

g0t
b
g2 = tb

g0l2 =

[
0,

1189
1689

]

Gb
13 ≡ tb

g1t
b
g3 = tb

g1l2 =

[
0,

1189
689

]

Gb
03 ≡ tb

g0t
b
g3 = tb

g0l3 =

[
−8323

1570
,0

]

Gb
12 ≡ tb

g1t
b
g2 = tb

g1l3 =

[
8323

18216
,0

]
.

The blue/red quad points Qbr j associated to Ib0, I
b
1, I

b
2, I

b
3 re-

spectively are

Qb
r0 =

[
18005811535
21082889161

,−12129669559
21082889161

]

Qb
r1 =

[
−18005811535

9330605209
,
12129669559
9330605209

]

Qb
r2 =

[
18005811535
14928733909

,
12129669559
14928733909

]

Qb
r3 =

[
18005811535
45342228279

,
12129669559
45342228279

]
.

The respective blue/green quad points Qb
g j are

Qb
g0 =

[
−4161500

2654777
,
11762777
2654777

]

Qb
g1 =

[
− 4161500

12547777
,
11762777
12547777

]

Qb
g2 =

[
4161500

10977777
,
11762777
10977777

]

Qb
g3 =

[
4161500

20870777
,
11762777
20870777

]
.

The blue star lines are then

sb
0 = Qb

r0Qb
g0 =

〈1796063533088 : 868804574039 :−1034074074039〉
sb
1 =

〈272084614990 : 1199343574039 :−1034074074039〉
sb
2 =

〈272084614990 : 868804574039 :−1034074074039〉
sb
3 =

〈1796063533088: 1199343574039:−1034074074039〉

and they meet at the blue star points

B01 =

[
165269500000
927258959049

,
761989459049
927258959049

]

B23 =

[
−165269500000

596719959049
,
761989459049
596719959049

]

B02 =

[
0,

1034074074039
868804574039

]
,B13 =

[
0,

1034074074039
1199343574039

]

B03 =

[
1034074074039
1796063533088

,0

]
,B12 =

[
1034074074039
272084614990

,0

]
.

Note the pleasant rationality of the previous objects.

3.2 An example over F13

Now we look at an example over a finite field.

Theorem 9 (Null quadrances incenters) Suppose that
the fieldF contains an element i, where i2 = −1, and
the characteristic ofF is not2. If

Kb ≡
bb (ab−bb)(bb− cb)

∆b
= Kr ≡

br (ar −br)(br − cr)

∆r

= Kg ≡
bg (ag−bg) (bg− cg)

∆g
= 0

then the standard TriangleA1A2A3 has four distinct blue,
red and green Incenters.

Proof. If Kb = 0 then from the definition of the blue incen-
ter circleCb, which isQb (Hb,X) = Kb, Cb is a null circle,
so it is a product of lines. Similarly, ifKr = 0 thenCr is a
null circle, and ifKg = 0 thenCg is a null circle. These
null lines have distinct direction vectors(1,±i) ,(1,±1)
and (1,0) ,(0,1) respectively, and they are never parallel
since char(F) 6= 2, so i 6= ±1. Therefore, any two null cir-
cles meet in exactly four points. �

Here is an example found by Michael Reynolds [6] which
illustrates explicitly the above theorem.

Example 2 The triangle X1X2X3 with points X1 ≡
[3,4] ,X2 ≡ [1,9] and X3 ≡ [12,3] in F13 has four blue, red
and green Incenters. InF13 the squares are0,1,3,4,9,10
and12, and in particular−1= 12= 52 is a square. After
translation by(3,4) we obtainX̃1 = [0,0] , X̃2 = [11,5] and
X̃3 = [9,12] . The matrix N and its inverse M

N =

(
11 5
9 12

)
, M = N−1 =

(
10 11
12 7

)

send[1,0] and [0,1] to X̃2 andX̃3, andX̃2 andX̃3 to [1,0]
and[0,1] respectively. The bilinear form in these new stan-
dard coordinates for the blue, red and green geometries
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respectively are

Db = N

(
1 0
0 1

)
NT =

(
3 3
3 4

)

Dr = N

(
1 0
0 −1

)
NT =

(
5 0
0 2

)

Dg = N

(
0 1
1 0

)
NT =

(
6 8
8 8

)
.

We can see immediately that Kb = Kr = Kg = 0 from the
definitions

Qb (Hb, Iir ) =
bb(ab−bb)(bb− cb)

∆b
≡ Kb

Qr (Hr , Iib) =
br (ar −br)(br − cr)

∆r
≡ Kr

Qg (Hg, Iir ) =
bg(ag−bg)(bg− cg)

∆g
≡ Kg, i = 0,1,2,3.

The four blue, red and green Incenters respectively are

Ib
0 = [4,8] , Ib

1 = [3,6] , Ib
2 = [8,10] , Ib

3 = [11,4]

I r
0 = [10,9] , I r

1 = [8,2] , I r
2 = [6,5] , I r

3 = [4,12]

Ig
0 = [9,8] , Ig

1 = [5,3] , Ig
2 = [12,11] , Ig

3 = [2,4]

and the blue, red and green Incenter Circles respectively
have equations

Cb : (y− x+1)(x+3y−1)= 0

Cr : (x−6y)(x+6y) = 0

Cg : (x+2y−2)(x+5y−5) = 0.

From Michael Reynolds’ computer investigations, we ten-
tatively conjecture that for finite fieldsFp where p ≡
3mod4, there areno triangles which have both blue, red
and green Incenters, and for finite fieldsFp where p ≡
1mod4, blue, red and green Incenters exists precisely
whenKb = Kr = Kg = 0, as in the above example.

4 Spieker circles and Nagel circles

Now we recall from [5] that the central dilationδ−1/2 about
the centroid takes the Orthocenter to the Circumcenter, and
the Incenters to theSpieker centers. In standard coordi-
nates

δ−1/2([x,y]) = (1/2)[1− x,1− y].

The inverse central dilationδ−2 takes the Orthocenter to
the De Longchamps point X20, and takes the Incenters to
theNagel points. In standard coordinates

δ−2 ([x,y]) = [1−2x,1−2y].

Theorem 10 (Spieker circles) If a triangle has four blue
Incenters Ib0, I

b
1, I

b
2 and Ib3, then the four blue Spieker cen-

ters all lie both on a red Spieker circle with center the red
Circumcenter Cr , and on a green Spieker circle with center
the green Circumcenter Cg. If both say blue and red Incen-
ters exist, then all 8 blue and red Spieker points lie on the
same green circle. The same holds for the other colours.

Proof. We see that if we use the central dilation formula
to transform Incenter circles centred at the Orthocenters,
we get the Spieker circles centred at Circumcenters, so this
theorem is a direct consequence of the Incenter circles the-
orem and the fact that a dilation preserves circles of any
colour. �

Here are the formulas for the coloured Circumcenters in
standard coordinates:

Cb =
1

2∆b
[cb (ab−bb) ,ab(cb−bb)]

Cr =
1

2∆r
[cr (ar −br) ,ar (cr −br)]

Cg =
1

2∆g
[cg (ag−bg) ,ag(cg−bg)] .

A

C

C
C

b

g
r

A A

1

2 3

4

4

8

8

Figure 8: Blue, red and green Speiker circles

Theorem 11 (Nagel circles) If a triangle has four blue In-
centers Ib0, I

b
1, I

b
2 and Ib3, then the four blue Nagel centers

all lie both on a red Nagel circle with center the red De
Longchamps point X20r , and on a green Nagel circle with
center the green De Longchamps point X20g. If both say
blue and red Incenters exist, then all 8 blue and red Nagel
points lie on the same green circle. The same holds for the
other colours.

Proof. In the same fashion as in the previous theorem, if
we use the inverse central dilationδ−2 to transform Incen-
ter circles centred at the Orthocenters, we get the Nagel
circles centred at De Longchamps points. �
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Figure 9: Blue, red and green Nagel circles

Here are the formulas for the blue, red and green De
Longchamps points:

X20b =
1

∆b

[
b2

b−2bbcb+abcb,b
2
b−2abbb+abcb

]

X20r =
1
∆r

[
b2

r −2brcr +arcr ,b
2
r −2arbr +arcr

]

X20g =
1

∆g

[
b2

g−2bgcg+agcg,b
2
g−2agbg+agcg

]
.

In Figure 10 we see the relations between the
three coloured Orthocenters, Circumcenters and De
Longchamps points. The lines joining these are the three
coloured Euler lines. Note that the centroids of the trian-
gles of Orthocenters, Circumcenters and De Longchamps
points all agree with the centroidG of the original triangle
A1A2A3. We conclude with a simple observation about De
Longchamps points.
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Figure 10:Blue, red, green Orthocenters, Circumcenters
and De Longchamps points

Theorem 12 (Orthocenters as midpoints) For any tri-
angle, a coloured orthocenter H is the midpoint of the two
De Longchamps points X20 of the other two colours.

Proof. This follows by considering the action of the central
dilation δ−2 which takes the circumcenterCi to the ortho-
centerHi , and the orthocenterHi to the De Longchamps
pointX20i . �
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ABSTRACT

We consider a generalized arbelos consisting of three semi-

circles with collinear centers, in which only two of the three

semicircles touch. Many Archimedean circles of the ordi-

nary arbelos are generalized to our generalized arbelos.
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Arbelos s privjeskom

SAŽETAK

Promatra se poopćeni arbelos koji se sastoji od tri

polukružnice s kolinearnim sredǐstima, pri čemu se dvije

on njih dodiruju. Mnoge Arhimedove kružnice obićnog

arbelosa su poopćene za poopćeni arbelos.

Ključne riječi: arbelos, arbelos s privjeskom, Arhimedove

kružnice

1 Introduction

Thearbelosis a plane figure consisting of three mutually
touching semicircles with collinear centers. It has three
points of tangency. In [5], [7] and [9], we have considered
a generalized arbelos called acollinear arbelosconsisting
of three circles with collinear centers, in which one of the
circles touches the remaining two circles, but the two cir-
cles do not touch in general. Thereby the collinear arbelos
has two points of tangency.

In this paper, we consider the remaining case. We con-
sider a configuration consisting of three semicircles with
collinear centers, in which only two semicircles touch, i.e.,
it has only one point of tangency. Many Archimedean cir-
cles of the ordinary arbelos are generalized to our general-
ized arbelos, but also several new Archimedean circles of
the ordinary arbelos are induced by this.

2 An arbelos with overhang

Let O be a point on the segmentAB with |AO| = 2a and
|BO| = 2b. We use a rectangular coordinate system with
origin O such that the coordinates of the pointsA andB are
(2a,0) and(−2b,0), respectively. For two pointsP andQ,
(PQ) andP(Q) denote the circle with diameterPQand the
circle with centerP passing throughQ, respectively. How-
ever if their centers lie on the lineAB, we consider them
as semicircles lying in the regiony ≥ 0 unless otherwise

stated. LetA′ (resp. B′) be a point on the half line with
endpointO passing throughA (resp.B), and let|A′O|= 2a′

(resp. |B′O| = 2b′) (see Figure 1). Letγ = (AB), and let
δ′α be the circle touching the semicircle(A′O) externally
γ internally and the perpendicular toAB passing through
O from the side opposite to the pointB. The circleδ′β is
defined similarly.

O A

γ

AB

δα
δ

β

B

Figure 1.

Figure 1

Proposition 1 The two circlesδ′α andδ′β are congruent if

and only if a′−a= b′−b.

Proof. Let r be the radius ofδ′α. The center of the circle
with a diameterA′O or AB, the center ofδα′ and the foot of
perpendicular from this point toAB form a right triangle.
Hence by the Pythagorean theorem, we get

(r +a′)2− (r −a′)2 = ((a+b)− r)2− (r − (a−b))2.
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Notice that if the foot of perpendicular coincides with the
center of the circle with a diameterA′O or AB, then one
of the triangles degenerates to a segment. But the equation
still holds. Solving the equation we getr = ab/(a′+b).
Similarly,δ′β has radiusab/(a+b′). Therefore the two cir-
cles are congruent if and only ifa′+b= a+b′. �

Let α = (AO), β = (BO), and leta′ = a+ h, b′ = b+ h
with −min(a,b)< h. We relabela′, b′, A′, B′, δ′α andδ′β as

ah, bh, Ah, Bh, δα
h andδβ

h, respectively and letαh = (AhO)
andβh = (BhO). The configuration consisting of the three
semicirclesαh, βh andγ is denoted by(αh,βh,γ). We call
(αh,βh,γ) an arbelos with overhang h, and(αh,βh,γ) is
said to have overhangh. The ordinary arbelos(α,β,γ) has
overhang 0. The perpendicular toABpassing throughO is
called the axis, which overlaps with they-axis.

O AB

γ

αβ

AhBh

δα
h

δ
β
h

Af

V
W

B f

αh
βh

Figure 2

Now the circlesδα
h and δβ

h have the same radiusrh
A =

ab/(a+ b+ h) by Proposition 1. The two circles are a
generalization of the twin circles of Archimedes of the
ordinary arbelos(α,β,γ). Circles of radiusrh

A are said
to be Archimedean circles of(αh,βh,γ) or Archimedean
with respect to(αh,βh,γ). Also we say that(αh,βh,γ) has
Archimedean circles of radiusrh

A . The common radius
of Archimedean circles of(α,β,γ) is denoted byrA , i.e.,
rA = ab/(a+b).
We define Af and Bf as the points with coordinates
(2ab/bh,0) and (−2ab/ah,0), respectively. Letγ have
pointsV andW in common with the semicirclesαh and
βh respectively in the caseh≥ 0 (see Figure 2). The points
V andW have coordinates

(2ab/bh, f (a,b)/bh) and(−2ab/ah, f (a,b)/ah),

respectively, wheref (a,b) = 2
√

abh(a+b+h). There-
fore the pointsAf and Bf are the feet of perpendiculars
from V andW to the lineAB, respectively. By the coordi-
nates ofV andW, we get tan∠WOB= tan∠VOA. There-
fore∠WOB=∠VOAholds.
The circle touchingγ internally and the segmentAB at the
pointO has radius 2rA [11]. The fact is generalized as fol-
lows.

Proposition 2 If h > 0, the radius of the circle touchingγ
internally and the segments OV and OW is2rh

A .

Proof. Let r and(0,c) be the radius and the coordinates of
the center of the touching circle. Then we get

(a−b)2+ c2 = (a+b− r)2. (1)

Also by similar triangles, we get

r
c
= cos∠VOA=

√
ab

(a+h)(b+h)
. (2)

Eliminating c from (1) and (2), and solving the resulting
equation forr with h> 0, we getr = 2rh

A . �

Let α f = (Af O) andβ f = (Bf O). Archimedean circles of
the ordinary arbelos(α f ,β,(Af B)) have radius

(ab/bh)b
ab/bh+b

=
ab

a+bh
= rh

A .

Similarly Archimedean circles of the ordinary arbelos
(α,β f ,(ABf )) have the same radius. Hence we get:

Proposition 3 The ordinary arbeloi(α f ,β,(Af B)) and
(α,β f ,(ABf )) share Archimedean circles with(αh,βh,γ).

The circle touching the axis at the pointO from the side
opposite to the pointB and also touching the tangent ofβ
from the pointA is an Archimedean circle of the ordinary
arbelos(α,β,γ), which is denoted byW6 in [4]. Hence by
Proposition 3, we get the following proposition. By this
proposition we can construct the pointAf (alsoBf ) even in
the caseh< 0 (see Figures 7 and 14).

Proposition 4 The point Af coincides with the point of in-
tersection of the line AB and the external common tangent
of β and the Archimedean circle of(αh,βh,γ) touching the
axis at the point O from the side opposite to the point B.

Since |ABf | : |ABh| = a : ah holds, we get the following
proposition, which also enable us to construct the points
Af andBf in the caseh< 0.

Proposition 5 The point Bf divides the segment ABh in the
ratio a : |h| internally or externally, according as h> 0 or
h< 0.

3 Several twin circles

In this section we show that several twin circles exist for
(αh,βh,γ), if h> 0. Let us assumeh> 0, and letεα

1 be the
circle touching the semicirclesα externallyαh internally
and the segmentAfV from the side opposite to the pointA
(see Figure 3). Letεα

2 be the circle touching the semicircles
α externallyαh andγ internally. Also letεα

3 be the circle
touchingαh andγ externally and the axis from the side op-
posite to the pointB. The circlesεβ

1, εβ
2 andεβ

3 are defined
similarly. The following proposition has a straightforward
proof that is omitted.
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Proposition 6 If h > 0, the following statements hold.
(i) The circlesεα

1 andεβ
1 have the same radius

(
1
a
+

1
b
+

h
ab

+
1
h

)−1

=

(
1

rh
A

+
1
h

)−1

.

