Original scientific paper Accepted 7. 11. 2013.

HIROSHI OKUMURA

Lamoenian Circles of the Collinear Arbelos

Lamoenian Circles of the Collinear Arbelos

We give an infinite sets of circles which generate Archimedean circles of a collinear arbelos.

Key words: arbelos, collinear arbelos, radical circle, Lamoenian circle

MSC2010: 51M04, 51M15, 51N20

Lamoenove kružnice kolinearnog arbelosa SAŽETAK

Pokazujemo beskonačne skupove kružnica koje generiraju Arhimedove kružnice kolinearnog arbelosa.

Ključne riječi: arbelos, kolinearni arbelos, potencijalna kružnica, Lamoenova kružnica

1 Introduction

For a point *O* on the segment *AB*, let α , β and γ be circles with diameters *AO*, *BO* and *AB* respectively. Each of the areas surrounded by the three circles is called an arbelos. The radical axis of the circles α and β divides each of the arbeloi into two curvilinear triangles with congruent incircles (see the lower part of Figure 1). Circles congruent to those circles are said to be Archimedean.

Figure 1: A circle generating Archimedean circles with γ

For a point *T* and a circle δ , if two congruent circles of radius *r* touching at *T* also touch δ at points different from *T*, we say *T* generates circles of radius *r* with δ , and the two circles are said to be generated by *T* with δ . If the

generated circles are Archimedean, we say *T* generates Archimedean circles with δ . Frank Power seems to be the earliest discoverer of this kind Archimedean circles: The farthest points on α and β from *AB* generate Archimedean circles with γ [6].

Let *I* be one of the points of intersection of γ and the radical axis of α and β . Floor van Lamoen has found that the endpoints of the diameter of the circle with diameter *IO* perpendicular to the line joining the centers of this circle and γ generate Archimedean circles with γ [2] (see the upper part of Figure 1). We say a circle *C* generates circles of radius *r* with δ , if the endpoints of a diameter of *C* generate circles with γ are said to be Lamoenian. In this article we consider those circles in a general way.

2 The collinear arbelos

In this section we consider a generalized arbelos. For two points *P* and *Q* in the plane, (*PQ*) and *P*(*Q*) denote the circle with diameter *PQ* and the circle with center *P* passing through *Q* respectively. For a circle δ , O_{δ} denotes its center. For two points *P* and *Q* on the line *AB*, let $\alpha = (AP)$, $\beta = (BQ)$ and $\gamma = (AB)$. Let *O* be the point of intersection of *AB* and the radical axis of the circles α and β and let u = |AB|, s = |AQ|/2 and t = |BP|/2. Unless otherwise stated, we use a rectangular coordinate system with origin *O* such that the points *A*, *B* and *P* have coordinates (*a*,0), (*b*,0) and (*p*,0) respectively with a - b = u. The configuration (α , β , γ) is called a collinear arbelos if the four points lie in the order (i) *B*, *Q*, *P*, *A* or (ii) *B*, *P*, *Q*, *A*, or (iii) *P*, *B*, *A*, *Q*. In each of the cases the configurations are explicitly denoted by (*BQPA*), (*BPQA*) and (*PBAQ*) respectively. In the case P = Q = O, (α, β, γ) gives an ordinary arbelos, and (α, β, γ) is called a tangent arbelos. Archimedean circles of the ordinary arbelos are generalized to the collinear arbelos (α, β, γ) as circles of radius *st*/(*s*+*t*), which we denote by *r*_A [3]. Circles of radius *r*_A are also called Archimedean circles of (α, β, γ). The radius is also expressed by

$$r_{\rm A} = \frac{|AO||BP|}{2u} = \frac{a|p-b|}{2u}.$$
 (1)

3 Lamoenian circles of the collinear arbelos

A circle generating circles of radius r_A with γ is also said to be Lamoenian for the collinear arbelos (α , β , γ). In this section we give a condition that a circle is Lamoenian. For a circle δ of radius *r* and a point *T*, let us define

$$\mathbf{r}(T,\mathbf{\delta}) = \frac{|r^2 - |TO_{\mathbf{\delta}}|^2|}{2r}$$

which equals the radius of the generated circles by T with δ by the Pythagorean theorem.

