Lamoenian Circles of the Collinear Arbelos

Lamoenian Circles of the Collinear Arbelos

ABSTRACT
We give an infinite sets of circles which generate Archimedean circles of a collinear arbelos.

Key words: arbelos, collinear arbelos, radical circle, Lamoenian circle

MSC2010: 51M04, 51M15, 51N20

1 Introduction

For a point O on the segment $A B$, let α, β and γ be circles with diameters $A O, B O$ and $A B$ respectively. Each of the areas surrounded by the three circles is called an arbelos. The radical axis of the circles α and β divides each of the arbeloi into two curvilinear triangles with congruent incircles (see the lower part of Figure 1). Circles congruent to those circles are said to be Archimedean.

Figure 1: A circle generating Archimedean circles with γ

For a point T and a circle δ, if two congruent circles of radius r touching at T also touch δ at points different from T, we say T generates circles of radius r with δ, and the two circles are said to be generated by T with δ. If the

Lamoenove kružnice kolinearnog arbelosa SAŽETAK
 Pokazujemo beskonačne skupove kružnica koje generiraju Arhimedove kružnice kolinearnog arbelosa.

Ključne riječi: arbelos, kolinearni arbelos, potencijalna kružnica, Lamoenova kružnica
generated circles are Archimedean, we say T generates Archimedean circles with δ. Frank Power seems to be the earliest discoverer of this kind Archimedean circles: The farthest points on α and β from $A B$ generate Archimedean circles with $\gamma[6]$.
Let I be one of the points of intersection of γ and the radical axis of α and β. Floor van Lamoen has found that the endpoints of the diameter of the circle with diameter $I O$ perpendicular to the line joining the centers of this circle and γ generate Archimedean circles with γ [2] (see the upper part of Figure 1). We say a circle \mathcal{C} generates circles of radius r with δ, if the endpoints of a diameter of \mathcal{C} generate circles of radius r with δ. Circles generating Archimedean circles with γ are said to be Lamoenian. In this article we consider those circles in a general way.

2 The collinear arbelos

In this section we consider a generalized arbelos. For two points P and Q in the plane, $(P Q)$ and $P(Q)$ denote the circle with diameter $P Q$ and the circle with center P passing through Q respectively. For a circle δ, O_{δ} denotes its center. For two points P and Q on the line $A B$, let $\alpha=(A P)$, $\beta=(B Q)$ and $\gamma=(A B)$. Let O be the point of intersection of $A B$ and the radical axis of the circles α and β and let $u=|A B|, s=|A Q| / 2$ and $t=|B P| / 2$. Unless otherwise stated, we use a rectangular coordinate system with origin O such that the points A, B and P have coordinates $(a, 0)$, $(b, 0)$ and $(p, 0)$ respectively with $a-b=u$. The configuration (α, β, γ) is called a collinear arbelos if the four points
lie in the order (i) B, Q, P, A or (ii) B, P, Q, A, or (iii) P, B, A, Q. In each of the cases the configurations are explicitly denoted by (BQPA), (BPQA) and (PBAQ) respectively. In the case $P=Q=O,(\alpha, \beta, \gamma)$ gives an ordinary arbelos, and (α, β, γ) is called a tangent arbelos. Archimedean circles of the ordinary arbelos are generalized to the collinear arbelos (α, β, γ) as circles of radius $s t /(s+t)$, which we denote by r_{A} [3]. Circles of radius r_{A} are also called Archimedean circles of (α, β, γ). The radius is also expressed by
$r_{\mathrm{A}}=\frac{|A O||B P|}{2 u}=\frac{a|p-b|}{2 u}$.

3 Lamoenian circles of the collinear arbelos

A circle generating circles of radius r_{A} with γ is also said to be Lamoenian for the collinear arbelos (α, β, γ). In this section we give a condition that a circle is Lamoenian. For a circle δ of radius r and a point T, let us define

$$
\mathrm{r}(T, \delta)=\frac{\left|r^{2}-\left|T O_{\delta}\right|^{2}\right|}{2 r}
$$

which equals the radius of the generated circles by T with δ by the Pythagorean theorem.

