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The Arbelos with Overhang

The Arbelos with Overhang Arbelos s privjeskom

ABSTRACT SAZETAK

We consider a generalized arbelos consisting of three semi- Promatra se poopceni arbelos koji se sastoji od tri
circles with collinear centers, in which only two of the three polukruZnice s kolinearnim sredistima, pri ¢emu se dvije
semicircles touch. Many Archimedean circles of the ordi- on njih dodiruju. Mnoge Arhimedove kruZnice obi¢nog
nary arbelos are generalized to our generalized arbelos. arbelosa su poopcene za poopceni arbelos.
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1 Introduction stated. Letd’ (resp. B') be a point on the half line with

endpointO passing through (resp.B), and lef A'O| = 24’
Thearbelosis a plane figure consisting of three mutually (resp. |B'O| = 2b) (see Figure 1). Ley = (AB), and let
touching semicircles with collinear centers. It has three & be the circle touching the semicirc{&’O) externally
points of tangency. In [5], [7] and [9], we have considered vy internally and the perpendicular B passing through
a generalized arbelos callectallinear arbelosconsisting O from the side opposite to the poiBt The circIeESE3 is
of three circles with collinear centers, in which one of the defined similarly.
circles touches the remaining two circles, but the two cir-
cles do not touch in general. Thereby the collinear arbelos
has two points of tangency.

In this paper, we consider the remaining case. We con-
sider a configuration consisting of three semicircles with
collinear centers, in which only two semicircles touch,,i.e

it has only one point of tangency. Many Archimedean cir-
cles of the ordinary arbelos are generalized to our general-
ized arbelos, but also several new Archimedean circles of g 3 0 A A
the ordinary arbelos are induced by this.

Figure 1

2 An arbeoswith overhang N _ _
Proposition 1 The two circlesy, and 6& are congruent if

Let O be a point on the segmeAB with |AQ| = 2a and andonlyifd—a="b'—b.

|IBO| = 2b. We use a rectangular coordinate system with

origin O such that the coordinates of the poiAtandB are Proof. Letr be the radius obj,. The center of the circle
(2a,0) and(—2b,0), respectively. For two point8 andQ, with a diamete”A’O or AB, the center 0y and the foot of
(PQ) andP(Q) denote the circle with diamet®Q and the perpendicular from this point t&B form a right triangle.
circle with centelP passing througkp, respectively. How-  Hence by the Pythagorean theorem, we get

ever if their centers lie on the lin&B, we consider them

as semicircles lying in the region> 0 unless otherwise (r+d)?—(r—a)?=((a+b)—r)?—(r—(a—h))%
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Notice that if the foot of perpendicular coincides with the
center of the circle with a diamet&'O or AB, then one

of the triangles degenerates to a segment. But the equatio

still holds. Solving the equation we get= ab/(a’ +b).
Similarly, &, has radiusib/(a-+b’). Therefore the two cir-

cles are congruent if and onlyaf + b=a-+1b'. O

Let a = (AO), B = (BO), and leta’ =a+h, b’ =b+h
with —min(a,b) < h. We relabel’, b/, A, B, &, andESE3 as

an, bn, An, Bn, & andéﬁ, respectively and letip = (ARO)
andpp = (BrO). The configuration consisting of the three
semicirclesay, Bn andy is denoted by(an, Br,y). We call
(an,Bh,y) anarbelos with overhang hand (ap, Bn,Y) is
said to have overharlg The ordinary arbelo&, 3,y) has
overhang 0. The perpendicularAd passing througld is
called the axis, which overlaps with tlyeaxis.

5 ¥
§
W, " Sy

B, B By 0

Figure 2

Ar A A,

Now the circlesd; and éﬁ have the same radiug, =
ab/(a+ b+ h) by Proposition 1. The two circles are a
generalization of the twin circles of Archimedes of the
ordinary arbeloga,f3,y). Circles of radiusrR are said
to be Archimedean circles df,, Bn,y) or Archimedean
with respect tqay, Br,y). Also we say thatap, Br,y) has
Archimedean circles of radiugl. The common radius
of Archimedean circles ofa, 3,y) is denoted bya, i.e.,
ra =ab/(a+Db).