(ii) The circlesεα
2 andεβ

2 have the same radius

(
1
a
+

1
b
+

1
h

)−1

=

(
1
rA

+
1
h

)−1

.

(iii) The circlesεα
3 andεβ

3 have the same radius ab/h.

The proposition also shows that the sum of the curvatures
of the circlesεα

2 andεα
3 equals the curvature of the circle

εα
1 .

AB AfBf O

αh

βh

β

α

α
3

β
3

β
2

α
2

β
1

α
1

V

W

ε

ε

ε
ε

ε ε

Figure 3

4 Bankoff circles

The circle orthogonal to the semicirclesα, β and to the
circle touchingα and β externally andγ internally is an
Archimedean circle of(α,β,γ) called the Bankoff triplet
circle, which is denoted byW3 in [4]. The maximal circle
touching the external common tangent ofα andβ and the
arc ofγ cut by the tangent internally is an Archimedean cir-
cle of (α,β,γ) called the Bankoff quadruplet circle, which
is denoted byW4 in [4]. In this section we generalize the
two circles (see Figures 4 and 6). Letγ f = (Af Bf ).

Theorem 1 The following two circles are Archimedean
with respect to(αh,βh,γ), and coincide.
(i) The circle orthogonal to the semicirclesα, β and to the
circle touchingα andβ externally andγ f internally.
(ii) The circle orthogonal to the semicirclesα f , β f and to
the circle touchingα f andβ f externally andγ internally.

Proof. Let δ be the circle touchingα andβ externally and
γ f internally, and letε be the circle denoted by (i). We in-
vert the figure in the circle with centerO and radius 2

√
ab,

and label the images with an overline (see Figure 5). The
x-coordinates of the pointsA, B, Af andBf are 2b, −2a,
2bh and−2ah, respectively, and the circleγ f = (Af Bf ) has
center(b−a,0) and radiusah+bh. Let (xδ,yδ) andrδ be

the coordinates of the center of the circleδ and its radius.
The circleδ touchesα andβ, which are the perpendicu-
lars toABpassing through the pointsA andB, respectively.
Therefore we getxδ = b−aandrδ = a+b. Sinceδ touches
γ f externally and thex-coordinates of their centers are the
same, we get

yδ = ah+bh+ rδ = 2(a+b+h).

Sinceε is the line perpendicular to the lineα and passes
through the point of tangency ofα andδ, it is parallel toAB
and passes through the center ofδ. Hence the distance be-
tweenABand the farthest point onε equals 4ab/yδ = 2rh

A .
Thereforeε is Archimedean with respect to(αh,βh,γ). The
part (ii) is proved similarly. �

O AB

γ

γ f

α

αh

αf
β βf

βh

AhBh AfB f

Figure 4

AO

B

AB AfBf

δ

δ

γf

αβ

γf

AfBf

α

β

ε

ε

Figure 5

We call the circle in Theorem 1 the Bankoff triplet circle
of (αh,βh,γ).
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Theorem 2 If E is the external common tangent of the
semicirclesα andβh, or αh andβ, then the maximal circle
touchingE and the arc ofγ cut by E (the part ofγ be-
tween the two points of intersection ofγ andE) internally
is Archimedean with respect to(αh,βh,γ).

Proof. We prove the caseE being the common tangent of
α andβh. The other case is proved similarly. Letd be the
distance betweenE and the centers ofγ, and letT be the
point of intersection of the linesE andAB. If T lies in the
regionx> 0, let |AT|= t. By similar triangles, we get

a/(t+a) = d/(t +a+b) = bh/(t +2a+bh).

Eliminatingt and solving the resulting equations ford, we
get d = a+ b−2rh

A . Thereforeδ is an Archimedean cir-
cle of (αh,βh,γ). The caseT lying in the regionx < 0
is proved similarly. IfE and AB are parallel, thena =
b+h= d andrh

A = ab/(2a) = b/2. Therefore we also get
d = a+b−2rh

A. �

O AB

γ

αβ

AhBh

αh

βh

Figure 6

5 Miscellaneous Archimedean circles

In this section we consider miscellaneous Archimedean
circles of (αh,βh,γ) obtained from points dividing given
segments in the ratioa : bh or ah : b internally, some of
which seem to be new even for the ordinary arbelos. Let
I be the point of intersection of the axis and the semicir-
cle γ. The minimal circle touching the axis and passing
through the point of intersection of the semicircleα and
the segmentAI is an Archimedean circle of(α,β,γ), which
is denoted byW9 in [4]. Also the minimal circle touching
the axis and passing through the point of intersection of
the semicirclesγ and A(O) is an Archimedean circle of
(α,β,γ), which is denoted byW13 in [4]. The two facts
are generalized. LetAm andBm be the midpoints of the
segmentsAAh andBBh, respectively (see Figure 7).

Theorem 3 (i) If Iα is the point of intersection of the axis
and the semicircle(AhB), then the point dividing the seg-
ment Af Iα in the ratio a: bh internally lies on the semicircle
α and its distance from the axis is2rh

A .
(ii) The distance between the axis and the point of inter-
section of the semicircles Am(O) andγ is 2rh

A .

Proof. SinceIα has coordinates
(
0,2

√
ahb

)
, the point di-

viding the segmentAf Iα in (i) has coordinates

(
bh ·2ab/bh

a+bh
,
a ·2

√
ahb

a+bh

)
=

(
2rh

A ,2rh
A

√
ah

b

)
.

This proves (i). The point of intersection ofγ andAm(O)

has coordinates

(
2rh

A ,2
√
(a− rh

A)(b+ rh
A)

)
. This proves

(ii). �

A AfAhOBhBBf

Am

Bm

Am

α

Bm

β

γ

Iα

(O)

(O)

Figure 7

For a circle or a semicircleδ, its center is denoted byOδ.
The farthest point onδ from AB lying in the regiony≥ 0
is denoted byTδ. If the segmentsTαTβ andTγOγ intersect
at a pointP, the circle(PTγ) is an Archimedean circle of
(α,β,γ), which is denoted byW20 in [4]. The fact is gener-
alized (see Figure 8).

Theorem 4 The segments TαhTβ, TαTβh
and TγOγ intersect

at a point P, which divides TαhTβ and TαTβh
in the ratios

bh : a and b: ah internally, respectively. The circle(PTγ) is
Archimedean with respect to(αh,βh,γ).

Proof. The points dividingTαhTβ in the ratiobh : a inter-
nally andTαTβh

in the ratiob : ah internally have the same
coordinates(a−b,a+b−2rh

A). �

ABBh Oγ

Tγ

O

Tβh

Tβ

Tα

Tαh

Ah

P

Figure 8

In the theorem, the endpoints of the diameter of(PTγ) par-
allel to AB divide the segmentsTγTα andTγTβ in the ratios
a : bh andb : ah internally, respectively.

Theorem 5 Let T′
αh

and T′β be the reflected images of the
points Tαh and Tβ in the line AB, respectively. The follow-
ing statements hold.
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(i) Let C be the internal center of similitude of the semi-
circles γ and αh. If D is the point of intersection of the
lines CT′β and ATα, then D divides ATα in the ratio b: ah

internally and the circle touchingα or AB at the point
A and passing through D is Archimedean with respect to
(αh,βh,γ).
(ii) The segments Af Tβ, ATβ f

and TαO intersect at a point
H, which divides Af Tβ in the ratio a: bh internally ATβ f

and TαO in the ratio ah : b internally, respectively. The cir-
cle touchingα or AB at the point O and passing through H
is Archimedean with respect to(αh,βh,γ).
(iii) If E is the point of intersection of the segments T′

αh
Tγ

and OTα, then E divides T′αh
Tγ and OTα in the ratio ah : b

internally and the circle touchingα or the line OαTα at
the point Tα and passing through E is Archimedean with
respect to(αh,βh,γ).

Proof. The pointC has coordinates(2aah/(2a+ bh),0)
(see Figure 9). If we regardβ as a circle, thenC coin-
cides with the internal center of similitude ofβ and the
Archimedean circle of(αh,βh,γ) touchingα at the point
A internally. HenceD has coordinates(2a− rh

A, r
h
A). This

proves (i). The points dividingAf Tβ in the ratioa : bh in-
ternally, ATβ f

andTαO in the ratioah : b internally have

the same coordinates(rh
A , r

h
A). This proves (ii). The points

dividing OTα andT ′
αh

Tγ in the ratioah : b internally have
the same coordinates(a− rh

A,a− rh
A). This proves (iii).�

αh

α

D

A
Ah

B B f

ββh

Bh
Af

Tα

C Oα

Tαh

Tγ

E

γ

H

O

Tβ

T
β

Tβf

Figure 9

The circle touchingAB at O and passing throughH in (ii)
is the Bankoff triplet circle of(αh,βh,γ).

6 Archimedean circles touching γ

In [12], we gave necessary and sufficient conditions that a
circle touching the semicircleγ internally is Archimedean
with respect to(α,β,γ). In this section we generalize this.

Let α(z) andβ(z) be the semicircles constructed in the re-
gion y≥ 0 touching the axis at the pointO and having the
centers with coordinates(za,0) and(−zb,0), respectively
for a real numberz1. Let C (m,n) be the circle touching the
semicirclesγ internally andα(m) andβ(n) at points differ-
ent fromO such that the points of tangency onα(m), γ and
β(n) lie counterclockwise in this order for real numbersm
andn. The radius ofC (m,n) is expressed as follows [12,
Theorem 1]:

ab(ma+nb)
ma2+nb2+mnab

. (3)

Let αh(z) andβh(z) be the semicircles constructed in the
regiony ≥ 0 touching the axis at the pointO and having
the centers with coordinates(zah,0) and(−zbh,0), respec-
tively for a real numberz. Let Ch(m,n) be the circle touch-
ing the semicirclesγ internally andαh(m) and βh(n) at
points different fromO such that the points of tangency
on αh(m), γ andβh(n) lie counterclockwise in this order
for real numbersm andn.

Theorem 6 The circleCh(m,n) has radius

ab(mah+nbh)

maah+nbbh+mnahbh
. (4)

Proof. Notice that αh(m) = α(mah/a) and βh(n) =
β(nbh/b). Replacingmandn by mah/a andnbh/b respec-
tively in (3), we get (4). �

Theorem 7 The circleCh(m,n) is Archimedean with re-
spect to(αh,βh,γ) if and only if

1
m
+

1
n
= 1. (5)

Proof. The theorem follows from Theorem 6, because

ab(mah+nbh)

maah+nbbh+mnahbh
− rh

A

=
(m+n−mn)ahbhrh

A

maah+nbbh+mnahbh
. �

Corollary 1 The following circles are Archimedean with
respect to(αh,βh,γ).
(i) The circle touching the semicircles Ah(O) and Bh(O)
externally andγ internally.
(ii) The circle touchingγ internally and the two distinct
circles of radius ah+ bh touching the axis at the point O
externally.

Proof. The part (i) follows from the factAh(O) = αh(2)
andBh(O) = βh(2) (see Figure 10). The part (ii) follows
from the fact thatm= (ah+bh)/ah andn= (ah+bh)/bh

satisfy (5). �

1The notations are slightly changed from [12]
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The circle described in (i) is a generalization of Schoch
circle of the ordinary arbelos which is denoted byW15 in
[4]. The circle described in (ii) is a generalization of the
Archimedean circle of the ordinary arbelos in [10].
Let γh = (AhBh). If m> 0 (resp.m< 0), letPαh(m) be the
external (resp. internal) center of similitude of the semicir-
clesαh(m) andγh. Similarly the pointPβh

(m) is defined.

Theorem 8 The points Pαh(m) and Pβh
(n) coincide if and

only if (5) holds.

Proof. The semicirclesαh(m) andγh have radiimah and
ah + bh and centers withx-coordinatesmah andah − bh,
respectively. HencePαh(m) hasx-coordinate

(ah+bh)mah−mah(ah−bh)

−mah+(ah+bh)
=

2mahbh

ah+bh−mah
.

Similarly Pβh
(n) hasx-coordinate

(ah+bh)(−nbh)−nbh(ah−bh)

−nbh+(ah+bh)
=

−2nahbh

ah+bh−nbh
.

While
2mahbh

ah+bh−mah
− −2nahbh

ah+bh−nbh

=
2(m+n−mn)(ah+bh)ahbh

(ah+bh−mah)(ah+bh−nbh)
.

Therefore the proof is complete. �

Corollary 2 The circleCh(m,n) is Archimedean with re-
spect to(αh,βh,γ) if and only if the points Pαh(m) and
Pβh

(n) coincide.

O AB

γ

αh
βh

AhBh

αh Ah

Bh βh

γh

(O) =
(O)

(2)
(2) =

Figure 10:m= n= 2

If the external common tangents fromγh to bothαh(m) and
βh(n) exist, then the circleCh(m,n) is Archimedean with
respect to(αh,βh,γ) if and only if the two tangents coin-
cide (see Figure 10).

7 Woo’s Archimedean circles

We assumea 6= b in this section. Peter Woo found that the
circle touchingα(z) andβ(z) externally with center on the
line x= (b−a)rA/(b+a) is Archimedean with respect to
(α,β,γ) for a non-negative real numberz [4]. The line is
called the Schoch line of(α,β,γ). The fact was generalized
for a real numberz≥ −rA/(a+b) in [12]. We generalize
this.
A circle is said to touchαh(z) appropriately if it touches
αh(z) externally in the casez> 0 and it touches the re-
flected image ofαh(z) in the lineAB internally in the case
z< 0. The same notion of appropriate tangency applies to
βh(z). Let sh = (bh − ah)rh

A/(bh + ah). We call the line
x= sh the Schoch line of(αh,βh,γ).

O

αh
βh

αh

βh

αh , βh , γ

h , l δ

Schoch line of  ( )

(s )

(z)
(z)

Figure 11:z< 0

Theorem 9 Let δ be the circle touchingαh(z) and βh(z)
appropriately and having its center on the Schoch line of
(αh,βh,γ) for a real number z6= 0. The following state-
ments hold.
(i) The circleδ is Archimedean with respect to(αh,βh,γ).
(ii) The circleδ exists if and only if−ahbh/(ah+ bh)

2 ≤
z< 0 or 0< z.

Proof. If r is the radius ofδ andl is they-coordinate of its
center (see Figure 11), then we get

(zah+ r)2−(sh−zah)
2 = (zbh+ r)2−(sh+zbh)

2 = l2. (6)

Solving the equation forr, we getr = sh(bh+ ah)/(bh−
ah) = rh

A . This proves (i). From (6) we also get

l2 =
4ahbhsh(sh+(bh−ah)z)

(ah−bh)2

=
4a2

hb2
h(ahbh+(ah+bh)

2z)

(ah+bh)4 .

Thereforel satisfying (6) is real if and only if−ahbh/(ah+
bh)

2 ≤ z< 0 or 0< z. This proves (ii). �
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Notice that the circleδ in Theorem 9 is not uniquely de-
termined ifa = b. We get an infinite set of Archimedean
circles of (αh,βh,γ), whose centers lie on the linex =
sh by the theorem. However the Archimedean circle of
(αh,βh,γ) with center(sh,2ahbh

√
ahbh/(ah+bh)

2) is not
a member of this set. In fact, there are infinitely many
circles passing throughO with center on this line. But it
seems to be natural to consider this circle as a member of
this set.

8 Dilation

In [8], we have shown that ifσ is a dilation with centerO,
the circle touching the semicircles(AσO) externally(ABσ)
internally and the axis from the side opposite to the pointB
is an Archimedean circle of(α,β,γ), whereAσ andBσ are
the images ofA andB by σ, respectively. In this section
we generalize this fact.

O A

γ

AhBh

αhβh

B Bσ Aσ
h

B τ
h

Figure 12:t = 2/3

Theorem 10 Let σ and τ be the dilations with center O
and A with the same ratio of magnification t, respectively.
Then the following statements are true.
(i) The circle touching the semicircles(Aσ

hO) externally
(ABσ) internally and the axis from the side opposite to the
point B is Archimedean with respect to(αh,βh,γ).
(ii) If t > a/(a+bh), then((Aσ

hO),(Bτ
hO),(ABσ)) is an ar-

belos with overhang tah−a, and has Archimedean circles
of radius rhA .
(iii) If t = a/ah, then((Aσ

hO),(Bτ
hO),(ABσ)) coincides with

(α,β f ,(ABf )), and the points Bτh and Bσ also coincide with
the point Bf .

Proof. Let r be the radius of the touching circle in (i) (see
Figure 12). Then we get

(tah+ r)2− (tah− r)2 = (bt+a− r)2− ((−bt+a)− r)2.

