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ABSTRACT

Fibonacci numbers and the Golden Mean are numbers and
thus 0-dimensional objects. Usually, they are visualized in
the Euclidean plane using squares and rectangles in a spi-
ral arrangement. The Golden Mean, as a ratio, is an affine
geometric concept and therefore Euclidean visualizations
are not mandatory. There are attempts to visualize the
Fibonacci number sequence and Golden Spirals in higher
dimensions [11], in Minkowski planes [12], [4] and in hy-
perbolic planes (again [4]). The latter has to replace the
not existing squares by sequences of touching circles. This
article aims at visualizations in all Cayley-Klein planes and
makes use of three different visualization ideas: nested
sets of squares, sets of touching circles and sets of trian-
gles that are related to Euclidean right angled triangles.
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Nestandardne vizualizacije Fibonaccijevih brojeva

i zlatni rez

SAŽETAK

Fibonaccijevi brojevi i zlatni rez su brojevi, stoga su to
0-dimenzionalni objekti. Najčešće se vizulaiziraju u eu-
klidskoj ravnini, pomoću kvadrata i pravokutnika u spi-
ralnom poretku. Zlatni rez, kao omjer, je pojam afine
geometrije pa euklidske vizualizacije nisu nužne. Postoje
pokušaji vizualizacije Fibonaccijevog niza i zlatne spirale
u vǐsim dimenzijama [11], u ravninama Minkowskog [12],
[4], i u hiperboličkim ravninama, takod-er [4], gdje se nepo-
stojeći kvadrati zamjenjuju kružnicama koje se dodiruju.
Cilj ovog rada je vizualizacija u svim Cayley-Kleinovim
ravninama uz korǐstenje triju različitih ideja: grupiranih
skupova kvadrata, skupova kružnica koje se dodiruju i
skupova trokuta koji su analogni euklidskim pravokutnim
trokutima.

Ključne riječi: Cayley-Kleinove geometrije, Fibonaccijevi
brojevi, zlatni rez

1 Euclidean Visualizations

In this paper we continue a study of visualizing the classi-
cal sequence of Fibonacci numbers and Golden Spirals [4]
and aim at visualizations in general Cayley-Klein planes.

In the Euclidean plane there are mainly three cases:

(α) The standard visualization by nested sets of Golden
Rectangles and gnomon squares, see Figures 1, 2 and e.g.
[1], [4], [14]. Inscribing quarter circles into the gnomon
squares results in discrete spirals ofC1-continuity.
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Figure 1: Set of Fibonacci squares
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= 1.618...

Figure 2: Nested set of Golden rectangles and quater cir-
cle biarc spiral
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(β) In [4] the authors propose to use a chain of circles
where each circle touches the former two circles, see Fig-
ures 3, 4. This type of visualization even allows generally
normed planes (Minkowski planes) and also a hyperbolic
plane as places of action, i.e. planes without a (proper)
concept of squares.

Figure 3: Set of touching Fibonacci circles and Fibonacci
spiral polygon of circle centres

Figure 4: Set of “Golden Circles” and spiral polygon of
circle centres

From the construction of touching circles in Figure 3 fol-
lows that we get a limit triangle of circle centres with side
ratio

a : b : c= Fi+1 : (Fi−1+Fi+1) : Fi+2 = 1 : (1+
1
φ2 ) : φ

= (1+φ) : (2+φ) : (1+2φ). (1)

Figure 4 contains a nested set of such triangles with side
ratio (1).

(γ) In this paper we propose an additional way of visual-
izing Fibonacci numbers and Golden spirals using sets of
Pythagoras triplets and right angled triangles akin to the
classical root spiral. Similar to Fibonaccis rule Pythagoras
formula adds two numbers and gives a new one. This in
mind, one can generate the set of natural numbers as well
as the Fibonacci sequence via iterative processes applied
to the classical formula of Pythagoras, see Figure 5.

Figure 5: Natural numbers and Fibonacci numbers de-
rived from Pythagoras’ formula

While the left column leads to the so-called root-spiral and
triangles with cathetes

√
n,1 and the hypotenuse

√
n+1,

see Figure 6, the right column leads to cathetes
√

Fi−1,
√

Fi

and the hypotenuse
√

Fi+1, see Figure 7. Again, we get a
‘limit’ triangle with side ratio

a : b : c=
√

Fi−1 :
√

Fi :
√

Fi+1 (2)

Such a triangle might as well be called Golden (right-
angled) Triangle. Figure 8 shows the spiral polygon de-
rived from such Golden Triangles.