We define A and B; as the points with coordinates
(2ab/bp,0) and (—2ab/ap,0), respectively. Lety have
pointsV andW in common with the semicirclesy, and
Bh respectively in the cade> 0 (see Figure 2). The points
V andW have coordinates

(2ab/bn, f(a,b)/bn) and(—2ab/an, (a,b) /an),
respectively, wherd (a,b) = 2,/abh(a+b+h). There-

fore the pointsA; andB; are the feet of perpendiculars
fromV andW to the lineAB, respectively. By the coordi-
nates oV andW, we get tawyWOB= tan/VOA There-
fore /AWOB= /VOAholds.

The circle touching internally and the segmeAB at the
pointO has radius &4 [11]. The fact is generalized as fol-
lows.

Proposition 2 If h > 0, the radius of the circle touching
internally and the segments OV and O\NZriQ.

20

Proof. Letr and(0,c) be the radius and the coordinates of
the center of the touching circle. Then we get

T )24+c%=(a+b-r)2 (1)

Also by similar triangles, we get

r ab

- =Cos/VOA= | —————. 2
(a+h)(b+h) @)

Eliminating ¢ from (1) and (2), and solving the resulting
equation for with h > 0, we getr = 2rf. O

Letas = (AfO) andBs = (BfO). Archimedean circles of
the ordinary arbelo&x ¢, 3, (A¢B)) have radius

(ab/bp)b  ab h

ab/bh+b  a+b, A

Similarly Archimedean circles of the ordinary arbelos
(a,Bt, (ABt)) have the same radius. Hence we get:

Proposition 3 The ordinary arbeloi(as,B, (A¢B)) and
(a,Bt, (ABt)) share Archimedean circles witla,, Bn, ).

The circle touching the axis at the poi@tfrom the side
opposite to the poinB and also touching the tangent ®f
from the pointA is an Archimedean circle of the ordinary
arbelos(a, B,y), which is denoted b\ in [4]. Hence by
Proposition 3, we get the following proposition. By this
proposition we can construct the pot (alsoBs) evenin
the casé < O (see Figures 7 and 14).

Proposition 4 The point A coincides with the point of in-
tersection of the line AB and the external common tangent
of B and the Archimedean circle ¢, Br,Yy) touching the
axis at the point O from the side opposite to the point B.

Since |AB;| : |ABy| = a: a, holds, we get the following
proposition, which also enable us to construct the points
At andBgs in the casé < 0.

Proposition 5 The point B divides the segment Al the
ratio a: |h| internally or externally, according as & 0 or
h<O0.

3 Several twin circles

In this section we show that several twin circles exist for
(an,Bn,Y), if h> 0. Letus assumle > 0, and let{ be the
circle touching the semicircles externallyay, internally
and the segmem;V from the side opposite to the poiat
(see Figure 3). L&t be the circle touching the semicircles
a externallyan andy internally. Also lete§ be the circle
touchingay, andy externally and the axis from the side op-
posite to the poinB. The cwclessl, 82 ande3 are defined
similarly. The following proposition has a straightforwar
proof that is omitted.
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Proposition 6 If h > 0, the following statements hold.
(i) The circlesf andsﬁ5 have the same radius

11 h 1yt 1yt
a b ab h ~\rl ' h '

(i) The circlese§ andsg have the same radius

L A A
a b h “\ra h '

(iii) The circlese§ andsg have the same radius #b.

and label the images with an overline (see Figure 5). The
x-coordinates of the point&, B, As andBs are b, —2a,

2by, and—2ay, respectively, and the circig = (A¢ Bt) has
center(b —a,0) and radiusa, + b, Let (x5,y5) andrz be

the coordinates of the center of the cirdland its radius.
The circled touchesa and B, which are the perpendicu-
lars toAB passing through the poindsandB, respectively.
Therefore we gets =b—aandrz =a+b. Sinced touches

yr externally and th&-coordinates of their centers are the
same, we get

Y5 =an+bh+r5=2(a+b+h).