Theorem 1 Let δ be a circle of radius r and let J, H be points with J lying on δ . The circle (HJ) generates circles of radius s with δ if and only if

$$|HO_{\delta}|^2 = r(r \pm 4s). \tag{2}$$

In this event, the following statements are true.

(i) If a points K lies on the circle $O_{\delta}(H)$, the circle (KJ) generates circles of radius s with δ .

(ii) The point $O_{(HJ)}$ lies on the circle of radius r/2 with center $O_{(HO_{\delta})}$.

Proof. Let $h = |HO_{\delta}|$ (see Figure 2). We use a rectangular coordinate system with origin O_{δ} such that the coordinates of *H* is (h,0) in this proof. Let (f,g) be the coordinates of the point $O_{(HJ)}$, and let *T* be one of the endpoints of the diameter of (HJ) perpendicular to $O_{\delta}O_{(HJ)}$. Then $\overrightarrow{O_{(HJ)}T} = k(-g,f)$ and $\overrightarrow{O_{\delta}T} = (f-kg,g+kf)$ for a real number *k*. From $|O_{(HJ)}T| = |O_{(HJ)}H|$, $(-kg)^2 + (kf)^2 = (f-h)^2 + g^2$, which implies

$$k^{2} = \frac{(f-h)^{2} + g^{2}}{f^{2} + g^{2}}.$$
(3)

The circle (HJ) generates circles of radius *s* with δ if and only if

$$\mathbf{r}(T,\mathbf{\delta}) = \frac{|r^2 - ((f - kg)^2 + (g + kf)^2)|}{2r} = s.$$

Since (3) holds, the last equation is equivalent to

$$\frac{1}{4}h^2 + \left(f - \frac{h}{2}\right)^2 + g^2 = \frac{1}{2}r(r \pm 2s)$$

where the plus (resp. minus) sigh should be taken when *T* lies outside (resp. inside) of δ . If (v, w) are the coordinates of the point *J*, (v+h)/2 = f and w/2 = g. Therefore the last equation is equivalent to

$$\frac{1}{4}h^2 + \frac{1}{4}r^2 = \frac{1}{2}r(r\pm 2s),$$

which is also equivalent to (2). The part (i) obviously holds. The center of (HJ) is the image of *J* by the dilation with center *H* and scale factor 1/2. This proves (ii).

Let ε be the circle with center O_{γ} belonging to the pencil of circles determined by α and β for the collinear arbelos (α, β, γ) . We call ε the radical circle of (α, β, γ) . The circle is considered in [4] and [5] for (BQPA) and (BPQA). If α and β have a point in common, ε passes through the point. For (BQPA) let *V* be the point of tangency of one of the tangents of α from *O* (see Figure 3). Then $|OV|^2 = ap$. If $|OO_{\gamma}|^2 > ap$, a tangent from O_{γ} to the circle O(V) can be drawn. Then ε passes through the point of tangency. If $|OO_{\gamma}|^2 = ap$, ε is the point circle O_{γ} , which coincides with one of the limiting points of the pencil. If $|OO_{\gamma}|^2 < |ap|$, ε does not exist. Let *e* be the radius of ε . For (BQPA), $e^2 = |OO_{\gamma}|^2 - ap$ by the Pythagorean theorem. For (BPQA) and (PBAQ), $e^2 = |OO_{\gamma}|^2 + |ap|$ (see Figure 4). In any case

$$e^2 = |OO_{\gamma}|^2 - ap. \tag{4}$$

Figure 3: The case $|O_{\gamma}O|^2 > |ap|$ for (BQPA)

Figure 4: (PBAQ)

Theorem 2 For a collinear arbelos (α, β, γ) with radical circle ε , if points J and H lie on γ and ε respectively, then the circle (HJ) is Lamoenian.

