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On Taxicab Incircle and Circumcircle of a Trian-

gle

ABSTRACT

In this work, we study existence of taxicab incircle and cir-

cumcircle of a triangle in the taxicab plane and give the

functional relationship between them in terms of slope of

sides of the triangle. Finally, we show that the point of

intersection of taxicab inside angle bisectors of a triangle

is the center of taxicab incircle of the triangle.

Key words: taxicab distance, taxicab circle, taxicab incir-

cle, taxicab circumcircle, taxicab plane and taxicab geom-

etry
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O taxicab upisanoj i opisanoj kružnici trokuta

SAŽETAK

U ovom radu promatramo postojanje taxicab upisane i

opisane kružnice trokuta u taxicab ravnini i dajemo njihov

odnos s obzirom na koeficijente smjera stranica trokuta.

Naposljetku, pokazujemo da je sjecǐste taxicab unutarnjih

simetrala kuta trokuta sredǐste njegove taxicab upisane

kružnice.

Ključne riječi: taxicab udaljenost, taxicab kružnica, taxi-

cab upisana kružnica, taxicab opisana kružnica, taxicab

ravnina and taxicab geometrija

1 Introduction

Taxicab plane geometry introduced by Menger and devel-
oped by Krause using the metric dT (P,Q) = |x1 − x2|+

|y1 − y2| instead of the well-known Euclidean metric

dE(P,Q) =
(

(x1 − x2)
2 +(y1 − y2)

2
)1/2

for the distance
between any two points P = (x1,y1) , Q = (x2,y2) in the
analytical plane R2.According to definition of taxicab dis-
tance function, the path between two points in the plane is
union of two line segments which each of line segments
is parallel to one of coordinate axis. Thus, taxicab dis-
tance is the sum of Euclidean lengths of these two line
segments. Taxicab geometry have studied and developed
in different aspects by mathematicians. One can see for
some of these in [2], [3], [5], [6], [7], [9]. The linear struc-
ture of the taxicab plane is almost the same as Euclidean
plane. There is one different aspect. Euclidean and taxi-
cab planes have different distance functions. So it seems
interesting to study the taxicab analogues of topics that are
related with the concept of distance.

It is well known that there exist a unique incircle and a
unique circumcircle for a given triangle in the Euclidean
geometry. Also the distance d between the centers of incir-
cle and circumcircle of a triangle is d =

√

R(R−2r) where
r and R are radii of incircle and of circumcircle, respec-
tively. Here, we study and extend these three properties to
the taxicab plane.

2 Taxicab incircles and circumcircles of a
given triangle

The incircle of a triangle is the circle contained in the tri-
angle and touches to (is tangent to) each of the three sides
at one point. A circle passing through all three vertices of
a triangle is called circumcircle of the triangle.

Let C be a point in the taxicab plane, and r be a positive
real number. The set of points {X : dT (C,X) = r} is called
taxicab circle, the point C is called center of the taxicab
circle, and r is called the length of the radius or simply ra-
dius of the taxicab circle. Every taxicab circle in the taxi-
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cab plane is an Euclidean square having sides with slopes
±1.
Let l be a line with slope m in the taxicab plane. l is called a
gradual line, a steep line, a separator if |m|< 1, |m|> 1,
|m|= 1, respectively (see Figure 1). In particularly, a grad-
ual line is called horizontal if it is parallel to x-axis, and a
steep line is called vertical if it is parallel to y-axis.
The isometry group of taxicab plane is the semi direct
product of D(4) and T (2) where D(4) is the symme-
try group of Euclidean square and T (2) is the group of
all translations in the plane. That is, the rotations θ =
kπ/2, k ∈ Z, the reflections by lines with horizontal, verti-
cal and separators and all translations are isometries in the
taxicab plane (see [5], [8]) .
The distance from the point P = (x0,y0) to a line l with the
equation
ax+by+c = 0 is dT (P, l)= |ax0 + by0 + c|�max{|a| , |b|}
(see [6]) .

Figure 1

In the taxicab plane, the triangles can be classified as eight
groups according to slopes of the sides of triangles:
i) All sides of the triangle lie on gradual (steep) lines.
ii) Two sides of the triangle lie on gradual (steep) lines, the
other side lies on a steep (gradual) line.
iii) Two sides of the triangle lie on separator lines, the other
side lies on a gradual (steep) or a horizontal (vertical) line.
iv) A side of the triangle lies on a separator line, two sides
of the triangle lie on gradual (steep) lines.
v) A side of the triangle lies on a separator line, the other
side lies on a gradual line and the third side lies on a steep
line.
vi) A side of the triangle lies on a vertical line, the other
side lies on a horizontal line and third side lies on a grad-
ual (steep) line or separator line.
vii) A side of the triangle lies on a vertical (horizontal)
line, two sides of the triangle lie on gradual (steep) lines.

viii) A side of the triangle lies on a vertical (horizontal)
line, the other side lies on a gradual line and the third side
lies on a steep line.

The next theorem gives an explanation about whether there
exist an incircle and a circumcircle of a triangle or not.

Theorem 1 A triangle has a taxicab circumcircle and in-
circle if and only if two sides of the triangle lie on gradual
(steep) lines and remaining side lies on a steep (gradual)
line.

Proof. Let
�

ABC be a triangle having a taxicab circumcir-
cle and a taxicab incircle and let ma, mb and mc denote
the slopes of lines BC, AC and AB, respectively. A taxi-
cab circumcircle compose of the line segments which are
on lines with slopes ∓1, passing through the vertices of a
triangle. That is, there is a line with slope 1 or −1 pass-
ing through every vertex of the triangle, and the triangle
is completely inside the taxicab circumcircle. Every ver-
tex of a triangle is a point intersection of two sides of this
triangle. Since three vertices of the triangle are on differ-
ent sides of the taxicab circle, vertices of two sides of the
triangle are on neighbour sides of the taxicab circle. So
two vertices of the triangle are on lines with same slope 1,
and the third vertex is on a line with slope −1 or vice versa.
Suppose that vertices A, B, C of triangle are on lines
with slopes −1, +1, −1, respectively. Thus ma < 1 and
ma >−1. That is, |ma|<1.Similarly one can obtain mc < 1
and mc >−1. That is, |mc|> 1. Third side AC is on a grad-
ual or a steep line. Other cases can be proven similarly.
Since the triangle ABC has a taxicab incircle, three vertices
of the circle are on sides of the triangle. Three vertices of
the incircle are on lines slopes ∓1 and 0 or ∞. So there are
two different cases (see Figure 2).

Figure 2

Case I: Let the vertices of the incircle be on lines with
slopes −1, 1 and ∞. And let T1, T2, T3 denote these points
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such that T1, T2 and T3 are on sides AC, BC and AB, respec-
tively. If T1 and T2 are on a vertical line, then |ma| < 1 and
|mb| < 1. Otherwise, a part of the sides of the incircle lie
outside of the triangle. Also |mc|> 1 since incircle must be
inside the triangle.
Case II: Let the vertices of the incircle be on lines with
slopes −1, 1 and 0. This case is proven similarly as case I.
Conversely, let two sides of the triangle be on gradual lines
and other side be on a steep line. We may draw the lines
of slopes 1 and −1 passing through vertices of the trian-
gle. By the definition of the circumcircle, these lines must
not pass through inner region of the triangle. Thus we may
construct three sides of a taxicab circumcircle encircled the
triangle. The fourth side of the taxicab circumcircle prop-
erly can be found.
Since three vertices of incircle of the triangle are on each
sides of the triangle, we may construct incircle alike cir-
cumcircle case. �

In the rest of the article, we assume that the vertex C of

a triangle
�

ABC is the intersection point of gradual (steep)
sides of the triangle. Without lose of generality, a vertex
of the triangle can be taken at origin since all translations
of the analytical plane are isometries of the taxicab plane.
So we take the vertex C is at origin. Notice that this as-
sumption about the position of the triangle does not loose
the generality. If the role of vertices A and B of the triangle
replace with each other, then the slopes ma and mb must be
replaced with each other in all functional relations through
the article.
The following theorem gives a relation between diameters
of the circumcircle and incircle and the slopes of sides of a
triangle in the taxicab plane.

Theorem 2 Let slopes of sides AB,BC,CA of a triangle
�

ABC be mc,ma and mb, respectively and a,b,c be the taxi-

cab lengths of sides of BC,CA,AB of the triangle
�

ABC. If
the triangle has a taxicab incircle with radius r and a cir-
cumcircle with radius R then

r
2R

=







ρ(ma,mb,mc) , |ma|<1, |mb|<1 and |mc|>1

ρ
(

-m-1
a , -m-1

b , -m-1
c

)

, |ma|>1, |mb|>1 and |mc|<1

where ρ(ma,mb,mc) =

|mb −ma| |δ(ma,mb)−mc|

max{|1+δ(ma,mb)| , |1-δ(ma,mb)|} |max{ma,mb} (1-mc)+min{ma,mb} (1+mc) -2mc|

with

δ(ma,mb) =

{

ma, a > b
mb, a < b .

Proof. Let
�

ABC be a triangle such that |ma| < 1, |mb| < 1
and |mc| > 1 where ma, mb and mc are slopes of sides
BC,AC and AB, respectively (see Figure 2). There are two
main positions of gradual sides of the triangle:
i) Gradual sides are on same quadrant of the plane (see Fig-
ure 2)
ii) Gradual sides are on neighbour quadrants of the plane
(see Figure 3).

Suppose that A=(xa,ya) ,B=(xb,yb) are points such that
xb > xa > 0 and ya > yb > 0 (see Figure 2). Therefore,
center and radius of the taxicab circumcircle of triangle
�

ABC are
ME =

(

xb − yb
2

,
xa − xb + ya + yb

2

)

and

R =
xa + ya

2
=

xa (1 + mb)

2
.

Three vertices of the taxicab incircle are on lines
↔

AB,
↔

BC and
↔
AC with the equations y = mc (x− xa)+ya, y =

max and y = mbx, respectively. Let T1 and T2 be on lines
↔
AC and

↔
BC, respectively. So T1=(t,mbt) and T2=(t,mat)

for t ∈ R+. Thus center and radius of the taxicab incircle

of the triangle
�

ABC are

MI =

(

t,mat +
(mb −ma) t

2

)

and r =
(mb −ma)t

2
.

Since T3 =

(

t +
(mb −ma)t

2
,mat +

(mb −ma)t
2

)

and T3

is on the line with the equation y = mc (x− xa) + ya, one
can easily compute that

t =
2xa (mb−mc)

ma + mb −2mc + mc (ma −mb)
. Thus the relation be-

tween R and r is

r =
2R(mb −mc)(mb −ma)

(1+mb) [ma (1 + mc)+ mb (1−mc)−2mc]

Similarly, let
�

ABC be a triangle such that |ma| < 1, |mb| <

1 and |mc| > 1 (see Figure 3a).

5
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a

b

Figure 3

Suppose that A=(xa,ya) , B=(xb,yb) are two points such
that xb > xa > 0 and ya > 0 > yb (see Figure 3a). Then,
center and radius of the taxicab circumcircle of the trian-
gle

�

ABC are

ME =

(

xa + ya

2
,

xa − xb + ya + yb
2

)

and

R =
xb − yb

2
=

xb (1−ma)

2
.

Three vertices of the taxicab incircle are on lines
↔
AB,

↔
BC and

↔
AC with the equations y = mc (x− xa)+ya, y =

max and y = mbx, respectively. Let T1 and T2 be on lines
↔
AC and

↔
BC, respectively. So T1=(t,mbt) and T2=(t,mat)

for t ∈ R+. Thus the center and the radius of the taxicab

incircle of the triangle
�

ABC are

MI =

(

t,
(ma + mb) t

2

)

and r =
(mb −ma)t

2
.

Since T3 =

(

t +
(mb −ma)t

2
,mbt −

(mb −ma) t
2

)

and

point T3 is on the line with the equation y =
mc (x− xb) + yb, one can easily compute that t =

2xb (ma−mc)

ma + mb −2mc −mc (−ma + mb)
. Thus the relation be-

tween R and r is

r =
2R(ma −mc)(mb −ma)

(1−ma) [ma (1 + mc)+ mb (1−mc)−2mc]
. (2.1)

Notice that if the triangle
�

ABC located as in Figure 3a is
rotated with

π
2

about the origin, then the triangle will be in
the position in Figure 3b. In this case, the relation between
R and r is

r =
2R(ma −mc) (mb −ma)

(1+ma) [−ma (1 + mc)+ mb (1−mc)+ 2mamb]
.

(2.2)

In fact, if ma, mb and mc are replaced with −m−1
a ,

−m−1
b and −m−1

c , respectively, in equation (2.1), then
we have relation (2.2). By this result, the rotation
with

π
2

is an isometry of the taxicab plane. Also the

triangle
�

ABC such that |ma|<1, |mb|<1 and |mc|>1

is mapped to the triangle
�

ABC with |ma|>1,

|mb|>1 and |mc|<1 under the rotation with
π
2
. Thus, one

can find the relations about all positions of the triangle
�

ABC if ma, mb and mc are replaced with −m−1
a ,−m−1

b
and −m−1

c in the relations for the triangles with
|ma|<1, |mb|<1 and |mc|>1. So the relations about all
positions of the triangle can be easily generalized. �

The next theorem gives a relation about distance between
centers of the incircle and circumcircle of the triangle in
terms of R, r and slopes of sides of the triangle.

Theorem 3 Let slopes of sides AB, BC, CA of a triangle
�

ABC be mc, ma, mb, respectively. Let MI and ME be cen-
ters of the taxicab incircle with radius r and taxicab cir-
cumcircle with radius R of the triangle, respectively. Then

dT (MI ,ME)=







ψ(ma,mb,mc) , |ma|<1, |mb|<1, |mc|>1

ψ
(

-m-1
a , -m-1

b , -m-1
c

)

, |ma|>1, |mb|>1, |mc|<1

where

ψ(ma,mb,mc) = min
{

∣

∣

∣

∣

ma+mb-2sgn(mc)

(mb −ma)
r-R

∣

∣

∣

∣

,

∣

∣

∣

∣

ma+mb-2sgn(mc)

(mb −ma)
r-

(

1-
2 [(1-ma)sgn(mc)] [mb-mc]

[(1-mb) sgn(mc)] [mb-ma]

)

R
∣

∣

∣

∣

}

.
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Proof. Suppose that
�

ABC is a triangle with vertices
A=(xa,ya) ,B=(xb,yb) and C=(0,0) such that xb > xa > 0

and ya > yb. If the triangle
�

ABC has a taxicab circumcircle
and incircle, then the two sides of the triangle are on grad-
ual (steep) lines and third side is on a steep (gradual) line
by Theorem 1 Therefore, there are two possible cases:
Case I : If |mc|>1, |ma|<1 and |mb|<1, respectively (see
Figure 2), then center and radius of the taxicab circumcir-

cle of the triangle
�

ABC are ME=

(

xb-yb
2

,
xa−xb+ya+yb

2

)

and R=
xa + ya

2
,respectively. Let vertices of the taxi-

cab incircle on sides CA and CB be T1=(t,mbt) and
T2=(t,mat) for t ∈ R+, respectively. Thus center and

radius of the taxicab incircle of the triangle
�

ABC are

MI =

(

t,mat+
(mb-ma)t

2

)

and r =
(mb −ma) t

2
, where t =

2xa (mb−mc)

ma + mb −2mc + mc (ma −mb)
. Thus distance between

centers of the taxicab incircle and circumcircle of the tri-
angle

�

ABC is

d = dT (ME ,MI)

=

∣

∣

∣

∣

t −
xb − yb

2

∣

∣

∣

∣

+

∣

∣

∣

∣

mat +
(mb −ma)t

2
−

xa − xb + ya + yb
2

∣

∣

∣

∣

=

∣

∣

∣

∣

2
mb-ma

r- (1-ma) (mb-mc)

(1+mb)(mc-ma)
R

∣

∣

∣

∣

+
∣

∣

∣

∣

ma+mb
mb-ma

r-R+ (1-ma)(mb-mc)

(1+mb) (mc-ma)
R

∣

∣

∣

∣

Similarly the relations about all positions of the triangle
can be easily generalized. �

In Euclidean geometry it is well known that intersection
point of inside angle bisectors of a triangle is the center of
incircle of the triangle. Each point of an angle bisector is
equidistant from the sides of the angle. Since taxicab dis-
tance is different from Euclidean distance, taxicab bisector
of a angle is different from Euclidean bisector of the angle.
Thus the intersection point of taxicab inside angle bisectors
of a triangle is, generally different from the Euclidean case.
The following theorem expresses that the above property is
also valid in the taxicab plane.

Theorem 4 The intersection point of the taxicab inside
angle bisectors of a triangle with a taxicab incircle is the
center of taxicab incircle of the triangle.

Proof. A triangle
�

ABC has a taxicab incircle if two sides
of the triangle lie on gradual lines and the remaining side
of its lies on a steep line by Theorem 1.

Figure 4

Equation of lines L1, L2 and L3 containing the sides
AB, AC and BC of the triangle are y = mc (x− xa) + ya,
y = mbx and y = max, respectively. One can find the taxi-
cab inside angle bisector lines BL1, BL2 and BL3, by using
definition of distance from a point to a line in the taxicab
plane, as follows:

Since BL1 =
{

X = (x,y) ∈ R2 : dT (X ,L1) = dT (X ,L2)
}

;
and

dT (X ,L1) =
|y + mc (xa − x)− ya|

max{|−mc| , |1|}
=

y + mc (xa − x)− ya

mc
,

dT (X ,L2) =
|−mbx + y|

max{|−mb| , |1|}
= mbx− y,

one can obtain the following equation:

dT (X ,L1) = dT (X ,L2)⇒
y + mc (xa − x)− ya

mc
= mbx− y

⇒ y =
mc (1 + mb)

1 + mc
x +

ya −mcxa

1 + mc
.

Thus, equation of line BL1 is y =
mc (1 + mb)

1 + mc
x +

ya −mcxa

1 + mc
.