The proposition also shows that the sum of the curvaturesSNCeE is the line perpendicular to the lire and passes

of the circlese§ ande§ equals the curvature of the circle
&f.
1

B

Figure 3

4 Bankoff circles

The circle orthogonal to the semicircles 3 and to the
circle touchinga and 3 externally andy internally is an
Archimedean circle ofa,3,y) called the Bankoff triplet
circle, which is denoted bW in [4]. The maximal circle
touching the external common tangentoénd and the
arc ofy cut by the tangentinternally is an Archimedean cir-
cle of (a,B,y) called the Bankoff quadruplet circle, which
is denoted by\, in [4]. In this section we generalize the
two circles (see Figures 4 and 6). Lygt= (A¢Bs).

Theorem 1 The following two circles are Archimedean
with respect tqay, Br,Y), and coincide.

(i) The circle orthogonal to the semicircles 3 and to the
circle touchinga andf3 externally andys internally.

(ii) The circle orthogonal to the semicircles, s and to
the circle touchingxs and 3¢ externally andy internally.

Proof. Let 6 be the circle touching andp externally and
yi internally, and le€ be the circle denoted by (i). We in-
vert the figure in the circle with cent€ and radius 2/ab,

through the point of tangency afands, itis parallel toAB
and passes through the centebofence the distance be-
tweenAB and the farthest point anequals 4b/y; = ZrR.
Therefores is Archimedean with respect toy, B, y). The
part (i) is proved similarly. O

Figure 4

(]

By
By B 0 A
Figure 5

>
>

We call the circle in Theorem 1 the Bankoff triplet circle
of (n, Bn. Y)-

21



KoG-18-2014

H. Okumura: The Arbelos with Overhang

Theorem 2 If E is the external common tangent of the
semicirclesx andfy, or ap andp, then the maximal circle
touching £ and the arc ofy cut by £ (the part ofy be-
tween the two points of intersectionyo&nd £) internally

is Archimedean with respect {on, Bn, Y).

Proof. We prove the cas& being the common tangent of
o andPp. The other case is proved similarly. Letbe the
distance betweeft and the centers of, and letT be the
point of intersection of the line® andAB. If T lies in the
regionx > 0, let|AT| =t. By similar triangles, we get

a/(t+a)=d/(t+a-+b)=bn/(t+2a+by).

Eliminatingt and solving the resulting equations fhrwe
getd = a+b—2rl. Therefores is an Archimedean cir-
cle of (an,Bn,y). The caseT lying in the regionx < 0
is proved similarly. IfE£ and AB are parallel, thera =
b+h=dandrfl =ab/(2a) = b/2. Therefore we also get
d=a+b—2rh. O

op

Bh B o A
Figure 6

5 Miscelaneous Archimedean circles

Proof. Sincelq has coordinate§0,2v/ab), the point di-
viding the segmenAsly in (i) has coordinates

bn-2ab/b, a-2v/anb _ (oh oh an
a+by, ~ a+by AEA D )

This proves (i). The point of intersection pfand Am(O)

has coordinate{ZrR,Z (a— r,'})(b+r,'1)). This proves

(ii).

Figure 7

For a circle or a semicircl®, its center is denoted b@;.
The farthest point o® from AB lying in the regiony > 0
is denoted byfs. If the segment3,Tg and T, Oy intersect
at a pointP, the circle(PTy) is an Archimedean circle of
(a,B,y), which is denoted bWaq in [4]. The fact is gener-
alized (see Figure 8).