Solving the equation, we getr = rh
A . This proves (i). Ift >

a/(a+ bh), then|ABτ
h| = 2t(a+ bh) > 2a = |AO|. Hence

the pointBτ
h lies on the half line with endpointO passing

throughB. While |Aσ
hO|− |AO|= 2(tah−a) and|Bτ

hO|−
|BσO| = 2t(a+ bh)− 2(tb− a) = 2(tah − a). Hence the
configuration((Aσ

hO),(Bτ
hO),(ABσ)) is an arbelos with

overhangtah−a. The rest of (ii) follows from (i). Ift =
a/ah, the pointsA andAσ

h coincide, i.e.,(Aσ
hO) = α. While

a/ah> a/(ah+b) = a/(a+bh) holds. Therefore we get an
ordinary arbelos(α,(Bτ

hO),(ABσ)), whose Archimedean
circles have radiusrh

A by (ii). While (α,β f ,(ABf )) is
also an ordinary arbelos having Archimedean circles of the
same radius by Proposition 3. Therefore the two ordinary
arbeloi coincide. The rest of (iii) is obvious. �

9 New type of Archimedean circles

Quang Tuan Bui has found a pair of new type of
Archimedean circles such that the endpoints of the diam-
eter parallel to the lineAB lie on a given circle [1], which
has been rediscovered by us [6]. One of the circles is ob-
tained as follows: If the lineTαOα intersects the semicircle
γ at a pointS and the linesSAandSO intersect the semi-
circle α at pointsT andU respectively, the circle(TU) is
Archimedean with respect to(α,β,γ). The fact is general-
ized (see Figures 13 and 14). Notice thath+ rh

A > 0 and
a− rh

A > 0.

O A

(AhB )

S

B

α

TU

β

AhBh

γ

AfOα h

Tα h

Oβ hB f

Figure 13

Theorem 11 (i) Let S be the point of intersection of the
semicircle(AhB) and the the line TαhOαh. If T is the point
dividing the segment SAf in the ratio (h+ rh

A) : (a− rh
A)

internally and U is the point of intersection of the line SO
and the semicircleα, then T lies onα and the line TU is
parallel to AB and the circle(TU) is Archimedean with
respect to(αh,βh,γ).
(ii) Let S be the point of intersection of the semicircle(ABh)
and the line TαOα. If the line SO intersects the semicircle
α f at a point U and the line parallel to AB passing through
U intersectsα f at a point T again, then the circle(TU) is
Archimedean with respect to(αh,βh,γ).

Proof. The point S in (i) has coordinates(ah,g(a,b)),
where g(a,b) =

√
ah(ah+2b). Hence the pointsT

and U have coordinates(a+ rh
A ,g(a,b)r

h
A/b) and (a−

rh
A ,g(a,b)r

h
A/b), respectively. This proves (i). The point

U in (ii) hasx-coordinateab/bh− rh
A. This proves (ii). �
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AB Ah AfBh

TU

S

OB f

Oα

Oβ

γ

Figure 14

Notice that(h+ rh
A) : (a− rh

A) = b : a if h= 0.

10 Power type Archimedean circles

From now on we consider all the semicircles with centers
on the lineABas circles. If two congruent circles of radius
r touching at a pointD also touch a given circleδ at points
different fromD, we say thatD generates circles of radius
r with δ, and the two circles are said to be generated byD
with δ. If the two generated circles are Archimedean with
respect to(αh,βh,γ), we say thatD generates Archimedean
circles of(αh,βh,γ) with δ.
Frank Power has found that the pointTα generates
Archimedean circles of(α,β,γ) with the circle γ [13].
Quang Tuan Bui has found that the circles(AOβ), (BOα)
and the axis belong to the same intersecting pencil of cir-
cles and the points of intersection generate Archimedean
circles of(α,β,γ) with γ [3]. We generalize the two facts.
The following lemma is needed [7].

Lemma 1 For a circle δ of radius r, a point D generates
circles of radius||DOδ|2− r2|/(2r) with δ.

The parts (i) and (ii) of the next theorem are generaliza-
tions of Power’s result and Bui’s result, respectively (see
Figure 15).

O AB

γ

AhBh

(Ah Oβf
)

(Bh Oαf )

OαfOβf
Oβ

Oα

Af

V
W

B f

K

Figure 15

Theorem 12 (i) If the circleαh and the line Tα f Oα f have a
point in common, the point generates Archimedean circles
of (α,β,γ) with γ.
(ii) The circles(AOβ), (BOα), (AhOβ f

), (BhOα f ) and the
axis belong to the same intersecting pencil of circles, and
the points of intersection generate Archimedean circles of
(α,β,γ) with γ.

Proof. Let K be the point in (i) lying onαh andTα f Oα f .
Then|KOα f |2 = a2

h − (ah− ab/bh)
2. Therefore|KOγ|2−

(a+b)2 = |OγOα f |2+ |KOα f |2− (a+b)2= (ab/bh− (a−
b))2 + a2

h − (ah − ab/bh)
2 − (a+ b)2 = −2ab. Therefore

K generates Archimedean circles of(α,β,γ) with γ by
Lemma 1. The part (ii) follows from the fact that the
powers of the pointO with respect to(AOβ), (AhOβ f

) and
(BhOα f ) are the same. �

O

α

F

K

AB

αh

Ah

γ

I

Ah (O )

B(I )

K

Figure 16

Recall thatI is the point of intersection of the axis and the
circleγ lying in the regiony> 0. Quang Tuan Bui has also
found that the points of intersection of the circles(AO) and
B(I) generate Archimedean circles of(α,β,γ) with the cir-
cle γ [2]. Let J be the point of intersection of the circle
B(I) and the lineAB lying in the regionx > 0. If a < b,
we can chooseh so that 4ah < |OJ| holds. Then the circles
Ah(O) andB(I) have no points in common. LetKα be the
perpendicular to the lineAB from the center of the circle
δα

h . Quang Tuan Bui’s result is generalized as follows.

Theorem 13 (i) The circles Ah(O), B(I) and the lineKα
belong to the same pencil of circles. If the pencil is inter-
secting, the points of intersection generate Archimedean
circles of(αh,βh,γ) with each of the circlesγ andαh.
(ii) The circles Am(O), Bm(I) and the lineKα belong to the
same intersecting pencil of circles, and the points of inter-
section generate Archimedean circles of(α,β,γ) with the
circle γ.

Proof. The circlesAh(O) andB(I) are expressed by the
equations

(x−2ah)
2+ y2 = 4a2

h (7)

and

(x+2b)2+ y2 = 4b2+4ab, (8)

respectively (see Figure 16). Subtracting (8) from (7) and
rearranging, we getx = rh

A . ThereforeAh(O), B(I) and
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Kα belong to the same pencil of circles. Let us assume
that the pencil is intersecting andK is one of the points
of intersection. LetF be the foot of the perpendicular
from K to AB. Then |KF |2 = 4a2

h − (rh
A − 2ah)

2. Then
|KOγ|2− (a+b)2 = (rh

A − (a−b))2+ |KF|2− (a+b)2 =
−2(a+b)rh

A. ThereforeK generates Archimedean circles
of (αh,βh,γ) with γ by Lemma 1. The rest of (i) follows
from |KOαh|2−a2

h = (rh
A −ah)

2+ |KF|2−a2
h = 2ahrh

A . We
prove (ii). The circlesAm(O) andBm(I) are expressed by
the equations

(x− (2a+h))2+ y2 = (2a+h)2 (9)

and

(x+2b+h)2+ y2 = (2b+h)2+4ab, (10)

respectively. Subtracting (10) from (9), we getx = rh
A .

ThereforeAm(O), Bm(I) andKα belong to the same pen-
cil. Substitutingx= rh

A in (9), and usinga+h> 0, we get
y2 = (2a+h)2− (rh

A − (2a+h))2 = rh
A(2(2a+h)− rh

A)>
rh
A(2a− rh

A) > 0. ThereforeAm(O) andKα intersect. The
rest of (ii) can be proved similarly as the proof of (i).
Let K be one of the points of intersection in (ii), and let
F be the foot of the perpendicular fromK to AB. Then
|KF |2= rh

A(2(2a+h)−rh
A). Therefore|KOγ|2−(a+b)2=

(rh
A − (a− b))2 + |KF |2 − (a+ b)2 = −2ab. This proves

(ii). �
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ABSTRACT

Given a point P in Euclidean space R3 we look for all
points Q such that the length PQ of the line segments PQ
from P to Q equals the length of the central image of the
segment. It turns out that for any fixed point P the set of
all points Q is a quartic surface Φ. The quartic Φ carries
a one-parameter family of circles, has two conical nodes,
and intersects the image plane π along a proper line and
the three-fold ideal line p2 of π if we perform the projective
closure of the Euclidean three-space. In the following we
shall describe and analyze the surface Φ.

Key words: central projection, distance, principal line,
distortion, circular section, quartic surface, conical node

MSC 2010: 51N20, 14H99, 70B99

Udaljenosti i centralna projekcija

SAŽETAK

Za danu točku P u euklidskom prostoru R3 traže se sve
točke Q takve da je duljina PQ dužine PQ jednaka duljini
njezine centralne projekcije. Pokazuje se da je za čvrstu
točku P skup svih točaka Q kvartika Φ. Kvartika Φ sadrži
jednoparametarsku familiju kružnica, ima dvije dvostruke
točke, te siječe ravninu slike π po jednom pravom pravcu
i tri puta brojanom idealnom pravcu p2 ravnine π (proma-
tra se projektivno proširenje trodimenzionalnog euklidskog
prostora). U radu se opisuje i istražuje ploha Φ.

Ključne riječi: centralna projekcija, udaljenost, glavni
pravac, distorzija, kružni presjek, kvartika, dvostruka točka

1 Introduction

It is well-known that segments on lines which are parallel
to the image planeπ or, equivalently, orthogonal to the fi-
bres of anorthogonal projectionhave images of the same
length, i.e., they appear undistorted, see [1, 4, 5, 7]. The
lines orthogonal to the fibres of an orthogonal projection
are usually calledprincipal linesand they are the only lines
with undistorted images under this kind of projection.

In case of anoblique parallel projection, i.e., the fibres of
the projection are not orthogonal (and, of course, not par-
allel) to the image plane, the principal lines are still par-
allel to the image planeπ. Nevertheless, there is a further
class of principal lines in the case of a parallel projection
ι : R3 → R2. As illustrated in Figure 1, we can see that
in between the parallel fibresfP and fQ of two arbitrary
points P and Q on a principal linel ‖ π we can find a
second segment emanating fromP and ending at̃Q with

PQ= PQ̃= P′Q′. (Here and in the following we writeP′

for the image point ofP instead ofι(P).) In case of an
orthogonal projection, we haveQ= Q̃, cf. Figure 1.

l

P’ Q’d

d

P’ Q’

Q

ld

d

d

π π

P Q P Q

f
P

f
Q

f
P

f
Q

~

Figure 1: Principal lines: orthogonal projection (left),
oblique parallel projection (right).

In both cases, the orthogonal projection and the oblique
parallel projection, the principal lines are mappedcongru-
entonto their images.
What about the central projection? Letκ : R3 \ {O}→ π
be the a central projection with center (eyepoint)O and
image planeπ. For the sake of simplicity, we shall write
P′ instead ofκ(P). Again the lines parallel toπ serve as
principal lines. Of course, the restrictionκ|l of κ to a line
l ‖ π is a similarity mapping. The mappingκ|l is a congru-
ent transformation if, and only if,l ⊂ π because it is the
identity in this case.
From Figure 2 we can easily guess that even in the case
of central projections there are more line segments than
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those in the image planeπ having central images of the
same length. Once we have chosen a pointP on the fi-
bre fP throughP′ we can find up to two pointsQ, Q̃ on

the fibre fQ throughQ′ such thatP′Q′ = PQ= PQ̃ holds
as long asP fQ < P′Q′. The pointsQ andQ̃ coincide ex-
actly if P fQ = P′Q′. Finally, there are no pointsQ andQ̃ if
P fQ > P′Q′.

P’
P

Q’

Q

O

Figure 2: Some of infinitely many segments of length s
with the same image P′Q′ and, therefore, also
of length s.

In the case of a central projectionκ, only the lines in the
image plane are mappedcongruentonto their images. All
the other lines which carry segments whose images are of
the same length arenot mapped congruentonto their im-
ages. Just one segment on all these lines has aκ-image of
the same length.
Note that if eitherQ or P equalsO the line[P,Q] is mapped
to a point. Thuss= PQ 6= P′Q′ since the latter quantity is
undefiend for eitherQ′ or P′ does not exist.
Assume further thatP 6= O is an arbitrary point in Eu-
clidean three-space. Now we can ask for the set of all
pointsQ at fixed distance, says∈ R\ {0}, such that

s= PQ= P′Q′ (1)

whereP′ := κ(P) and Q′ = κ(Q) and s∈ R \ {0}. The
left-hand equation of (1) can also be skipped. Then, we
are looking for all pointsQ being the endpoints of line
segments emanating fromP whose central image has the
same length. It is clear that the set of allQ is an algebraic
surface. In Section 2 we shall describe and analyze this
surface in more detail. Section 3 is devoted to the study of
algebraic properties of this surface. Surprisingly, this type
of quartic surface does appear among the huge number of
quartic surfaces in [3].
In the following x = (x,y,z)T ∈ R3 are Cartesian coordi-
nates. For any two vectorsu andv fromR3 we denote the
canonical scalarproduct by

〈u,v〉= uxvx+uyvy+uzvz.

Based on the canonical scalarproduct, we can compute the
length‖v‖ of a vectorv by ‖v‖=

√
〈v,v〉.

2 The set of all endpoints

In the following we assume that there is the central pro-
jection κ : R3∗ → π ∼= R2 with the image planeπ where
R3∗ := R3 \ {O} and O 6∈ π shall be the center of the
projection, i.e., the eyepoint. The principal (vanishing)
point H ∈ π is π’s closest point to the eyepointO and
d := OH = Oπ is called thedistanceof κ. Therefore,H
is the pedalpoint of the normal from the eyepointO to the
image planeπ.
Let us assume thatP ∈ R3∗ \ {π} is a point in Euclidean
three-space (neither coincident withO nor in π). With
P′ = [O,P]∩ π we denote theκ-image ofP. The set of
all pointsQ′ ∈ π with a certain fixed distances∈ R \ {0}
from P′ is a circlecP′,s in the image planeπ centered atP′

with radiuss, see Figure 3.

R’

P’
Q’

f
R

f
Q

O

R

Q

P

c
P’,s

~
R

~
Q

Figure 3: Line segments inπ and their equally long preim-
ages.

We find all possible preimages ofQ′ on the quadratic cone
ΓP′,s = cP′,s∨O of κ-fibres through all points oncP′,s. The
preimages shall satisfy

s= P′Q′ = PQ

and, therefore, they are located on a Euclidean sphereΣP,s

centered atP with radiuss. Consequently, we can say:

Theorem 1 The set of all points Q∈R3 with PQ=P′Q′ =
s∈R\{0} for some point P∈R3∗ \{π} is a quartic space
curve q being the intersection of a sphereΣP,s (centered at
P with radius s) with a quadratic coneΓP′,s whose vertex
is the eyepoint O and the circle cP′,s (lying in π, centered
at P’sκ-image P′, and with radius s) is a directrix.
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The quartic curveq mentioned in Theorem 1 has always
two branches, since the two points on each generatorfQ of
ΓP′,s are the points of intersection of the generatorfQ with
the sphereΣP,s. Therefore,q is in general not rational. An
example of such a quartic is displayed in Figure 4 where
the sphereΣP,s and the coneΓP′,s are also shown.

P

O

P’

q

q

c
P’,s

π

Γ
P’,s

 

Σ
P,s

 

Figure 4: The quartic curve q of possible endpoints of line
segments starting at P with length s and equally
long image segments. The curve q is the in-
tersection of the quadratic coneΓP′,s and the
sphereΣP,s.

Not even in the cases[O,P]⊥π andP∈ π an exeption oc-
curs: q happens to be the union of two circles (rational
curves). However, the union of rational curves is (in gen-
eral) not rational. In the first caseΓP′,s is a cone of revolu-
tion andΣP,s is centered on the cone’s axis. Consequently,
q degenerates and becomes a pair of parallel circles on both
surfaces. In the second case the quarticq is also the union
of two circles, namleycP′,s and a further circle onΣP,s and
ΓP′,s.
Figure 4 shows an example of such a quartic curve (in
the non-rational or generic case) carrying the preimages
of possible endpointsQ.
As the lengths of PQ as well as ofP′Q′ can vary freely,
there is a linear family of quartic curves depending ons.
Thus, from Theorem 1 we can deduce the following:

Theorem 2 The set of all points Q being the endpoints
of line segments PQ starting at an arbitrary point P∈
R3∗ \ {π} with PQ= P′Q′ is a quartic surfaceΦ.