Similarly the equations of lines BL2 and BL3 are

y =
mc (1−ma)

1−mc
x +

ya −mcxa

1−mc
and y =

ma + mb
2

x,

respectively. If the system of linear equations consisting
of equations of BL1, BL2 and BL3 is solved, then it is
seen that there is a unique intersection point of lines BLi,
i = 1,2,3. Also this point is the center of the taxicab incir-

cle of the triangle
�

ABC. If two sides of the triangle lie on
steep lines and the remaining side of its lies on a gradual
line, the proof can be given, similarly. �

7
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3 Taxicab incircles and circumcircles of a
given triangle with at least a side on a sep-
arator line

In Euclidean geometry, it is well-known that the number of
intersection points of a circle and a line is 0, 1 or 2. In the
taxicab plane, this number is 0, 1, 2 or ∞. (see Figure 5)

Figure 5

So far, we have considered that a incircle touches (is tan-
gent to) each of the three sides of the triangle at only one
point and circumcircle passes through all vertices of trian-
gle. In this section we examine the incircle and circumcir-
cle of a triangle by using following definition of concept
of touching (tangent !). In the previous section, we have
mentioned that a steep or a gradual line tangent to a taxi-
cab circle if the taxicab circle and the steep or gradual line
have common only one point. But sides of a taxicab circle
always lie on separator lines. If slope of the a side of a
triangle is +1 or −1 then that side coincides with a side of
the taxicab incircle or circumcircle along a line segment.
In this section, we consider the concept of tangent along
a line segment if a line segment completely or partially
lie on one side of the taxicab circle. This assumption in-
creases the number of cases about existence of incircle and
circumcircle for a given triangle in the taxicab plane. We
only consider cases consisting infinite intersection points
in this section. Because of this assumption, at least one
side of the triangle must be on separator line. (see Figure
6).

Figure 6

Next two theorems give some conditions about existence
of incircle and circumcircle for a triangle with one or two
sides on separator lines.

Theorem 5 A triangle with at least one side on a separa-
tor line has always a taxicab circumcircle and incircle.

Proof. Let
�

ABC be a triangle which at least one side of it
is on a separator line. Then there are two main cases:

1) A side of the triangle
�

ABC is on a separator line.
(see Figure 7).

2) Two sides of the triangle
�

ABC are on separator
lines. (see Figure 8).

Case 1: Let a side of the triangle
�

ABC be on a separator
line in the taxicab plane. Suppose that vertex C is at ori-
gin and ma is −1 (or 1), that is, side BC lies on y=−x (see
Figure 7). A taxicab circumcircle composes of the line seg-
ments which are on lines with slopes ∓1, passing through
the vertices of a triangle. Since ma=−1, and the triangle is
completely inside the taxicab circumcircle, side with slope
−1 of the taxicab circumcircle coincides with the side BC
of the triangle. So there are two subcases according to po-
sition of vertex A :

i) Vertex A is on opposite side of the circle according to
side containing BC.

ii) Vertex A is on neighbour side of the circle according to
side containing BC.

Infinite circumcircles can be drawn for both of cases. In
subcase I, all circumcircles have the same radius. Note
that the circumcircle moves along the line segment BC. In
subcase II, all circumcircles have different radii. Note that
the center of the circumcircle moves along a horizontal or
a vertical line. Distance between centers of two of circum-
circles is called as quantity of change, and it is shown by
t (see Figure 7). If vertex A is on opposite side of the cir-
cle to side containing BC, then one of AC and AB is on a
gradual line, and the other is on steep line. If vertex A is
on neighbour side to side containing BC, then AC and AB
are on gradual lines or steep lines.

A side of the taxicab incircle is on BC since the taxicab in-
circle is a taxicab circle, and it is tangent to all three sides.
There are two subcases according to position of side of the
taxicab incircle :

i) Side of the taxicab incircle doesn’t pass through vertex
B or C.

ii) Side of the taxicab incircle pass through vertex B or C.

In subcase I, two lines with slope 1 can be drawn at end
point of side on BC. Since the incircle is completely inside
the triangle, one of side of the triangle is on a steep line,
and the other is on a gradual line.

8
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In subcase II, side of the taxicab incircle on BC is tangent
to two sides of the triangle. So sides of triangle are on
gradual lines or steep lines (see Figure 7).

Figure 7

Case 2: The proof can be given as in Case 1.

Figure 8

�

The following theorem gives the relations between radii of
the incircle and circumcircle of a given triangle with one
or two sides are on a separator line.

Theorem 6 Let
�

ABC be a triangle in the taxicab plane,
ma,mb and mc denote slopes of sides BC,AC and AB, re-

spectively. If the triangle
�

ABC has a taxicab incircle with
radius r and circumcircle with radius R, and t is quantity
of change, then

r
2R

=







ρ(ma,mb,mc) , |ma|≤1, |mb|<1 and |mc|>1

ρ
(

-m-1
a , -m-1

b , -m-1
c
)

, |ma|≥1, |mb|>1 and |mc|<1.

and

r
2(R− t)

=







































ρ(mc,mb,ma) , |ma| = 1, |mb| < 1 and |mc| < 1

ρ
(

-m-1
c , -m-1

b , -m-1
a

)

, |ma| = 1, |mb| > 1 and |mc| > 1

ρ(ma,mb,mc) , |ma| = 1, |mb| = 1 and |mc| > 1

ρ
(

-m-1
a , -m-1

b , -m-1
c

)

, |ma| = 1, |mb| = 1 and |mc| < 1

where ρ(ma,mb,mc) =

|mb −ma| |δ(ma,mb)−mc|

max{|1+δ(ma,mb)| , |1-δ(ma,mb)|} |max{ma,mb} (1-mc)+min{ma,mb} (1+mc) -2mc|

with

δ(ma,mb) =

{

ma, a > b
mb, a < b .

Proof. Let
�

ABC be a triangle which at least one side
of it on a separator line. One can easily see possi-
ble positions of the triangle from Theorem 5. Let A =
(xa,ya) ,B = (xb,yb) be two points such that xa > xb > 0,
ya > 0 > yb, ma=−1, mb < 1 and mc > 1.

Figure 9

9
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In this case a side of the circumcircle coincide with the
side BC of the triangle, and vertex A is on opposite side of
the circle to the side containing BC. So there are infinite
taxicab circumcircles which of all have the same radius.
K1 =

(

xa + ya

2
,

xa + ya

2

)

is the top vertex of the

circumcircle that a vertex of it is C. Similarly,
K�

1 = (xb,−xb + xa + ya) is the top vertex of the cir-
cumcircle such that a vertex of it is B. X1 de-
notes the top vertex of all circumcircles. So
X1 = λK1 + (1−λ)K�

1 for all λ ∈ [0,1] (see Figure 9).
Therefore the vertices of circumcircles are

X1 = (λp + xb,−λp +(−xb + xa + ya)) ,
X2 = (λp + xb,−λp− xb) ,

X3 =

(

λp +
xa + ya

2
+ xb,(1−λ) p

)

,

X4 = ((1−λ) p,(1−λ) p) ,

where p =
xa + ya

2
−xb. Thus, center and radius of the taxi-

cab circumcircle having vertex Xi of the triangle
�

ABC are

ME = (λp + xb,(1−λ) p) and R =
xa + ya

2
.

Three vertices of the taxicab incircle are on lines
↔
AB,

↔
BC and

↔
AC with the equations y = mc (x− xa) + ya,

y = −x and y = mbx, respectively. Let T1 and T2 be on
lines

↔
AC and

↔
BC respectively. That is T1=(γ,mbγ) and

T2=(γ,−γ) for γ ∈ R+. Thus center and radius of the taxi-

cab incircle of the triangle
�

ABC are

MI =

(

γ,
(mb −1)γ

2

)

and r =
(mb + 1)γ

2
.

Since T3=
(

(mb + 3)γ
2

,
(mb −1)γ

2

)

and point T3 is on y =

mc (x− xa)+ya, one can find as γ =
2xa (mb−mc)

mb −3mc −1−mbmc
.

Thus the relation between R and r is obtained as

r =
2R(mb −mc)

mb −3mc + ma (1 + mbmc)
.

m stand for slope of a line l. If l reflects with y−axis,
then m changed to −m. So the above relation is valid
for ma=1, mb > −1 and mc < −1. The relation about
other case for |ma| = 1, |mb| > 1 and |mc| < 1 can be
found when ma, mb , mc replace with −m−1

a ,−m−1
b and

−m−1
c in the relations for |ma|=1, |mb| < 1 and |mc| > 1.

It is easily seen that all relations satisfy ρ(ma,mb,mc) for
|ma|=1, |mb|< 1, |mc|> 1 and ρ

(

−m−1
a ,−m−1

b ,−m−1
c

)

for
|ma|=1, |mb| > 1 and |mc| < 1.

Let
�

ABC be a triangle such that |ma| = 1, |mb| > 1 and
|mc| > 1 (see Figure 10). A = (xa,ya) ,B = (xb,yb) and
C = (0,0) are three points such that xb < xa < 0 and
0 < yb < ya.

Figure 10

Therefore, center and radius of the taxicab circumcircle

changing depend on parameter t of the triangle
�

ABC are

ME =

(

t, −xa + ya

2

)

and R = t +
−xa + ya

2

where t is quantity of change. From last equation of R, one

can find that xa =
2(R− t)
mb −1

. Three vertices of the taxicab

incircle are on lines
↔
AB,

↔
BC and

↔
AC with the equations

y = mc (x− xa) + ya, y = −x and y = mbx, respectively.
Let T1 and T2 be on lines

↔
AC and

↔
BC, respectively. So

T1=(xb,yb) and T2=
(

yb
mb

,yb

)

. Thus center and radius of

the taxicab incircle of the triangle
�

ABC are

MI =

(

xb +
xb (ma −mb)

2mb
,yb

)

and r =
xb (ma −mb)

2mb
.

Since mc =
ya − yb
xa − xb

, one can find as xb =
xa (mc−mb)

mc −ma
.

Thus the relation between R and r is

r =
2(R− t)(mb −mc) (mb −ma)

2mb (mb + ma)(mc −ma)
.

This relation is also valid if one can take −ma,−mb, −mc
instead of ma, mb, mc, respectively. The relation about
other case for |ma|=1, |mb| < 1 and |mc| < 1 can be
found if ma,mb,mc replace with −m−1

a ,−m−1
b ,−m−1

c in
the relations for |ma| = 1, |mb| > 1 and |mc| > 1. It is
easily seen that all relations satisfy ρ(ma,mb,mc) for

10
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|ma| = 1, |mb| < 1, |mc| < 1 and ρ
(

−m−1
a ,−m−1

b ,−m−1
c

)

for |ma| = 1, |mb| > 1 and |mc| > 1.

Let
�

ABC be a triangle with |ma|=1, |mb|=1 and |mc| > 1
(see Figure 11). A = (xa,ya) , B = (xb,yb) and C = (0,0)
are three points such that xa > xb > 0 and ya > 0 > yb.

Figure 11

In this case, there are infinite taxicab circumcircles, and
their centers move along a vertical or a horizontal line ac-
cording to slope of side AB. So, the center and radius of the
taxicab circumcircle changing depend on parameter t of

the triangle
�

ABC are

ME = (xa + t,0) and R = xa + t

where t is quantity of change. From last equation about R
is obviously xa=R−t.
Three vertices of the taxicab incircle are on lines
↔
AB,

↔
BC and

↔
AC with the equations y = mc (x− xa) + ya,

y = −x and y = x, respectively. Let T1 and T2 be on lines
↔
AC and

↔
BC, respectively. So T1=(γ,γ) and T2=(γ,−γ) for

γ ∈ R+. Thus center and radius of the taxicab incircle of

the triangle
�

ABC are

MI = (γ,0) and r = γ.

Since T3 = (2γ,0) and point T3 is on y = mc (x− xa)+ ya,

one can find as γ =
xa (mc−mb)

2mc
. Therefore the relation

among R, r and t is

r =
(R− t)(|mc|−1)

2 |mc|
.

This equation is also valid if mc replace with −mc.

The other case for |ma| = |mb| = 1 and |mc| < 1 can be
shown if ma, mb, mc replace with −m−1

a , −m−1
b , −m−1

c
in the relations for |ma| = |mb|=1 and |mc| > 1. Thus, the
proof of the theorem is completed. �

The next theorem gives relation between centers of the in-
circle and circumcircle.

Theorem 7 Let
�

ABC be a triangle which at least one side
is on a separator line in the taxicab plane. If the triangle
�

ABC has a taxicab incircle and circumcircle, then the dis-
tance between the center ME of the taxicab circumcircle
with radius R, and the center MI of the incircle with radius
r is

dT (ME ,MI) = R− r.

Proof. The proof is given by using the values of ME and
MI in the Theorem 6. �

The following theorem shows that expression of the Theo-
rem 7 is also valid for a triangle which at least one side is
on a separator line.

Theorem 8 Let
�

ABC be a triangle with at least one side

is on a separator line. If
�

ABC has a taxicab incircle, then
the center of incircle is the intersection point of the taxicab

inside angle bisectors of the triangle
�

ABC.

Proof. Let
�

ABC be a triangle such that ma, mb and mc are
slopes of sides BC,AC and AB, respectively. If at least one

side of a triangle
�

ABC lies on a separator line, there are six
different cases according to slopes of the sides of triangles;

i) |ma| = 1, |mb| < 1 and |mc| > 1
ii) |ma| = 1, |mb| > 1 and |mc| < 1
iii) |ma| = 1, |mb| > 1 and |mc| > 1
iv) |ma| = 1, |mb| < 1 and |mc| < 1
v) |ma| = 1, |mb| = 1 and |mc| > 1
vi) |ma| = 1, |mb| = 1 and |mc| < 1

Case i) Let
�

ABC be a triangle with |ma|=1, |mb| < 1 and
|mc| > 1. Then A=(xa,ya) , B = (xb,yb) and C = (0,0) are
three points such that xa > xb > 0 and yb > 0 > ya (see
Figure 12).

11
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Figure 12

L1, L2 and L3 denote the lines which lie on AC, AB and
BC, respectively. These lines L1, L2 and L3 are y =
mbx, y = mc (x− xa) + ya, and y=x, respectively. Using
definition of distance from a point to a line in the taxicab
plane, the taxicab inside angle bisector lines BL1,BL2 and
BL3 are found as follow:
Since BL1 =

{

X = (x,y) ∈ R2 : dT (X ,L1) = dT (X ,L2)
}

;
and

dT (X ,L1) =
|y−mbx|

max{|−mb| , |1|}
= y−mbx

dT (X ,L2) =
|y + mc (xa − x)− ya|

max{|−mc| , |1|}
=

y + mc (xa − x)− ya

mc
,

one can obtain the following equation:

y =
mc (mb −1)

mc −1
x +

xa (mc −mb)

mc −1
.

Similarly the equations of lines BL2 and BL3 are

y =
2mc

1 + mc
x +

xa (mb −mc)

1 + mc
and y =

1 + mb
2

x

respectively. If the system of linear equations consisting of
equations of BL1, BL2 and BL3 is solved, then the solution
is found as
(

2xa (mb −mc)

mb −3mc −1−mbmc
,

xa (mb −mc)(mb −1)

mb −3mc −1−mbmc

)

.

That is, lines BL1,BL2 and BL3 pass through the same
point. Also this point is the center of taxicab incircle of

the triangle
�

ABC.

The proof of the other cases can be given by similar ways.

�
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Steiner Curve in a Pencil of Parabolas

Steiner Curve in a Pencil of Parabolas

ABSTRACT

Using the facts from the theory of conics, two theorems

that are analogous to the theorems in triangle geometry

are proved. If the pencil of parabolas is given by three

lines a, b, c, it is proved that, the vertex tangents of all

the parabolas in the pencil, envelop the Steiner deltoid

curve δ, and the axes of all parabolas in the same pencil

envelop further deltoid curve α. Furthermore, the deltoid

curves are homeothetic. It is proved that all the vertices in

the same pencil of parabolas are located at the 4th degree

curve. The above mentioned curves are constructed and

treated by synthetic methods.

Key words: Steiner deltoid curve, Wallace-Simson line,

pencil of parabolas, vertex tangent

MSC 2010: 51M35, 51M15

Steinerova krivulja u pramenu parabola

SAŽETAK

Koristeći činjenice teorije konika, dokazuju se dva teorema

koji su analogoni klasičnih teorema geometrije trokuta. Za

pramen parabola zadan trima temeljnim tangentama a, b,

c dokazuje se da tjemene tangente svih parabola omataju

deltoidu δ, a osi parabola u istom pramenu deltoidu α.

Pokazuje se da su deltoide homotetične. Još se dokazuje

da sva tjemena parabola u istom pramenu leže na krivulji

4. reda. Spomenute krivulje se konstruiraju i istražuju

metodama sintetičke geometrije.

Ključne riječi: Steinerova deltoida, Wallace-Simsonov

pravac, pramen parabola, tjemena tangenta

1 Introduction

Some of the (numerous) classical theorems from the ge-
ometry of the triangle can be expressed in a different way
in order to obtain new theorems in the theory of conics. In
this article special attention will be given to the following
two well known theorems:

Theorem 1 If F is any point belonging to the circle k cir-
cumscribed to a triangle ABC, then three points Wa, Wb,
Wc obtained by orthogonally projecting F, on the three
sides of the triangle are collinear. The line thus obtained
is called the Wallace-Simson line w of F, [1].

See Figure 1.
In 1856 Jakob Steiner proved that the envelope of Wallace-
Simson lines when F moves around the circumscribed cir-
cle to a triangle ABC is a special curve of third class and
fourth degree. That curve which has the line at infinity
as double ideal tangent, a curve that is tangent to the three
sides and to the three altitudes of the triangle, and has three
cuspidal points and the three tangent lines on them meet at
a point is called the Steiner deltoid, [1].

Theorem 2 The envelope of the Wallace-Simson lines of a
triangle ABC is the Steiner deltoid curve, [2].

See Figure 1.

Figure 1

2 Deltoid curves in a pencil of parabolas

It is known for a fact that a pencil of parabolas can be set
according to lines a, b, c. Therefore we can prove the fol-
lowing theorems.
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Theorem 3 Let {a,b,c} be the pencil of parabolas touch-
ing three lines a, b, c. Let F be any point belonging to
the circle k circumscribed to the triangle ABC given by the
lines a, b, c. The Wallace-Simson line w of the point F is
the vertex tangent of one parabola from the pencil.

Proof. The focus points of all parabolas from the pencil lie
on the circumscribed circle k, so the point F is the focus of
one (certain) parabola, [3], [4].
It is known for a fact that the pedal curve of a parabola,
with respect to pedal point O, is a circular cubic. If the
pedal point O is the focus F of the parabola, the pedal
curve degenerates into the isotropic lines of the focus F
and the vertex tangent. In that case, the vertex tangent is
the Wallace-Simson line w, [2]. �

It needs to be highlighted that:

Remark 1 Each side of the triangle ABC is the Wallace-
Simson line of the point antipodal to a vertex of triangle.
The side a (b, c) of the triangle is the vertex tangent of the
parabola from the pencil of parabolas, that as its focus has
the antipodal point to the vertex A (B, C, respectively).