Figure 6: The classical “root spiral”

Figure 7: Fibonacci number root spiral

Figure 8: Golden Root Spiral Polygon

37



KoG•18–2014 G. Weiss, S. Mick: Non-standard Visualizations of Fibonacci Numbers and the Golden Mean

While in the Euclidean plane triangles with side ratio (2)
are right angled by themselves, this is not the case in the
hyperbolic plane. But as long the triangle in-equation for
the side ratio (2) remains valid this third type of visualiza-
tions is also possible in a wide range of settings as it is
shown in the following chapters. It should be mentioned
that the ratio (2) is supposed to be connected with some of
the ancient Egyptian pyramids, c.f. the concepts “Kepler
triangle” and “Golden Pyramid”, see [14].

2 The Golden Mean and the Fibonacci-
sequence

There is such a huge number of publications dealing with
the Golden Mean and Fibonacci numbers and the topic has
become common knowledge among mathematicians that
one can refrain from citing more than a few basic books
on that theme, e.g. [1], [9] and the Wikipedia article [14]
which contains a long list of references.

Fibonacci numbers and the Golden Mean valueφ are num-
bers, therebyφ is a root ofx2− x−1= 0 and the result of
the “most irrational continued fraction”φ = 1+ 1

1+ 1
...

. Be-

ing numbers, these objects are 0-dimensional. As a “ratio
of 3 collinear points”φ has a 1-dimensional visualization
and it is an affine geometric concept independent from any
Euclidean structure. Obviously, 2-dimensional visualiza-
tions in the Euclidean plane using squares or circles can-
not be mandatory! Visualizations in other settings are at
least possible and might even enjoy some aesthetic value.
Such non-standard visualizations also give some deeper in-
sight into the interplay of visualization assumptions and
the structure of the places of action. This might justify the
following considerations.

3 Other places of action

At first we collect those visualizations in places of actions
already treated in references and show some figures:

3.1 Higher dimensional Euclidean visualizations

See [11] and Figure 9.

Figure 9: Nested set of Golden Prisms with cubes as
gnomon figures and a Golden helix biarc spiral

3.2 Visualizations in (affine) normed planes (so-called
Minkowski planes)

See [1], [12] and Figures 10, 11.
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Figure 10:Minkowski geometric analogue to Figure 2.
(Applying translationsτi to the partial arcs
ci of concentric Minkowski circles under the
end-point is start-point condition results in a
Minkowski circular bi-arc spiral)

Figure 11:Minkowski geometric analogue to Figure 4. (Se-
quence of touching Golden Minkowski-circles
and Golden Triangles in a Minkowski plane
with hexagons as circles.
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3.3 Visualizations in a hyperbolic plane

See [4] and Figure 12.

As there are no similarities and no squares in a hyperbolic
plane one cannot use the visualization method (α). In [4]
the authors propose method (β) and handle the different
radii of the Golden circles via a hyperbolic scaled line. For
visualizing the circle chain they use the F. Klein model of a
hyperbolic plane and base the construction on an arbitrarily
given scale on a hyperbolic line, see Figure 12.

Figure 12:A sequence of tangent Golden circles and
Golden triangles in the hyperbolic plane.

The hyperbolic case encourages us to look for visualiza-
tions also in other Cayley-Klein planes. Of course, one
faces the problem of finite length of lines in e.g. the el-
liptic plane, while a line in affine planes and the hyper-
bolic plane has infinite length. It turns out that also some
affine Cayley-Klein planes need greater modifications of
the three visualisation schemes, as shown in the next chap-
ters. For an overview of all Cayley-Klein planes see e.g.
[3].

4 Visualisations in Cayley-Klein planes

4.1 Affine cases

4.1.1 The Euclidean case

See Chapter 1.

4.1.2 The pseudo-Euclidean case (pe-case)

Here, the visualization method (α) by squares does work.
The constructions are based on affine parallelograms,
which, by a suitably chosen affine coordinate frame can
be called affine squares, affine Golden rectangles, see [4]
and Figure 13.