Theorem 1 Let δ be a circle of radius r and let J, H be points with J lying on δ. The circle (HJ) generates circles of radius s with δ if and only if
$\left|H O_{\delta}\right|^{2}=r(r \pm 4 s)$.
In this event, the following statements are true.
(i) If a points K lies on the circle $O_{\delta}(H)$, the circle $(K J)$ generates circles of radius s with δ.
(ii) The point $O_{(H J)}$ lies on the circle of radius $r / 2$ with center $O_{\left(H O_{\delta}\right)}$.

Proof. Let $h=\left|H O_{\delta}\right|$ (see Figure 2). We use a rectangular coordinate system with origin O_{δ} such that the coordinates of H is $(h, 0)$ in this proof. Let (f, g) be the coordinates of the point $O_{(H J)}$, and let T be one of the endpoints of the diameter of $(H J)$ perpendicular to $O_{\delta} O_{(H J)}$. Then $\overrightarrow{O_{(H J)} T}=k(-g, f)$ and $\overrightarrow{O_{\delta} T}=(f-k g, g+k f)$ for a real number k. From $\left|O_{(H J)} T\right|=\left|O_{(H J)} H\right|,(-k g)^{2}+(k f)^{2}=$ $(f-h)^{2}+g^{2}$, which implies
$k^{2}=\frac{(f-h)^{2}+g^{2}}{f^{2}+g^{2}}$.
The circle $(H J)$ generates circles of radius s with δ if and only if

$$
\mathrm{r}(T, \delta)=\frac{\left|r^{2}-\left((f-k g)^{2}+(g+k f)^{2}\right)\right|}{2 r}=s
$$

Since (3) holds, the last equation is equivalent to

$$
\frac{1}{4} h^{2}+\left(f-\frac{h}{2}\right)^{2}+g^{2}=\frac{1}{2} r(r \pm 2 s)
$$

where the plus (resp. minus) sigh should be taken when T lies outside (resp. inside) of δ. If (v, w) are the coordinates of the point $J,(v+h) / 2=f$ and $w / 2=g$. Therefore the last equation is equivalent to

$$
\frac{1}{4} h^{2}+\frac{1}{4} r^{2}=\frac{1}{2} r(r \pm 2 s)
$$

which is also equivalent to (2). The part (i) obviously holds. The center of $(H J)$ is the image of J by the dilation with center H and scale factor $1 / 2$. This proves (ii).

Figure 2
Let ε be the circle with center O_{γ} belonging to the pencil of circles determined by α and β for the collinear arbelos (α, β, γ). We call ε the radical circle of (α, β, γ). The circle is considered in [4] and [5] for (BQPA) and (BPQA). If α and β have a point in common, ε passes through the point. For (BQPA) let V be the point of tangency of one of the tangents of α from O (see Figure 3). Then $|O V|^{2}=a p$. If $\left|O O_{\gamma}\right|^{2}>a p$, a tangent from O_{γ} to the circle $O(V)$ can be drawn. Then ε passes through the point of tangency. If $\left|O O_{\gamma}\right|^{2}=a p, \varepsilon$ is the point circle O_{γ}, which coincides with one of the limiting points of the pencil. If $\left|O O_{\gamma}\right|^{2}<|a p|, \varepsilon$ does not exist. Let e be the radius of ε. For (BQPA), $e^{2}=\left|O O_{\gamma}\right|^{2}-a p$ by the Pythagorean theorem. For (BPQA) and (PBAQ), $e^{2}=\left|O O_{\gamma}\right|^{2}+|a p|$ (see Figure 4). In any case
$e^{2}=\left|O O_{\gamma}\right|^{2}-a p$.

Figure 3: The case $\left|O_{\gamma} O\right|^{2}>|a p|$ for $(B Q P A)$

Figure 4: (PBAQ)

Theorem 2 For a collinear arbelos (α, β, γ) with radical circle ε, if points J and H lie on γ and ε respectively, then the circle $(H J)$ is Lamoenian.

Proof. For (BPQA) and (BQPA), $r_{\mathrm{A}}=a(p-b) /(2 u)$ by (1). Therefore by (4),

$$
\frac{u}{2}\left(\frac{u}{2}-4 r_{\mathrm{A}}\right)=\frac{(a-b)^{2}}{4}-a(p-b)=\frac{(a+b)^{2}}{4}-a p=e^{2}
$$

Similarly for (PBAQ), we get

$$
\frac{u}{2}\left(\frac{u}{2}+4 r_{\mathrm{A}}\right)=e^{2}
$$

Hence the theorem is proved by Theorem 1.