Remark 2 In the given pencil of parabolas there are three
parabolas degenerated into three pairs of points, the vertex
A (B, C) of the triangle and the point at infinite of the line
a (b, c, respectively). The altitudes of the triangle ABC are
the vertex tangents of three degenerated parabolas, from a
pencil {a,b,c}, respectively they are Wallace-Simson lines
of triangle vertices.

The following theorem is the direct consequence of Theo-
rems 2 and 3.

Theorem 4 Let the pencil of parabolas touching three
lines {a,b,c} be given. The envelope of the vertex tangents
of the parabolas from the pencil is the Steiner deltoid curve
δ, (Figure 2).

Theorem 5 If {a,b,c} is the pencil of parabolas touching
three lines a, b, c, then the envelope of the axes of parabo-
las from the pencil {a,b,c} is a deltoid curve α, that is
the dilation image of the Steiner deltoid curve δ, with the
center of dilation at the centroid T and a scale factor of -2.

Proof. Let F be an arbitrary chosen point belonging to the
circle k circumscribed to the triangle ABC, and w its asso-
ciated vertex tangent. When F moves around circle k, the
envelope of w is the Steiner deltoid curve denoted as δ. The
perpendicular line from F to vertex tangent w is the axes
o of the parabola with focus F , from the pencil {a,b,c},
(Figure 3). Let A1B1C1 be the anti complementary triangle
of ABC. The sides of the triangle A1B1C1 coincide with the
axes of the degenerated parabolas from the pencil {a,b,c}.
Furthermore, the deltoid curve α of triangle ABC coincides
with Steiner deltoid curve δ (vertex tangent deltoid curve)
of anti complementary triangle A1B1C1. The triangle ABC
is the dilation image of the anti complementary triangle
A1B1C1 about the centroid T with the factor of −1/2. We
can conclude that the deltoid curve α is the dilation image
of the deltoid curve δ, with the scale factor of -2. �

Figure 2 Figure 3
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Theorem 6 Let the pencil of parabolas touching three
lines {a,b,c} be given. All vertices in the pencil of parabo-
las {a,b,c} lie on the 4th order curve.

Proof. Let the triangle ABC be determined by lines a, b, c,
and let k be its circumscribe circle, F ∈ k. Let the intersec-
tion point of the vertex tangent w and the axis o be denoted
as T1. The point T1 is the vertex of one parabola from the
pencil {a,b,c}.
Let the envelop of the vertex tangent w, and the envelop
of the axis o be denoted as δ and α, respectively. We will
obtain a bijection between two 3rd class pencils of lines,
i.e. two deltoid curves δ and α. Each vertex tangent w of
deltoid curve δ is corresponding to the (perpendicular) line
o of deltoid curve α. According to Chasles’s theorem, this
correspondence will result in the 6th order curve, [5]. Since
the line at infinity as double tangent of one deltoid curve
is corresponding to the line at infinity as double tangent
of the other deltoid curve, the 6th order curve degenerates
into a quartic β and the line at infinity counted twice. The
quartic β touches the line at infinity at the absolute points.
Therefore, the line at infinity is an isolated double tangent
of three mentioned quartics α,β,δ. �

Remark 3 The quartic β passes through the vertices A,
B, C of the triangle. Vertices A, B, C of the triangle are

vertices of three degenerated parabolas from the pencil
{a,b,c}. In Figure 4 focus points of parabolas with ver-
tex tangents a, b, c are denoted as Fa, Fb, Fc. Vertex of the
same parabolas are denoted as Ta, Tb, Tc. At these points
the quartic β touches the sides of the triangle ABC.

Figure 4
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SAŽETAK

Generaliziramo arbelos i njegove Arhimedove kružnice
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1 Introduction

For a point O on the segment AB in the plane, the area sur-
rounded by the three semicircles with diameters AO, BO
and AB erected on the same side is called an arbelos. It
has lots of unexpected but interesting properties (for an
extensive reference see [1]). The radical axis of the in-
ner semicircles divides the arbelos into two curvilinear tri-
angles with congruent incircles called the twin circles of
Archimedes. Circles congruent to those circles are said
to be Archimedean. In this paper we generalize the arbe-
los and the Archimedean circles, and show the existence
of the generalized Archimedean circles covering the plane,
which is a generalization of the ubiquitous Archimedean
circles of the arbelos in [4].

The arbelos is generalized in several ways, the generalized
arbelos of intersecting type [7], the generalized arbelos of
non-intersecting type [6] and the skewed arbelos [5], [8].
For the generalized arbelos of intersecting type and non-
intersecting type, the twin circles of Archimedes are con-
sidered in a general way as Archimedean circles in aliquot
parts. But Archimedean circles are still not given except
them. In this paper we unify the two generalized arbeloi
with one more additional generalized arbelos.

2 The collinear arbelos

In this section we generalize the arbelos and the twin cir-
cles of Archimedes to a generalized arbelos. For two points
P and Q in the plane, (PQ) denotes the circle with diameter
PQ. Let P and Q be point on the line AB, and let α = (AP),
β = (BQ) and γ = (AB). Let O be the point of intersection
of AB and the radical axis of the circles α and β and let
u = |AB|, s = |AQ|/2 and t = |BP|/2. We use a rectangular
coordinate system with origin O such that the points A, B
have coordinate (a,0), (b,0) respectively with a− b = u.
The configuration (α,β,γ) is called a collinear arbelos if
the four points lie in the order (i) B, Q, P, A or (ii) B, P, Q,
A, or (iii) P, B, A, Q. In each of the cases the configura-
tion is explicitly denoted by (BQPA), (BPQA) and (PBAQ)

respectively. (BQPA) and (BPQA) are the generalized ar-
belos of non-intersecting type and the generalized arbelos
of intersecting type respectively.

Let (p,0) and (q,0) be the coordinates of P and Q respec-
tively. Since the point O lies on the radical axis of α and
β, the powers of O with respect to α and β are equal, i.e.,
ap = bq holds. Hence there is a real number k < 0 such
that b = ka and p = kq. Therefore we get

ta + sb = tq + sp = 0. (1)
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For points V and W on the line AB with x-coordinates v
and w respectively, V ≤ W describes v ≤ w, and PW de-
notes the perpendicular to AB passing through W . The part
(i) of the following lemma is proved in [3]. The proof of
(ii) is similar and is omitted (see Figure 1).

Lemma 1 The following circles have radii |AW ||BV |/(2u)
for points V and W on the line AB.
(i) The circles touching the circles γ internally, (AV ) exter-
nally and the line PW from the side opposite to the point B
in the case B ≤V ≤ A and B ≤W ≤ A.
(ii) The circles touching γ externally, (AV ) internally and
PW from the side opposite to the point A in the case
V ≤ B ≤W ≤ A.

γ

B V

V W A

A

γ

B

W

Figure 1: Circles of radii |AW ||BV |/(2u).

For collinear arbeloi (BQPA) and (BPQA), δα is the circle
in the region y > 0 touching the circles γ internally, α ex-
ternally and the line PO from the side opposite to B. For
a collinear arbelos (PBAQ), δα is the circle in the region
y > 0 touching γ externally, α internally and PO from the
side opposite to A. The circle δβ is defined similarly (see
Figure 2).

Theorem 1 For a collinear arbelos (α,β,γ), the circles δα
and δβ are congruent with common radii st/(s+ t).

Proof. If (α,β,γ) = (PBAQ), by (ii) of Lemma 1 and (1)
the radius of δα is

|AO||BP|
2u

=
a(b− p)

2(a−b)
=

a(−ta/s+ tq/s)
2(a + ta/s)

=
st

s+ t
.

Similarly the radius of δβ is equal to st/(s+ t). The other
cases are proved similarly. �

We now call the circles δα and δβ the twin circles of
Archimedes of the collinear arbelos. Circles congruent
to the twin circles are called Archimedean circles of the
collinear arbelos.

APOQB

γ
δα

δβ

α

β

AOB

γ

α

β

P Q

δα
δβ

δα δβ

OP AB Q

γ

α
β

PO

Figure 2: The circles δα and δβ.

3 A pair of Archimedean circles generated
by a point

We use the following lemma [4], which is easily proved by
the properties of similar triangles.

Lemma 2 For a triangle RGH with a point S on the seg-
ment GH, let E and F be points on the lines RG and RH
respectively such that SERF is a parallelogram. If T and
U are points of intersection of RS with the lines parallel to
GH passing through E and F respectively and g = |GS|,
h = |HS|, then |ET | = |FU |= gh/(g + h).

Theorem 2 For a collinear arbelos (α,β,γ), let R be a
point which does not lie on the line AB, and let E and F
be points on the line AR and BR respectively such that EP
and FQ are parallel to BR and AR respectively. If the lines
passing through E and F parallel to AB intersect the line
OR at points T and U respectively, the circles (ET ) and
(FU) are Archimedean.

Proof. Let EP and FQ intersect the line OR at points S
and S′ respectively (see Figures 3, 4, 5). The triangles
RAO and S′QO are similar. Also the triangles RBO and
SPO are similar. While |QO|/|AO|= |PO|/|BO| for O lies
on the radical axis of the circles α and β. Therefore the
ratios of the similarity of the two pairs of the similar tri-
angles are the same. Hence |S′O|/|RO| = |SO|/|RO|, i.e.,
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S = S′. Let A′ and B′ be the points of intersection of the line
passing through S parallel to AB with the lines AR and BR
respectively. Then |A′S|= |AQ|= 2s and |B′S|= |BP|= 2t.
Therefore |ET |= |FU |= 2st/(s+ t) by Lemma 2, i.e., the
circles (ET ) and (FU) are Archimedean. �

A
O

B

R

E

S

F

A’B’

PQ

T

U

Figure 3

AB
O

R

E

F

P Q

S

U

T

A’B’

Figure 4

E
F

R

O

S

T

U

A’ B’

A

B
P Q

Figure 5

4 Ubiquitousness and parallelograms

However the word “ubiquitous” is used in the title of the
paper [2], their Archimedean circles do not cover the plane.
In this section, we show that our generalized Archimedean
circles of the collinear arbelos cover the plane.

Let (α,β,γ) be a collinear arbelos. If a point X does not lie
on the line AB, let Y and Z be points such that the midpoint
of YZ is X , −→Y Z and

−→
AQ are parallel with the same direction,

and |Y Z| = 2rA. Let R be the point of intersection of the
lines AY and OZ. Using the point R, let us construct a par-
allelogram SERF and a point T as in Figures 3, 4, 5. Then
(ET ) is an Archimedean circle with center X .

If a point X lies on the line AB, we choose a point X ′ lying
inside of the Archimedean circle with center X , so that X ′

does not lie on AB. If we use the point X ′ instead of X , and
construct the parallelogram SERF and the point T as in
Figures 3, 4, 5 just as mentioned above, the Archimedean
circle (ET ) with center X ′ contains X . Therefore there is
an Archimedean circle containing the point X in any case,
i.e., the Archimedean circles cover the plane. In this sense
our Archimedean circles are Ubiquitous.

However the five points A, B, P, Q and O are involved
in the construction of the Archimedean circles, the three
circles α, β and γ are not. Therefore it seems that the
Archimedean circles are not so closely related to the
collinear arbelos. But we can show that for a point R,
which does not lie on the line AB, the parallelogram SERF
in Figures 3, 4, 5 are constructed by the circles α, β and γ
(see Figure 6). Let the circle γ intersect the lines AR and
BR at points I and J respectively, and let AJ intersect α at
a point K and BI intersect β at a point L. Then KP and
JB are parallel, also LQ and IA are parallel. Therefore if
E , F , S are the points of intersection of the lines AR and
KP, BR and LQ, KP and LQ respectively, then SERF is a
parallelogram.

AQ

R

I

J

E

F

L

K

S

PB

Figure 6
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On the Certain Families of Triangles

On the Certain Families of Triangles

ABSTRACT

In the present paper, we study a set T = {T(r,d) : d ∈ R}
of the certain one-parameter families of triangles. The

traces of some triangle points within the set are analyzed

and described.

Key words: tangential triangle, hyperosculating circle,

pencil of conics

MSC 2000: 51N20, 51N15

O nekim familijama trokuta
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1 Introduction

The study of triangles and their families even nowadays at-
tracts many geometers. Various problems in connection to
the triangles and their families are studied in [1], [2], [3].
Nowadays, the use of modern geometry softwares (GeoGe-
bra, Cinderella, The Geometer’s Sketchpad . . .) enables the
dynamic geometric constructions which, in general, facili-
tate the analysis of the movement of the triangles, or some
triangle points, within the specified system.
When it comes to the families of triangles, there are many
ways to associate triangles with each other. One such is
defined in this paper generalizing the concept of the tan-
gential triangles.
Generally, given a triangle ∆A1A2A3, the triangle ∆T1T2T3
is said to be the tangential triangle if it is formed by the
lines tangent to the circumcircle of ∆A1A2A3 at its vertices.
Hereafter, we will use the term a tangential triangle in con-
nection to a circle. Hence, a triangle will be called a tan-

gential triangle to a given circle C iff it is formed by the
lines tangent to C . Naturally, given the circle, there are
∞3 such triangles. By adding some more elements into the
specified family, a one–parameter family of triangles is de-
fined in this paper. Furthermore, the connection between
the added elements and the given circle–tangent configura-
tion is studied.
Denoting by PG(2,R) the projective closure of R2, we al-
ways assume that PG(2,R) is embedded into its complex-
ification PG(2,R ⊂ C). Choosing the line at infinity f as
x3 = 0, the interchange between homogeneous and Carte-
sian coordinates in R2 is realized.

1.1 The family of triangles T(r,d)

Let a circle Φ(S,r) with radius r and one of its tangents t be
given. For d ∈ R a one–parameter family of triangles T(r,d)

is defined such that a triangle ∆ABC ∈ T(r,d) iff it satisfies
the following two properties:

F1) a triangle ∆ABC is tangential to the given circle
Φ(S,r),

F2) A,B ∈ t and d = ±|
−→
AB|.

Hence, as a segment of the fixed length d moves along the
tangent t, a triangle ∆ABC traversers a one–parameter fam-
ily T(r,d). This motion is continuous, but not rigid for the
remaining two triangle sides which are therefore continu-
ously changing.
Furthermore, by varying d a set T = {T(r,d) : d ∈ R} of
the triangle families is obtained in connection to the given
circle and its fixed tangent.
Fig. 1 shows two triangles ∆ABC and ∆BDE of the fam-
ily T(r,d) obtained for some d. The circle Φ is its ex– and
incircle, and they share the side and one vertex lying on
it. Altohough not necessary, it is convenient to introduce
an orientation onto the tangent t to ensure that the position
of only one vertex uniquely determines the remaining two
vertices.
Obviously, given a configuration of a circle Φ and tan-
gent t, the loci of many triangle points within two families
T(r,d),T(r,−d) ∈ T will coincide. This follows directly from
the geometric construction, since the loci of the triangle
centers within T(r,d) are symmetric with respect to the cir-
cle diameter perpendicular to the given tangent t, as it will
be shown later.
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Figure 1

Before we continue with the traces of some points within
triangle, let us focus onto some special triangles within a
family T(r,d) ∈ T. Following the similar approach as in [1],
the position of those triangles with respect to Φ and t will
play an important role in the determination of the traces of
the triangle points within the family. The special triangles
are degenerated triangle with one of the vertices lying on
the given circle Φ or at the infinity. Hereafter, let Q be the
contact point of Φ and t, and let t1 be the tangent of Φ par-
allel to t. We distinguish the following three types of the
special triangles within each family T(r,d):

S1) If one of the vertices lying on t coincides with Q, the
triangle degenerates into the segment of the length
d. In each family there are two such triangles.

S2) Furthermore, it is possible that two triangle sides,
having only one of the vertices on t, are parallel.
Then their intersection point lies at infinity and de-
termines the third vertex. The number of such tri-
angles within each family depends on the relation
between the given length d and the circle diameter
2r.
For if |d| > 2r, we have two such triangles, if |d| =
2r only one such triangle is possible, and for |d|< 2r
there are no real triangles satisfying this condition.

S3) If one of the points lying on t converges to the point
at infinity T∞ of the line t, then the intersection points
of the tangents drawn to Φ converges to the point V ,
the contact point of the circle Φ and its tangent t1
parallel to t.

Hence, in the first two cases we have the classes of special
triangles obtained by varying d within the set T. Interest-
ingly, in the case S3 only one such triangle remains fixed
within all families T(r,d).
The aim of this paper is to examine the traces of some tri-
angle points within the specified tangential families of tri-
angles. The results will be presented analytically and their
analysis will be provided by the use of the three classes
of degenerated triangles. Furthermore, the connection be-
tween the given elements and obtained curves is studied.

The constructions in this work are done by The Geome-
ter’s Sketchpad and the computations with Mathematica.

In the section 2 it will be shown that the specified tangen-
tial families, which are subject to the present paper, belong
to the special poristic families of triangles, [2]. The third
triangle vertex lies on the conic which hyperosculates the
given cirlce Φ at the point V . Since the triangle vertices
are running on a singular cubic curve while the three lines
spanned by the respective vertices envelope a circle, the tri-
angles within a family T(r,d) are triangles with a certain cir-
cumscribed degenerated cubic curve (a conic section and
line t) tangential to the given circle Φ.

2 The locus of C

Naturally, we will start with the locus of the third triangle
vertex, not lying on the tangent t. For d ∈ R, let a familiy
T(r,d) ∈ T be given.

Without loss of generality we can assume that the circle Φ
and the tangent t are given by the equations

Φ : x2 + y2 = r2, t : y = −r. (1)

Let ∆ABC ∈ T(r,d). Aiming at parametrization of the third
vertex C, not lying on the given tangent t, let us denote the
vertex A of ∆ABC by Aλ given by Aλ(λ,−r), λ ∈ R.

The third vertex Cλ is uniquely determined as the inter-
section point of the tangents drawn from Aλ and Bλ =
(λ + d,−r) to the given circle Φ. Its homogeneous co-
ordinates depend on the the parameter λ and reads

Cλ =
(

r2(2λ + d) : r
(

λ(λ + d)− r2) : λ(λ + d)+ r2
)

. (2)

Thus, the one–parameter family of triangles T(r,d) is de-
scribed with λ as well, i.e. T(r,d) = {∆λABC : λ ∈ R}.