Proof. For (BPQA) and (BQPA), $r_A = a(p-b)/(2u)$ by (1). Therefore by (4),

$$\frac{u}{2}\left(\frac{u}{2}-4r_{\rm A}\right)=\frac{(a-b)^2}{4}-a(p-b)=\frac{(a+b)^2}{4}-ap=e^2.$$

Similarly for (PBAQ), we get

$$\frac{u}{2}\left(\frac{u}{2}+4r_{\rm A}\right)=e^2.$$

Hence the theorem is proved by Theorem 1.

4 Quartet of circles

In this section we show that a Lamoenian circle given by Theorem 2 is a member of a set of four Lamoenian circles. All the suffixes are reduced modulo 4 in this section. Let J_0 be a point on a circle δ , and let H be a point which does not lie on δ (see Figures 5, 6). Let R_0R_1 be the diameter of the circle (HJ_0) perpendicular to the line $O_{\delta}O_{(HJ_0)}$ and let R_0 and R_1 generate circles of radius s with δ . Let J_1 be the point of intersection of the line J_0R_1 and δ , and let R_2 be the point such that $HR_1J_1R_2$ is a rectangle. Then the circle (HJ_1) also generates circles of radius s with δ by Theorem 1. While R_1 generates circles of radius *s* with δ . Therefore R_2 also generates circles of radius s with δ . Similarly we construct the points J_2 and J_3 on δ and the points R_3 and R_4 such that J_2 and J_3 lie on the lines J_1R_2 and J_2R_3 respectively and $HR_2J_2R_3$ and $HR_3J_3R_4$ are rectangles. Then R_3 generates circles of radius *s* with δ and R_4 coincides with R_0 . Now we get the points J_i on δ and R_i (i = 0, 1, 2, 3)such that $R_i R_{i+1}$ is the diameter of (HJ_i) , R_i generates circles of radius s with δ , $J_0J_1J_2J_3$ is a rectangle, R_i lies on the line $J_i J_{i-1}$. The four circles (HJ_i) (i = 0, 1, 2, 3) are called a quartet on δ , and H and $J_0J_1J_2J_3$ are called the base point and the rectangle of the quartet respectively.

Figure 5: *H lies inside of* δ

Figure 6: *H lies outside of* δ

By the definition of R_i , R_0 , R_2 , H are collinear, also R_1 , R_3 , H are collinear, and the two lines are perpendicular. Let $l_i = |HR_i|$. Then $|HJ_0|^2 + |HJ_2|^2 = l_0^2 + l_1^2 + l_2^2 + l_3^2 = |HJ_1|^2 + |HJ_3|^2$. Therefore $|HJ_0|^2 + |HJ_2|^2 = |HJ_1|^2 + |HJ_3|^2$ holds.

Figure 7: A quartet of Lamoenian circles on ε for (PBAQ)

For a collinear arbelos (α, β, γ) with radical circle ε , if the two points *H* and *J*₀ lie on ε and γ respectively, we can construct a quartet (HJ_i) (i = 0, 1, 2, 3) on γ consisting of Lamoenian circles by Theorem 2. Also if *H* and *J*₀ lie on γ and ε respectively, we can construct a quartet (HJ_i) (i = 0, 1, 2, 3) on ε consisting of Lamoenian circles (see Figure 7).

Theorem 3 For a quartet (HJ_i) (i = 0, 1, 2, 3) on a circle δ , the rectangle is a square if and only if (HJ_i) touches δ for some *i*. In this event, (HJ_{i+2}) also touches δ , and (HJ_{i-1}) and (HJ_{i+1}) are congruent and intersect at O_{δ} .