Proof. There exists a(1,1)-correspondence between the
pencil of quadratic conesΓP′,s and the pencil of spheres
ΣP,s. Consequently, the manifold of common points,i.e.,
the set of points common to any pair of assigned surfaces
is a quartic variety, cf. [6]. �

Figure 5 shows the one-parameter family of quartic curves
mentioned in Theorem 1.
Figures 5 and 6 show the quartic surfaceΦ mentioned in
Theorem 2.

P

O

π

Σ
P,s

 Φ

Figure 5: The linear one-parameter family of spherical
quartic curves covers a quartic surface.

P

O

π
Φ

l

x
y

z

Figure 6: The quartic surfaceΦ with its circles in planes
parallel to π has a singularity at O and P.Φ
intersectsπ in the line l and the ideal line p2 of
π, the latter with multiplicity three.

3 The quartic surface

In order to describe and investigate the quartic surfaceΦ,
we introduce a Cartesian coordinate system: It shall be
centered atH, the x-axis points towardsO, and π shall
serve as the[yz]-plane. Thus,O = (d,0,0)T and the im-
age planeπ is given by the equationx= 0.
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For any pointP∈R3∗ with coordinate vectorp= (ξ,η,ζ)T

with ξ 6= d the central imageP′ := κ(P) = [O,P]∩ π is
given by

p′ =

(
0,

dη
d− ξ

,
dζ

d− ξ

)T

. (2)

Obviously,P′ = P if P ∈ π, i.e., ξ = 0. The points in the
plane

πv : x= d (3)

have no image in the affine part of the planeπ. There-
fore, the planeπv is calledvanishing plane. The planeπv

contains the centerO and is parallel toπ at distanced.
Performing the projective closure ofR3 the images of all
points ofπv\{O} are the ideal points ofπ gathering onπ’s
ideal linep2 .
Let nowQ be the variable endpoint of a segment starting
at P. The pointQ shall be given by its coordinate vector
x = (x,y,z)T. Then, an implicit equation ofΦ is given by

Φ : PQ
2−P′Q′2 = 0. (4)

Using Eq. (2) we can write Eq. (4) in terms of coordinates
as

Φ : d2((η(d− x)− yδ)2+

+(ζ(d− x)− zδ)2) =

=
(
(x−ξ)2+(y−η)2+(z−ζ)2

)
·

·δ2(d− x)2

(5)

whereδ := d− ξ.

4 Properties of Φ

A closer look at the equation ofΦ as given by Eq. (5) al-
lows us to formulate the following theorem which holds in
projectively extended Euclidean spaceR3:

Theorem 3 Let κ : R3∗ → π be a central projection from
a point O∈ R3 to a planeπ 6∋ O and let further P∈ R3⋆

be a point in Euclidean three-space. The set of all points
Q satisfying

PQ= P′Q′

(where P′ = κ(P) and Q′ = κ(Q)) is a uni-circular alge-
braic surfaceΦ of degree four. The ideal line p2 of π is a
double line ofΦ.

Proof. The algebraic degreeΦ can be easily read off from
Eq. (5).
In order to show the circularity ofΦ, we perform the pro-
jective closure ofR3 and writeΦ’s equation (5) in terms of
homogeneous coordinates: We substitute

x= X1X−1
0 , y= X2X−1

0 , z= X3X−1
0

and multiply byX4
0 . The intersection of the (projectively)

extended surfaceΦ with the ideal planeω : X0 = 0 is given
by insertingX0 = 0 into the homogeneous equation ofΦ
which yields the equations of a quartic cycle

φ : X2
1 (X

2
1 +X2

2 +X2
3 ) = X0 = 0. (6)

The first factor of the latter equation tells us that the ideal
line p2 of the image planeπ : X1 = 0 is a part ofφ = ω∩Φ
and has multiplicity two. In order to be sure thatp2 is a
double line onΦ, we compute the Hessian H(Φ) of the
homogeneous equation ofΦ and evaluate at

p2 = (0 : 0 :X2 : X3)

(with X2 : X3 6= 0 : 0 or equivalentlyX2
2 +X2

3 6= 0). This
yields

H(Φ)=2δ2(X2
2+X2

3 )




0 −d 0 0
−d 1 0 0

0 0 0 0
0 0 0 0


 (7)

which shows that all but two partial derivatives ofΦ’s ho-
mogeneous equation do not vanish alongp2. Therefore,p2

is a double line onΦ.

The second factor of the left-hand side of (6) defines the
equation of theabsolute conicof Euclidean geometry with
multiplicity one. Thus,Φ is uni-circular. �

A part of the double linep2 is shown in Figure 7 which
shows a perspective image of the surfaceΦ and the circles
and lines onΦ.

Corollary 1 In the case P∈ π, i.e., ξ = 0, the surfaceΦ
is the union of the image planeπ (a surface of degree one)
and a cubic surface.

Proof. If P ∈ π, we haveξ = 0. Insertingξ = 0 into Eq.
(5) we find

x(‖x‖2(x−2d)−2(x−d)(ηy+ ζz)+d2x)=0.

Obviously,Φ is the union of the planeπ (with the equation
x= 0) and a cubic surface. �
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P

O

π

Φ

l
x=2d

m

L

p
2

Figure 7: A perspective image of the situation in space:
The ideal line p2 of the image planeπ of κ is a
part of the double curve ofΦ. The two parallel
lines l and m meet in the common ideal point
L ∈ p2. The two planesπ and x= 2d serve as
tangent planes ofΦ along p2 and meetΦ along
p2 with multiplicity three and l and m appear as
the remaining linear part.

The spheres of the one-parameter family of concentric
spheres centered atP carrying the one-parameter family
of quartic curvesq ⊂ Φ intersectΦ along the quarticsq
and the absolute circle of Euclidean geometry. At the lat-
ter the spheres are in concact with each other and with the
quartic surfaceΦ. This can easily be shown by comput-
ing the resultants ofΦ’s and the spheres’ homogeneous
equations with respect toX0. From this resultant the factor
X2

1 +X2
2 +X2

3 splits off with multiplicity 2. In other words:
Φ and all spheres aboutP share an isotropic tangent cone
with vertex atP.
The shape of the curveω∩Φ together withη2 + ζ2 6= 0,
i.e., P /∈ [O,H], tells us:

Theorem 4 A plane x= k (k∈ R) parallel to the image
planeπ intersectsΦ along

1. the union of a circle whose center lies on a rational
planar cubic curveγ and the two-fold ideal line p2 if
k 6= 0,d,2d,ξ,

2. the union of a line l and the three-fold line p2 if
k= 0,

3. the union of a line m‖ l and the three-fold line p2 if
k= 2d, and

4. the union of a pair of isotropic lines and the two-fold
line p2 if k = d,ξ.

Proof. Each planar section of the affine part ofΦ is an al-
gebraic curve whose degree is at most 4. As we have seen
in the proof of Theorem 3, the ideal linep2 of the image
planeπ is a two-fold line inΦ. Thus, the intersection of
(the projectively extended) surfaceΦ with any plane paral-
lel to π also contains this repeated line. The remaining part
r of these planar intersetions is at most of degree 2.
The planes parallel toπ meet the absolute conic of Eu-
clidean geometry at theirabsolute pointswhich induce Eu-
clidean geometry in these planes. Since the absolute conic
is known to be a part ofφ, the curvesr are Euclidean cir-
cles (including pairs of isotropic lines and the joinp2 of
the two absolute points as limiting cases). The equations
of the intersections ofΦ with planes parallel toπ can be
found by rearrangingΦ’s equation (5) consideringy andz
as variables in these planes. The coefficients are univariate
functions inx and we find

x(x−2d)δ2(y2+ z2)+

+2δ(d− x)(δx+dξ)(ηy+ ζz)+

+(d− x)2δ2(〈p,p〉+ x(x−2ξ))

−d2(η2+ ζ2) = 0.

(8)

The essential monomialsy2, z2, y, andz are underlined in
order to emphasize them. Note that the monomialyzdoes
not show up. Since coeff(x2) = coeff(y2) the curves in Eq.
(8) are Euclidean circles.

1. We only have to show that the centers of the cir-
cles given in Eq. (8) onΦ in planesx = k (with
k 6= 0,d,2d,ξ) are located on a rational planar cubic
curve. For that purpose we considerΦ’s inhomoge-
neous equation (5) as an equation of conics in the
[y,z] plane. By completing the squares in Eq. (8), we
find the center of these conics. Keeping in mind that
x varies freely inR\{0,d,2d,ξ}we can parametrize
the centers by

γ(x) =




x

η(d− x)(dξ+dx− xξ)
δx(2d− x)

ζ(d− x)(dξ+dx− xξ)
δx(2d− x)




(9)

which is the parametrization of a rational cubic
curve. The cubic passes throughO andP which can
be verified by inserting eitherx= d or x= ξ. In or-
der to show thatm is planar, we show that any four
points onγ are coplanar. We insertti 6= 0,d,2d,ξ
with i ∈ {1,2,3,4} into (9) and show that the in-
homogeneous coordinate vectors of the four points
γ(ti) are linearly dependent for any choice of mutu-
ally distinctti .
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From

det




1 γ(t1)T

1 γ(t2)T

1 γ(t3)T

1 x y z


= 0

we obtain the equation

ηy−ηz= 0

of the plane that carriesγ.
Figure 8 shows the cubic curveγ with its three
asymptotes.

2. The image planeπ : x= 0 of the underlying central
projectionκ touches (the projective extended sur-
face) Φ along the ideal linep2 of π. This can be
concluded from the following: We write down the
quadratic form

XTH(Φ)X = X1(X1−2dX0) = 0

with H(Φ) being the Hessian from (7) andX =
(X0,X1,X2,X3)

T being homogeneous coordinates.
(Non-vanishing factors are cancelled out.) This form
gives the equations of the two planes throughp2 that
intersectΦ along p2 with higher multiplicity than
two, i.e., in this case with multiplicity three. Thus,
the multiplicity of the linep2 considered as the in-
tersection ofπ andΦ is of multiplicity three and a
single linel of multiplicity one remains. This line is
given by

l : (2d− ξ)〈p,p〉−d2ξ=2δ(ηy+ ζz)

wherey andz are used as Cartesian coordinates in
the image planeπ.

3. In a similar manner we find the linem which is the
only proper intersection ofΦ with the planex= 2d:

m: d(2d2−5dξ+4ξ2)− ξ〈p,p〉=
= 2δ(ηy+ ζz)

The plane of the cubic curveγ is orthogonal to the
lines l andm.

4. In case ofx = ξ, the plane runs throughP. Again,
the ideal linep2 splits off with multiplicity two. The
remaining partr is the pair of isotropic lines through
P with the equation

x= ξ, (y−η)2+(z− ζ)2 = 0.

The same situation occurs atO, i.e., x= d where the
isotropic lines have the equation

x= d, y2+z2 = 0. �

P

O

Φ

m

l

γ

γ

γ

Figure 8: The cubic curveγ carries the centers of all cir-
cles onΦ. Its ideal doublepoint(0 : 0 : η : ζ)
is the ideal point of the lines orthogonal to
l ‖ m. The tangent of c at the third ideal point
(0 : 1 : 0 : 0) passes through P. The three dashed
lines areγ’s asymptotes.

The circles as well as the linel on the quartic surfaceΦ can
be seen in Figures 6, 9 and 8. In Figure 8, a small piece of
the linem shows up.

Remark 1 In the case of P∈ [O,H], or equivalently,
η2+ ζ2 = 0 the lines l and m coincide with the ideal line
of π and, thus,π∩Φ is the ideal line ofπ with multiplicity
four. The same holds true for the plane x= 2d if P∈ [O,H].

Remark 2 The planesπ and x= 2d behave like thetan-
gentsof a planar algebraic curve c at an ordinary double
point D because these tangents intersect c at D with multi-
plicity three. This cannot just be seen from Figure 7.

The linesl andm from the proof of Theorem 4 are parallel
to each other but skew and orthogonal to the line[O,P] as
long asξ(ξ−2d) 6= 0. If ξ = 0 orξ = 2d, we have the case
mentioned in Remark 1 andl andm are ideal lines. They
are still skew to[O,P] but orthogonality is not defined in
that case.
The set of singular surface points onΦ contains only points
of multiplicity two. A more detailed description of the set
of singular surface points is given by:

Theorem 5 The set of singular surface points onΦ is the
union of eyepoint O, the object point P, and the ideal line
p2 of the image planeπ. The eyepoint O and the object
point P are conical nodes onΦ.
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Proof. The ideal line ofπ is a line with multiplicity two
on Φ. The planesπ : x = 0 andx= 2d intersectΦ along
this ideal line with multiplicity three as shown in the proof
of Theorem 4. Therefore, the points onπ’s ideal line are
singular points considered as points onΦ.
The pointsO andP are singular surface points onΦ since
the gradients ofΦ vanish at both points:

grad(Φ)(d,0,0) = (0,0,0)T

and

grad(Φ)(ξ,η,ζ) = (0,0,0)T

Now we apply the translationτ1 : O 7→ (0,0,0)T to Φ, i.e.,
the singular pointO moves to the origin of the new coor-
dinate system. The equation ofΦ does not alter its degree.
However, the monomials in the equation ofΦ are at least
of degree two in the variablesx, y, z. If we remove the
monomials of degree three and four, we obtain the equa-
tion of a quadratic coneΓO centered atO. Its equation (in
the new coordinate system, but still labelledx, y, z) reads

ΓO : d2δ2〈x,x〉+2d2δx(ηy+ζz)=

=(δ4+ ξ(2d+ξ)〈p,p〉+ξ3(d+ δ))x2.

ΓO is the second order approximation ofΦ at O. SinceΓO

is a quadratic cone the singular pointO is a conical node,
see [2].
In order to show thatP is also a conical node ofΦ we ap-
ply the translationτ2 : P 7→ (0,0,0)T. Again we usex,
y, z as the new coordinates and the quadratic term of the
transformed equation ofΦ given by

ΓP : ξ(δ+d)δ2〈x,x〉+2d2δx(ηy+ζz)+

+d2(〈p,p〉− δ2−2ξ2)x2 = 0.

is the equation of a quadratic coneΓP centered atP. Con-
sequently,P is also a conical node (cf. [2]). �

Remark 3 The homogeneous equations of the quadratic
conesΓO and ΓP are the quadratic forms whose coeffi-
cient matrices are (non-zero) scalar multiples of the Hes-
sian matrix ofΦ’s homogeneous equation evaluated at O
and P.

Figure 9 illustrates the two quadratic conesΓO andΓP. The
planes parallel toπ (exceptx= k with k∈ {d,ξ}) intersect
both quadratic conesΓO andΓP along circles.

If P= P′ but [0,P] 6⊥π, i.e., P∈ π andP 6= H, thenΦ is the
union of the image planeπ and a cubic surfaceΦ with the
equation

(x−2d)〈x,x〉=2(x−d)(ηy+ ζz)−d2x. (10)

The cubic surfaceΦ has only one singularity atO which is
a conical node.

P

O

l

π

Γ
P
 

Γ
O
 Φ

Figure 9: The two singular points O and P are conical
nodes,i.e., the terms of degree two ofΦ’s equa-
tion when translated to O or P are the equations
of quadratic cones.The circular sections ofΦ lie
in planes that meet the quadratic conesΓO and
ΓP along circles.

If P∈ [O,H] (butP 6= O,H), thenΦ is a surface of revolu-
tion with the equation

x(x−2d)〈x,x〉+ ξ(ξ−2x)(x−d)2−d2x2 = 0 (11)

whereη2+ ζ2 6= 0 in contrast to earlier assumptions.
The set of singular surface points onΦ contains only points
of multiplicity two. A more detailed description of the set
of singular surfaces points is given by:

Theorem 6 The set of singular surface points onΦ is the
union of eyepoint O, the object point P, and the ideal line
p2 of the image planeπ. The eyepoint O and the object
point P are conical nodes onΦ.

Proof. The ideal line ofπ is a line with multiplicity two
on Φ. The planesπ : x = 0 andx= 2d intersectΦ along
this ideal line with multiplicity three as shown in the proof
of Theorem 4. Therefore, the points onπ’s ideal line are
singular points considered as points onΦ.
The pointsO andP are singular surface points onΦ since
the gradients ofΦ vanish at both points:

grad(Φ)(d,0,0) = (0,0,0)T

and

grad(Φ)(ξ,η,ζ) = (0,0,0)T

Now we apply the translationτ1 : O 7→ (0,0,0)T to Φ, i.e.,
the singular pointO moves to the origin of the new coor-
dinate system. The equation ofΦ does not alter its degree.
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However, the monomials in the equation ofΦ are at least
of degree two in the variablesx, y, z. If we remove the
monomials of degree three and four, we obtain the equa-
tion of a quadratic coneΓO centered atO. Its equation (in
the new coordinate system, but still labelledx, y, z) reads

ΓO : d2δ2〈x,x〉+2d2δx(ηy+ζz)=

=(δ4+ ξ(2d+ξ)〈p,p〉+ξ3(d+ δ))x2.