Note that, from the pseudo-Euclidean point of view, one
side of Golden Rectangles is space-like, while the other is

time-like (with a negative length). Therefore one needs to
modify the side ratio concept ofpe-Golden Rectangles by
using absolute values as

|a| : |b|= 1 : φ. (3)

Furthermore, the biarc spiral curve in Figure 13 consists of
general conic section arcs and not ofpe-quarter circles.

Figure 13: “Affine Golden biarc spiral”, “affine Golden
Rectangles” and “squares” in an affine plane,
which is endowed with a suitable affine coordi-
nate frame.

Method (β) does not work: It is not possible to construct
a real space-likepe-circle (i.e. a Euclidean equilateral hy-
perbola with predifined directions of asymptotes), which
touches two mutually touching space-likepe-circles. Their
centres would have to form triangles with side length ratio
(2). Fora < b < c we would havea+ b < c, expressing
that in thepe-plane the triangle inequality would not held.

This is why method (γ) is problematic, too. It would
have to be modified according to the norm-function of the
pe−plane by absolute values similar to (3). But as there
exist the (continuous) group ofpe-rotations, the group of
translations and the group of dilatations, one can at least
constructpe−spirals as orbits of a one-parameter group of
pe−similarities. Generating such a discrete spiral polygon
with the pe-similarity factorφ (or

√
φ) then leads to a vi-

sualization of a Goldenpe-root spiral, see Figure 14.

Figure 14:Golden pseudo-Euclidean spiral polygon
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4.1.3 The isotropic case (i-case)

In the projective extension of an isotropic plane the ideal
line u and ideal pointU act as absolute figure. Choosing
an affine coordinate frame(O;E,F) with O,F,U collinear
and E,F as unit points of the axesx = OE,y = OU al-
lows to measure thei-distance of two pointsP(xP,yP) and
Q(xQ,yQ) asd(P,Q) := |xQ−xP|. If P,Q are collinear with
U , one uses|yQ− yP| as a substitute for their vanishingi-
distance and calls it “spacing (Sperrung)”. Obviously it is
possible to construct a nested set of “Golden Rectangles”
in a seemingly spiral arrangement, see Figure 15, but this
affine spiral arrangement does not suit to an isotropic spiral
(c.f. [7]). This way, visualization method (α) works well.

β The set of points with fixed distance to a given point
is a pair ofy-parallel lines, so-called isotropic lines. This
circle concept is not useful for our purpose. Let us con-
sider the following circle concept: Ani-circle is a conic
section touching the absolute lineu in the absolute point
U . In our model of thei-planei-circles are parabolas with
y-parallel diameters. The Euclidean parameter is a proper
replacement of the concept “radius”, because twoi-circles
are either similar or one is the translated of the other. It is
not possible to construct ani-circle that touches two mu-
tually touchingi-circles in proper points. At least one of
the tangent points must be the ideal pointU . Therefore
visualization method (β)is not viable.

Figure 15:Nested set of Golden Rectangles and squares in
an isotropic plane.

(γ) Similar to thepe-case one can generate ani-spiral poly-
gon (see [7]) and can use it for the construction of a Golden
i-root spiral, see Figure 16. For such a spiral polygon even
C1-smoothi-circular bi-arc spirals are possible, see Figure
17.

Figure 16:Golden isotropic spiral polygon

Figure 17: i-circular biarc spiral to an i-spiral polygon

4.1.4 The dualpe-plane

The dual pe-plane is also called quasi-hyperbolic plane
(qh-plane). Its absolute is a pair of real linese, f , whereby
one (sayf =: u) can act as “line at infinity”u of a pro-
jective embedding of the affine plane. Therefore, we can
discuss this case in this sub-chapter. In this model of aqh-
plane the absolute involution with the fixed linese, f sim-
ply becomes the (Euclidean) reflection at the proper linee.
Strictly speaking, theqh-plane is just one half-plane with
respect toe, but as we did in thepe-plane case we also con-
sider the projective embedding of theqh-structure. Apply-
ing a suitable regular polarityΩ to the pseudo-Euclidean
plane one receives this model of the projectively embedded
qh-plane, where the two half-planes represent the space-
like world and the time-like world. The fixed linee repre-
sents one set of light-like lines. It is easy to translate con-
cepts concerning ratios (of collinear points) and angles (of
lines) toqh-ratios of lines andqh-angles of points. Parallel
lines occur as points on a line parallel to e and orthogo-
nal lines map to points on lines symmetric toe, such that
rectangles(ABCD) occur as trapecia(abcd)with two sides
parallel and symmetric toe. In particular, squares map to
parallelograms.
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For thepe-plane visualization method (α) can be based on
Figure 13, if we modify the side ratios of the Golden Par-
allelograms according to (3). So we receive a visualization
(α) in theqh-plane by dualizing Figure 13, see Figure 18.