Proof: If (HJ_0) touches δ , $R_0J_0R_1$ is an isosceles right triangle, since $|O_{\delta}R_0| = |O_{\delta}R_1|$. This implies that $J_3J_0J_1$ is also an isosceles right triangle, i.e., $J_0J_1J_2J_3$ is a square. Conversely let us assume $J_0J_1J_2J_3$ is a square. We assume that (HJ_i) does not touch δ for i = 0, 1, 2, 3. The sides or the extended sides of the square and the circle $O_{\delta}(R_0)$ intersect at eight points, four of which are R_0, R_1 , R_2 , R_3 . If $|J_iR_i| = |J_iR_{i+1}|$, (HJ_i) touches δ . Therefore $|J_iR_i| \neq |J_iR_{i+1}|$ for i = 0, 1, 2, 3. This can happen only when R_1 , R_2 , R_3 , R_4 lie inside of δ (see Figures 8 and 9). Hence $|J_0R_0| = |J_1R_1| = |J_2R_2| = |J_3R_3| \neq |J_0R_1| =$ $|J_1R_2| = |J_2R_3| = |J_3R_0|$. Therefore the four rectangles $HR_iJ_iR_{i+1}$ (*i* = 0, 1, 2, 3) are congruent. Then they must be squares, since H is their common vertex. But this implies $|J_iR_i| = |J_iR_{i+1}|$, a contradiction. Hence (HJ_i) touches δ for some *i*. Then *H* lies on $J_i J_{i+2}$. Therefore (HJ_{i+2}) also touches δ . While $J_{i-1}J_{i+1}$ and HO_{δ} are perpendicular and intersect at O_{δ} . Therefore (HJ_{i-1}) and (HJ_{i+1}) are congruent and pass through O_{δ} .

Figure 8

5 Special cases

We conclude this article by considering the tangent arbelos (α, β, γ) with O = P = Q. Since $\varepsilon = O_{\gamma}(O)$, Power's result mentioned in the introduction is restated as both α and β are Lamoenian. Figure 10 shows a quartet on γ with base point *O* with $J_0 = A$, in which α and β are members of the quartet. Figure 11 shows a quartet on ε with base point *A* with $J_0 = O$. In this figure α and the reflected image of β in O_{γ} are members of the quartet. In each of the cases, the rectangle is a square.

Figure 10: A quartet on γ with base point O

Figure 11: A quartet on ε with base point A

Let \mathcal{L} be the radical axis of α and β . Quang Tuan Bui has found that the points of intersection of the circles (AO_{β}) and (BO_{α}) lie on \mathcal{L} and generate Archimedean circles with γ for the tangent arbelos (α, β, γ) [1]. Let R_1 be one of the points of intersection, and let the line parallel to *AB* passing through R_1 intersect γ at a point *K*, where *K* lies on

Figure 12: A quartet on γ with base point O

References

- Q. T. BUI, The arbelos and nine-point circles, *Forum Geom.* 7 (2007), 115–120.
- [2] F. VAN LAMOEN, Some Powerian pairs in the arbelos, *Forum Geom.* 7 (2007), 111-113.
- [3] H. OKUMURA, Ubiquitous Archimedean circles of the collinear arbelos, *KoG* **16** (2012), 17–20.
- [4] H. OKUMURA AND M. WATANABE, Generalized arbelos in aliquot part: non-intersecting case, J. Geom. Graph. 13 (2009), No.1, 41–57.

the same side of \mathcal{L} as A. Figure 12 shows a quartet on γ with base point O with $J_0 = K$. In this figure R_0 and R_2 lie on AB while R_3 lies on \mathcal{L} . Figure 13 shows a quartet on ε with base point K with $J_0 = O$. In this figure, R_1J_0 touches ε at O. Therefore $J_1 = J_0 = O$, i.e., the rectangle degenerates into a segment, and the quartet consists of two different Lamoenian circles.

Figure 13: A quartet on ε with base point K

- [5] H. OKUMURA AND M. WATANABE, Generalized arbelos in aliquot part: intersecting case, J. Geom. Graph. 12 (2008), No.1, 53–62.
- [6] F. POWER, Some more Archimedean circles in the Arbelos, *Forum Geom.* **5** (2005), 133–134.

Hiroshi Okumura

e-mail: hiroshiokmr@gmail.com

251 Moo 15 Ban Kesorn Tambol Sila Amphur Muang Khonkaen 40000, Thailand