Our first goal is to describe the locus curve Γd of the vertex
C which obviously lies on some conic. Note that Γd is sym-
metric with respect to the circle diameter perpendicular to
t. For verifying that, let (T∞) be the pencil of lines with ver-
tex T∞, T∞ ∈ t. Every line line qi ∈ (T∞) carries at most two
triangle vertices of the family T(r,d). For, if Cλ ∈ qi, such
that ∆λABC ∈ T(r,d), then the triangle ∆−λ−dABC also lies
in T(r,d) having C−λ−d ∈ qi. Namely, if αi := ∠AλCλBλ,
then the locus of points where the circle Φ is seen un-
der the same angle αi is the concentric circle Φi(S, |SC|).
The intersection points of qi and Φi are the vertices Cλ
and C−λ−d . Furthermore, ∆λABC ∼= ∆−λ−dBCA and they
are symmetric with respect to the axis ot � S, ot ⊥ t (see
Fig. 2).
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Figure 2

For λ = − d
2 the vertex Cλ lies on ot , the both intersection

points of the line qi ∈ (T∞) and Φi coincide and the line qi
is the tangent to the conic Γd with the vertex C− d

2
. The as-

sociated triangle ∆− d
2
ABC ∈ T(r,d) is an isosceles triangle.

Especially, for d = 2r such an isosceles triangle degener-
ates and one vertex coincides with the ideal point of the
axis of symmetry ot .
Before we derive an implicit equation of this curve let us
determine the coordinates of the vertices of the special tri-
angles given with S1–S3. Hence, we get for λ ∈ {0,−d}
the vertices C0 = (d,−r) and C−d = (−d,−r) lying on the
tangent t. From (2) the coordinates of the vertices Cλ lying
at infinity are given with λ = λ1 or λ = λ2 , where

λ1,2 :=
−d∓ τ

2
, τ :=

√

d2 −4r2. (3)

Thus, one distinguishes three cases depending on the num-
ber of triangles ∆ABC ∈ T(r,d) with the vertex C at infinity.
They all depend on the relation between the circle diame-
ter and given length d. Therefore, for the vertex C of the
triangle ∆ABC ∈ T(r,d), we have:

i) if d ≥ 2r, the two vertices Cλ1,2 =
(

τ : ∓2r : 0
)

are
lying on f and Γd is a hyperbola;

ii) if d = 2r, only one such vertex Cλ1 =Cλ2 = (0 : 1 : 0)
lies on f and Γd is a parabola;

iii) if d < 2r there are no real vertices on f and Γd is an
ellipse.

When λ →±∞, as a limiting point of (2) we get C →C∞ =
V = (0,r) ∈ Φ∩ t1, and the circle tangent t1 is given with

t1 : y = r, t1||t. (4)

The third case S3 determines one of the vertices V of the
conic Γd lying on the axis ot . The line t1 given by (4) is
then the common tangent of the conic Γd and given circle
Φ. It remains fixed for all tangential families of triangles
within the set T. For d �= 0, the point V is the only common
point of the conics Φ and Γd . A one–parameter family of
conics P = {Γd : d ∈R}, obtained by varying d, belongs to
the pencil of hyperosculating conics. We can see that this
pencil is uniquely determined with two of its conics, the
given circle Φ and the only degenerated conic within the
pencil, two coinciding lines t1.
Similar observations can be obtained by deriving the im-
plicit equation of the required locus of the vertex C(x,y)
of the triangle ∆ABC ∈ T(r,d) from (2). It turns out to be a
conic Γd given by

Γd : d2(y− r)2 −4r2(x2 + y2 − r2) = 0. (5)

For a given circle Φ and tangent t, all three types of hy-
perosculating conics Γd within the one–parameter family
P obtained by varying d are shown in Fig. 3.
Thus we have:

Theorem 1 Assume we are given a circle Φ(S,r), one of
its tangents t, and a segment AB of length d ∈ R lying on t.
The locus Γd of the vertex C such that ∆ABC ∈ T(r,d) is
contained in the pencil of conics hyperosculating Φ at V ,
where V /∈ t and ot := VS ⊥ t is the focal axis of Γd . The
length d serves as a parameter within the pencil.
The conic Γd is an ellipse, a parabola, or a hyperbola iff
|d| < 2r, |d| = 2r, or |d| > 2r.

Let us conclude this section with another formulation of
Theorem 1 which shows an interesting loci property of
conic:

Proposition 1 For given circle Φ the set of all points X
such that the tangents drawn to Φ cut at one of its fixed
tangent segments of equal length is a conic C that hyper-
osculates Φ.

3 Some locus curves

As a result of the similarity of the triangles ∆λABC and
∆−λ−dABC within the family T(r,d) = {∆ABC : λ∈R} ∈ T,
the traces of the triangle centers lie on the symmetric
curves with respect to the axis of symmetry ot perpendic-
ular to t. Many triangle points lie on the symmetric curves
as well but their axis of symmetry may not coincide with
ot .
In what follows the traces of one such triangle point (the
side midpoint) is analyzed, as well as the trace of one tri-
angle center, the triangle circumcenter.
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3.1 The midpoint MAC

Let d ∈ R and a tangential family T(r,d) ∈ T be given. For
∆ABC ∈ T(r,d), let the vertices A and B lie onto t. The
midpoints of the variable sides AC and BC trace the cor-
responding curves ΨAC

d and ΨBC
d . Since Γd ≡ Γ−d and

ΨAC
d ≡ ΨBC

−d , the curves ΨAC
d and ΨBC

d are symmetric with
respect to the axis ot . Thus, in what follows only the the
locus of the midpoints of the side variable side AC of the
triangle ∆ABC is given.
If the circle Φ and tangent t are given with (1), start-
ing with the special triangles within the family T(r,d) we
can easily calculate the midpoints MAC

−d = (−d,−r) and
MAC

0 = (d/2,−r) in the case S1, the midpoints Mλ1,2 =

Cλ1,2 = (τ : ∓2r : 0) in the case S2, and the midpoint
M∞ = T∞ = (1 : 0 : 0) lying at infinity and obtained as the
limiting point in the case S3.
Obviously, ΨAC

d is a symmetric cubic. For each line qi ∈
(T∞) let an involution in the pencil of lines (T∞) having the
lines t and qi for its double lines be given. Then there is the
line si ∈ (T∞) associated to the line f at infinity such that
the lines (t,qi; f ,si) are harmonically related (see Fig. 2).
Furthemore, in the previous section to the line qi of the
pencil (T∞) two triangles ∆λABC and ∆−λ−dABC are as-
sociated, if the vertices Cλ,C−λ−d are lying on it. Since
the midpoints MAC

λ and MAC
−λ−d are also symmetric with re-

spect to the axis ot , the midpoints MAC
−λ−d and MBC

−λ−d lying
on si ∈ (T∞) are at the distance d

2 , the midsegment length
of all tangential triangles within T(r,d). Thus, the midpoints
MAC

λ and MAC
−λ−d are symmetric with respect to the axis oM

parallel to ot and d(ot ,oM) = d
4 .

The obtained curve has a vertex lying on axis oM associ-
ated to the isosceles triangle when λ = − d

2 and it coor-
diantes are given with M− d

2
=

(

− d
4 , 4r3

τ2

)

∈ oM. The other
intersection point with the axis oM determines the double
point of the midpoint trace and reads Mλ3,4 =

(

− d
4 , r

2

)

for λ3,4 =
−d±

√
d2−12r2

2 . Therefore, the cubic ΨAC has a
cusp at Mλ3,4 exactly if d2 = 12r2. If d2 < 12r2, Mλ3,4 is an
isolated double point.
Furthermore, since the midpoint M∞ is the limiting point
in S3 for all d ∈ R as λ → ±∞, the line t0 ∈ (T∞) pass-
ing through M∞ is the common asymptote for the curves
ΨAC

d of the one–parameter family GAC = {ΨAC
d : d ∈ R}

obtained by varying d. Since (t,t1; f ,t0) are harmonically
related, it follows that t0 passes through the circle center S.
Thus, we have shown:

Theorem 2 The midpoint of the variable triangle side AC
such that ∆ABC ∈ T(r,d) lies on a rational symmetric cubic
ΨAC

d asymptotic to a line to which is parallel to the given
tangent t and passes through the circle center S.
It has a cusp at the double point if d2 = 12r2, a node if
d2 > 12r2 and an isolated double point if d2 < 12r2.

An elementary computation using the equations of the tri-
angle sides yields the homogenous coordinates of the tri-
angle midpoints MAC

λ as

MAC
λ

(

λ2(d + λ)+ (d + 3λ)r2 : −2r3 : 2
(

λ(λ + d)+ r2)
)

(6)
if the circle Φ and the tangent t are given by (1). The equa-
tion of the cubic parameterized by (6) in terms of Cartesian
coordinates reads

ΨAC
d : y3(d2−4r2)= r

(

d2y2 +r
(

2x(d+2x)−3r2
)

y+r4

)

.

(7)

The triangle family can be used for the parametrization
of the locus and also for solving some complex prob-
lems whose computation cannot be done in an acceptable
amount of time using computers. For example, the deter-
mination of the intersection points of the cubic Ψd and a
circle Φ follows easily using the properties of the isosce-
les triangles. The midpoint MAC

λ lies on the given circle Φ
precisely when it coincides with one of the point of tan-
gency of the inscribed (or escribed) circle Φ of the tri-
angle ∆ABC lying on the line AC. This is the case when
det(S,MAC

λ ,Bλ) = 0 where S is the center of Φ, i.e. when
λ satisfies the following equality λ3 · r + λ2 · dr + λ · r3 −
dr3 = 0. Hence, the cubic ΨAC

d touches the given circle Φ
once, or three times (see Fig. 3).

3.2 The circumcenter O

Again, for d ∈ R, let a family T(r,d) ∈ T be given. Fur-
thermore, let ϒd be the locus of the circumcenter Od

λ of a
triangle ∆λABC ∈ T(r,d). Since the circumcenter Od

λ can be
calculated as the intersection point of the perpendicular bi-
sectors of the sides AC and AB, if the circle Φ and tangent
t are given with (1), it yields

Oλ =
(

2r(d + 2λ)
(

λ(λ + d)+ r2) : λ2(λ + d)2 −

− r2
(

(λ + d)2 + λ2
)

−3r4 : 4rλ
(

(λ + d)+ r2) (8)

which parameterizes the rational symmetric quartic ϒd
with equation

ϒd :
(

4x2−8r ·y−(d2 +4r2)
)2

= 16r2(d2 +4(r+y)2) (9)
Similar observations can be provided by the use of the tan-
gential family T(r,d) as well as the further analysis of the
obtained curve.
Using the special triangles within the family we get the fol-
lowing. To the degenerated triangles ∆−dABC and ∆0ABC
in S1 the circumcenters O0 =

( d
2 ,− 1

4r (d
2 + 3r2)

)

and
O−d =

(

− d
2 ,− 1

4r (d
2 + 3r2)

)

are associated lying at the
perpendicular bisectors of the segment AB. They are sym-
metric with respect to the axis of symmetry ot .
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In S2, we get the circumcenters Oλ1 = Oλ2 = O∞ = (0 : 1 :
0), where λ1 and λ2 are given with (3), coinciding with the
ideal point O∞ of ot . It is the cuspidal point of a quartic if
d2 = 4r2, the nodal point if d2 > 4r2 and the isolated point
if d2 < 4r2. In the case S3, as λ converges to the infinity,
the circumcenter converges to the point O∞ as well. Thus,
it is actually the triple point of ϒd belonging also to the cir-
cumcenter of the special triangle ∆∞ABC at which the line
f touches the obtained symmetric quartic.
We can state:

Theorem 3 The circumcenter Od of the triangle ∆ABC ∈
T(r,d) lies on a rational symmetric quartic ϒd with a triple

point at infinity. It is the cuspidal point if d2 = 4r2, the
nodal point if d2 > 4r2 and the isolated point if d2 < 4r2.
One of the tangents at the quartic triple point is the infin-
ity line, while the other two are perpendicular to the given
tangent t.

Fig. 4 displays some conics Γd of the one–parameter fam-
ily P = {Γd : d ∈ R} and associated quartics ϒd belong-
ing to the one–parameter family O = {ϒd : d ∈ R}. Those
curve appear as traces of a circumcenter and vertex of a
tangential triangle ∆ABC within the family T(r,d) associ-
ated to the given circle Φ and its tangent t for some real
number d.
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ABSTRACT

Horosphere is surface in hyperbolic space that is isomet-

ric to the Euclidean plane. In order to correctly visualize

hyperbolic space we embed flat computer screen as horo-

sphere and investigate geometry of central projection of

hyperbolic space onto horosphere. We also discuss real-

ization of hyperbolic isometries. Corresponding algorithms

are implemented in Mathematica package L3toHorospere.

We briefly present the package and obtain some interesting

pictures of hyperbolic polyhedra.

Key words: hyperbolic space, horosphere, central projec-

tion

MSC 2000: 00A66, 51M10

Centralna projekcija hiperbolǐckog prostora na

horosferu

SAŽETAK

Horosfera je ploha u hiperboličkom prostoru izometrična

euklidskoj ravnini. Kako bismo vjerno prikazali hiper-

bolički prostor, ravni ekran smjestili smo kao horos-

feru, a zatim istraživali geometriju centralnog projici-

ranja hiperboličkog prostora na horosferu. Takoder smo

proučavali realizaciju izometrija hiperboličkog prostora.

Odgovarajući su algoritmi implementirani u Mathematica

paketu L3toHorospere. Dan je kratak prikaz tog paketa i

dobivene su zanimljive slike hiperboličkih poliedara.

Ključne riječi: hiperbolički prostor, horosfera, centralna

projekcija

Introduction

Hyperbolic geometry (or geometry of Bolyai -
Lobachevskii) is together with spherical geometry the
simplest “curved” geometry. Hyperbolic plane, usually
denoted by H2, is usually visualized using various mod-
els of hyperbolic plane. Poincaré disk, Klein disk and
half-plane model are the best known models of hyperbolic
plane.

In the Figure 1, obtained using Mathematica package [10],
the red triangle, together with three triangles obtained by
reflection with respect to its edges are shown in those three
models. Note, that in all pictures, all four triangles are mu-
tually congruent in hyperbolic plane. A region of hyper-
bolic plane is not isometric to a region of “flat”, Euclidean
plane. This means that it is not possible to represent, with-
out distortions, a region of hyperbolic plane on a flat com-
puter screen.

-1 0 1 2 3

1

2

3

4

Figure 1: The same objects in various models of hyperbolic plane
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Therefore, hyperbolic metric of model is not inherited from
the Euclidean plane: distances become infinitely big near
absolute (unit circle in the first two models and x-axis in
the third model). Although to our eyes the absolute is fi-
nite, it represents infinity of the hyperbolic plane.

For hyperbolic space H3 there exist analogous models:
Poincaré ball, Klein ball and half-space model. Two ap-
proaches for visualization of the hyperbolic space have
been used so far, and both approaches at least in one in-
stance use some model.

The first is to represent a geometrical object in somemodel
of hyperbolic space in R3 and then to project it onto com-
puter screen by standard central projection of R3. This
approach was used in the famous movie Not knot ([6]).
This is also used a popular way of visualizing large graph
objects and the structure of world wide web (see [7] and
others). Probably the most famous visualizations of hyper-
bolic space so far are done by J. R. Weeks ([11, 12]) and
use this approach.

The second approach is to fix a hyperbolic plane H2 in hy-
perbolic space L3, project the space onto H2 by means of
central projection in L3 and finally visualize the plane H2

using some model on the computer screen. In the master
thesis [1] the author develops ray tracing algorithm for hy-
perbolic space and uses this approach for visualization.

In this paper we take a different approach. We wonder:
how would hyperbolic space look like to us, if we were
there? Equivalently, in terms of computer graphics: how
would the picture look like if we isometrically embed our
flat computer screen into H3, project the hyperbolic space
on the screen by means of central projection in H3 and then
watch the picture on the screen without any distortions and
models?

The mathematical answer was well known to very founders
of hyperbolic geometry: there is a peculiar surface in
H3, called horosphere, which is isometric to Euclidean
plane. Therefore, if we isometrically embed a flat, Eu-
clidean screen in hyperbolic space it may become a part of
horosphere. In this paper we discuss necessary mathemat-
ical background regarding central projection of hyperbolic
space onto horosphere, as well as, isometric transforma-
tions of the hyperbolic space. The final result is Mathe-
matica package L3toHorosphere that allows visualization
of H3 by means of central projection onto horosphere and
also visualization of hyperbolic motions. Using this pack-
age many interesting pictures and animations are obtained
(see [3]).

On our request, Prof. Emil Molnár informed us that Prof.
Imre Juhász (the head of Department of Descriptive Ge-
ometry of the University of Miskolc) dealt with a similar

topic in his awarded Scientific Student Circle (OTDK) pa-
per (in 1979) and in his diploma work (1978) at the Debre-
cen University, without any scientific publication on this
topic, later on.
It is also worth mentioning that methods of Descriptive
geometry in hyperbolic space have also been investigated
(see [8, 9]).
Description of hyperbolic isometries is mathematically
simple and found in many classical books, but when it
comes to practical implementation the paper [5] is usually
used. In this work we briefly cover this topic using slightly
different approach that someone may find easier to under-
stand.
The paper is organized as follows. In the first section we
give a brief overview of models of hyperbolic space. In the
second section we study horosphere and central projection
onto horosphere. The third section is devoted to imple-
mentation of isometries of hyperbolic space. In the fourth
section we give some examples of projections and anima-
tions obtained using package L3toHorosphere. In the last
section we compare various approaches in visualizing hy-
perbolic geometry and give some ideas for future work.
Authors would like to thank Prof. Emil Molnár for use-
ful discussions and for careful reading which significantly
improved the final version of the paper.

1 Models of hyperbolic space

1.1 Klein ball and projective model

Klein ball model {P(x,y,z) |x2 + y2 + z2 < 1} is interior of
unit sphere in R3. The unit sphere is absolute of this model.
This means that points of unit sphere represent points in in-
finity of the hyperbolic space. Hyperbolic lines and planes
are parts of Euclidean lines and planes. The distance be-
tween points P and Q is given by the formula

d(P,Q) =
1
2

log
|QA||PB|
|PA|QB|

, (1)

where A and B are endpoints of the chord containing P and
Q and | · | denotes the Euclidean distance.
Klein ball model is closely related to Klein projective
model or pseudosphere model. Namely for point P(x,y,z)
from the Klein model, one can consider homogenous co-
ordinates P(x : y : z : 1). There are unique coordinates
P̄(x1,x2,x3,x4) representing the same point and satisfying
the relation

−x2
1 − x2

2 − x2
3 + x2

4 = 1, x4 > 0. (2)

This means that one can regard hyperbolic space as pseu-
dosphere (2) in Minkowski vector space R(3,1), with inner
product · given by matrix J = diag(−1,−1,−1,1).
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It is interesting that formula (1) for distance translates into

d(P,Q) = cosh−1(P̄ · Q̄),

where P̄(x1,x2,x3,x4) and Q̄(y1,y2,y3,y4) are coordinates
of these points. Therefore, the isometries of Klein projec-
tive model are those projective transformations that pre-
serve the pseudosphere, i.e. the inner product given by
matrix J. The importance or this model is its linear nature:
the lines and planes are linear and isometries are repre-
sented as multiplication of vectors by 4× 4 matrices that
belong to classical linear group SO(3,1).