Figure 18:Golden qh-polygon according to visualization
method (α) by squares and rectangles (by du-
alizing the figure at top).

In Figure 18 the pointsa,b represent the sides of the limit-
quadrangle and their connection represents the pole of the
spiral polygon (at right). Thereby the ratio ofa with re-
spect toa1,a0 reads as

r(a,a1,a0 =r(a,a3,a2) = . . .= 1 : (3−φ)
=1/5(2+φ) = 0.723. . . (4)

Visualization method (β) does not work here: In this model
qh-circles occur as parabolas with common tangente. It is
impossible to construct non-trivial triples of mutually (out-
ward) touching parabolas having a common tangent. Sim-
ilarly, also method (γ) is not suited toqh-planes.

4.2 Projective cases

4.2.1 The hyperbolic plane (see 3.3)

Here we just refer to [4] and Figure 12 in 3.3.

4.2.2 The elliptic plane (el-plane)

Place of action is the full projective plane endowed with an
elliptic absolute polarity. There are no similarities and no

squares in the el-plane, such that visualisation method(α)
cannot be performed. Because of the finite length of ellip-
tic lines method(β) works well up to a certain numbern
of circles, see Figure 19. By choosing a suitably small unit
for the scaling of the elliptic line this number can be any
finite numbern. For visualization purposes, this might be
sufficient. If theel-circle radius would exceed the length
l of a line one had to replace it by a circle with a radius
modulo 1, what makes visualization very confusing. For
e.g. a chain of goldenel-circles on the sphere model of the
el-plane it could be an idea to start with the largest possible
el-circle, i.e. a great circle, and work from large to small,
see Figure 20.

Figure 19:Chain of Fibonacci circles in the projective
model of the elliptic plane.

Figure 20:Chain of Golden Circles on the Euclidean
sphere representing the elliptic plane

4.2.3 The dual Euclidean plane

is also called quasi-elliptic plane (qe-plane). Its absolute
figure is a pair of conjugate imaginary linesi, j with a real
intersection pointU . A very convenient model of a qe-
plane in the (projectively extendend) plane of visual per-
ception (represented by a sheet of paper, the PC-screen or
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the blackboard) takes U as a proper point and i and j as
the fixed lines of the (Euclidean) “right angle involution”
in the pencil of lines with supportU (see Figure 21 left).
We use homogeneous Euclidean coordinates in both, the
projectively enlarged Euclidean plane (e-plane) and theqe-
plane. The transfer from thee-plane to theqe-plane can be
carried out by the (regular) polarityΩ : P→L defined by
the regular imaginary conic sectionx2

0 + x2
1 + x2

2 = 0 and
the transformation matrix

TΩ =





1 0 0
0 1 0
0 0 1



 . (5)

In thee-plane the parabolic distance measure in the point
set P and the elliptic angle measure in the line set L are de-
scribed by the usual Pythagoras formula (6) and Brauner’s
formula (7), see [2]:

d(P,Q) =
√

(xQ− xP)2+(yQ− yP)2 (6)

with x= x1
x0
,y= x2

x0
and

tan∠(p,q) =
√

(−cr(p, p⊥,q,q⊥), (7)

with p⊥ e-orthogonalp, etc. These measures become a
parabolicqe-angle measure in the line set L and an ellip-
tic qe-distance measure in the point set P of aqe-plane.
In our visualization of theqe-plane theqe-distance of two
pointsP,Q which are non-collinear withU appears as the
Euclidean angle between the linesUP,UQ, see Figure 21
(left). Thus the formulae (6), (7) just exchange their roles.
Note that, similar to the isotropic case,qe-circles are not
defined as (planar) point sets having constant distance from
a centre point, but as conic sections touching the com-
plex absolute lines i and j. This means that, in our vi-
sualization of aqe-plane, the absolute pointU is a com-
mon (Euclidean) focus of the conic sections representing
of qe-circles. One can choose one of the qe-circles as unit
circle c and, similar to the isotropic case, extend the dis-
tance measure also to two parallel pointsR,S(U), that are
collinear withU : That additional distance can again be
namedspacing(Sperrung). It is defined by the difference
of ratios as

d(R,S) := |r(S,E,U)− r(R,E,U)|, (8)

with the pointE ∈ c acting asunit pointonUR , see Figure
21 (right).