Theorem 4 The segments,[Tg, TaTg, and 1,0y intersect
at a point P, which dividesq[Tg and Ty Tg, in the ratios
bn : @ and b: a, internally, respectively. The circi®Ty) is
Archimedean with respect oy, Bp, Y).

Proof. The points dividingTq, Tg in the ratioby : a inter-

In this section we consider miscellaneous Archimedean nally andTGTBh in the ratiob : a, internally have the same

circles of (ap, Bh,y) obtained from points dividing given
segments in the ratia : by or a, : b internally, some of

which seem to be new even for the ordinary arbelos. Let
| be the point of intersection of the axis and the semicir-

cley. The minimal circle touching the axis and passing
through the point of intersection of the semicircleand
the segmenAl is an Archimedean circle @fx, 3,y), which

is denoted by\g in [4]. Also the minimal circle touching

the axis and passing through the point of intersection of

the semicirclesy and A(O) is an Archimedean circle of
(a,B,y), which is denoted bV in [4]. The two facts
are generalized. LeAy and By, be the midpoints of the
segment®A, andBB;, respectively (see Figure 7).

Theorem 3 (i) If |4 is the point of intersection of the axis
and the semicircléA,B), then the point dividing the seg-
ment Alq in the ratio a: by, internally lies on the semicircle
a and its distance from the axis 2s5.

coordinatega— b,a-+b— 2rR). O

Ty

B, B
Figure 8
In the theorem, the endpoints of the diamete(R¥,) par-

allel to AB divide the segment§, Ty andT,Tg in the ratios
a: b andb: ay internally, respectively.

Theorem5 Let Ty, and T; be the reflected images of the

(i) The distance between the axis and the point of inter- points §, and T in the line AB, respectively. The follow-

section of the semicircles,#0) andy is ZrR.

22
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(i) Let C be the internal center of similitude of the semi- Leta(z) andB(z) be the semicircles constructed in the re-

circlesy and ap. If D is the point of intersection of the
lines CT, and AT, then D divides AJ in the ratio b: ay
internally and the circle touchingt or AB at the point

giony > 0 touching the axis at the poif@t and having the
centers with coordinatgga 0) and(—zh,0), respectively
for a real number!. Let C(m,n) be the circle touching the

A and passing through D is Archimedean with respect to semicirclesy internally ando(m) andp(n) at points differ-

(0th, Bn, Y)-
(i) The segmentsAg, ATg, and T, O intersect at a point

H, which divides ATg in the ratio a: by internally AT,
and T,0 in the ratio g, : b internally, respectively. The cir-
cle touchingx or AB at the point O and passing through H
is Archimedean with respect {on, Bn, Y).

(iii) If E is the point of intersection of the segmen&gl‘p
and OT, then E divides (;I;Ty and Of intheratioa, : b
internally and the circle touching or the line QT4 at
the point | and passing through E is Archimedean with

respect ta(op, Bn, Y).

Proof. The pointC has coordinate$2aayn/(2a+ by,),0)
(see Figure 9). If we regarfl as a circle, therC coin-
cides with the internal center of similitude @fand the
Archimedean circle ofay, B,y) touchinga at the point
Ainternally. HenceD has coordinatea—rfi,r). This
proves (i). The points dividing Tg in the ratioa: by in-
ternally, ATz, and Ty O in the ratioa, : b internally have
the same coordinatés, rl). This proves (ii). The points
dividing OTy and ToﬁhTy in the ratioay, : b internally have
the same coordinatéa —r,a—rf). This proves (ii). 0

Figure 9

The circle touchingdB at O and passing through in (ii)
is the Bankoff triplet circle of ap, Bh, Y).