1.2 Half-space model

Half-space model consists of all points P(x,y,z) from R3

satisfying the relation z > 0. The plane z = 0 is absolute
of this model. Hyperbolic lines are half-circles orthogonal
to the absolute (i.e. with center on the absolute and lying
in a plane orthogonal to the absolute) and Euclidean rays
orthogonal to the absolute. Planes of this model are half-
spheres and half-planes orthogonal to the absolute. To be
mathematically correct, we add single infinite point P∞ to
R3. This point compactifies R3 to sphere S3 whereas the
absolute z = 0 becomes two-dimensional sphere, like ab-
solute in the other two models. Each plane and each line
in R3 can be regarded as sphere and circle, containing P∞.
The distance in this model is best described using the met-
ric tensor

ds2 =
dx2 + dy2 + dz2

z2 . (3)

The isometries are compositions of reflections and inver-
sions with respect to hyperbolic planes. We are interested
in half-space model since the horosphere has its simplest
representation in this model, as we show in the sequel.

1.3 Poincaré ball model

Poincaré ball model {P(x,y,z) |x2 + y2 + z2 < 1} is the in-
terior of unit sphere in R3. The unit sphere is absolute of
this model. Hyperbolic Lines are parts of circles orthogo-
nal to the absolute and parts of lines orthogonal to the ab-
solute (i.e. passing through the origin). Hyperbolic planes
are parts of spheres orthogonal to the absolute and parts of
planes orthogonal to absolute. The metric tensor reads

ds2 =
dx2 + dy2 + dz2

(1− x2 − y2 − z2)2 .

The isometries are compositions of reflections and inver-
sions with respect to hyperbolic planes. The mapping

f (x,y,z) = (2(x,y,z))/(1 + x2 + y2 + z2) (4)

is isometry that maps point P(x,y,z) from Poincaré to
Klein model. Isometry between Poincaré ball model and
half-space model is simple composition of translations and
spherical inversion

g(x,y,z) =
1

x2 + y2 +(z−1)2 (4x,4y,2(1− x2− y2 − z2)).

(5)

2 Horosphere and the related central projec-
tion

2.1 Horosphere

Fix a point O on absolute and point M ∈ H3. Horosphere
(with center O containing point M) is set of images of point
M in reflections with respect to all planes containing O.
Note that, if O is finite point and M′ is image of M then
OM is congruent to OM′ and the horosphere is hyperbolic
sphere with center O. Therefore, one may think of horo-
sphere as of sphere with center in infinity.
From construction of horosphere it follows that all horo-
spheres are mutually congruent in H3. We want to find the
the simplest one in some model. Consider point P∞ of the
half-plane model as center of horosphere, and any finite
point M(x0,y0,z0) of that model. All hyperbolic planes
through P∞ are exactly all Euclidean half-planes orthog-
onal to the absolute z = 0. Therefore, all images M′ of
M have the same z−coordinate and the horosphere is the
plane z = z0. Note that this special horosphere touches the
absolute in point P∞. Since isometries are compositions
of inversions and reflections, all horospheres of half-space
model are Euclidean spheres that touch the absolute in its
center, or planes parallel to the absolute.
From the isometries (4) and (5) between models we con-
clude that horospheres in Poincaré ball model are spheres
touching the absolute in their center and in Klein ball
model ellipsoids touching the absolute. The most simple
horosphere z = z0 in half-space model has restriction of
the metric tensor (3) equal to

ds2 =
dx2 + dy2

z2
0

,

showing that the horosphere is isometric to the Euclidean
plane, up to a scale. Since in this case the isometry between
horosphere and Euclidean plane is given by the imbedding
itself, the setup consisting of half-space model and horo-
sphere z = z0 is the one we use for implementation of the
central projection.
Reparameterizing, one can write metric (3) in the form:

ds2 = e
2t
k

(

dx2 + dy2)+ dt2,
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where k > 0 is the the curvature constant (in our case
k = 1). This is so called horospherical coordinate system
of the hyperbolic space H3 , which consists of “concen-
tric” horospheres, parameterized by the real line, t ∈ R.
In each horosphere we have Euclidean plane coordinates
(x,y). This was the basic idea for distancemeasure of János
Bolyai in his absolute geometry (in nowadays formulation,
Lobachevskii distinguished the non-Euclidean case from
the beginning), introduced without any model.

2.2 Central projection onto horosphere

We have shown that we can embed flat computer screen
into hyperbolic space as a part of horosphere. What would
an observer see on the screen if he is in the hyperbolic
space? In any geometry, light ray carrying visual infor-
mation from the object to the eye of the observer travels
along geodesic, i.e. along straight line of that geometry.
Klein model is the the easiest to sketch, since the hyper-
bolic lines of that model are parts of Euclidean lines. If we
place the observer O outside the horosphere (see Figure 2,
left) some points cannot be projected (point N) while oth-
ers have two possible projections along the light ray (point
M). On the other hand, if we place the observer inside the
horosphere (see Figure 2, right) the projection is well de-
fined for all points of hyperbolic space. For this reason, we
chose that observer is inside the horosphere, although it is
possible to consider the other case.

Figure 2: Observer outside and inside the horosphere.
In the half-space model, the point O(x,y,z) is inside the
horosphere z = z0 if the condition z > z0 holds. Particu-
lar coordinates of point O doesn’t matter, so we can chose
O(0,0,ω), ω > z0.

Note that all points of half-space model are projected into
finite points of horosphere z = z0, except points M of the
form M(0,0,z),z > ω that are projected into point P∞, the
infinite point of the horosphere (i.e. screen).

2.3 Central projection of hyperbolic line segment

In order to visualize polyhedra in hyperbolic space we have
to understand the projection of hyperbolic line segment.

The line segment is projected into intersection of horo-
sphere and the hyperbolic plane determined by the center
of projecection O and the segment. For our purposes it is
sufficient to consider half-space model, horosphere z = z0
and the point O(0,0,ω),ω > z0.

Recall that hyperbolic line segment is either Euclidean seg-
ment orthogonal to the absolute or circular arc orthogonal
to the absolute. The following cases are possible:

1. If hyperbolic segment is circular arc AB then hyper-
bolic plane containing A,B and O is half-sphere. The
projection of the segment belongs to intersection of
the half-sphere and the horosphere. It is circular arc
A′B′ in horosphere z = z0 (see Figure 3).

2. If hyperbolic segment is an Euclidean segment AB
orthogonal to absolute then the hyperbolic plane
OAB is Euclidean half-plane. The central projection
of segment AB is

a) Euclidean segment A′B′ if segment AB have no
common point with z−axis above O (that is
point (0,0,z),z > ω;

b) Euclidean ray starting from A′ if B is of form
B(0,0,z),z > ω. This ray belongs to the inter-
section line of α and horosphere;

c) Two disjoint Euclidean rays starting from A′

and B′ and belonging to the intersection line of
α and horosphere. This happens if segment AB
has one inner point of the form (0,0,z),z > ω;

d) Empty set if segment AB is contained in the set
{(0,0,z) |z > ω}.

Figure 3: Central projection of hyperbolic line segment.

Note that that there are two circular arcs in horosphere
z = z0 with endpoints A′ and B′. Therefore, to determine
uniquely the projection of segment AB we need the pro-
jection C′ of some point C belonging to the segment AB.

Similar holds for Euclidean ray with the endpoint A′.
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2.4 Visibility

We assume that polyhedra consists of faces that are not
transparent. Therefore, not all vertices and edges are visi-
ble from the center of projection O. We may draw nonvis-
ible edges as dashed lines to improve spacial understand-
ing of the polyhedra (see for example Figure 5). Visibil-
ity in Klein ball model coincides with Euclidean visibility.
Therefore, to determine the visibility one can use the stan-
dard algorithms from R3.

In reality, the human eye sees the part of scene that is inside
the cone of vision. In computer graphics this translates into
clipping. In this work we don’t mind about cone of vision
and consider mathematical central projection of polyhedra,
i.e. we project points at the front, as well as, at the back of
the observer. However, in our package [4] there is an op-
tion to draw the circle that separates front and back of the
observer. That circle is the intersection of half-sphere with
center (0,0,0) and radius ω and horosphere z = h < ω.

In Figure 11 (a) this is the black circle. The observer is
inside the blue cube, so all its edges are visible, but some
part of the cube is in the front and some part is in the back
of the observer.

3 Isometries of hyperbolic space

The isometries of hyperbolic space are mathematically
well known. The fastest and most elegant way to imple-
ment the isometries is to represent them as 4× 4 matrices
that are applied to column vectors of homogenous coordi-
nates of points in Klein projective model. The homogenous
coordinates are of the form P(x1 : x2 : x3 : x4), where ho-
mogeneity means that coordinates (λx1 : λx2 : λx3 : λx4),
for each λ �= 0 represent the same point.

As explained in Subsection 1.1 the isometries of Klein
model belong to linear group SO(3,1). They are linear
mappings preserving Minkowski inner product, i.e. ma-
trix A of an isometry satisfies AT JA = J, where J =
diag(−1,−1,−1,1) is diagonal matrix of the inner prod-
uct. Any hyperbolic isometry is composition of less than
four reflections with respect to hyperbolic planes. In this
review we don’t want to exhaust all isometries, so we
present only isometries that are composition at most two
plane reflections.

3.1 Reflection with respect to plane (or point)

Plane in the Klein projective model is represented by hy-
perplane in the vector space R(3,1), so it has an equation

α1x1 + α2x2 + α3x3 + α4x4 = 0

The plane has normal vector nα = (α1 : α2 : α3 : −α4)
T

with respect to the inner product given by matrix J. One
can show that the reflection Sα with respect to the plane α
has the matrix

S[nα] = I4 −2
nαnα

T J
nαT Jnα

, (6)

where I4 is 4× 4 identity matrix. It is important to note
that the numerator nαnT

αJ is 4× 4 matrix, while denomi-
nator nT

αJnα is squared norm of vector nα and therefore a
number. Vector nα is considered column, while nT

α is row
vector.

Figure 4: Cube and its reflections.

The Figure 4 shows consecutive reflections of the blue
cube with respect to the opposite faces (red cubes).

One can show that reflection S[P] with respect to point
P(x1 : x2 : x3 : x4) is given by the matrix

S[P] = I4 −2
PPT J
PT JP

,

which uses the same formula as the reflection 6 with re-
spect to hyperplane. The reflection S[P] is formally de-
fined as composition of three reflections S[γ] ◦ S[β] ◦ S[α]
with respect to three mutually orthogonal planes α,β and γ
that intersect in the point P.

The Figure 5 represents the red cube and its reflection with
respect to its vertex.

Figure 5: Central reflection of a cube.
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3.2 Translation

Translation is composition S[β] ◦ S[α] of two reflections
with respect to hyperparallel planes α and β, i.e. the planes
that have common normal line n, (that line is unique in hy-
perbolic geometry). If A and B are intersections of n with
α and β, respectively, we call it translation from A to B
and denote it T [AB]. Note that T [AB] is not translation by
vector AB, since the notion of vector is not possible to de-
fine in hyperbolic geometry. Many other properties of hy-
perbolic translation are quite different from its Euclidean
counterpart. For example, we have T [AB](A) = B and if
T [AB](M) = N then hyperbolic segments AB and MN are
not congruent if M �= A. Moreover, the relation AB ≤ MN
always hold.
This is illustrated in Figure 6 which represent translation
of a cube along its edge, i.e. form one vertex to another.
Unlike in the Euclidean case, the face of the cube is not
translated to the opposite face.

a

b

Figure 6: Central projection of cube and its translate.
To find matrix of translation denote by C the hyperbolic
midpoint of segment AB. One can show that T [AB] =
S[β]◦S[α] = S[C]◦ S[A] and hence its matrix is product of
known matrices:

T [AB] = S[C]S[A].

To find the hyperbolic midpoint C of the segment AB one
can use the formula:

C = A
√

(BT JB)(AT JB)+ B
√

(AT JA)(AT JB).

Figure 7: Dodecahedron and its translates.

3.3 Rotation

Hyperbolic rotation is composition R[p,φ] = S[β]◦S[α] of
two reflections with respect to planes that intersect along
axes of rotation, the line p = α∩β, and the angle between
α and β equals φ

2 . From formula (1) it follows that Eu-
clidean rotations that fix the origin O(0,0,0) are also hy-
perbolic rotations. The consequence is that the angles in
the origin of the Klein ball model are the same as Euclidean
angles (this doesn’t hold for any other point of Klein ball
model). Therefore, to perform the rotation about line p,
translate p to the origin, rotate around translated line p′ as
Euclidean rotation and finally translate back. To be more
specific, if Q ∈ p is any point of p, then R[p,φ] is given by
the matrix:

R[p,φ] = T [OQ]◦R[p′,φ]◦T [QO],

where homogenous coordinates of the origin are O(0 : 0 :
0 : 1), p′ = T [QO][p], and R[p′,φ] is 4×4 matrix

R[p′,φ] =

(

RE [p′,φ] 0
0 1

)

.

Here we denote by RE [p′,φ] the 3×3 Euclidean matrix of
rotation around Euclidean line p′ by angle φ.

Figure 8: Consecutive rotations of regular octahedron.
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3.4 Limit rotation

The limit or horocyclic rotation is probably the most in-
triguing isometry of hyperbolic plane, since it doesn’t ex-
ist in Euclidean geometry. Limit rotation is composition
S[β]◦S[α] of two reflections with respect to parallel hyper-
bolic planes α and β, i.e. the planes with single common
point on the absolute.

Figure 9: Horocylic rotation in the Klein ball model.
We now describe general formulas of limit rotation. Note
that parallel planes α and β in Klein ball model are parts of
Euclidean planes α and β that intersect along line q touch-
ing the absolute in point P(x0,y0,z0) (see Figure 9).
Planes α and β have normal vector of the form

Pcosφ+(q×P)sinφ = (a1(φ),a2(φ),a3(φ)),

for some φ = φα,φ = φβ. One can show that the normal
vector of these planes in R(3,1) in homogenous coordinates
is given by:

n(φ)= (a1(φ) : a2(φ) : a3(φ) : a1(φ)x0 +a2(φ)y0 +a3(φ)z0).

Now, the 4×4 matrix of the limit rotation S[β]◦S[α] is the
product S[n(φβ)]S[n(φα)] of their reflection matrices.
In the Figure 10 a horocyclic rotation is consecutive ap-
plied on the blue cube in both directions. One can imagine
that “small” cubes converge to a single point in infinity -
the center of horocyclic rotation. Of course, all the cubes
are congruent but the cubes further from the observer ap-
pear smaller.

Figure 10: Horocylic rotation applied on cube.

4 Mathematica package L3toHorosphere

Mathematica package L3toHorosphere has three main fea-
tures:

• central projection of hyperbolic polyhedra onto
horosphere;

• visualization of the polyhedra and its projection in
half-space model;

• realization of isometries of hyperbolic space.

Within the package, user can define any polyhedral surface
in hyperbolic space by defining its faces (as lists of ver-
tices) and vertices (using coordinates in any model). The
polyhedral surface than can be repositioned using various
hyperbolic isometries. Finally, the projection of the poly-
hedral surface onto horosphere can be obtained (see figures
from Section 3).

a

b

Figure 11: Observer inside a cube: a) projection,
b) situation in the half-space model.

To achieve better understanding of what’s going on, user
can also visualize the polyhedral surface and its projection
onto horosphere in the half-space model (see Figure 11).
Visibility is implemented only for convex polyhedra with-
out boundary.
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Now we only list the functions implemented in the pack-
age. Some functions have options that can be obtained us-
ing command Options[function]. More details can be
found in the user guide file that is delivered with the pack-
age [4].

drawProjection[ω, k, vert, faces, options]
- project polyhedra given by faces and vertex coor-
dinates vert from point O(0,0,ω) onto horosphere
z = k,ω > k.
modelHS[ω, k, vert, faces, options] - in
half-space model draws polyhedra given by faces
and vertex coordinates vert and its central projection
from point O(0,0,ω) onto horosphere z = k,ω > k).
reflect[nVector] - returns 4×4matrix of reflection
with respect to plane α with normal vector nVector.
The normal vector is given in homogenous coordinates,
i.e. is list of 4 numbers.
reflect[P] - returns 4× 4 matrix of reflection with
respect to point P given in homogenous coordinates.
translate[A,B] - returns 4× 4 matrix of translation
from A to B.

rotate[A,B][φ] - returns 4×4 matrix of rotation by
angle φ around line AB.

limitRotate[P][p][φ] - returns 4 × 4 matrix of
limit rotation by “angle” φ �= π

2 (modπ) around line
with direction p and containing unit point P (P orthog-
onal to p). The points P and p are given in the form
(x,y,z).
Klein2HS[pt] - converts Klein projective point pt of
form (x1 : x2 : x3 : x4) to half-space model.
HS2Klein[pt] - converts half space point pt of the
form (x,y,z),z > 0 to Klein projective point.
m[A,B] - returns midpoint of segment AB. All points
are in Klein projective coordinates (x1 : x2 : x3 : x4).

normalVector[pt1, pt2, pt3] - returns projective
normal vector of plane determined by three points. All
points are in Klein projective coordinates (x1 : x2 : x3 :
x4).

edges[faces] - returns edges of polyhedra with faces
given by faces.

5 Conclusion and future work

The main advantage of our horosperical projection are re-
alistic images of hyperbolic space. As in Euclidean central
projection, closer objects appear larger. Furthermore, we
don’t use models of particular parameterizations - our pro-
jections are geometrically invariant and represent what flat
Euclidean eye would really see in the hyperbolic space.
All other approaches “cheat” in some way. The inevitable
drawback of our approach is that projection of hyperbolic
segment, in generic case, is circular arc that is complex to
render. However, this is not heavy task for modern com-
puters.