ΓO is the second order approximation ofΦ at O. SinceΓO

is a quadratic cone the singular pointO is a conical node,
see [2].

In order to show thatP is also a conical node ofΦ we ap-
ply the translationτ2 : P 7→ (0,0,0)T. Again we usex,
y, z as the new coordinates and the quadratic term of the
transformed equation ofΦ given by

ΓP : ξ(δ+d)δ2〈x,x〉+2d2δx(ηy+ζz)+

+d2(〈p,p〉− δ2−2ξ2)x2 = 0.

is the equation of a quadratic coneΓP centered atP. Con-
sequently,P is also a conical node (cf. [2]). �

Figures 10 and 11 show the two distinct cases whereΦ is
a surface of revolution.

Figure 10:The setΦ of all points Q is a quartic surface of
revolution if P∈ [O,H] and P6= O,H.

Figure 11:Φ is the union ofπ and a cubic surface of revo-
lution touchingπ at H if P= H.
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Non-standard Visualizations of Fibonacci Num-

bers and the Golden Mean

ABSTRACT

Fibonacci numbers and the Golden Mean are numbers and

thus 0-dimensional objects. Usually, they are visualized in

the Euclidean plane using squares and rectangles in a spi-

ral arrangement. The Golden Mean, as a ratio, is an affine

geometric concept and therefore Euclidean visualizations

are not mandatory. There are attempts to visualize the

Fibonacci number sequence and Golden Spirals in higher

dimensions [11], in Minkowski planes [12], [4] and in hy-

perbolic planes (again [4]). The latter has to replace the

not existing squares by sequences of touching circles. This

article aims at visualizations in all Cayley-Klein planes and

makes use of three different visualization ideas: nested

sets of squares, sets of touching circles and sets of trian-

gles that are related to Euclidean right angled triangles.

Key words: Cayley-Klein geometries, Fibonacci numbers,

Golden Mean

MSC 2010: 51M04, 51M10, 51F20, 11B39

Nestandardne vizualizacije Fibonaccijevih brojeva

i zlatni rez

SAŽETAK

Fibonaccijevi brojevi i zlatni rez su brojevi, stoga su to

0-dimenzionalni objekti. Najčešće se vizulaiziraju u eu-

klidskoj ravnini, pomoću kvadrata i pravokutnika u spi-

ralnom poretku. Zlatni rez, kao omjer, je pojam afine

geometrije pa euklidske vizualizacije nisu nužne. Postoje

pokušaji vizualizacije Fibonaccijevog niza i zlatne spirale

u vǐsim dimenzijama [11], u ravninama Minkowskog [12],

[4], i u hiperboličkim ravninama, takod-er [4], gdje se nepo-

stojeći kvadrati zamjenjuju kružnicama koje se dodiruju.

Cilj ovog rada je vizualizacija u svim Cayley-Kleinovim

ravninama uz korǐstenje triju različitih ideja: grupiranih

skupova kvadrata, skupova kružnica koje se dodiruju i

skupova trokuta koji su analogni euklidskim pravokutnim

trokutima.

Ključne riječi: Cayley-Kleinove geometrije, Fibonaccijevi

brojevi, zlatni rez

1 Euclidean Visualizations

In this paper we continue a study of visualizing the classi-
cal sequence of Fibonacci numbers and Golden Spirals [4]
and aim at visualizations in general Cayley-Klein planes.

In the Euclidean plane there are mainly three cases:

(α) The standard visualization by nested sets of Golden
Rectangles and gnomon squares, see Figures 1, 2 and e.g.
[1], [4], [14]. Inscribing quarter circles into the gnomon
squares results in discrete spirals ofC1-continuity.

1
1 2

35

8

Figure 1: Set of Fibonacci squares

1

= 1.618...

Figure 2: Nested set of Golden rectangles and quater cir-
cle biarc spiral
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(β) In [4] the authors propose to use a chain of circles
where each circle touches the former two circles, see Fig-
ures 3, 4. This type of visualization even allows generally
normed planes (Minkowski planes) and also a hyperbolic
plane as places of action, i.e. planes without a (proper)
concept of squares.

Figure 3: Set of touching Fibonacci circles and Fibonacci
spiral polygon of circle centres

Figure 4: Set of “Golden Circles” and spiral polygon of
circle centres

From the construction of touching circles in Figure 3 fol-
lows that we get a limit triangle of circle centres with side
ratio

a : b : c= Fi+1 : (Fi−1+Fi+1) : Fi+2 = 1 : (1+
1
φ2 ) : φ

= (1+φ) : (2+φ) : (1+2φ). (1)

Figure 4 contains a nested set of such triangles with side
ratio (1).

(γ) In this paper we propose an additional way of visual-
izing Fibonacci numbers and Golden spirals using sets of
Pythagoras triplets and right angled triangles akin to the
classical root spiral. Similar to Fibonaccis rule Pythagoras
formula adds two numbers and gives a new one. This in
mind, one can generate the set of natural numbers as well
as the Fibonacci sequence via iterative processes applied
to the classical formula of Pythagoras, see Figure 5.

Figure 5: Natural numbers and Fibonacci numbers de-
rived from Pythagoras’ formula

While the left column leads to the so-called root-spiral and
triangles with cathetes

√
n,1 and the hypotenuse

√
n+1,

see Figure 6, the right column leads to cathetes
√

Fi−1,
√

Fi

and the hypotenuse
√

Fi+1, see Figure 7. Again, we get a
‘limit’ triangle with side ratio

a : b : c=
√

Fi−1 :
√

Fi :
√

Fi+1 (2)

Such a triangle might as well be called Golden (right-
angled) Triangle. Figure 8 shows the spiral polygon de-
rived from such Golden Triangles.

Figure 6: The classical “root spiral”

Figure 7: Fibonacci number root spiral

Figure 8: Golden Root Spiral Polygon
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While in the Euclidean plane triangles with side ratio (2)
are right angled by themselves, this is not the case in the
hyperbolic plane. But as long the triangle in-equation for
the side ratio (2) remains valid this third type of visualiza-
tions is also possible in a wide range of settings as it is
shown in the following chapters. It should be mentioned
that the ratio (2) is supposed to be connected with some of
the ancient Egyptian pyramids, c.f. the concepts “Kepler
triangle” and “Golden Pyramid”, see [14].

2 The Golden Mean and the Fibonacci-
sequence

There is such a huge number of publications dealing with
the Golden Mean and Fibonacci numbers and the topic has
become common knowledge among mathematicians that
one can refrain from citing more than a few basic books
on that theme, e.g. [1], [9] and the Wikipedia article [14]
which contains a long list of references.

Fibonacci numbers and the Golden Mean valueφ are num-
bers, therebyφ is a root ofx2− x−1= 0 and the result of
the “most irrational continued fraction”φ = 1+ 1

1+ 1
...

. Be-

ing numbers, these objects are 0-dimensional. As a “ratio
of 3 collinear points”φ has a 1-dimensional visualization
and it is an affine geometric concept independent from any
Euclidean structure. Obviously, 2-dimensional visualiza-
tions in the Euclidean plane using squares or circles can-
not be mandatory! Visualizations in other settings are at
least possible and might even enjoy some aesthetic value.
Such non-standard visualizations also give some deeper in-
sight into the interplay of visualization assumptions and
the structure of the places of action. This might justify the
following considerations.

3 Other places of action

At first we collect those visualizations in places of actions
already treated in references and show some figures:

3.1 Higher dimensional Euclidean visualizations

See [11] and Figure 9.

Figure 9: Nested set of Golden Prisms with cubes as
gnomon figures and a Golden helix biarc spiral

3.2 Visualizations in (affine) normed planes (so-called
Minkowski planes)

See [1], [12] and Figures 10, 11.
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Figure 10:Minkowski geometric analogue to Figure 2.
(Applying translationsτi to the partial arcs
ci of concentric Minkowski circles under the
end-point is start-point condition results in a
Minkowski circular bi-arc spiral)

Figure 11:Minkowski geometric analogue to Figure 4. (Se-
quence of touching Golden Minkowski-circles
and Golden Triangles in a Minkowski plane
with hexagons as circles.
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3.3 Visualizations in a hyperbolic plane

See [4] and Figure 12.

As there are no similarities and no squares in a hyperbolic
plane one cannot use the visualization method (α). In [4]
the authors propose method (β) and handle the different
radii of the Golden circles via a hyperbolic scaled line. For
visualizing the circle chain they use the F. Klein model of a
hyperbolic plane and base the construction on an arbitrarily
given scale on a hyperbolic line, see Figure 12.

Figure 12:A sequence of tangent Golden circles and
Golden triangles in the hyperbolic plane.

The hyperbolic case encourages us to look for visualiza-
tions also in other Cayley-Klein planes. Of course, one
faces the problem of finite length of lines in e.g. the el-
liptic plane, while a line in affine planes and the hyper-
bolic plane has infinite length. It turns out that also some
affine Cayley-Klein planes need greater modifications of
the three visualisation schemes, as shown in the next chap-
ters. For an overview of all Cayley-Klein planes see e.g.
[3].

4 Visualisations in Cayley-Klein planes

4.1 Affine cases

4.1.1 The Euclidean case

See Chapter 1.

4.1.2 The pseudo-Euclidean case (pe-case)

Here, the visualization method (α) by squares does work.
The constructions are based on affine parallelograms,
which, by a suitably chosen affine coordinate frame can
be called affine squares, affine Golden rectangles, see [4]
and Figure 13.

Note that, from the pseudo-Euclidean point of view, one
side of Golden Rectangles is space-like, while the other is

time-like (with a negative length). Therefore one needs to
modify the side ratio concept ofpe-Golden Rectangles by
using absolute values as

|a| : |b|= 1 : φ. (3)

Furthermore, the biarc spiral curve in Figure 13 consists of
general conic section arcs and not ofpe-quarter circles.

Figure 13: “Affine Golden biarc spiral”, “affine Golden
Rectangles” and “squares” in an affine plane,
which is endowed with a suitable affine coordi-
nate frame.

Method (β) does not work: It is not possible to construct
a real space-likepe-circle (i.e. a Euclidean equilateral hy-
perbola with predifined directions of asymptotes), which
touches two mutually touching space-likepe-circles. Their
centres would have to form triangles with side length ratio
(2). Fora < b < c we would havea+ b < c, expressing
that in thepe-plane the triangle inequality would not held.

This is why method (γ) is problematic, too. It would
have to be modified according to the norm-function of the
pe−plane by absolute values similar to (3). But as there
exist the (continuous) group ofpe-rotations, the group of
translations and the group of dilatations, one can at least
constructpe−spirals as orbits of a one-parameter group of
pe−similarities. Generating such a discrete spiral polygon
with the pe-similarity factorφ (or

√
φ) then leads to a vi-

sualization of a Goldenpe-root spiral, see Figure 14.

Figure 14:Golden pseudo-Euclidean spiral polygon
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4.1.3 The isotropic case (i-case)

In the projective extension of an isotropic plane the ideal
line u and ideal pointU act as absolute figure. Choosing
an affine coordinate frame(O;E,F) with O,F,U collinear
and E,F as unit points of the axesx = OE,y = OU al-
lows to measure thei-distance of two pointsP(xP,yP) and
Q(xQ,yQ) asd(P,Q) := |xQ−xP|. If P,Q are collinear with
U , one uses|yQ− yP| as a substitute for their vanishingi-
distance and calls it “spacing (Sperrung)”. Obviously it is
possible to construct a nested set of “Golden Rectangles”
in a seemingly spiral arrangement, see Figure 15, but this
affine spiral arrangement does not suit to an isotropic spiral
(c.f. [7]). This way, visualization method (α) works well.

β The set of points with fixed distance to a given point
is a pair ofy-parallel lines, so-called isotropic lines. This
circle concept is not useful for our purpose. Let us con-
sider the following circle concept: Ani-circle is a conic
section touching the absolute lineu in the absolute point
U . In our model of thei-planei-circles are parabolas with
y-parallel diameters. The Euclidean parameter is a proper
replacement of the concept “radius”, because twoi-circles
are either similar or one is the translated of the other. It is
not possible to construct ani-circle that touches two mu-
tually touchingi-circles in proper points. At least one of
the tangent points must be the ideal pointU . Therefore
visualization method (β)is not viable.

Figure 15:Nested set of Golden Rectangles and squares in
an isotropic plane.

(γ) Similar to thepe-case one can generate ani-spiral poly-
gon (see [7]) and can use it for the construction of a Golden
i-root spiral, see Figure 16. For such a spiral polygon even
C1-smoothi-circular bi-arc spirals are possible, see Figure
17.

Figure 16:Golden isotropic spiral polygon

Figure 17: i-circular biarc spiral to an i-spiral polygon

4.1.4 The dualpe-plane

The dual pe-plane is also called quasi-hyperbolic plane
(qh-plane). Its absolute is a pair of real linese, f , whereby
one (sayf =: u) can act as “line at infinity”u of a pro-
jective embedding of the affine plane. Therefore, we can
discuss this case in this sub-chapter. In this model of aqh-
plane the absolute involution with the fixed linese, f sim-
ply becomes the (Euclidean) reflection at the proper linee.
Strictly speaking, theqh-plane is just one half-plane with
respect toe, but as we did in thepe-plane case we also con-
sider the projective embedding of theqh-structure. Apply-
ing a suitable regular polarityΩ to the pseudo-Euclidean
plane one receives this model of the projectively embedded
qh-plane, where the two half-planes represent the space-
like world and the time-like world. The fixed linee repre-
sents one set of light-like lines. It is easy to translate con-
cepts concerning ratios (of collinear points) and angles (of
lines) toqh-ratios of lines andqh-angles of points. Parallel
lines occur as points on a line parallel to e and orthogo-
nal lines map to points on lines symmetric toe, such that
rectangles(ABCD) occur as trapecia(abcd)with two sides
parallel and symmetric toe. In particular, squares map to
parallelograms.
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For thepe-plane visualization method (α) can be based on
Figure 13, if we modify the side ratios of the Golden Par-
allelograms according to (3). So we receive a visualization
(α) in theqh-plane by dualizing Figure 13, see Figure 18.

Figure 18:Golden qh-polygon according to visualization
method (α) by squares and rectangles (by du-
alizing the figure at top).

In Figure 18 the pointsa,b represent the sides of the limit-
quadrangle and their connection represents the pole of the
spiral polygon (at right). Thereby the ratio ofa with re-
spect toa1,a0 reads as

r(a,a1,a0 =r(a,a3,a2) = . . .= 1 : (3−φ)
=1/5(2+φ) = 0.723. . . (4)

Visualization method (β) does not work here: In this model
qh-circles occur as parabolas with common tangente. It is
impossible to construct non-trivial triples of mutually (out-
ward) touching parabolas having a common tangent. Sim-
ilarly, also method (γ) is not suited toqh-planes.

4.2 Projective cases

4.2.1 The hyperbolic plane (see 3.3)

Here we just refer to [4] and Figure 12 in 3.3.

4.2.2 The elliptic plane (el-plane)

Place of action is the full projective plane endowed with an
elliptic absolute polarity. There are no similarities and no

squares in the el-plane, such that visualisation method(α)
cannot be performed. Because of the finite length of ellip-
tic lines method(β) works well up to a certain numbern
of circles, see Figure 19. By choosing a suitably small unit
for the scaling of the elliptic line this number can be any
finite numbern. For visualization purposes, this might be
sufficient. If theel-circle radius would exceed the length
l of a line one had to replace it by a circle with a radius
modulo 1, what makes visualization very confusing. For
e.g. a chain of goldenel-circles on the sphere model of the
el-plane it could be an idea to start with the largest possible
el-circle, i.e. a great circle, and work from large to small,
see Figure 20.

Figure 19:Chain of Fibonacci circles in the projective
model of the elliptic plane.