6 Archimedean circlestouchingy

ent fromO such that the points of tangency atm), yand
B(n) lie counterclockwise in this order for real numbens
andn. The radius ofC(m,n) is expressed as follows [12,
Theorem 1]:

ab(ma+ nb)

mé&? + nb? + mnab (3)

Let ap(z) andBnh(z) be the semicircles constructed in the
regiony > 0 touching the axis at the poi@ and having
the centers with coordinaté¢sa,,0) and(—zh,, 0), respec-
tively for a real number. Let Gy(m, n) be the circle touch-
ing the semicircles internally andan(m) and pr(n) at
points different fromO such that the points of tangency
on ap(m), y andBr(n) lie counterclockwise in this order
for real numbersn andn.

Theorem 6 The circleGiy(m,n) has radius

ab(ma, + nbxy)
maa, + nbh, + mnab,”

(4)

Proof. Notice thatan(m) = a(ma,/a) and Br(n) =
B(nby/b). Replacingnandn by ma,/a andnby /b respec-
tively in (3), we get (4). O

Theorem 7 The circle Gh(m,n) is Archimedean with re-
spect to(an, B, y) if and only if

1 1
= 1. (5)
Proof. The theorem follows from Theorem 6, because
ab(ma, + nby) .
maa, + nbb, +mnab, A
(Mm-+n—mn)asbnr -
maa, + nbh, + mnaby,

Corollary 1 The following circles are Archimedean with
respect ta(ap, Bn,Y)-

(i) The circle touching the semicircles,®) and B,(O)
externally andy internally.

(iiy The circle touchingy internally and the two distinct
circles of radius a + by touching the axis at the point O
externally.

Proof. The part (i) follows from the fachAn(O) = ap(2)

In [12], we gave necessary and sufficient conditions that aandBy,(O) = Bn(2) (see Figure 10). The part (ii) follows

circle touching the semicirciginternally is Archimedean
with respect tqa, 3,y). In this section we generalize this.

1The notations are slightly changed from [12]

from the fact thatn = (an + bn)/an andn = (ap + bn)/bn
satisfy (5). O
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The circle described in (i) is a generalization of Schoch 7 Wo00's Archimedean circles

circle of the ordinary arbelos which is denoted\Wys in
[4]. The circle described in (ii) is a generalization of the
Archimedean circle of the ordinary arbelos in [10].

Letyh = (AnBp). If m> 0 (resp.m < 0), letPgy, (m) be the
external (resp. internal) center of similitude of the seémic
clesan(m) andy,. Similarly the pointPg, (m) is defined.

Theorem 8 The points R, (m) and B (n) coincide if and
only if (5) holds.

Proof. The semicirclesin(m) andy, have radiima, and
an + br and centers withx-coordinatesna, and ay, — by,
respectively. HencBqy, (m) hasx-coordinate

(@8 +bn)man —man(an—bn)  2mayby
—Ma, + (& + bn) an+bn—ma,’
Similarly Pg, (n) hasx-coordinate
(a8 +bn)(=Nnbn) —nbh(an—bn) _ —2nanbn
—nbn+ (an+ bn) an+bn—nby’
While
2manby, B —2nanby,
an+by—ma, a,+by—nby
~ 2(m+n—mn)(an-+ bp)anby
(@n +bn —may) (an +bn —nby)
Therefore the proof is complete. O

Corollary 2 The circle Gy(m,n) is Archimedean with re-
spect to(ap,Bn,y) if and only if the points g, (m) and
Pg, (n) coincide.

B, (0) = By(2) (2) =A,(0)
oy =Ap

B, B @] A
Figure 10om=n=2

Ay

If the external common tangents frgmto bothay,(m) and
Bn(n) exist, then the circlet,(m,n) is Archimedean with
respect to(an, Bn,y) if and only if the two tangents coin-
cide (see Figure 10).

24

We assumea # b in this section. Peter Woo found that the
circle touchingo(z) andp(z) externally with center on the
linex= (b—a)ra/(b+a) is Archimedean with respect to
(a,B,y) for a non-negative real numbeif4]. The line is
called the Schoch line @fx, B,y). The fact was generalized
for a real number > —ra/(a+b) in [12]. We generalize
this.