The sum of the angles in a hyperbolic triangle is strictly
less than π. Therefore, when sketching hyperbolic objects
we usually draw them to be curved concave. However, the
projections we get in this paper are curved convex, what
may bother someone’s intuition. It is interesting that if the
observer is placed outside the horosphere (first picture in
Figure 2) the projections become curved concave. The Fig-
ure 12 (a) shows projection of a cube obtained using this
approach.
It would be interesting to implement horosperical central
projection of hyperbolic space in some more efficient pro-
gramming language than Mathematica. This would allow
us rendering of more complex hyperbolic scenes and prob-
ably lead to very interesting and unusual pictures. How-
ever, we are of opinion that even basic Mathematica pack-
age [4] we developed, can be very useful for better under-
standing of hyperbolic geometry and can be used as a good
starting point for more complex visualizations.
One of classical scenes is Figure 12 (b), from video Not
knot ([6]), used to cover many mathematical books. It rep-
resents tiling of hyperbolic space with regular dodecahe-
drons. This classic idea is common inspiration in math-
ematical art and jewelry making (see [2]). The natural
question is to see regular hyperbolic tilings rendered using
horospherical central projection.

a

b
Figure 12

Another interesting topic is stereoscopic vision of hyper-
bolic scenes investigated in the paper [11]. Our prelimi-
nary testing, surprisingly, gave positive results, i.e. the hu-
man visual system seems to be able to “see” in hyperbolic
space.
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ABSTRACT

In [9] and [10] we have studied the regular prisms and prism

tilings and their geodesic ball packings in S̃L2R space that

is one among the eight Thurston geometries. This geom-

etry can be derived from the 3-dimensional Lie group of

all 2×2 real matrices with determinant one.

In this paper we consider the regular infinite and bounded

square prism tilings whose existence was proved in [9]. We

determine the data of the above tilings and visualize them

in the hyperboloid model of S̃L2R space.

We use for the computations and visualization of the S̃L2R
space its projective model introduced by E. Molnár.

Key words: Thurston geometries, S̃L2R geometry, tiling,

prism tiling
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O popločavanju pravilnim kvadratskim prizmama

u prostoru S̃L2R
SAŽETAK

U [9] i [10] smo proučavali pravilne prizme, popločavanje

prizmama te njihovo popunjavanje geodetskim kuglama

u prostoru S̃L2R, koji je jedan od osam Thurstonovih

geometrija. Ova se geometrija može dobiti iz 3-

dimenzionalne Lieve grupe svih 2×2 matrica s jediničnom

determinantom.

U ovom članku promatramo popločavanje pravilnim

beskonačnim i omedenim kvadratskim prizmama čije je

postojanje dokazano u [10]. Odredujemo podatke gore

spomenutog popločavanja i vizualiziramo ih u modelu

hiperboloida u S̃L2R prostoru.

Za računanje i vizualizaciju S̃L2R prostora koristimo pro-

jektivni model koji je uveo E. Molnár.

Ključne riječi: Thurstonova geometrija, S̃L2R geo-

metrija, popločavanje, popločavanje prizmama

1 The S̃L2R geometry

The SL2R Lie-group consists of the real 2× 2 matrices
(

d b
c a

)

with unit determinant ad − cb = 1. The S̃L2R

geometry is the universal covering group of this group,
and is a Lie-group itself. Because of the 3 independent
coordinates, S̃L2R is a 3-dimensional manifold, with its
usual neighbourhood topology. In order to model the
above structure on the projective sphere PS3 and space P3

we introduce the new projective coordinates (x0,x1,x2,x3),
where

a := x0 + x3,b := x1 + x2,c := −x1 + x2,d := x0 − x3, (1)

with positive resp. non-zero multiplicative equivalence
as projective freedom. Through the equivalence SL2R ∼
PSL2R it follows, that

0 > bc−ad = −x0x0 − x1x1 + x2x2 + x3x3 (2)

describes the interior af the above one-sheeted hyperboloid
solid H in the usual Euclidean coordinate simplex with
the origin E0(1;0;0;0) and the ideal points of the axes
E∞

1 (1;1;0;0),E∞
2 (1;0;1;0),E∞

3 (1;0;0;1). We shall con-
sider the collineation group G∗, which acts on the projec-
tive space P3 and preserves the polarity, ie. a scalar prod-
uct of signature (−− ++), moreover certain additional
fibering structure. This group leaves the one sheeted hy-
peboloid H invariant. Choosing an appropriate subgroup
G of G∗ as isometry group, the universal covering space ˜H

of H will be the hyperboloid model of S̃L2R. (See fig. 1.)
The specific isometries S(φ) is a one parameter group
given by the matrices:

S(φ) =









cosφ sinφ 0 0
−sinφ cosφ 0 0

d b cosφ −sinφ
d b sinφ cosφ









(3)
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Figure 1: The hypeboloid model of the S̃L2R space with
the ”base plane” and the fibre line e.g. through
the point X(1;1; 1

2 ; 1
3 )

The specific isometries S(φ) is a one parameter group
given by the matrices:
The elements of S(φ) are the so-called ”fibre transla-
tions” for φ ∈ R. We obtain an unique fibre-line to each
X(x0;x1;x2;x3) ∈ ˜H as the orbit by right action of S(φ) on
X . The coordinates of points lying on the fibre line through
X can be expressed as the images of X by S(φ):

(x0;x1;x2;x3)
S(φ)
→ (x0 cosφ− x1 sinφ;

x0 sinφ+ x1 cosφ;x2 cosφ+ x3 sinφ;−x2 sinφ+ x3 cosφ)
(4)

The points of a fibre line through X by the usual inhomo-
geneous Euclidean coordinates x = x1

x0 ,y = x2

x0 ,z = x3

x0 are
given by:

(1;x;y;z)
S(φ)
→ (1;

x + tanφ
1− x tanφ

;
y + z tanφ
1− x tanφ

;
z− y tanφ
1− x tanφ

). (5)

From formulas (4) and (5) we can see the π periodicity of
the above maps.

The elements of the isometry group of S̃L2R can be de-
scribed in the above basis by the following matrix:

(a j
i ) =









a0
0 a1

0 a2
0 a3

0
∓a1

0 ±a0
0 ±a3

0 ∓a2
0

a0
2 a1

2 a2
2 a3

2
±a1

2 ∓a0
2 ∓a3

2 ±a2
2









(6)

where

− (a0
0)

2 − (a1
0)

2 +(a2
0)

2 +(a3
0)

2 = −1,

− (a0
2)

2 − (a1
2)

2 +(a2
2)

2 +(a3
2)

2 = −1,

−a0
0a0

2 −a1
0a1

2 + a2
0a2

2 + a3
0a3

2 = 0

−a0
0a1

2 −a1
0a0

2 + a2
0a3

2 + a3
0a2

2 = 0.

We define the translation group GT as a subgroup of
S̃L2R isometry group acting transitively on the points of ˜H

and mapping the origin E0(1;0;0;0) onto X(x0;x1;x2;x3).
These isometries and their inverses (up to a positive deter-
minant factor) can be given by the following matrices:

T : (t j
i ) =









x0 x1 x2 x3

−x1 x0 x3 −x2

x0 x1 x2 x3

x1 −x0 −x3 x2









(7)

T−1 : (T k
j ) =









x0 −x1 −x2 −x3

x1 x0 −x3 x2

−x0 −x1 x2 −x3

−x1 x0 x3 x2









The rotation about the fibre line through the origin
E0(1;0;0;0) by angle ω can be expressed by the follow-
ing matrix:

RE0(ω) : (r j
i (E0,ω)) =









0 0 0 0
0 0 0 0
0 0 cosω sinω
0 0 −sinω cosω









, (8)

while the rotation about the fibre line through point
X(x0;x1;x2;x3) by angle ω can be expressed by conjuga-
tion with the following formula: (r j

i (X ,ω)) = RX(ω) =

T−1RE0(ω)T.
We can introduce the so called hyperboloid parametriza-
tion as follows

x0 = coshr cosφ,

x1 = coshr sinφ,

x2 = sinhr cos(θ−φ),

x3 = sinhr sin(θ−φ), (9)

where (r,θ) are the polar coordinates of the base plane, and
φ is the fibre coordinate. We note, that

−x0x0−x1x1 +x2x2 +x3x3 =−cosh2 r+sinh2 r =−1 < 0.

(10)
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The inhomogeneous coordinates corresponding to (9), that
play an important role in visualization, are given by

x =
x1

x0 = tanφ,

y =
x1

x0 = tanhr
cos(θ−φ)

cosφ
, (11)

z =
x1

x0 = tanhr
sin(θ−φ)

cosφ
.

2 Geodesics and geodesic balls

In the following we are going to introduce the notion of the
geodesic sphere and ball, using the concept of the metric
tensor field and geodesic curve. After this we visualize the
effects of the S̃L2R isometries using geodesic balls.

Figure 2: Geodesic sphere of radius 1 centered at the ori-
gin

The infinitesimal arc-length square can be derived by the
standard method called pull back into the origin. By acting
of (7) on the differentials (dx0;dx1;dx2;dx3), we obtain by
[2], [1] and [3] that in this parametrization the infinitesimal
arc-length square at any point of S̃L2R is the following:

(ds)2 = (dr)2 + cosh2 r sinh2 r(dθ)2 +[(dφ)+ sinh2 r(dθ)]2.

(12)

Hence we get the symmetric metric tensor field gi j on
S̃L2R by components:

gi j :=





1 0 0
0 sinh2 r(sinh2 r + cosh2 r) sinh2 r
0 sinh2 r 1



 , (13)

The geodesic curves of S̃L2R are generally defined as hav-
ing locally minimal arc length between any two of their
(close enough) points.

Figure 3: Geodesic sphere rotated in 3rd order about a fi-
bre line

By (13) the second order differential equation system of
the S̃L2R geodesic curve of form (11) is the following:

r̈ = sinh(2r) θ̇ φ̇+
1
2
(

sinh(4r)− sinh(2r)
)

θ̇ θ̇,

φ̈ = 2ṙ tanh(r)(2sinh2 (r) θ̇+ φ̇), (14)

θ̈ =
2ṙ

sinh(2r)
(

(3cosh(2r)−1)θ̇+ 2φ̇
)

.

We can assume, that the starting point of a geodesic
curve is (1,0,0,0), because we can transform a curve into
an arbitrary starting point. Moreover, r(0) = 0, φ(0) =
0, θ(0) = 0, ṙ(0) = cosα, φ̇(0) = −θ̇(0) = sinα and so
unit velocity can be assumed as follows in Table 1 from
[1].

Table 1
Types

0 ≤ α <
π
4

(H2 − like direction)

r(s,α) = arsinh
( cosα
√

cos2α
sinh(

√
cos2αs)

)

θ(s,α) = −arctan
( sinα
√

cos2α
tanh(

√
cos2αs)

)

φ(s,α) = 2sin αs+θ(s,α)

α =
π
4

(light direction)

r(s,α) = arsinh
(

√
2

2
s
)

θ(s,α) = −arctan
(

√
2

2
s
)

φ(s,α) =
√

2s+θ(s,α)

π
4

< α ≤
π
2

(fibre− like direction)

r(s,α) = arsinh
( cosα
√
−cos2α

sin(
√
−cos2αs)

)

θ(s,α) = −arctan
( sinα
√
−cos2α

tan(
√
−cos2αs)

)

φ(s,α) = 2sin αs+θ(s,α)

The equation of the geodesic curve in the hyper-
boloid model – using the usual geographical coordiantes
(λ,α), (−π < λ ≤ π), as general longitude and altitude pa-
rameters for the later geodesic sphere (− π

2 ≤ α ≤ π
2 ), and

the arc-length parameter 0≤ s ∈ R – are determined in [1].
The Euclidean coordinates X(s,λ,α), Y (s,λ,α), Z(s,λ,α)
of the geodesic curves can be determined by substituting
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the results of Table 1 (see [1]) into the following equations
by (11):

X(s,λ,α) = tanφ(s,α),

Y (s,λ,α) = tanhr(s,α)
(cos(θ(s,α)−φ(s,α))

cosφ(s,α)
cosλ−

−
sin(θ(s,α)−φ(s,α))

cosφ(s,α)
sin λ

)

=
tanhr(s,α)

cosφ(sα)
cos[θ(s,α)−φ(s,α)+ λ], (15)

Z(s,λ,α) = tanhr(s,α)
(cos(θ(s,α)−φ(s,α))

cosφ(s,α)
sinλ+

sin (θ(s,α)−φ(s,α))

cosφ(s,α)
cosλ

)

=
tanhr(s,α)

cosφ(sα)
sin[θ(s,α)−φ(s,α)+ λ].

Figure 4: Touching geodesic spheres of radius 1
6 centered

on a fibre line

Definition 2.1 The distance d(P1,P2) between the points
P1 and P2 is defined as the arc length of the geodesic curve
from P1 to P2.

In [10] the third author has investigated the notion of the
geodesic spheres and balls, with the following definition:

Definition 2.2 The geodesic sphere of radius ρ and center
P is defined as the set of all points Q in the space with the
additional condition d(P,Q) = ρ ∈

[

0, π
2
)

.

Remark 2.3 The geodesic sphere above is a simply con-
nected surface without self intersection in the space S̃L2R.

Figure 2 shows a sphere with radius ρ = 1 and the origin
as its center.

3 Regular prisms in S̃L2R space

In the paper [9] the third author has defined the prism and
prism-like tilings in S̃L2R space, and also classified the in-
finite and bounded regular prism tilings. Now, we study
the square prisms and prism tilings in S̃L2R space, review
their most important properties and compute their metric
data.

Definition 3.1 Let Pi be a S̃L2R infinite solid that is
bounded by one-sheeted hyperbolid surfaces of the model
space, generated by neighbouring ”side fibre lines” pass-
ing through the vertices of a p-gon (Pb) lying in the ”base
plane”. The images of solids Pi by S̃L2R isometry are
called infinite p-sided S̃L2R prisms.

The common part of Pi with the base plane is called the
base figure of Pi and is denoted by P. Its vertices coincide
with the vertices of Pb.

Definition 3.2 A p-sided prism is an isometric image of a
solid, which is bounded by the side surfaces of a p-sided
infinite prism Pi, its base figure P and the translated copy
Pt of P by a fibre translation.

The side faces P and Pt are called ”cover faces”, and are
related by fibre translation along fibre lines joining their
points.

Definition 3.3 An infinite prism in S̃L2R is regular if Pb

is a regular p-gon with center at the origin in the ”base
plane” and the side surfaces are congruent to each other
under an S̃L2R isometry.

Definition 3.4 The regular p-sided prism in S̃L2R space
is a prism derived by Definition 3.2 from an infinite regu-
lar p-sided prism (see Definition 3.3).

We consider a monohedral tessellation of the space S̃L2R
with congruent regular infinite or bounded prisms. A tiling
is called face-to-face, if the intersection of any two tiles
is either empty or a common face, edge or vertex of both
tiles, otherwise it is non-face-to-face.

A regular infinite tiling Ti
p(q) in the S̃L2R space is derived

by a rotation subgroup Gr
p(q) of the symmetry group Gp(q)

of Ti
p(q). Gr

p(q) is generated by rotations r1,r2, . . . ,rp with
angles ω = 2π

q about the fibre lines f1, . . . , fp through the

vertices of the given S̃L2R p-gon Pb, and let Pi
p(q) be one

of its tiles, where we can suppose without the loss of gen-
erality, that its p-gonal base figure is centered at the origin.
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The vertices A1,A2, . . . ,Ap of the base figure P coincide
with the vertices of a regular hyperbolic p-gon in the base
plane with center at the origin, and we can introduce the
following homogeneous coordinates to neighbouring ver-
tices of the base figure of Pi

p(q) in the hyperboloid model
of ˜H = S̃L2R.

Figure 5: The Pi
4(8) tile centered at the origin of the reg-

ular infinite tiling Ti
4(8)

A1 = (1;0;0;x3),

A2 = (1;0;−x3 sin(
2π
p

);x3 cos(
2π
p

)),

A3 = (1;0;−x3 sin(
4π
p

);x3 cos(
4π
p

)),

. . . ,

Ap = (1;0;−x3 sin((p−1)
2π
p

);x3 cos((p−1)
2π
p

)) (16)

The side curves c(AiAi+1)(i = 1, . . . , p;Ap+1 ≡ A1) of the
base figure are derived from each other by 2π

p rotation

about the x-axis, so they are congruent in S̃L2R sense. The
necessary requirement to the existence of Ti

p(q), that the
surfaces of the neighbouring side faces of Pi

p(q) are de-
rived from each other by 2π

q ( 2p
p−2 < q ∈ N) rotation about

the common fibre line.
We have the following theorem ([9]):

Theorem 3.5 There exists regular infinite prism tiling
Ti

p(q) for each 3 ≤ p ∈ N, where 2p
p−2 < q.

The coordinates of the A1,A2, . . . ,Ap vertices of the base
figure and thus the corresponding ”fibre side lines” (the fi-
bre lines through the vertices of the base figure) can be
computed for any given (p,q) pair of parameters. More-
over the equation of the c(A2A3) curve can be determined
as follows.

Figure 6: Regular infinite prism tiling Ti
4(8)

Let R
−2π

q
A2

be the rotation matrix of the angle ω =− 2π
q about

the fibre line through A2. Consider the half point F of the

fibre line segment between the points A3 and A
R

−2π
q

A2
1 . The

base curve c(A2A3) will be the locus of common points of
the fibre lines through the line segment A2F with the ”base
plane” of the model. This also determines the side surfaces
of Pi

p(q).