Figure 20:Chain of Golden Circles on the Euclidean
sphere representing the elliptic plane

4.2.3 The dual Euclidean plane

is also called quasi-elliptic plane (qe-plane). Its absolute
figure is a pair of conjugate imaginary linesi, j with a real
intersection pointU . A very convenient model of a qe-
plane in the (projectively extendend) plane of visual per-
ception (represented by a sheet of paper, the PC-screen or
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the blackboard) takes U as a proper point and i and j as
the fixed lines of the (Euclidean) “right angle involution”
in the pencil of lines with supportU (see Figure 21 left).
We use homogeneous Euclidean coordinates in both, the
projectively enlarged Euclidean plane (e-plane) and theqe-
plane. The transfer from thee-plane to theqe-plane can be
carried out by the (regular) polarityΩ : P→L defined by
the regular imaginary conic sectionx2

0 + x2
1 + x2

2 = 0 and
the transformation matrix

TΩ =




1 0 0
0 1 0
0 0 1


 . (5)

In thee-plane the parabolic distance measure in the point
set P and the elliptic angle measure in the line set L are de-
scribed by the usual Pythagoras formula (6) and Brauner’s
formula (7), see [2]:

d(P,Q) =
√
(xQ− xP)2+(yQ− yP)2 (6)

with x= x1
x0
,y= x2

x0
and

tan∠(p,q) =
√
(−cr(p, p⊥,q,q⊥), (7)

with p⊥ e-orthogonalp, etc. These measures become a
parabolicqe-angle measure in the line set L and an ellip-
tic qe-distance measure in the point set P of aqe-plane.
In our visualization of theqe-plane theqe-distance of two
pointsP,Q which are non-collinear withU appears as the
Euclidean angle between the linesUP,UQ, see Figure 21
(left). Thus the formulae (6), (7) just exchange their roles.
Note that, similar to the isotropic case,qe-circles are not
defined as (planar) point sets having constant distance from
a centre point, but as conic sections touching the com-
plex absolute lines i and j. This means that, in our vi-
sualization of aqe-plane, the absolute pointU is a com-
mon (Euclidean) focus of the conic sections representing
of qe-circles. One can choose one of the qe-circles as unit
circle c and, similar to the isotropic case, extend the dis-
tance measure also to two parallel pointsR,S(U), that are
collinear withU : That additional distance can again be
namedspacing(Sperrung). It is defined by the difference
of ratios as

d(R,S) := |r(S,E,U)− r(R,E,U)|, (8)

with the pointE ∈ c acting asunit pointonUR , see Figure
21 (right).

Figure 21:qe-distance of non-parallel points (left) and of
parallel points (right)

(α) The dual of a Euclidean rectangle with sides
a1,b1,a2,b2 is a quadrangleA1,B1,A2,B2 the diagonals
e, f are orthogonal and intersect inU , (see Figure 22). For
the dual of a Euclidean square the pointsE := (A1B1)∩
(A2B2) andF := (A1B2)∩ (A2B1) additionally are on or-
thogonal lines throughU .

Figure 22:qe-rectangles are quadrangles with orthogonal
diagonals through U.

So it is possible to transfer directly the Euclidean nested
set of Golden Rectangles to theqe-plane, see Figure 23.

Figure 23:Nested set of Golden qe-rectangles and a
Golden qe-spiral polygon.

(β) As a qe-circle is a conic section havingU as one of
its foci. Figure 24 shows that it is possible to construct
a sequence ofqe-circles, each touching the former two.
Dealing withradii, however, would require a definition of
qe-circles as aqe-distance set, which is not possible. This
is why visualization method (β) does not work.
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Figure 24:A chain of qe-circles, one touching the two for-
mer qe-circles.

(γ) To transfer the Euclidean Golden Root Spiral (Figure
8)) into theqe-plane model we have to construct a trilat-
eral with angle ratioφ :

√
φ : 1. As Euclidean rotations with

centreU are admitted, it becomes possible to also construct
a qe-analog to the Golden Root Spiral, see Figure 25.

Figure 25:A Golden quasi-elliptic root spiral.

5 Conclusion and Outlook

The main subject of this paper is to show that visualiza-
tions of mathematical objects do not have to be performed
in the classical Euclidean plane. Visualizations in other
settings, like the Cayley-Klein planes or even spaces of
higher dimensions, are justified as well. As an example we

visualized the Golden Mean and the Fibonacci sequence in
models of all possible Cayley-Klein planes. When doing
so, visualisation methods based on typical Euclidean fig-
ures and properties have to be replaced by other methods.
In this paper we propose three methods, which all work
well in the Euclidean case. To transfer these methods in
Cayley-Klein planes we use models conveniently adapted
again to the plane of visual perception. Convenient means
that constructions can be performed with available graph-
ics software tools. In our paper we used Cinderella 2.8 for
the figures. This CAD-software is distinguished by provid-
ing (planar) hyperbolic and elliptic geometry construction
tools, too (see e.g. [15]). In some, but not all, Cayley-
Klein planes we get visualizations of the Golden Mean and
the Fibonacci sequence with modifications of the proposed
Euclidean concepts.

Metallic Means generalize the Fibonacci sequence and the
Golden Mean, see e.g. [13], [8]. The three presented meth-
ods could also be applied to visualize (generalized) Metal-
lic Means. But as they all are defined as positive solu-
tions of quadratic equations there will not occur essentially
new results. Van der Laans and Rosenbuschs cubic gen-
eralizations of the Golden Mean have three-dimensional
(Euclidean) visualizations by nested sets of boxes, thus
generalizing the method (α) using squares and rectangles,
see e.g. [5], [6] and [10]. Higher dimensional visualiza-
tions by nested sets of boxes are also known for Metallic
Means, see [11]. For visualizations in non-Euclidean and
Minkowski-spaces the method (β) (with hyper-spheres in-
stead of circles, see [4]) seems to be natural and it is often
the only possible method. Thereby one has to construct a
chain of hyper-spheres, where thenth touches the former
(n-1) hyper-spheres and their radii are proportional to Fi-
bonacci numbers or elements of a geometric sequence. If
we choose the radii according to a geometric sequence with
proportionality factorφ or e.g. the Silver Mean one might
call the occurring simplices of the centres of consecutive
hyper-spheres Golden resp. Silver simplices.
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ABSTRACT

We will explore the application of partial differential equ-

ations on digital images. We will show how to use the

heat equation to eliminate noise in an image, highlight

important elements and prepare it for possible further pro-

cessing. We also show known heat equation’s theoretical

results in a methodical sequence and then derive simple

numerical schemes based on the finite differences method.

Guided by the idea of image structure preservation, for

example edge preservation, the central part of this article

introduces Perona-Malik equation as an example of a no-

nlinear heat equation. We conclude by comparing linear

and nonlinear heat equation application on a couple of test

images.
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Primjena linearne i nelinearne jednadžbe

provođenja topline u obradi digitalne slike

SAŽETAK

Istraživat ćemo primjenu parcijalnih diferencijalih jedna-

džbi u obradi digitalne slike. Primjenjujemo jednadžbu

provođenja topline kako bismo na slici uklonili šum, istak-

nuli važne elemente i pripremili je za eventualnu daljnju

obradu. Metodičkim slijedom dajemo teorijske značajke

linearne difuzije, a zatim izvodimo jednostavne numeričke

sheme temeljene na metodi konačnih razlika. Vođeni

idejom očuvanja struktura na slici, primjerice rubova, u

sredǐsnjem dijelu članka uvodimo Perona-Malikovu jed-

nadžbu kao primjer nelinearne jednadžbe provođenja to-

pline. Zavřsavamo s usporedbom primjene linearne i neli-

nearne jednadžbe provođenja topline na testnim slikama.

Ključne riječi: jednadžba provođenja topline, Perona-

Malikova jednadžba

Parcijalne diferencijalne jednadžbe uvele su novi pogled
na obradu digitalne slike. Uspješnost metoda koje ih
koriste nije iznenađujuća, budući da su takve jednadžbe
polučile uspjeh i u drugim područjima, primjerice fizici,
kemiji, elektrotehnici, graditeljstvu i drugdje. Dostupni
su opsežni matematički rezultati, što omogućuje stvara-
nje jednostavnih numeričkih algoritama koje ćemo u ovom
članku predstaviti. Metode temeljene na parcijalnim dife-
rencijalnim jednadžbama jedne su od metoda u obradi slike
koje imaju najbolje matematičke temelje, a razumijevanje
ovih metoda vodilo je otkriću brojnih novih.

1 Linearna jednadžba provođenja topline

U nastavku će nam od interesa biti linearna jednadžba
provođenja topline,

ut −∆u= 0, (1)

uz koju idu i prikladni početni i/ili rubni uvjeti koje ćemo
kasnije navesti. Ovdje pretpostavljamo da je vremenska

varijablat > 0, a prostornax∈U , gdje jeU ⊂ Rn otvoren
skup. Nepoznata je funkcijau : Ū × [0,∞〉 → R, u(x, t), a
operator∆ djeluje nau obzirom nax, odnosno∆u= ∆xu=
∑n

i=1uxixi . Ova jednadžba poznata je i pod nazivomdifuzij-
ska jednaďzba.

1.1 Fizikalna interpretacija difuzijskog procesa

Poimanje fizikalnih procesa koji izjednačuju koncentraciju
između povezanih područja prilično je intuitivno. Ono se
može matematički formulirati Fickovim zakonom koji za
jednu prostornu dimenziju glasi

F =−A
du
dx

, (2)

gdje je tokF količina supstance po jedinici prostora i vre-
menu (npr. umol

m2s
), A je difuzijski koeficijent,u je koncen-

tracija (npr. um2

s ) te x varijabla. Općeniti Fickov zakon
glasi

F =−A∇u. (3)
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Tok F je uzrokovan gradijentom koncentracijeu. Odnos
između F i ∇u opisan jedifuzijskom matricom A, koja je
pozitivno definitna. Slučaj kada suF i ∇u paralelni naziva
seizotropan, a u općem,neizotropnomslučaju,F i ∇u nisu
paralelni.

Difuzija premješta masu bez gubitaka postojeće ili stvara-
nja nove. Ta činjenica može se opisati jednadžbom konti-
nuiteta

ut =−divF.

Ako (3) umetnemo u jednadžbu kontinuiteta dobivamodi-
fuzijsku jednaďzbu

ut = div(A∇u),

što je upravo linearna jednadžba provođenja topline ako je
A = I jedinična matrica. U obradi slika koncentraciju iz
ovih razmatranja možemo poistovjetiti s intenzitetom boje
na određenom mjestu na slici (piksel).

1.2 Pǒcetno-rubni problem

Neka jeT > 0, definiramo parabolički cilindar

UT =U ×〈0,T],

i parabolički rub

ΓT = ŪT −UT .

U nastavku želimo riješiti početno-rubni problem
{

ut −∆u= 0 naUT

u= g naΓT .
(4)

Iz klasične teorije parcijalnih diferencijalnih jednadˇzbi [2]
poznat je sljedeći rezultat.

Teorem 1 (Jedinstvenost na ograničenim domenama)
Neka je g∈ C(ΓT). Tada postoji najviše jedno rješenje
u∈C2

1(UT)∩C(ŪT) problema (4).

Valja napomenti da je rješenje na neograničenim dome-
nama, uz uvjet da je funkcijag neprekidna i ograničena,
također jedinstveno ali i glatko zato što je dobiveno ko-
nvolucijom

u(x, t) =
1

(4πt)n/2

∫
Rn

e−
|x−y|2

4t g(y)dy (x∈ Rn, t > 0) (5)

Vidimo da rješavanje jednadžbe provođenja topline za-
pravo znači konvoluiranje početne temperaturne distribu-
cije, odnosno početnog uvjeta s Gaussovom funkcijom s

parametrom standardne devijacijeσ = 2t. Vrlo je za-
nimljivo te bismo to ovdje htjeli posebno istaknuti, da iz
toga slijedi da je primjena jednadžbe provođenja topline
ekvivalentna poznatoj tehnici Gaussovog izglađivanja di-
gitalne slike. Takav postupak poznati je filtar koji se koristi
za izglađivanje slika težinskim usrednjavanjem vrijednosti
unutar određenog područja (npr. konvolucijom). Upravo
iz toga dolazi ideja korištenja difuzije u obradi slike.

Zaključujemo uvodni teorijski dio, a u nastavku ćemo pret-
hodna teorijska saznanja primjeniti u obradi digitalne slike.

1.3 Rjěsenje metodom konǎcnih razlika

Želimo početni problem (4) riješiti numerički. S obzirom
na to da je slika zapravo matrica, u nastavku uzimamo da
je UT = [0, p]× [0,q]×〈0,T]. Tada (4) ima oblik

{
ut = uxx+uyy naUT

u= g naΓT .
(6)

Početnu diferencijalnu jednadžbu ćemo primjenom Taylo-
rovog teorema zamijeniti s diferencijskom jednadžbom.
Diskretiziramo pravokutnik[0, p]× [0,q], gdje su p i q
dimenzije slike, s ciljem uspostavljanja odnosa između
čvorova u diskretnoj mreži i piksela na slici, između ko-
jih je u obje prostorne dimenzije jedinična udaljenost. Pri-
mjenom Taylorovog teorema parcijalne derivacije zamje-
njujemo konačnim razlikama

ut ≈
uk+1

i, j −uk
i, j

∆t ,

uxx ≈
uk

i+1, j−2uk
i, j+uk

i−1, j

∆x2 ,

uyy ≈
uk

i, j−1−2uk
i, j+uk

i, j+1

∆y2 ,

što uvrštavanjem u (6) daje

uk+1
i, j −uk

i, j

∆t
=

uk
i+1, j −2uk

i, j +uk
i−1, j

∆x2 +
uk

i, j−1−2uk
i, j +uk

i, j+1

∆y2 .

Želimo promatrati evoluciju slike kroz vijeme u diskret-
nim vremenskim koracima, što znači da nas za danu sliku
zanima vrijednost piksela na istom mjestu u idućem vre-
menskom koraku. S obzirom na to da je∆x= ∆y= 1 do-
bivamo,

uk+1
i, j = uk

i, j +∆t
[
−4uk

i, j +uk
i+1, j +uk

i−1, j +uk
i, j+1+uk

i, j−1

]
.

Prethodna razmatranja možemo i jednostavno implementi-
rati u programskom paketu SCILAB1.

1SCILAB je besplatni program otvorenog koda za znanstveno računanje i numeričke simulacije koji se koristi u znanostii industriji. SCILAB ima
gotovo istu sintaksu kao i MATLAB, a više o programu se možepronaći nawww.scilab.org
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(a) Originalna slika (b) T = 5 (c) T = 20

(d) T = 50 (e) T = 100 (f) T = 300

Slika 1: Otapanje pǒcetne slike (a) s vremenskim korakom∆t = 0.1. Na slikama (b), (c), (d), (e) i (f) T predstavlja proteklo
vrijeme.

1.4 Simulacije

Posljednji dio ovog odjeljka prikazuje korištenje dosad
izvedenih zaključaka na testnoj slici Lena. U program-
skom kôdu učitavamo sliku i zatim primjenjujemo izve-
denu shemu.

u0 = imread(’Lena.eps’);

[p,q]=size(u0);

for t = 0:dt:T

for i=2:(p-1)

for j=2:(q-1)

u_xx =

(u0(i+1,j)-2*u0(i,j)+u0(i-1,j));

u_yy =

(u0(i,j+1)-2*u0(i,j)+u0(i,j-1));

u(i,j) = u0(i,j) + dt*(u_xx+u_yy);

end

end

u0=u;

end

2 Nelinearna difuzija

Unatoč tome što je linearna difuzija jednostavna i primje-
njiva, ima nekoliko mana. Očiti problem kod takvog, Ga-
ussovog izglađivanja nalazi se u tome što ne samo da iz-
glađuje šum, već zamućuje važne elemente slike poput ru-
bova, čineći ih tako težim za pronalaženje i analiziranje.
Željeli bismo razviti alat koji nam omogućuje uklanjanje
šuma na način koji bi zatim olakšao pronalaženje rubovai
ostalih elemenata slike. To znači da se difuzija treba odvi-
jati samo unutar zasebnih područja koja se nalaze na slici,

”
poštujući“ njihove postojeće rubove. Potrebno je difuziju

prilagoditi tako da njeno djelovanje nije jednoliko na cije-
loj slici, već ovisi o pojedinim pikselima i njihovim okoli-
nama.

2.1 Perona-Malikova jednadžba

Ideja koju su prvi uveli Perona i Malik u [4] je prilagodba
jednadžbe provođenja topline tako da difuzivnost ovisi o
promjenama na slici. Prisjetimo se difuzijske jednadžbe iz
prethodnog odjeljka. Za difuzivnostA uzeli smo jediničnu
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matricu i time dobili jednadžbu provođenja topline. No,A
ne mora biti jedinična, čak niti konstantna. Vidjet ćemoda
će nam upravo odabir prikladne difuzivnostiA omogućiti
postizanje traženih svojstava difuzije. Kao što je spome-
nuto, želimo potaknuti izglađivanje unutar područja, za
razliku od izglađivanja preko granica područja. To bismo
mogli postići tako da vrijednost difuzivnosti bude 1 unutar
područja, a 0 (ili barem blizu 0) na granicama. Difuzija će
se tada odvijati unutar svakog od područja zasebno, ne pre-
lazeći granice. Na žalost, ne možemo unaprijed znati gdje
se na slici nalaze rubovi. Jedino što možemo jest ocije-
niti koliko se, s obzirom na zadani piksel, njegova okolina
mijenja.