A circle is said to touchun(z) appropriately if it touches
on(z) externally in the case > 0 and it touches the re-
flected image oty (2) in the lineABinternally in the case
z< 0. The same notion of appropriate tangency applies to
Bn(z). Lets, = (bnh—an)rk/(bn+an). We call the line
X = &, the Schoch line ofap, B, Y)-

5 Schoch line of (o, Br,Y)
h

Op

Figure 11:z< 0

Theorem 9 Let & be the circle touchingiy(z) and Bn(2)
appropriately and having its center on the Schoch line of
(an,Bn,y) for a real number z£ 0. The following state-
ments hold.

(i) The circled is Archimedean with respect toi, B, Y).

(ii) The circled exists if and only if-anbn/(an + bn)? <
z<0Qor0<z.

Proof. If r is the radius ob andl is they-coordinate of its
center (see Figure 11), then we get

(zan+1)? = (S —2z&)? = (2bn + 1) — (s +2l0)* =12, (6)

Solving the equation for, we getr = sy(bn + apn) /(b —
an) = rR. This proves (i). From (6) we also get

2 _  4anbnsh(sh+ (bh—an)2)
(an—bn)?
 4a2bd(anbn + (an+bn)?%2)
B (@ + bn)?
Thereford satisfying (6) is real if and only if-anbn/(an+
bn)? < z< 0 or 0< z This proves (ii). O
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Notice that the circl® in Theorem 9 is not uniquely de-
termined ifa = b. We get an infinite set of Archimedean
circles of (an,Bh,y), whose centers lie on the line=

S, by the theorem. However the Archimedean circle of
(ath, Bn,Y) With center(sn, 2anbny/anbn/ (an + bn)?) is not

a member of this set. In fact, there are infinitely many
circles passing throug® with center on this line. But it

seems to be natural to consider this circle as a member ofarbeloi coincide. The rest of (iii) is obvious.

this set.

8 Dilation

In [8], we have shown that if is a dilation with cente®,
the circle touching the semicircl¢A°O) externally(AB°)
internally and the axis from the side opposite to the pBint
is an Archimedean circle df, 8,y), whereA° andB° are
the images oA andB by o, respectively. In this section
we generalize this fact.

Bn

Oy

B° B} 0
Figure 12t =2/3

ATA A,

Theorem 10 Let o and 1 be the dilations with center O
and A with the same ratio of magnification t, respectively.
Then the following statements are true.

() The circle touching the semicirclgg\yO) externally
(AB?) internally and the axis from the side opposite to the
point B is Archimedean with respect tap, Bn, ).

(ii) Ift > a/(a+by), then((AfO), (BfO), (AB°)) is an ar-
belos with overhang {a— a, and has Archimedean circles
of radius .

(iii) Ift = a/ap, then((A7O), (B},0), (AB)) coincides with
(a,Bt, (ABs)), and the points Band B’ also coincide with
the point B.

Proof. Let r be the radius of the touching circle in (i) (see
Figure 12). Then we get

(tan+1)%— (tan—r)? = (bt+a—r)%— ((—bt+a) —r)2

Solving the equation, we get= rR. This proves (i). It >
a/(a+bp), then|AB]| = 2t(a+ by) > 2a = |AQ|. Hence
the pointBj, lies on the half line with endpoir® passing
throughB. While |A7O| — |AQ| = 2(ta, — a) and|B{,0| —
|B°O| = 2t(a+ bn) — 2(tb — a) = 2(tan — a). Hence the
configuration ((A7O), (BfO), (AB?)) is an arbelos with

overhangan —a. The rest of (ii) follows from (i). Ift =
a/ap, the pointsA andAy coincide, i.e.{AfO) = a. While
a/an>a/(an+b)=a/(a+hbn) holds. Therefore we getan
ordinary arbeloga, (BfO), (AB?)), whose Archimedean
circles have radius} by (i). While (a,Bt,(AB)) is
also an ordinary arbelos having Archimedean circles of the
same radius by Proposition 3. Therefore the two ordinary
O