4 Quartet of circles

In this section we show that a Lamoenian circle given by Theorem 2 is a member of a set of four Lamoenian circles. All the suffixes are reduced modulo 4 in this section. Let J_{0} be a point on a circle δ, and let H be a point which does not lie on δ (see Figures 5, 6). Let $R_{0} R_{1}$ be the diameter of the circle $\left(H J_{0}\right)$ perpendicular to the line $O_{\delta} O_{\left(H J_{0}\right)}$ and let R_{0} and R_{1} generate circles of radius s with δ. Let J_{1} be the point of intersection of the line $J_{0} R_{1}$ and δ, and let R_{2} be the point such that $H R_{1} J_{1} R_{2}$ is a rectangle. Then the circle $\left(H J_{1}\right)$ also generates circles of radius s with δ by Theorem 1. While R_{1} generates circles of radius s with δ. Therefore R_{2} also generates circles of radius s with δ. Similarly we construct the points J_{2} and J_{3} on δ and the points R_{3} and R_{4} such that J_{2} and J_{3} lie on the lines $J_{1} R_{2}$ and $J_{2} R_{3}$ respectively and $H R_{2} J_{2} R_{3}$ and $H R_{3} J_{3} R_{4}$ are rectangles. Then R_{3} generates circles of radius s with δ and R_{4} coincides with R_{0}. Now we get the points J_{i} on δ and $R_{i}(i=0,1,2,3)$ such that $R_{i} R_{i+1}$ is the diameter of $\left(H J_{i}\right), R_{i}$ generates circles of radius s with $\delta, J_{0} J_{1} J_{2} J_{3}$ is a rectangle, R_{i} lies on the line $J_{i} J_{i-1}$. The four circles $\left(H J_{i}\right)(i=0,1,2,3)$ are called a quartet on δ, and H and $J_{0} J_{1} J_{2} J_{3}$ are called the base point and the rectangle of the quartet respectively.

Figure 5: H lies inside of δ

Figure 6: H lies outside of δ

By the definition of R_{i}, R_{0}, R_{2}, H are collinear, also R_{1}, R_{3}, H are collinear, and the two lines are perpendicular. Let $l_{i}=\left|H R_{i}\right|$. Then $\left|H J_{0}\right|^{2}+\left|H J_{2}\right|^{2}=l_{0}^{2}+l_{1}^{2}+l_{2}^{2}+l_{3}^{2}=$ $\left|H J_{1}\right|^{2}+\left|H J_{3}\right|^{2}$. Therefore $\left|H J_{0}\right|^{2}+\left|H J_{2}\right|^{2}=\left|H J_{1}\right|^{2}+$ $\left|H J_{3}\right|^{2}$ holds.

Figure 7: A quartet of Lamoenian circles on ε for (PBAQ)

For a collinear arbelos (α, β, γ) with radical circle ε, if the two points H and J_{0} lie on ε and γ respectively, we can construct a quartet $\left(H J_{i}\right)(i=0,1,2,3)$ on γ consisting of Lamoenian circles by Theorem 2. Also if H and J_{0} lie on γ and ε respectively, we can construct a quartet $\left(H J_{i}\right)$ ($i=0,1,2,3$) on ε consisting of Lamoenian circles (see Figure 7).

Theorem 3 For a quartet $\left(H J_{i}\right)(i=0,1,2,3)$ on a circle δ, the rectangle is a square if and only if $\left(H J_{i}\right)$ touches δ for some i. In this event, $\left(H J_{i+2}\right)$ also touches δ, and $\left(H J_{i-1}\right)$ and $\left(H J_{i+1}\right)$ are congruent and intersect at O_{δ}.