Neka je funkcijaE = E(x,y) jedna takva ocjena definirana
na slici. Bilo bi poželjno daE ima svojstva:

1. E(x,y) = 0 unutar svakog zasebnog područja

2. E(x,y) = Ke(x,y) u svakoj rubnoj točki područja,
gdje je e jedinični vektor normale na rub u točki
(x,y), aK lokalni kontrast, odnosno razlika između
intenziteta sive slijeva i zdesna od ruba.

DifuzivnostA možemo odabrati tako da bude funkcija koja
ovisi o ocjeni koju smo upravo naveli, odnosno neka jeA=
f (‖E‖2). Prema dosadašnjim razmatranjima,A bi trebala
biti nenegativna padajuća funkcija takva da jef (0) = 1.
Na taj način difuzija će se odvijati uglavnom unutar po-
dručja i neće imati utjecaja na rubovima gdje je ocjenaE
velika. Srećom, vidjet ćemo da upravo najjednostavnija
ocjena, gradijentE = ∇u daje izvrsne rezultate. Uzevši u
obzir prethodno došli smo do Perona-Malikove jednadžbe,
{

ut = div ( f (|∇u|2)∇u) naUT

u= g naΓT
. (7)

Zbog traženih svojstava funkcije difuzivnosti koje se
najčešće koriste su

f (s2) =
1

1+ s2

λ2

(8)

i

f (s2) = e
− s2

2λ2 , (9)

gdje je λ > 0. Obje funkcije su monotono padajuće i
f (s2) = 1 zas= 0, i f (s2) = 0 kadas−→ ∞.

2.2 Teorijski rezultati za jednodimenzionalni model

Promotrimo sada jednodimenzionalni problem




ut = div ( f (u2
x)ux) naU ×〈0,∞〉

∂u
∂x

= 0 na∂U ×〈0,∞〉
u= g naU ×{t = 0}

. (10)

Za f uzmimo funkciju

f (s2) = 1

1+ s2

λ2

.

Neka je funkcija toka dana s

Φ(s) = s· f (s2) = s· 1

1+ s2

λ2

= λ2s
λ2+s2 .

Derivacija ove funkcije je

Φ′(s) = λ2(s2−λ2)

(λ2+s2)2
.

Dakle, ova funkcija postiže ekstrem kada jes2 = λ2. Kako
je λ > 0 imamo

Φ′(s)< 0, |s|> λ,
Φ′(s)> 0, |s|< λ.

Perona-Malikova jednadžba za jednu dimenziju glasi

ut =
(

f (s2) ·ux

)
x

= f ′(u2
x) ·2uxuxxux+ f (u2

x) ·uxx

=
(

f (u2
x)+ f ′(u2

x) ·2ux

)
·uxx

= Φ′(ux) ·uxx.

Za velike vrijednosti koeficijentΦ′(ux) očito postaje nega-
tivan, što vodi na difuzijuunatrag. U dvodimenzionalnom
slučaju bismo, kao u [1], dobili

ut = Φ′(|∇u|2)uηη + f (|∇u|2)uξξ.

Ovdje suη i ξ koordinate paralelne s∇u i okomite na∇u,
redom, što znači da je difuzijaunaprijedduž tangenti na
rješenjeu, aunaprijed-unatragduž smjera∇u. Očekujemo
da će blizu ruba na slici∇u biti velik, što znači difuziju
unatrag u smjeru gradijenta, rezultat čega je izoštravanje
rubova umjesto njihova zamućenja. Prethodno navedeno
objašnjava kako Perona-Malikova jednadžba ne samo da
čuva rubove, već ih i dodatno ističe.

Definicija 1 ([9])

Problem jedobro uvjetovanako ima jedinstveno rješenje
koje neprekidno ovisi o početnim uvjetima. Za problem
koji nije dobro uvjetovan kǎzemo da jeloše uvjetovan.

Poznato je da je difuzija unatrag loše uvjetovana. Prema
tome, postojanje difuzije unatrag u Perona-Malikovoj je-
dnadžbi sugerira da bi i ta jednadžba mogla biti loše uvje-
tovana.
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Definicija 2 (Slabo rješenje za jednodimenzionalni
slučaj, [9])

Za lokalno integrabilnu funkciju u(x, t) kažemo da jeslabo
rješenjePerona-Malikove jednaďzbe ako je

∫
U(u

2+u2
x) dx

uniformno ogranǐcen za ogranǐceni t i ako za svaku funk-
ciju φ ∈C1

0(R×R+) vrijedi
∫ ∫

[φtu−φx f (u2
x)ux] dxdt= 0.

U [3] je pokazano da ako postoji slabo rješenje jedno-
dimenzionalnog problema, početni uvjet mora biti be-
skonačno puta diferencijabilan u područjima gdje se odvija
difuzija unatrag (|ux| > λ). To pokazuje da je moguće
da slabo rješenje uopće ne postoji. Očito su afine funk-
cije oblikau(x, t) = ax+b rješenja, no one su nestabilne u
smislu da ako promjenimo početni uvjet proizvoljno malo,
rješenje možda neće postojati.

Teorem 2 (Nepostojanje rješenja za jednodimenzionalni
slučaj)

Za dani g takav da jeg′(x) = 0 na ∂U i g′(x) > λ na
samo jednom kompaktu uU , na primjer g′(x) > λ na
Q = 〈x0,y0〉 ⊂⊂ U i |g′(x)| < λ na U\Q̄, jednodimen-
zionalni problem (10) nema globalnog slabog rješenja u
C1(U).

Teorem 3 (Jedinstvenost lokalnog slabog rješenja za jed-
nodimenzionalni slučaj)

Pretpostavimo da suu i v lokalna slaba rješenja (10) na
UT s jednakim početnim uvjetimag, gdje jeg analitička
funkcija,(g′)2−λ2 ima samo jednostruke nultočke i difu-
zivnost f je analitička funkcija. Tada jeu(x, t)≡ v(x, t) na
UT .

Kao što vidimo iz prethodnih osnovnih teorijskih rezultata,
teorija postaje prilično složena čak i za jednodimenzionalni
slučaj, što nije ni čudno s obizrom da se radi o nelinearnoj
parcijalnoj diferencijalnoj jednadžbi.

Pogledajmo sada praktičnu primjenu Perona-Malikove
jednadžbe, kao što smo učinili i s linearnom jednadžbom.

2.3 Rjěsenje metodom konǎcnih razlika

Programska implementacija analogna je onoj za linearnu
difuziju iz prethodnog odjeljka. Iako nije odmah vid-
ljivo kako ona izgleda, budući da koristimo difuzivnost

koja uključuje funkciju koja je rješenje jednadžbe. Zbog
toga je potrebno pojednostavniti izraz iz problema (7).
Računamo:

ut = div
(

f (|∇u|2) ·∇u
)

= div
(

f (u2
x +u2

y) · [ux,uy]
)

=
(

f (u2
x +u2

y) ·ux

)
x
+
(

f (u2
x +u2

y) ·uy

)
y
. (11)

Računanjem parcijalnih derivacija te primjenom Schwar-
zovog teorema slijedi

ut = f ′(u2
x +u2

y)
(

2uxuxx+2uyuyx

)
ux+ f (u2

x +u2
y)uxx

+ f ′(u2
x +u2

y)
(

2uxuxy+2uyuyy

)
uy+ f (u2

x +u2
y)uyy

=2 f ′(u2
x +u2

y)
(

u2
xuxx+2uxuyuxy+u2

yuyy

)

+ f (u2
x +u2

y)(uxx+uyy).

Pojednostavljena Perona-Malikova jednadžba je jedno-
stavna za programsku implementaciju.

T = 20;

dt = 0.2;

lambda = 1;

f =@(s) 1/(1+s/lambda^2);

df =@(s) -((1/lambda^2)/((1+s/lambda^2)^2));

for t = 0:dt:T

for i=2:(p-1)

for j=2:(q-1)

ux=(u0(i+1,j)-u0(i-1,j))/2;

uy=(u0(i,j+1)-u0(i,j-1))/2;

uxx=(u0(i+1,j)-2*u0(i,j)+u0(i-1,j));

uyy=(u0(i,j+1)-2*u0(i,j)+u0(i,j-1));

uxy=(u0(i+1,j+1)-u0(i+1,j-1)-u0(i-1,j+1)

+u0(i-1,j-1))/4;

u(i,j)=u0(i,j)+2*dt*...

((df(ux^2+uy^2)*(ux*uxx*ux+uy*uyy*uy+2*ux*uy*uxy))

+ f(ux^2+uy^2)*(uxx+uyy));

end

end

u0=u;

end

Uz dulji protok vremena dobivamo jači utjecaj na početnu
sliku. Rezultati dobiveni eksperimentima prikazani su na
slici 2. Primjećujemo očuvanje rubova i uklanjanje

”
zrna-

tih“ elemenata na slici.
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(a) Originalna slika (b) T = 20 (c) T = 50 (d) T = 100

Slika 2: Otapanje pǒcetne slike (a) koristéci Perona-Malikovu jednaďzbu s vremenskim korakom∆t = 0.2. Na slikama (b),
(c) i (d) T predstavlja proteklo vrijeme,λ = 1.

Unatoč tome što je algoritam osjetljiv na rubove, nakon
dovoljno vremena neki rubovi, inače nedovoljno jasni, ne-
staju u stapanju s okolinom.

2.4 Usporedba s linearnom difuzijom

Za kraj dajemo usporedbu djelovanja linearne i nelinarne
difuzije. Prvo koristimo jednodimenzionalne podatke da

bismo vidjeli kako nelinearna difuzija čuva rubove, za ra-
zliku od linearne koja nekritično ”otapa” cijelu sliku. Tes-
tni podaci dobiveni su presjekom slike Lene u smjerux osi,
dakle graf predstavlja intenzitet sive duž jedne od horizon-
talnih linija na testnoj slici. Usporedbu ova dva modela
vidimo na slici 3. Na slici 4 dajemo usporedbu modela na
dvodimenzionalnim podacima, odnosno na slici glave do-
bivenoj magnetskom rezonancom.

Slika 3: Usporedba Perona-Malikove jednadžbe (lijevo) i linearnog modela (desno).
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(a) Originalna slika

(b) Linearna difuzija, T = 10 (c) Nelinearna difuzija, T = 25

(d) Linearna difuzija, T = 200 (e) Nelinearna difuzija, T = 200

Slika 4: Usporedba linearne i nelinearne difuzije na sliku dobivenumagnetskom rezonancom,∆t = 0.2, a T predstavlja
proteklo vrijeme.
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Sveučilǐste u Zagrebu

Hrvatski institut za istraživanje mozga
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The Moon Tilt Illusion

ABSTRACT

The moon tilt illusion is the startling discrepancy between
the direction of the light beam illuminating the moon and
the direction of the sun. The illusion arises because the
observer erroneously expects a light ray between sun and
moon to appear as a line of constant slope according to
the positions of the sun and the moon in the sky. This
expectation does not correspond to the reality that obser-
vation by direct vision or a camera is according to perspec-
tive projection, for which the observed slope of a straight
line in three-dimensional space changes according to the
direction of observation. Comparing the observed and ex-
pected directions of incoming light at the moon, we derive
a quantitative expression for the magnitude of the moon
tilt illusion that can be applied to all configurations of sun
and moon in the sky.

Key words: moon tilt, perspective projection, illusion

MSC 2000: 51N05

Iluzija nagiba mjeseca

SAŽETAK

Iluzija nagiba mjeseca zapanjujući je raskorak izmed-u svje-
tlosne zrake koja osvjetljava mjesec i smjera sunca. Ona se
povećava, jer promatrač pogřsno očekuje da zraka svjetla
izmed-u sunca i mjeseca bude pravac konstantnog koefici-
jenta smjera s obzirom na položaj sunca i mjeseca na nebu.
Ovakvo očekivanje ne odgovara stvarnosti kod koje je pro-
matranje s direktnom osi pogleda, ili s kamerom, u skladu s
perspektivom (centralnim projiciranjem) za koju se proma-
trani koeficijent smjera pravca u trodimenzionalnom pros-
toru mijenja s obzirom na os pogleda. Uspored-ujući pro-
matrane i očekivane smjerove zrake usmjerene na mjesec,
izvodimo kvantitativan izraz za veličinu iluzije nagiba
mjeseca koji se može primijeniti na sve položaje sunca i
mjeseca na nebu.

Ključne riječi: nagib mjeseca, perspektiva, iluzija

1 The Nature of the Illusion

The photograph in Figure 1 provides an example of the
moon tilt illusion. The moon’s illumination is observed to
be coming from above, even though the moon is high in
the sky and the sun had set in the west one hour before this
photo was taken. The moon is 45◦ above the horizon in
the southeast, 80% illuminated by light from the sun strik-
ing the moon at an angle of 17◦ above the horizontal, as
shown by the arrow drawn on the photograph. Our intu-
ition (i.e., the incorrect perception that creates the illusion)
is that given the relative positions of the sun and the moon,
the light from the sun should be striking the moon from
below. The moon tilt illusion is thus the perceived discrep-
ancy between the angle of illumination of the moon that we
observe (and can capture photographically with a camera
pointed at the moon) and the angle that we expect, based
on the known locations of the sun and the moon in the sky.

Figure 1: Photograph of the moon tilt illusion. Picture
taken one hour after sunset, with the moon in
the southeast and sun already set in the west.
Camera pointed upwards45◦ from the horizon
with bottom of camera parallel to the horizon.
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Rather surprisingly, little mention of the moon tilt illusion
(much less a detailed explanation of why it occurs) can be
found in astronomy books. Minnaert [1] gives a passing
reference: “...the line connecting the horns of the moon,
between its first quarter and full moon, for instance, does
not appear to be at all perpendicular to the direction from
sun to moon; we apparently think of this direction as be-
ing a curved line. Fix this direction by stretching a piece
of string taut in front of your eye; however unlikely it may
have seemed to you at first you will now perceive that the
condition of perpendicularity is satisfied”. A photograph
taken by Lodriguss [2] shows a waxing moon and the set-
ting sun in the same photo. The angle of 23◦ between the
direction of the moon’s illumination and the direction of
the sun provides a striking illustration of the moon tilt il-
lusion. An article by Schölkopf [3] documents the illu-
sion in an experiment involving 14 subjects by having them
indicate their expectation of how the moon’s illumination
should be oriented with respect to the position of the (vis-
ible) sun. He reports that an average discrepancy of 12◦

is perceived by the subjects between the observable versus
expected orientation of the moon’s bright limb. Schott’s
website entitled “ ‘Falsche’ Mondneigung” (‘False’ Moon
Tilt) [4] is devoted to the moon tilt illusion, and features
illustrations and useful links. A paper by Glaeser and
Schott [5], approaching the phenomenon via the princi-
ples of photography, shows that the magnitude of the il-
lusion could in theory be measured through comparison of
a close-up shot of the moon with a photograph containing
both sun and moon, with the camera directed in a specified
direction between them (although no equations are given).
However, as they point out, in practice it is not feasible
since even a wide-angle lens cannot capture both sun and
moon in a photo with azimuth differences for which the
illusion can be most clearly observed (between 90◦ and
180◦). Berry [6] proposed a zenith-centered stereoscopic
projection of the celestial sphere onto a flat surface with
the moon tilt illusion defined as the angle between the pro-
jected great circle and a straight moon-sun line drawn on
the flat surface “mimicking how we might see the sky when
lying on our back looking up”. Apparently there still per-
sists a lack of consensus in the literature about the expla-
nation of the moon tilt illusion and disagreement about the
best way to measure it.

In this paper, our aim is to derive a quantitative expression
for the magnitude of the moon tilt illusion experienced by
an upright observer that is straightforward to apply to all
configurations of sun and moon in the sky. We model the
viewer’s expectation of the direction of incoming light us-
ing vector geometry, which is appropriate for treating 3D
straight lines such as the sun-moon light ray.

2 System of Coordinates and Definitions

Our analysis of the moon tilt illusion is based upon the
known locations of the sun and moon in the sky. We
adopt topocentric coordinates (instead of right ascension
and declination) for the sun and moon, denoted by azimuth
(φ) 1 and altitude (η). The altitudeη is the angle between
the sun (or moon) and the observer’s local horizon. Rec-
ognizing that the altitude angle (η) is the complement of
the polar angle (θ), we may rewrite azimuth and altitude
(φ,η) as spherical coordinates (φ,θ). Spherical coordinates
for the sun and moon are converted to Cartesian coordi-
nates to allow vector manipulations such as dot and cross
products.

2.1 Moon Pointer and Moon Tilt Angle

The moon pointer is defined as the vectorCP in Figure 2,
whereC is the center of the moon and the vectorCPhas the
observed slope of the moon-sun line at pointC. The demar-
cation between illuminated and dark portions of the moon
is called the terminator. LineAB connects the two “horns”
of the terminator through the moon’s centerC. The moon
pointerCP is the perpendicular bisector of lineAB.