9 New type of Archimedean circles

Quang Tuan Bui has found a pair of new type of
Archimedean circles such that the endpoints of the diam-
eter parallel to the linéB lie on a given circle [1], which
has been rediscovered by us [6]. One of the circles is ob-
tained as follows: If the lind, Oy intersects the semicircle

y at a pointS and the linesSAandSOintersect the semi-
circle a at pointsT andU respectively, the circléTU) is
Archimedean with respect @, 3,y). The fact is general-
ized (see Figures 13 and 14). Notice that rR >0 and
a—rf >0.

S
(4,B)
B h
a
U T
B, B By Oﬁh o O(x;,A_/‘ A Ay
Figure 13

Theorem 11 (i) Let S be the point of intersection of the
semicircle(A,B) and the the line g, Oq,,. If T is the point
dividing the segment SAn the ratio (h+rf) : (a—rR)
internally and U is the point of intersection of the line SO
and the semicircle, then T lies orax and the line TU is
parallel to AB and the circl§TU) is Archimedean with
respect ta(ap, Bh, ).

(i) Let S be the point of intersection of the semicifé&,)
and the line §O4. If the line SO intersects the semicircle
ot ata pointU and the line parallel to AB passing through
U intersectxn ¢ at a point T again, then the circleTU) is
Archimedean with respect o, Bh, Y).

Proof. The pointSin (i) has coordinatesan,g(a,b)),
where g(a,b) = y/an(an+2b). Hence the pointsT
andU have coordinatega + ri,g(a,b)rf /b) and (a—
rk,g(a,b)rfl /b), respectively. This proves (i). The point
U in (i) hasx-coordinateab/bp — rR. This proves (ii). O
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Proof. Let K be the point in (i) lying oo, and Tg, Og; -
Then|KOq, |2 = a2 — (an — ab/bn)2. ThereforeglKO,|? —
(a+b)2 = |OyOq; |>+|KOq, |2 — (a+b)% = (ab/bn — (a—
b))? + a2 — (an — ab/bp)? — (a+ b)? = —2ab. Therefore
K generates Archimedean circles @,f,y) with y by
Lemma 1. The part (ii) follows from the fact that the
powers of the poin® with respect tqAGg), (AnOg, ) and
(BnOq, ) are the same. O

Figure 14
Notice thatth+rf) : (a—rf) =b:aif h=0.

B(I)

10 Power type Archimedean circles

From now on we consider all the semicircles with centers
on the lineAB as circles. If two congruent circles of radius

r touching at a poinD also touch a given circl@ at points
different fromD, we say thaD generates circles of radius

r with , and the two circles are said to be generate®by
with 8. If the two generated circles are Archimedean with
respect tdan, Bh,Y), we say thab generates Archimedean
circles of(ap, B, y) with d. )
Frank Power has found that the poifi, generates Figure 16

Archimedean circles ofa,f3,y) with the circley [13]. . . . . .
. . Recall that is the point of intersection of the axis and the
Quang Tuan Bui has found that the circlésOy), (BOu) circleylying in the regiory > 0. Quang Tuan Bui has also

and the axis bel_ong 0 _the same intersecting penc_zll of cir- found that the points of intersection of the circ{@©) and
cles and the points of intersection generate Archimedean : ; . :
B(1) generate Archimedean circles(af, B, y) with the cir-

circles of(a, B,y) with y [3]. We generalize the two facts. y [2]. LetJ be the point of intersection of the circle

The following lemmais needed [7], B(I) and the lineAB lying in the regionx > 0. If a< b,
Lemma 1 For a circle 3 of radius r, a point D generates  we can choosh so that 4y, < |OJ| holds. Then the circles
circles of radiusg|DOs|? — r?|/(2r) with &. An(O) andB(1) have no points in common. L&t be the

) . ) perpendicular to the linAB from the center of the circle
The parts (i) and (ii) of the next theorem are generaliza- xa

' ’ - n- Quang Tuan Bui’s result is generalized as follows.
tions of Power’s result and Bui’s result, respectively (see

Figure 15). Theorem 13 (i) The circles A(O), B(I) and the line%xg
belong to the same pencil of circles. If the pencil is inter-
secting, the points of intersection generate Archimedean
circles of(ap, Br,y) with each of the circleg anda,.