Figure 21:qe-distance of non-parallel points (left) and of
parallel points (right)

(α) The dual of a Euclidean rectangle with sides
a1,b1,a2,b2 is a quadrangleA1,B1,A2,B2 the diagonals
e, f are orthogonal and intersect inU , (see Figure 22). For
the dual of a Euclidean square the pointsE := (A1B1)∩
(A2B2) andF := (A1B2)∩ (A2B1) additionally are on or-
thogonal lines throughU .

Figure 22:qe-rectangles are quadrangles with orthogonal
diagonals through U.

So it is possible to transfer directly the Euclidean nested
set of Golden Rectangles to theqe-plane, see Figure 23.

Figure 23:Nested set of Golden qe-rectangles and a
Golden qe-spiral polygon.

(β) As a qe-circle is a conic section havingU as one of
its foci. Figure 24 shows that it is possible to construct
a sequence ofqe-circles, each touching the former two.
Dealing withradii, however, would require a definition of
qe-circles as aqe-distance set, which is not possible. This
is why visualization method (β) does not work.
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Figure 24:A chain of qe-circles, one touching the two for-
mer qe-circles.

(γ) To transfer the Euclidean Golden Root Spiral (Figure
8)) into theqe-plane model we have to construct a trilat-
eral with angle ratioφ :

√
φ : 1. As Euclidean rotations with

centreU are admitted, it becomes possible to also construct
a qe-analog to the Golden Root Spiral, see Figure 25.

Figure 25:A Golden quasi-elliptic root spiral.

5 Conclusion and Outlook

The main subject of this paper is to show that visualiza-
tions of mathematical objects do not have to be performed
in the classical Euclidean plane. Visualizations in other
settings, like the Cayley-Klein planes or even spaces of
higher dimensions, are justified as well. As an example we

visualized the Golden Mean and the Fibonacci sequence in
models of all possible Cayley-Klein planes. When doing
so, visualisation methods based on typical Euclidean fig-
ures and properties have to be replaced by other methods.
In this paper we propose three methods, which all work
well in the Euclidean case. To transfer these methods in
Cayley-Klein planes we use models conveniently adapted
again to the plane of visual perception. Convenient means
that constructions can be performed with available graph-
ics software tools. In our paper we used Cinderella 2.8 for
the figures. This CAD-software is distinguished by provid-
ing (planar) hyperbolic and elliptic geometry construction
tools, too (see e.g. [15]). In some, but not all, Cayley-
Klein planes we get visualizations of the Golden Mean and
the Fibonacci sequence with modifications of the proposed
Euclidean concepts.

Metallic Means generalize the Fibonacci sequence and the
Golden Mean, see e.g. [13], [8]. The three presented meth-
ods could also be applied to visualize (generalized) Metal-
lic Means. But as they all are defined as positive solu-
tions of quadratic equations there will not occur essentially
new results. Van der Laans and Rosenbuschs cubic gen-
eralizations of the Golden Mean have three-dimensional
(Euclidean) visualizations by nested sets of boxes, thus
generalizing the method (α) using squares and rectangles,
see e.g. [5], [6] and [10]. Higher dimensional visualiza-
tions by nested sets of boxes are also known for Metallic
Means, see [11]. For visualizations in non-Euclidean and
Minkowski-spaces the method (β) (with hyper-spheres in-
stead of circles, see [4]) seems to be natural and it is often
the only possible method. Thereby one has to construct a
chain of hyper-spheres, where thenth touches the former
(n-1) hyper-spheres and their radii are proportional to Fi-
bonacci numbers or elements of a geometric sequence. If
we choose the radii according to a geometric sequence with
proportionality factorφ or e.g. the Silver Mean one might
call the occurring simplices of the centres of consecutive
hyper-spheres Golden resp. Silver simplices.
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