A

B

C

P

α
P

α

P

Figure 2: Definition of moon pointer withα angle. From
left to right,α = 40◦ (75% illumination),α = 0◦

(50% illumination),α = −30◦ (25% illumina-
tion).

The moon tiltα is the signed angle of the moon’s pointer
with the horizontal, positive upward and negative down-
ward. An equation for calculating this angle from the lo-
cations of the sun and moon is given in Section 4. Using
the construction in Figure 2, the angleα may be found ex-
perimentally by taking a picture of the moon with the opti-
cal axis of the camera pointed at the moon and the bottom
of the camera oriented horizontally. For example, for the
photo in Figure 1,α = 17◦.

1In physics, the azimuthal angle is defined as positive for counter-clockwise (CCW) rotation from due north (x-direction), with the Cartesian coor-
dinates satisfying the right-hand rule. In navigation, azimuth is defined as positive in the clockwise (CW) direction. We will use the CCW notation for
calculations but revert to the more familiar navigational CW direction for the presentation of results in Section 5.
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3 Cause of Moon Tilt Illusion

When we view the light ray at the moon, which is the only
place we can photograph its direction, the slope with the
horizontal (α) that we observe is exactly what one would
expect from the principles of perspective projection that
form the basis of human vision or photography.

The cause of the moon tilt illusion is simply that the ob-
server is not taking into account the rules of perspective
that dictate that the observed slope of the light ray will
change when he turns his head to observe the moon and
sun. This perceptual disconnect occurs because the ob-
server cannot see the light ray itself, but only its starting
position at the sun and the angle at which it strikes the
moon. Without any other visual cues to provide more in-
formation, he is perceptually unable to envision how the
slope of a visible line overhead changes with viewing an-
gle due to perspective projection.

The changing-slope effect due to perspective projection is
apparent in a video [7] which scans a long, straight string
of lights along the Thames near London’s Tower Bridge.
All of the lights are at roughly the same distance from
the ground. The moving video camera shows the observed
slope of the string of lights varying continuously with cam-
era motion: first sloping upwards from the ground on the
left, then with zero slope in the middle, and finally sloping
downwards to the right. For the moon illusion, the path
of the light ray is invisible and we can observe its slope
only at one end. If the sun-moon light ray were visible,
we would see a straight line of varying slope just like the
video and the illusion would vanish.

Knowing that light travels in straight lines in space but ‘for-
getting’ that slope changes as the head turns along a line,
the observer expects that when he scans from sun to moon
he would see a straight line of constant slope, even though
his head has moved. On the basis of this explanation, we
calculate the observed angle of the moon tilt (α) and com-
pare it with the expected angle (β) of the moon tilt based
upon the known positions of the moon and the sun in the
sky. The difference between the observed and expected
angles (δ) quantifies the moon tilt illusion.

4 Observed and Expected Slope of Incoming
Light

4.1 Observed Moon Tilt (α)

The principles of 2D perspective projection govern the
viewing of a 3D line between two objects overhead by the

human eye or a camera. The light ray from the sun that illu-
minates the moon is invisible in the sky, but we can observe
its slope with the horizontal where it intersects the moon
from the direction of the moon’s illumination. The deriva-
tion of the tilt angle (α) between the observed incoming
direction of light and the horizontal is straightforward but
lengthy and is not given here because the equation for the
observed tilt from the vertical (χ) is already well known.

Let φm be the azimuth of the moon andφs the azimuth of
the sun; let∆φ = |φs− φm|; let ηm be the altitude of the
moon andηs the altitude of the sun. The angle of the
moon’s tilt from the horizontal may be derived from an
equation for the position angle of the moon’s bright limb
[8], [9]:

tanχ =
cosηssin∆φ

cosηmsinηs− cosηssinηmcos∆φ
(1)

χ in this equation is called the position angle of the mid-
point of the moon’s bright limb measured from the north
point of the disk. This may be written:

tanχ =
sin∆φ

cosηmtanηs− sinηmcos∆φ
(2)

The desired angle with the horizontal (α) is the comple-
ment ofχ so:

tanα =
cosηmtanηs− sinηmcos∆φ

sin∆φ
(3)

4.2 Expected Moon Tilt (β)

An observer bases his expectation of the incoming direc-
tion of light at the moon on his knowledge of the 3D po-
sitions of the sun and moon as they appear to him in the
sky, i.e., according to their height difference and horizon-
tal distance apart. For example, in Figure 1, the upright
viewer sees the light illuminating the moon from above,
but he expects the light to come from below the horizontal,
since the moon is higher than the sun. In the sky, there is
an absence of visual cues by which the viewer could eval-
uate the distance of an object; thus the direction of light
from sun to moon is assessed from their relative altitudes
and azimuths as though sun and moon were equidistant2

from the viewer. We represent this expected direction of
light as a 3D vectorv, given by the difference of the unit
vectors from the observer to the sun (ŝ) and the moon (̂m):

v = ŝ− m̂ (4)
2This assumption is a natural consequence of the 2D perspective-projection basis of human vision. Since objects are projected bigger or smaller when

closer or farther away, objects of apparent equal size will be judged as equidistant, in the absence of additional visualcues such as clarity or brightness.
We note that even if observers take into account that the sun is much farther away from the earth than the moon, they will still experience an illusion by
not considering perspective distortion. For example, for asetting sun they would expect the moon (in any position) to beilluminated from the horizontal,
leading to an illusion equal to the observedα tilt.
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The observer naively expects to viewv without any per-
spective distortion. If the observer faced the vertical plane
containing the sun and moon directly, the slope ofv in this
plane is simply the height difference of sun and moon di-
vided by the horizontal distance between them. However,
the observer must face the moon for his observation of the
illusion. (If our eyes deviate from the azimuth of the moon,
theobservedangleα of the moon tilt would change). With
knowledge of the position of the sun and the moon relative
to his orientation facing the moon, the observer expects his
view of v as it strikes the moon to be determined by this
orientation. This is simply the orthogonal projection ofv
on the vertical plane at the moon. The vectorn normal to
the vertical projection plane is:

n = mx x̂+my ŷ (5)

wheremx andmy are thex andy components of the unit̂m
vector. The unit normal vector is:

n̂ =
n
|n| =

n√
m2

x +m2
y

(6)

The projectionvp on the vertical plane is:

vp = v− vn (7)

wherevn is perpendicular to the vertical plane with:

vn = (v · n̂)n̂ (8)

The horizontal unit vector lying in the vertical plane is
ĥ = n̂×ẑ. Since the tangent of an angle between two vec-
tors is equal to the ratio of the cross and dot products, it
follows that the desired angleβ betweenvp andĥ is given
by:

tanβ =
|vp × (n̂×ẑ)|
vp · (n̂×ẑ)

(9)

This formula forβ was chosen to avoid having to normal-
izevp. As shown in Appendix A, Eq. (9) may be written in
terms of the Cartesian components of the unit moon vector
m̂ and the unit sun vectorŝ:

tanβ =
|sz−mz|

√
m2

x +m2
y

sxmy− symx
(10)

As shown in Appendix B, conversion of the Cartesian com-
ponents of the moon and sun vectors to angles yields:

tanβ =−|sinηm− sinηs|
cosηssin(∆φ)

(11)

This equation forβ applies to waxing and waning moons in
both hemispheres. The nuisance of insuring that the angle
is in the right quadrant can be avoided by writing Eq. (11)
in the form:

tanβ =− (sinηm− sinηs)

cosηssin(∆φ)
(12)

where it is understood that∆φ= |φs−φm| and|∆φ| ≤ 180◦.
The sign convention for theβ pointer is the same as for
the α pointer: a positive value forβ corresponds to a di-
rection upward from the horizontal and a negative value
corresponds to a direction downward from the horizontal,
pointing east or west depending on the location of the sun.
Typically the altitude of the moon is higher than that of the
sun andβ is negative.

4.3 Magnitude of Moon Tilt Illusion

The moon tilt illusion is defined as the difference (δ) be-
tween the slope angle of the observed moon-sun line (α)
and slope angle of the expected moon-sun line (β):

δ = α−β (13)

We may apply this equation to the photograph in Fig-
ure 1. The locations of the sun and moon are the alti-
tudesηm = 45◦, ηs = −15◦, and an azimuth difference
∆φ = 128◦. The illumination of the moon in the pho-
tograph is 80%, which agrees with the calculated value
[9]. From Eq. (3),α = 17◦, which is confirmed by the
photograph. Eq. (12) givesβ = −52◦ and from Eq. (13),
δ = 17− (−52) = 69◦, consistent with the viewer’s expec-
tation that the incoming light should be strongly angled
from below the horizontal.

5 Discussion

We have presented a method for calculating the magnitude
of the moon tilt illusion as the degree difference (δ) be-
tween the observed direction of the incoming light and the
expected direction of incoming light. The model identifies
sun/moon configurations ranging from no illusion (when
the sun and moon are either close together or both on the
horizon) to the strongest illusion (at the equator, when the
moon is above the horizon and the azimuthal difference
between moon and sun is 180◦).
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Figure 3: Moon tilt illusion for waxing phases in northern hemisphere. Sun is setting due west. Red line is observed slope
and blue line is expected slope of moon-sun line. Azimuth measured CW from north.

We focus on cases where the sun and the moon are both
visible in the sky, as this allows the observer to evaluate the
positions of each. The moon is visible at twilight. Shown
in Figure 3 is a chart for a waxing moon with a setting sun
in the northern hemisphere. The magnitude of the moon
tilt illusion is δ, the degree difference between the ob-
served (red) arrow and the expected (blue) arrow. A set of
four charts for waxing or waning moon in the northern and
southern hemisphere could be constructed to cover all sim-
ilar situations. Whether or not a particular configuration is
visible depends on the latitude of the observer. For exam-
ple in Figure 3 for a waxing moon, the horizontal “boat”
crescent moon at high altitude in the west is observed near
the equator but not in temperate zones. The chart is for the
sun setting due west, which occurs at all latitudes during
the spring and fall equinoxes. Since the moon tilt (α or β)
depends on thedifferenceof azimuths (∆φ), corrections can
be made for the sun setting at azimuths other than 270◦ by
translating the entire set of images horizontally to the right
or left.

The limits ofδ, the magnitude of the illusion, are 0◦ for a
new moon and 180◦ for a full moon. Near new moon, theδ
angle is too small to be visible with the naked eye. For the
crescent moon with under 90◦ azimuth difference between
sun and moon, the magnitude of the illusion (δ) is small
and the illusion is unimpressive, since the observed (red)
and expected (blue) light directions are both below the hor-
izontal. At half moon (sun-moon azimuth difference of
90◦, moon at 180◦ on the chart), the discrepancy between
the observed and expected directions becomes very notice-
able since the observed light direction (red) is horizontal
but the expected light direction(blue) is from below. For
the gibbous moon at sunset or sunrise with azimuth differ-
ence greater than 90◦, the illusion becomes striking since
the moon is unambiguously lit from above the horizontal
and the position of the sun is below the horizontal. The
illusion is particularly impressive at sunset when the gib-
bous moon is at high altitude in the southwest or at sunrise
when the gibbous moon is at high altitude in the southeast
(both cases for the northern hemisphere). If illumination
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exceeds about 90 percent, the direction of the red moon
pointer may become difficult for the observer to discern.
In addition to the setting sun configuration in Figure 3, an-
other interesting case occurs when the sun and moon are
at the same (non-zero) altitude. Although the moon is lit
from above the horizontal, the observer would expect to
see the light travel horizontally from the sun to the moon.
Our model givesβ = 0 andδ = α.
In Figure 3, we note that for a particular elevation and set-
ting sun at 270◦, the expected beta is the same at moon
azimuths of (180 + x) and (180 - x) degrees. For exam-
ple, at 60◦ elevation, the angle of the blue sun-moon arrow
is −50.8◦ at moon azimuths of 135◦ and 225◦. Moving
from right to left at fixed altitude on Figure 3, the blue ar-
row moves CCW at first but switches to a CW movement
after passing the 180◦ azimuth. Looking at Figure 3, in-
stead of symmetry about 180◦, one might expect the blue
arrow indicating the direction of the sun to continue turn-
ing CCW when moving right to left at constant altitude.
However, Figure 3 is a 2D representation of the 3D posi-
tion of the sun relative to the moon. As the moon-sun az-
imuth difference increases beyond 90◦ from right to left at
constant altitude, the sun movesbehindthe observer, caus-
ing the projected slope of the moon-sun vector to move in
a CW direction. Facing the elevated moon and with the
setting sun directly behind him, the observer would expect
the light to illuminate the moon from below. The actual
illumination is directly from above. Thus on the equator at
sunset and particularly at high moon altitudes for which the
moon is lit from above, observers experience a spectacular
moon tilt illusion of magnitude 180◦.
Eq. (12) for the calculation of the expected angleβ depends
upon the locations (azimuth and altitude) of the moon and
sun in the sky.β is the angle of the sun-moon vector with
the horizontal as projected upon a vertical plane perpen-
dicular to the azimuth of the moon. Consider some of the
limits for β which are independent of the projection plane
used for its calculation and depend only on the geometry of
the configuration. When the moon and sun have the same
altitude,β = 0. When the moon and sun have the same az-
imuth with the moon above the sun,β =−90◦. In the limit
as the moon approaches the sun (new moon),β=α for any
angle of approach. When the moon has a non-zero altitude
and the moon-sun azimuth difference is 180◦, the moon-
sun vector strikes the moon from below so thatβ = −90◦.
Values ofβ from Eq. (12) conform to these limits.
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Notation

m moon vector OM
n normal vector to vertical plane
s sun vector OS

x,y,z Cartesian coordinate vectors
v moon-sun direction, Eq. (4)

vn projection ofv on n
vp projection ofv on vertical plane
α observed angle of moon pointer with horizontal
β expected angle of moon pointer with horizontal
δ difference of observed and expected angles of moon

pointer with horizontal
η altitude of moon or sun
θ polar angle of moon or sun in spherical coordinates
φ azimuth of moon or sun
χ position angle of moon’s bright limb
ˆ “hat” symbol for unit vector
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Appendix A. β from vector components

Reduce the vector equation:

tanβ =
|vp × (n̂×ẑ)|
vp · (n̂×ẑ)

to component form.

vp = v− (v · n̂)n̂

vp × (n̂×ẑ) = (vp· ẑ)n̂− (vp· n̂)ẑ
But vp is perpendicular tôn so:

vp × (n̂×ẑ) = (vp· ẑ)n̂
= (v· ẑ)n̂− (v · n̂)(n̂ · ẑ)n̂
= (v· ẑ)n̂

becausên is perpendicular tôz.

v = ŝ− m̂ = (sx−mx)x̂+(sy−my)ŷ+(sz−mz)ẑ

|vp × (n̂×ẑ)|= |v· ẑ|= |vz|= |sz−mz|
The denominator is the scalar triple product:

vp · (n̂×ẑ) = v · (n̂×ẑ)− (v̂ · n̂)[n̂ · (n̂×ẑ)]

= v · (n̂×ẑ)

becausên · (n̂×ẑ) = (n̂× n̂)·ẑ= 0.

n× ẑ= (mx,my,0)× (0,0,1) = (my,−mx,0)

v · (n×ẑ) = [(sx−mx),(sy−my),(sz−mz)] · (my,−mx,0)

= sxmy− symx

In terms of the normalized vectorn̂:

v · (n̂×ẑ) =
sxmy− symx√

m2
x +m2

y

Substituting results for the numerator and denominator of
tanβ:

tanβ =
|sz−mz|

√
m2

x +m2
y

sxmy− symx
�

Appendix B. β from altitude and azimuth angles

Convert the component formulation forβ to altitude and
azimuth angles of the sun and the moon:

tanβ =
|sz−mz|

√
m2

x +m2
y

sxmy− symx

Cartesian coordinates of the observer-moon and observer-
sun unit vectors are:

m̂ = mxx̂+myŷ+mzẑ

ŝ= sxx̂+ syŷ+ szẑ

In terms of altitudes and azimuths:

mx = cosηmcosφm; my = cosηmsinφm; mz = sinηm

sx = cosηscosφs; sy = cosηssinφs; sz = sinηs

so:

m2
x +m2

y = cos2 ηmcos2 φm+ cos2 ηmsin2 φm = cos2 ηm

√
m2

x +m2
y = cosηm

(sz−mz) = sinηs− sinηm

sxmy− symx = cosηscosφscosηmsinφm

− cosηssinφscosηmcosφm

= cosηscosηm(sinφmcosφs− cosφmsinφs)

= cosηscosηmsin(∆φ)

where∆φ = (φm−φs).

tanβ =−
|sz−mz|

√
m2

x +m2
y

sxmy− symx
=−cosηm|sinηs− sinηm|

cosηscosηmsin(∆φ)

=−|sinηm− sinηs|
cosηssin(∆φ)

�
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