(i) The circles A(O), Bn(l) and the lineXy belong to the
same intersecting pencil of circles, and the points of inter
section generate Archimedean circles(aff3,y) with the
circley.

Proof. The circlesA,(O) andB(l) are expressed by the
. equations
Figure 15

2 2
Theorem 12 (i) If the circleay and the line §; Oy, have a (x—2an) +y2 = 43 (7)
point in common, the point generates Archimedean circles and
of (a,B,y) with y.
(ii) The circles(AGg), (BOq), (AnOg; ), (BnOq;) and the (X+2b)? +y? = 4b? + 4ab, (8)
axis belong to the same intersecting pencil of circles, and
the points of intersection generate Archimedean circles of respectively (see Figure 16). Subtracting (8) from (7) and
(a,B,y) withy. rearranging, we get = rk. ThereforeA,(O), B(l) and

26



KoG-18-2014 H. Okumura: The Arbelos with Overhang

% belong to the same pencil of circles. Let us assume [4] C. W. DODGE, T. SCHOCH, P. Y. Woo, P. Yiu,

that the pencil is intersecting and is one of the points Those ubiquitous Archimedean circlédath. Mag.
of intersection. Letr be the foot of the perpendicular 72 (1999), 202-213.

from K to AB. Then |KF|2 = 4al — (rh —2a,)?. Then o _
|KOy|2 (a+ b)? ( —(a—b))?+ |KF[2— (a+b)2 = [5] H. OKUMURA, Lamoenian circles of the collinear ar-
—2(a+b)rf. ThereforeK generates Archimedean circles belos,KoG 17 (2013), 9-13.

of (an,Pn,y) with y by Lemma 1. The rest of (i) follows
from |[KOq, |> — a2 = (rfl —an)?+ |KF|?—a2 = 2a,rf}. We
prove (ii). The circlesAn(O) andB(l) are expressed by

[6] H. OKUMURA, Archimedean twin circles in the ar-
belos,Math. Gaz97 (2013), 512.

the equations [7] H. OKuMURA, Archimedean circles of the collinear
arbelos and the skewed arbeldsGeom. Graphl7

(x—(2a+h))?+y? = (2a+h)? (9) (2013), 31-52.

and [8] H. OKUMURA, Dilations and the arbeloblormat60

(X+2b+h)?+y? = (2b+h)?+ 4ab, (10) (2012), 4-8.

ThereforeAn(0), By(l) and % belong to the same pen- the collinear arbelokoG 16 (2012), 17-20.

cil. Substitutingx = rR in (9), and usinga+ h> 0, we get
y?=(2a+h)2—(r} — (2a+h))?=rf(2(2a+h) —rR) >
rh (2a—rf) > 0. ThereforeAn(O) and Ky intersect. The
rest of (ii) can be proved similarly as the proof of (i).

[10] H. OKUMURA, M. WATANABE, Remarks on Woo'’s
Archimedean circlesForum Geomz7 (2007), 125-
128.

Let K be one of the points of intersection in (ii), and let [11] H. OkUMURA, M. WATANABE, The twin circles of
F be the foot of the perpendicular frok to AB. Then Archimedes in a skewed arbe'ogorum Geom4
KF[Z=r3(2 (2a+h)—fA) TherefOfGH@yI2 (@+b)*= (2004), 229-251.

(

rh —(a—b))?+|KF2— (a+b)2 = —2ab. This proves

(ii). O [12] H. OKUMURA, M. WATANABE, The Archimedean
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