Using the above described method we can compute the x3
parameter of the vertex coordinates, we obtain the follow-
ing theorem (see [9]):

Theorem 3.6 The vertices A1,A2,A3 of the base figure
P of Pi

3(q) are determined for parameters p = 3, and
7 ≤ q ∈ N by coordinates in (16) where

x3 =

√

√

√

√

√
3cos 2π

q − sin 2π
q

2sin 2π
q +

√
3

. (17)

Therefore, the vertices of the prisms Pi
3(q) base figure P

are the following:

A1 = (1;0;0;

√

√

√

√

√
3cos 2π

q − sin 2π
q

2sin 2π
q +

√
3

),

A2 = (1;0;−
√

3
2

√

√

√

√

√
3cos 2π

q − sin 2π
q

2sin 2π
q +

√
3

;−
1
2

√

√

√

√

√
3cos 2π

q − sin 2π
q

2sin 2π
q +

√
3

),

A3 = (1;0;
√

3
2

√

√

√

√

√
3cos 2π

q − sin 2π
q

2sin 2π
q +

√
3

;−
1
2

√

√

√

√

√
3cos 2π

q − sin 2π
q

2sin 2π
q +

√
3

)

(18)
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Figure 7: Regular infinite prism tiling T
i
4(8)

With an analogous argument we also proved the following
theorem, which seems to be a new, important result:

Theorem 3.7 The vertices A1,A2,A3,A4 of the base fig-
ure P of Pi

4(q) are determined for parameters p = 4, and
5 ≤ q ∈ N by coordinates in (16) where

x3 =

√

√

√

√

cos π
q − sin π

q

cos π
q + sin π

q
, (19)

Using this, the vertices of the prisms P base figure are:

A1 = (1;0;0;

√

√

√

√

cos π
q − sin π

q

cos π
q + sin π

q
),

A2 = (1;0;−

√

√

√

√

cos π
q − sin π

q

cos π
q + sin π

q
;0),

A3 = (1;0;0;−

√

√

√

√

cos π
q − sin π

q

cos π
q + sin π

q
),

A4 = (1;0;

√

√

√

√

cos π
q − sin π

q

cos π
q + sin π

q
;0). (20)

Figure 8: Regular bounded prism tiling T4(8)

Similarly to the regular infinite prism tilings we get the
types of the regular bounded prism tilings which are classi-
fied in [9] where the third author has proved, that a regular
bounded prism tiling are non-face-to-face one. In this pa-
per we visualize in Fig. 8 only some neighbouring prisms
of a bounded regular prism tiling T4(8) where the height
of the prisms are 3

4 . When visualizing prism tilings we use
different colors to note the neighbourhooding prisms.
In this paper we have mentioned only some problems in
discrete geometry of the S̃L2R space, but we hope that
from these it can be seen that our projective method suits
to study and solve similar problems (see [4], [7], [8], [10]).
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ABSTRACT

We introduce the new notion of sydpoints into projec-

tive triangle geometry with respect to a general bilinear

form. These are analogs of midpoints, and allow us to ex-

tend hyperbolic triangle geometry to non-classical triangles

with points inside and outside of the null conic. Surprising

analogs of circumcircles may be defined, involving the ap-

pearance of pairs of twin circles, yielding in general eight

circles with interesting intersection properties.

Key words: universal hyperbolic geometry, triangle geo-

metry, projective geometry, bilinear form, sydpoints, twin

circumcircles
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Univerzalna hiperbolǐcka geometrija IV: sidtočke

i kružnice blizanke

SAŽETAK

Uvodimo novi pojam sidtočaka u projektivnu geometriju

trokuta s obzirom na opću bilinearnu formu. One su anal-

ogoni polovǐsta i dopuštaju nam proširiti hiperboličku ge-

ometriju trokuta ka neklasičnim trokutima s točkama un-

utar i van apsolutne konike. Mogu se definirati neočekivani

analogoni opisanih kružnica koji uključuju pojavljivanje

kružnica blizanki što vodi ka osam kružnica sa zanimljivim

svojstvima presjeka.

Ključne riječi: univerzalna hiperbolička geometrija, geo-

metrija trokuta, projektivna geometrija, bilinearna forma,

sidtočka, kružnice blizanke

1 Introduction

In this paper we continue a study of hyperbolic triangle
geometry, parallel to, but with different features to the Eu-
clidean case laid out in [5] and [6], and in a related but
different direction from [9], [10] and [11], using the frame-
work of Universal hyperbolic geometry (UHG), developed
by Wildberger in [13], [14], [15] and [16]. We study the
new notion of sydpoints s of a side ab—this is analogous
and somewhat complementary to the more familiar notion
of midpoints m; the related idea of twin circumcircles of a
triangle; and introduce circumlinear coordinates to build
up the Circumcenter hierarchy of a triangle, treating mid-
points and sydpoints uniformly.
In [16] we saw that if each of the three sides of a triangle
(in UHG) has midpoints m, then these six points lie three
at a time on four circumlines C, whose duals are the four
circumcenters c. These are the centers of the four circum-
circles which pass through the three points of the triangle.
This is shown for a classical triangle in Figure 1, where
the larger blue circle is the null circle defining the metri-
cal structure, together with the midlines M—traditionally
called perpendicular bisectors. While the red circumcircle

is a classical circle in the Cayley Beltrami Klein model of
hyperbolic geometry, the other three are usually described
as curves of constant width, but for us they are all just
circles. This is the start of the Circumcenter hierarchy in
UHG.

Figure 1: Midpoints, Midlines, Circumlines, Circumcen-
ters and Circumcircles

Remarkably, much of this extends also to triangles with
points both interior and exterior to the null circle, but we
also find new phenomenon relating to circumcircles, that
suggest a reconsideration of the classical case above.
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The fundamental metrical notion between points in UHG
is the quadrance q, and a midpoint of ab is a point m on ab
satisfying q(a,m) = q(b,m). Our key new concept is the
following: a sydpoint of ab is a point s on ab satisfying

q(a,s) = −q(b,s) .

While the existence of midpoints is equivalent to 1 −
q(a,b) being a square in the field, the existence of syd-
points is equivalent to q(a,b)−1 being a square. As with
midpoints, if sydpoints exist there are generally two of
them.

Figure 2: A non-classical triangle with both midpoints
and sydpoints

In Figure 2, the non-classical triangle a1a2a3 has one side
a1a2 with midpoints m whose duals are midlines M, and
two sides a1a3 and a2a3 with sydpoints s whose duals are
sydlines S. The six midpoints and sydpoints lie three at a
time on four circumlines C, whose duals are the four cir-
cumcenters c. The connection between these new circum-
centers and the idea of circumcircles is particularly inter-
esting, since in this case it is impossible to find any circles
which pass through all three points of the triangle a1a2a3.
In UHG circles can often be paired: two circles are twins if
they share the same center and their quadrances sum to 2.
The circumcenters c are the centers of twin circumcircles
passing through collectively the three points of the triangle.
This notion extends our understanding even in the classical
case. The four pairs of twin circumcircles give eight gener-
alized circumcircles (even for the classical case), and these
meet in a surprising way in the CircumMeet points, some
of which pleasantly depend only the side of the triangle on
which they lie.

Figure 3: Four twin circumcircles of a non-classical tri-
angle

In Figure 3 we see the twin circumcircles of the triangle
of the previous Figure; some of these appear in this model
as hyperbolas tangent to the null circle—these are invisible
in classical hyperbolic geometry, but have a natural inter-
pretation in terms of hyperboloids of one sheet in three-
dimensional space (DeSitter space).
The other main contribution of this paper is in setting up
circumlinear coordinates. UHG is more algebraic than the
classical theory ([2], [1], [3], [4], [8]), emphasizing a pro-
jective metrical formulation without transcendental func-
tions for Cayley-Klein geometries, valid both inside and
outside the usual null circle (or absolute), and working
over a general field, generally not of characteristic two. In
[16], triangle geometry was studied in the more general
setting of a projective plane over a field, with a metrical
structure induced by a symmetric bilinear form on the as-
sociated three-dimensional vector space, or equivalently a
general conic playing the role of the null circle or absolute.
That paper focussed on ortholinear coordinates, and gave
derivations for many initial constructions in the Incenter
hierarchy, and only dual statements for the corresponding
results for the Circumcenter hierarchy.
In this paper we introduce the complementary circumlin-
ear coordinates, which are well suited for studying mid-
points and sydpoints simultaneously. Finding formulas for
key points and lines is, as always, a main aim. If the tri-
angle a1a2a3 has either midpoints or sydpoints for each
of its sides, a change of coordinates allows us to write
a1 = [1 : 0 : 0], a2 = [0 : 1 : 0] and a3 = [0 : 0 : 1], with the
bilinear form given by a matrix

C =





1 a b
a 1 c
b c ε



 (1)

where ε2 = ±1. We reformulate formulas of the Ortho-
center hierarchy of ([16]) using circumlinear coordinates,
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including the Orthoaxis A with the five important points
h,s,b,x and z, and then turn to the Circumcenter hierarchy,
studying Medians, Centroids, CircumCentroids, CircumD-
ual points, Tangent lines, Jay lines, Wren lines, Circum-
Meet points and some new associated points and lines, and
finish with a nice correspondence between the Circumcen-
ters and four Sound conics passing two at a time through
the twelve Sound points. Note that when we study a par-
ticular triangle, we adopt the convention of Capitalizing
major points and lines of that Triangle. Although the paper
is one of a series, we have tried to make it largely self-
contained.

1.1 Projective duality and midpoint constructions

One can approach Universal Hyperbolic Geometry from
either a synthetic projective geometry or an analytic linear
algebra point of view; both are useful, and they shed light
on each other. In this section we give a synthetic introduc-
tion useful for dynamic geometry packages such as GSP,
C.a.R., Cabri, GeoGebra and Cinderella. We work in the
projective plane over a field, which in our pictures will be
the rational numbers, with a distinguished conic, called the
null circle, but elsewhere also the absolute. In our pic-
tures, this will be the familiar unit circle, always in blue,
with points lying on it called null points.

Figure 4: Duals and perpendicularity

The key duality, or polarity, between points and lines in-
duced by the null circle allows a notion of perpendicular-
ity: two points a and b are perpendicular, written a ⊥ b,
precisely when b lies on the dual of a, or conversely a
lies on the dual of b (these are equivalent), and similarly
two lines L and M are perpendicular, written L ⊥ M, pre-
cisely when L passes through the dual of M, or conversely
M passes through the dual of L.
In Figure 4 we see a construction for the dual of a point d;
this is the line D formed by the other two diagonals n and
m of any null quadrangle for which d is a diagonal point.
Then d is perpendicular to any point on D ≡ nm, and any
line through d is perpendicular to D. To construct the dual
of a line L, take the meet of the duals of any two points on
it.

The basic isometries in such a geometry are reflections in
points (or reflections in lines—these two notions turn out
to be the same). If m is not a null point, the reflection rm
in m interchanges the two null points on any line through
m, should there be such. In Figure 5 for example, rm in-
terchanges x and w, and interchanges y and z. It is then a
remarkable and fundamental fact that rm extends to a pro-
jective transformation: to find the image of a point a, con-
struct any line through a which meets the null circle at two
points, say x and y, then find the images of x and y under
rm, namely w and z, and then define rm (a) = b≡ (am)(wz)
as shown. Perpendicularity of both points and lines is pre-
served by rm.

Figure 5: Reflection rm in m sends a to b

The notion of reflection allows us to define midpoints with-
out metrical measurements: if rm (a) = b then we may say
that m is a midpoint of the side ab. To construct the mid-
points of a side ab, when they exist (this is essentially a
quadratic condition), we essentially invert the above con-
struction.

Figure 6: Constructing midpoints m and n of the side ab
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Figure 6 shows two situations where we can construct mid-
points m and n of the side ab, at least approximately over
the rational numbers, which is the orientation of Geome-
ter’s Sketchpad and other dynamic geometry packages. In
the top diagram, we take the dual c of the line ab, and if
the lines ac and bc meet the null circle we take the other
two diagonal points of this null quadrangle. This is also the
case in Figure 4. In the bottom diagram, the lines ac and
bc do not meet the null circle, but the dual lines A and B of
a and b, which necessarily pass through c, do meet the null
circle in a quadrangle, whose other diagonal points are the
required midpoints m and n.
To define a circle C in this projective setting, suppose that
c and p are points; then the locus of the reflections rx (p)
as x runs along the dual line of c is the circle with center
c through p. This projective definition immediately gives
a correspondence between a circle and a line. Of course
there is also a metrical definition, once we have set up
quadrance and spread.

2 Metrical projective linear algebra

While the synthetic framework is attractive, for explicit
computations and formulas it is useful to work with ana-
lytic geometry in the context of (projective) linear algebra.
Our strategy, as in [16], will be to set up coordinates so
that our basic triangle is as simple as possible, and all the
complexity resides in the bilinear form. We begin with
establishing some notation and basic results in the affine
setting, although the projective setting is the main interest.
The three-dimensional vector space V over a field F, of
characteristic not two, consists of row vectors v = (x,y,z)
or equivalently 1×3 matrices

(

x y z
)

. A metrical struc-
ture is determined by a symmetric bilinear form

v ·u = vu ≡ vCuT

where C is an invertible symmetric 3 × 3 matrix. Note
in particular our use of the algebraic notation vu. The
dual vector space V ∗ may be viewed as column vectors
f = (l,m,n)T or equivalently 3×1 matrices.
Vectors v, u are perpendicular precisely when v ·u = vu =
0. The quadrance of a vector v is the number Qv ≡ v · v =
v2. A vector v is null precisely when Qv = v2 = 0.
A variant of the following also appears in [7].

Theorem 1 (Parallel vectors) If vectors v and u are par-
allel then

QvQu = (vu)2 . (2)

Conversely if (2) holds then either v and u are parallel, or
the bilinear form restricted to the span of u and v is degen-
erate.

Proof. Consider a two-dimensional space containing v and
u and the bilinear form restricted to it, given by a matrix
˜C =

(

a b
b c

)

with respect to some basis. If in this basis

v = (x,y) and u = (u,v), then we may calculate that

QvQu−(vu)2 =−
(xv− yu)4 (

ac−b2)2

(au2 + 2buv + cv2)2 (ax2 + 2bxy + cy2)2 .

So if v and u are parallel, the left hand side is zero, and con-
versely if the left hand side is zero, then either ac−b2 �= 0
in which case the bilinear form restricted to the span of v
and u is degenerate, or xv− yu = 0, meaning that the vec-
tors v and u are parallel. �

The previous result motivates the following measure of the
non-parallelism of two vectors. The (affine) spread be-
tween non-null vectors v and u is the number

s(v,u) ≡ 1−
(vu)2

QvQu
.

The spread is unchanged if either v or u are multiplied by
a non-zero number.

2.1 Basic notation and definitions

One-dimensional and two-dimensional subspaces of V =
F3 may be viewed as the basic objects forming the pro-
jective plane, with metrical notions coming from the affine
notions of quadrance and spread in the associated vector
space, but we prefer to give independent definitions so that
logically neither the affine nor projective settings have pri-
ority. In general our notation in the projective setting is
opposite to that in the affine setting, in the sense that the
roles of small and capital letters are reversed throughout.
A (projective) point is a proportion a = [x : y : z] in square
brackets, or equivalently a projective row vector a =
[

x y z
]

where the square brackets in the latter are inter-
preted projectively: unchanged if multiplied by a non-zero
number. A (projective) line is a proportion L = 〈l : m : n〉
in pointed brackets, or equivalently a projective column
vector

L =





l
m
n



 .

When the context is clear, we refer to projective points and
projective lines simply as points and lines. The incidence
between the point a = [x : y : z] and the line L = 〈l : m : n〉
is given by the relation

aL =
[

x y z
]





l
m
n



 = lx + my + nz = 0.

In such a case we say a lies on L, or L passes through a.
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The join a1a2 of distinct points a1 ≡ [x1 : y1 : z1] and a2 ≡
[x2 : y2 : z2] is the line

a1a2 ≡ [x1 : y1 : z1]× [x2 : y2 : z2]

≡ 〈y1z2 − y2z1 : z1x2 − z2x1 : x1y2 − x2y1〉 . (3)

This is the unique line passing through a1 and a2. The
meet L1L2 of distinct lines L1 ≡ 〈l1 : m1 : n1〉 and L2 ≡
〈l2 : m2 : n2〉 is the point

L1L2 ≡ 〈l1 : m1 : n1〉× 〈l2 : m2 : n2〉

≡ [m1n2 −m2n1 : n1l2 −n2l1 : l1m2 − l2m1] . (4)

This is the unique point lying on L1 and L2.
Three points a1,a2,a3 are collinear precisely when they
lie on a line L; in this case we will sometimes write
L = a1a2a3. Similarly three lines L1,L2,L3 are concurrent
precisely when they pass through a point a; in this case we
will sometimes write a = L1L2L3.
It will be convenient to connect the affine and projective
frameworks by the following conventions. If v = (x,y,z) =
(

x y z
)

is a vector, then a = [v] = [x : y : z] =
[

x y z
]

is the associated projective point, and v is a representa-
tive vector for a. If f = (l,m,n)T is a dual vector, then
L = [ f ] = 〈l : m : n〉 =

[

l m n
]T is the associated pro-

jective line, and f is a representative dual vector for L.

2.2 Projective quadrance and spread

If C is a symmetric invertible 3×3 matrix, with entries in
F, and D is its adjugate matrix (the inverse, up to a multi-
ple), then we denote by C and D the corresponding projec-
tive matrices, each defined up to a non-zero multiple. This
pair of projective matrices determine a metrical structure
on projective points and lines, as follows.
The (projective) points a1 and a2 are perpendicular pre-
cisely when a1CaT

2 = 0, written a1 ⊥ a2. This is a sym-
metric relation, and is well-defined. Similarly (projec-
tive) lines L1 and L2 are perpendicular precisely when
LT

1 DL2 = 0, written L1 ⊥ L2. The point a and the line L
are dual precisely when

L = a⊥ ≡ CaT or equivalently a = L⊥ ≡ LT D. (5)

Then two points are perpendicular precisely when one is
incident with the dual of the other, and similarly for two
lines. So a1 ⊥ a2 precisely when a⊥1 ⊥ a⊥2 , because of the
projective relation
(

CaT
1
)T D

(

CaT
2
)

=
(

a1CT )

D
(

CaT
2
)

= a1 (CD)
(

CaT
2
)

= a1CaT
2 .