Proof: If $\left(H J_{0}\right)$ touches $\delta, R_{0} J_{0} R_{1}$ is an isosceles right triangle, since $\left|O_{\delta} R_{0}\right|=\left|O_{\delta} R_{1}\right|$. This implies that $J_{3} J_{0} J_{1}$ is also an isosceles right triangle, i.e., $J_{0} J_{1} J_{2} J_{3}$ is a square. Conversely let us assume $J_{0} J_{1} J_{2} J_{3}$ is a square. We assume that $\left(H J_{i}\right)$ does not touch δ for $i=0,1,2,3$. The sides or the extended sides of the square and the circle $O_{\delta}\left(R_{0}\right)$ intersect at eight points, four of which are R_{0}, R_{1}, R_{2}, R_{3}. If $\left|J_{i} R_{i}\right|=\left|J_{i} R_{i+1}\right|,\left(H J_{i}\right)$ touches δ. Therefore $\left|J_{i} R_{i}\right| \neq\left|J_{i} R_{i+1}\right|$ for $i=0,1,2,3$. This can happen only when $R_{1}, R_{2}, R_{3}, R_{4}$ lie inside of δ (see Figures 8 and 9). Hence $\left|J_{0} R_{0}\right|=\left|J_{1} R_{1}\right|=\left|J_{2} R_{2}\right|=\left|J_{3} R_{3}\right| \neq\left|J_{0} R_{1}\right|=$ $\left|J_{1} R_{2}\right|=\left|J_{2} R_{3}\right|=\left|J_{3} R_{0}\right|$. Therefore the four rectangles $H R_{i} J_{i} R_{i+1}(i=0,1,2,3)$ are congruent. Then they must be squares, since H is their common vertex. But this implies $\left|J_{i} R_{i}\right|=\left|J_{i} R_{i+1}\right|$, a contradiction. Hence $\left(H J_{i}\right)$ touches δ for some i. Then H lies on $J_{i} J_{i+2}$. Therefore $\left(H J_{i+2}\right)$ also touches δ. While $J_{i-1} J_{i+1}$ and $H O_{\delta}$ are perpendicular and intersect at O_{δ}. Therefore $\left(H J_{i-1}\right)$ and $\left(H J_{i+1}\right)$ are congruent and pass through O_{δ}.

Figure 8

Figure 9

5 Special cases

We conclude this article by considering the tangent arbelos (α, β, γ) with $O=P=Q$. Since $\varepsilon=O_{\gamma}(O)$, Power's result mentioned in the introduction is restated as both α and β are Lamoenian. Figure 10 shows a quartet on γ with base point O with $J_{0}=A$, in which α and β are members of the quartet. Figure 11 shows a quartet on ε with base point A with $J_{0}=O$. In this figure α and the reflected image of β in O_{γ} are members of the quartet. In each of the cases, the rectangle is a square.

Figure 10: A quartet on γ with base point O

Figure 11: A quartet on ε with base point A

Let \mathcal{L} be the radical axis of α and β. Quang Tuan Bui has found that the points of intersection of the circles $\left(A O_{\beta}\right)$ and $\left(B O_{\alpha}\right)$ lie on \mathcal{L} and generate Archimedean circles with γ for the tangent arbelos $(\alpha, \beta, \gamma)[1]$. Let R_{1} be one of the points of intersection, and let the line parallel to $A B$ passing through R_{1} intersect γ at a point K, where K lies on

Figure 12: A quartet on γ with base point O

References

[1] Q. T. Bui, The arbelos and nine-point circles, Forum Geom. 7 (2007), 115-120.
[2] F. van Lamoen, Some Powerian pairs in the arbelos, Forum Geom. 7 (2007), 111-113.
[3] H. Okumura, Ubiquitous Archimedean circles of the collinear arbelos, $K o G 16$ (2012), 17-20.
[4] H. Okumura and M. Watanabe, Generalized arbelos in aliquot part: non-intersecting case, J. Geom. Graph. 13 (2009), No.1, 41-57.
the same side of \mathcal{L} as A. Figure 12 shows a quartet on γ with base point O with $J_{0}=K$. In this figure R_{0} and R_{2} lie on $A B$ while R_{3} lies on \mathcal{L}. Figure 13 shows a quartet on ε with base point K with $J_{0}=O$. In this figure, $R_{1} J_{0}$ touches ε at O. Therefore $J_{1}=J_{0}=O$, i.e., the rectangle degenerates into a segment, and the quartet consists of two different Lamoenian circles.

Figure 13: A quartet on ε with base point K
[5] H. Okumura and M. Watanabe, Generalized arbelos in aliquot part: intersecting case, J. Geom. Graph. 12 (2008), No.1, 53-62.
[6] F. Power, Some more Archimedean circles in the Arbelos, Forum Geom. 5 (2005), 133-134.

Hiroshi Okumura

e-mail: hiroshiokmr@gmail.com
251 Moo 15 Ban Kesorn Tambol Sila
Amphur Muang Khonkaen 40000, Thailand