A point a is null precisely when it is perpendicular to it-
self, that is, when aCaT = 0, and a line L is null precisely

when it is perpendicular to itself, that is, when LT DL = 0.
The null points determine the null conic, sometimes also
called the absolute.
Hyperbolic and elliptic geometries arise respectively from
the special cases

C = J ≡





1 0 0
0 1 0
0 0 −1



 = D and

C = I ≡





1 0 0
0 1 0
0 0 1



 = D. (6)

In the hyperbolic case, which forms the basis for almost
all examples in this paper, the point a = [x : y : z] is null
precisely when x2 + y2 − z2 = 0, and dually the line L =
(l : m : n) is null precisely when l2 + m2 − n2 = 0. This is
the reason we can picture the null circle in affine coordi-
nates X ≡ x/z and Y ≡ y/z as the (blue) circle X2 +Y 2 = 1.
Note that in the elliptic case the null circle, over the rational
numbers, has no points lying on it. This is why visualizing
hyperbolic geometry is often easier than elliptic geometry.
The bilinear forms determined by C and D can be used
to define the metrical structure in the associated pro-
jective setting. The dual notions of (projective) quad-
rance q(a1,a2) between points a1 and a2, and (projective)
spread S (L1,L2) between lines L1 and L2, are

q(a1,a2) ≡ 1−
(

a1CaT
2
)2

(

a1CaT
1
)(

a2CaT
2
) and

S (L1,L2) ≡ 1−
(

LT
1 DL2

)2

(

LT
1 DL1

)(

LT
2 DL2

) . (7)

While the numerators and denominators of these expres-
sions depend on choices of representative vectors and ma-
trices for a1,a2,C,L1,L2 and D, the quotients are indepen-
dent of scaling, so the overall expressions are indeed well-
defined projectively.If a1 = [v1], a2 = [v2], and L1 = [ f1],
L2 = [ f2], then we may write

q(a1,a2) = 1−
(v1 · v2)

2

(v1 · v1) (v2 · v2)
and

S (L1,L2) = 1−
( f1 � f2)

2

( f1 � f1) ( f2 � f2)

where we introduce the dual bilinear form on column vec-
tors by f1 � f2 ≡ f T

1 D f2.
Clearly q(a,a) = 0 and S (L,L) = 0, while q(a1,a2) = 1
precisely when a1 ⊥ a2, and dually S (L1,L2) = 1 precisely
when L1 ⊥ L2. Then using (5)

S
(

a⊥1 ,a⊥2
)

= q(a1,a2) .

47



KoG•16–2012 N. J. Wildberger, A. Alkhaldi: Universal Hyperbolic Geometry IV: Sydpoints and Twin Circumcircles

In [14], we showed that both these metrical notions can
also be reformulated projectively and rationally using suit-
able cross ratios (and no transcendental functions!)
The following formula, introduced in [12], is is given in a
more general setting in [13].

Theorem 2 (Hyperbolic Triple quad formula) Suppose
that a1,a2,a3 are collinear points, with quadrances
q1 ≡ q(a2,a3), q2 ≡ q(a1,a3) and q3 ≡ q(a1,a2). Then

(q1 + q2 + q3)
2 = 2

(

q2
1 + q2

2 + q2
3
)

+ 4q1q2q3. (8)

Proof. We may assume at least two of the points distinct,
as otherwise the relation is trivial. Suppose that represen-
tative vectors are then v1,v2 and v3 ≡ kv1 + lv2, with v1 and
v2 linearly independent. Consider just the two-dimensional
subspace spanned by v1 and v2. The bilinear form re-
stricted to the subspace spanned by the ordered basis v1,v2

is given by some symmetric matrix ˜C =

(

a b
b c

)

. Then in

this basis v1 = (1,0), v2 = (0,1) and v3 = (k, l), and we
may compute that

q3 = s(v1,v2) =
ac−b2

ac

q2 = s(v1,v3) =
l2 (

ac−b2)

a(ak2 + 2bkl + cl2)

q1 = s(v2,v3) =
k2 (

ac−b2)

c(ak2 + 2bkl + cl2)
.

Then (8) is an identity. �

Here are a few useful consequences of the Triple quad for-
mula. If one of the quadrances is q3 = 1, then q1 +q2 = 1;
this is a consequence of the identity

(q1 + q2 + 1)2−2q2
1−2q2

2−2−4q1q2 =−(q1 + q2 −1)2 .

Also if two of the quadrances are equal, say q1 = q2 = r,
then q3 = 0 or q3 = 4r (1− r); this follows from the iden-
tity

(2r + q3)
2 −4r2 −2q2

3−4r2q3 = −q3
(

q3 −4r + 4r2) .

2.3 Midpoints of a side

Midpoints are defined very simply using the metrical struc-
ture.

Definition 1 A midpoint of a non-null side ab is a point m
lying on ab which satisfies

q(a,m) = q(b,m) .

We exclude null sides because every two points on such a
side have quadrance 0.

Theorem 3 (Side midpoints) Suppose that a and b are
distinct non-null points and ab is a non-null side. Then
ab has a midpoint precisely when the quantity 1− q(a,b)
is a square number. In this case, we may find represen-
tative vectors v and u for a and b respectively satisfying
v2 = u2, and then there are exactly two midpoints of ab,
namely m = [u + v] and n = [u− v]. These two midpoints
are perpendicular. Furthermore a,m,b,n form a harmonic
range.

Proof. Suppose that a = [v] and b = [u] so that

1−q(a,b) =
(vu)2

QvQu
.

A general point m on ab has representative non-zero vector
w = kv + lu. The condition q(a,m) = q(b,m) amounts to

(vw)2

QvQw
=

(uw)2

QuQw
⇔ u2 (

kv2 + l (vu)
)2

= v2 (

k (vu)+ lu2)2

⇔ k2u2 (

v2)2
+ l2 (vu)2 u2 = k2v2 (vu)2 + l2v2 (

u2)2

⇔
(

v2u2 − (vu)2
)

(

k2v2 − l2u2) = 0.

If v2u2 = (vu)2 then by the Parallel vectors theorem either
v and u are parallel, which is impossible since a and b are
distinct, or the bilinear form restricted to [v,u] is degener-
ate, which implies that the side ab is null. So a midpoint m
exists precisely when k2v2 = l2u2.
In this case since a and b are non-null, v2 and u2 are non-
zero, so k and l are also, since by assumption w = kv+ lu is
non-zero, and we may renormalize v and u so that v2 = u2

(by for example setting ṽ = kv and ũ = lu, and then replac-
ing ṽ,ũ by v,u again).
After this renormalization 1− q(a,b) = (vu)2 /

(

v2)2 is
then a square, and there are two midpoints [v + u] and
[v−u]. Since (v + u)(v−u) = v2 − u2 = 0, the two mid-
points are perpendicular. It is well known that for any two
vectors v and u, the four lines [v],[v + u],[u],[v−u] form a
harmonic range.
Conversely suppose that 1− q(a,b) = (vu)2 /

(

v2u2) is a
square, say r2. Then the ratio of v2 to u2 is a square, so v
and u can be renormalized so that v2 = u2, at which point
the above calculations show that [v + u] and [v−u] are both
midpoints. �

We can also relate this to hyperbolic trigonometry as in
[14]. If q(a,b) = r �= 0, and m is a midpoint of the side ab
with q(a,m)= q(b,m)= q, then {r,q,q} satisfies the Triple
quad formula. So as we observed earlier, r = 4q(1−q),

and in particular 1− r = 1− 4q(1−q) = (2q−1)2 is a
square number.
The dual lines M and N of the midpoints m and n of a side
are called the midlines of the side. Since m and n are per-
pendicular, these each pass through the other midpoint, and
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so might also be called the perpendicular bisectors of the
side.
The dual concept of a midpoint of a side is the following.

Definition 2 A biline of a non-null vertex AB is a line L
passing through AB which satisfies

S(A,L) = S(B,L).

From duality the vertex AB has a biline precisely when the
quantity 1− S(A,B) is a square number, and in this case
we have exactly two bilines which are perpendicular. The
symmetry between midpoints and bilines is reflected in the
duality between the Incenter and Circumcenter hierarchies
in UHG. This notion of symmetry is absent in classical hy-
perbolic geometry, since there we always have only one
midpoint of a side and two bilines (usually called angle bi-
sectors); the number-theoretic considerations with the ex-
istence of these are generally invisible—the price of work-
ing over the “real numbers”!

2.4 Sydpoints of a side

Definition 3 A sydpoint of a non-null side ab is a point s
lying on ab which satisfies

q(a,s) = −q(b,s).

Note both the similarities and differences between the fol-
lowing theorem and the Side midpoints theorem.

Theorem 4 (Side sydpoints) Suppose that a and b are
distinct non-null points and ab is a non-null side. Then ab
has a sydpoint precisely when q(a,b)−1 is a square num-
ber. In this case we can find representative vectors v and
u for a and b respectively satisfying v2 = −u2, and then
there are exactly two sydpoints of ab, namely s = [v + u]
and r = [v−u]. In such a case, a and b are also sydpoints
of the side sr, and while s and r are not in general perpen-
dicular, we do have

q(a,s) = q(b,r) and q(a,r) = q(b,s).

Furthermore a,s,b,r form a harmonic range.

Proof. Suppose that a = [v] and b = [u] so that a general
point s = [w] on ab has representative vector w = kv + lu.
Then the relation q(a,s) = −q(b,s) amounts to

1−
(vw)2

QvQw
= −1 +

(uw)2

QuQw

⇔ 2u2v2 (kv+lu)2−u2(kv2+l (vu)
)2

= v2 (

k (vu)+ lu2)2

⇔ k2u2 (

v2)2
+ l2 (

u2)2 v2 −
(

k2v2 + l2u2)(vu)2 = 0

⇔
(

v2u2 − (vu)2
)

(

k2v2 + l2u2) = 0.

If v2u2 = (vu)2 then by the Parallel vectors theorem either
v and u are parallel, which is impossible since a and b are
distinct, or the bilinear form restricted to [v,u] is degener-
ate, which implies that the side ab is null. So a sydpoint s
exists precisely when k2v2 = −l2u2. In this case we may
renormalize v and u so that v2 = −u2, so that s ≡ [v + u]
and r ≡ [v−u] are sydpoints. If q(a,s) = −q(b,s) = d,
q(a,r) = −q(b,r) = e and also q(r,s) = f , then the Triple
quad formula applied to {a,r,s} and {b,r,s} implies that
both

( f + d + e)2 = 2
(

f 2 + d2 + e2)+ 4 f de and

( f −d− e)2 = 2
(

f 2 + d2 + e2)+ 4 f de

which implies that f +d + e = ±( f −d− e). Since f �= 0,
we conclude that d = −e, which shows that

q(a,s) = q(b,r) and q(a,r) = q(b,s).

Now (v + u)(v−u) = v2 −u2 = 2v2 so the two sydpoints s
and r are not in general perpendicular. However

(v + u)2 = v2 + 2uv + u2 = 2uv and

(v−u)2 = v2 −2uv + u2 = −2uv

so that (v + u)2 = −(v−u)2. By symmetry this implies
that [(v + u)+ (v−u)] = [2v] = a and [(v + u)− (v−u)] =
[−2u] = b are sydpoints of rs. �

For a fixed q there is at most one sydpoint s of ab for which
q(a,s) = q; the other sydpoint r then satisfies q(a,r) =
−q �= q since q is non-zero.

Example 1 In the hyperbolic case, suppose that a =
[x : 0 : 1] and b = [y : 0 : 1]. Then from [14], Ex. 6

q(a,b) = −
(x− y)2

(1− x2) (1− y2)

and so midpoints m = [w : 0 : 1] and sydpoints s = [z : 0 : 1]
of ab exist precisely when

(

x2 −1
)(

y2 −1
)

= r2 and
(

x2 −1
)(

y2 −1
)

= −t2 respectively, in which cases

w =
xy + 1± r

x + y
and z =

(1− xy)(x + y)± t (x− y)
x2 + y2 −2

.

So we see that algebraically sydpoints are somewhat more
complicated than midpoints in general.

Over the rational numbers, any non-null side either approx-
imately has midpoints or sydpoints, since being a square is
approximately the same as being positive.
There are a few related notions which are useful to define.
The duals S and R of the sydpoints s and r of a side ab are
the sydlines of the side ab. They do not in general pass
through the sydpoints themselves. There is also a dual no-
tion to that of sydpoints of a side which applies to vertices.
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Definition 4 A siline of a vertex AB is a line L which
passes through AB and satisfies S(A,L) = −S(B,L).

Again by duality we deduce that a vertex AB has a siline
precisely when the quantity S(A,B)−1 is a square number,
and in this case there are exactly two silines L and K of the
vertex AB. Then also A, B, L and K are a harmonic pencil
of lines. The duals of the silines are the sipoints of a vertex
AB.

2.5 The construction of Sydpoints

The following theorem is helpful in constructing sydpoints
using a dynamic geometry package.

Theorem 5 (Sydpoints null points) Suppose that the
non-null side ab has sydpoints s and r, and that ac has
midpoints m and n, where c = (ab)⊥. Then x≡ (mr) (bc)=
(ns)(bc) and y ≡ (ms)(bc) = (nr)(bc) are null points.

Proof. Suppose that a = [v], b = [u] and c = [w]. Then
vw = uw = 0, since c = (ab)⊥, and also since ab is not null
v, u and w are independent. If ac has midpoints, in which
case we may assume that v2 = w2, these are m ≡ [v + w]
and n ≡ [v−w]. If also ab has sydpoints, in which case
we may assume that v2 = −u2, these are s = [v + u] and
r = [v−u]. Note that this renormalization can be made
independent of the previous one.
Now consider x ≡ (mr) (bc). This is a point with a repre-
sentative vector of the form k (v + w)+ l (v−u) for some
numbers k and l. Since x has a representative vector which
is also in the span of u and w, it must be a multiple of
(v + w)− (v−u) = u + w. But then

(u + w)2 = u2 + 2uw+ w2 = 0

since uw = 0 and u2 = −w2. So x is a null point, and simi-
larly for y. �

Figure 7: Construction of sydpoints of ab

We make some remarks that are useful for practical con-
structions involving Geometer’s Sketchpad, C.a.R., Cabri,
GeoGebra or Cinderella etc. To approximately construct
the sydpoints r and s of ab as in Figure 7, first construct

the dual c = (ab)⊥, then the midpoints m and n of ac, and
then use the null points x and y lying on bc as shown (we
are assuming these exist—for a dynamic geometry pack-
age, approximately is sufficient!
The required points are s = (nx)(ab) = (my)(ab) and r =
(ny)(ab) = (mx)(ab). Similarly, given the sydpoints r and
s of ab, a and b can be constructed as the sydpoints of rs us-
ing the null points w and z lying on rc and the midpoints k
and l of cs, the required points are a = (lz) (rs) = (kw) (rs)
and b = (lw) (rs) = (kz) (rs). So the construction of syd-
points can be reduced, at least in this kind of situation, to
computations of midpoints.
Once we establish the Circumlines theorem, it is interest-
ing that Figure 7 can be viewed as a limiting case applied
to the triangle abc—the null points x and y act as midpoints
of bc, so mrx acts as a circumline.
Another useful construction is to find, given the point b and
one of the sydpoints s, the other point a and the other syd-
point r as in Figure 8. First construct the dual c = (bs)⊥,
then find the midpoints k and l of cs. Use the null points u,t
lying on bk and the null points v,w lying on bl to construct
r = (cuv)(bs) and a = (lu)(bs) = (kv)(bs).
However by symmetry there is a second solution: r =
(cwt)(bs) and a =(lt)(bs)= (kw)(bs). Thus, we can think
of s and r as being the sydpoints of the side ab, and s and
r as the sydpoints of the side ab. Notice also that b is a
midpoint of the side rr and similarly s is a midpoint of the
side aa, and in fact q(b,r) = q(b,r) = q(s,a) = q(s,a).

Figure 8: Constructing r and a (or r and a) from s and b

2.6 Twin circles

In the geometry we are studying, a circle C may be defined
as an equation of the form q(c,x) = k, for a fixed point
c called the center, and a fixed number k called the quad-
rance of the circle. We also write C

k
c for this circle, and say

that a point a lies on the circle precisely when q(c,a) = k.
Since in this case the circle is also determined by c and a,
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we write C
k
c = C

(a)
c . The bracket reminds us that a is not

unique.

Definition 5 Two circles C1 and C2 with the same center c
and quadrances q1 and q2 are twins precisely when

q1 + q2 = 2.

We now show that twin circles are naturally connected with
sydpoints.

Theorem 6 (Sydpoint twin circle) If s is a sydpoint of
ab, and c lies on S ≡ s⊥, then the circles C

(a)
c and C

(b)
c

are twins. Conversely if C
(a)
c and C

(b)
c are twins, then

s ≡ c⊥ (ab) is a sydpoint of ab.

Proof. If s is a sydpoint of ab then q(a,s) = q = −q(b,s)
for some q. Then since c and s are perpendicular, q(c,s) =
1. Let d = s⊥ (ab). Then since d and s are perpendicu-
lar, q(d,s) = 1, and then q(a,d) = 1−q(a,s) = 1−q and
q(b,d) = 1− q(b,s) = 1 + q. So q(a,d) + q(b,d) = 2.
Now suppose that q(c,d) = r. Then by Pythagoras’ theo-
rem (see [13], [14]) in the right triangle cda we have

q(c,a) = r +(1−q)− r (1−q)

while in the right triangle cdb we have

q(c,b) = r +(1 + q)− r (1 + q).

Then

q(c,a)+ q(c,b) =

= r +(1−q)− r (1−q)+ r +(1 + q)− r (1 + q) = 2.

The argument can be reversed to show the converse. �

We note that the theorem has another possible interpreta-
tion: the locus of a point c such that q(a,c)+ q(b,c) = 2
is a line.

2.7 Constructions of twin circles

The Sydpoint twin circle theorem assists us to construct
twin circles; we generally expect this to reduce to finding
midpoints, but there are also some simpler scenarios. Sup-
pose we are given a circle C (in brown) with center c as in
Figure 9. Choose an arbitrary point a on the circle C and
construct C ≡ c⊥, then let s be the meet of ac and C, and t
the meet of A ≡ a⊥ and C.
Now, we can apply the construction of Figure 8; suppose
that the side st has midpoints m and n, and that x and y are
null points on am, and z and w are null points on an. Then
b≡ (mz)(ac) = (ny)(ac) and e≡ (mw)(ac)= (nx)(ac) lie
on the twin circle D to C . Symmetry implies that we could
also use d ≡ (mw) (ct) = (ny)(ct) and f ≡ (mz) (ct) =
(nx)(ct).

Figure 9: Constructing the twin circle D of C

Figure 10 shows another example of constructing the twin
D of a given circle C (in brown) with center c. In this case
c is outside the null circle, so its dual line C passes through
null points x and y (approximately—remember that a dy-
namic geometry package usually only deals with decimal
approximations, so the number-theoretical subtlety is di-
minished). Choose a point a on C with dual line A = a⊥.
Then the twin circle D (in red) is the locus of the point
b = (ax)A or the point d = (ay)A as a moves along C .

Figure 10: Another construction of a twin circle

The fact that q(a,c)+ q(b,c) = 2 follows by applying ei-
ther the Nil Cross law ([14, Thm 80]) or the Null subtended
quadrance theorem ([14, Thm 90]) to the triangle abc. Sim-
ilarly, given the red circle D, its twin circle C (in brown)
can be constructed as the locus of the point a = (bx)b⊥
when moving the point b on D.
It should also be noted that we have not at all established
that the twin of any circle necessarily exists. In fact over
the rational numbers, the twin circle of a given circle does
not always exist. For example over the rational numbers,
if c is inside the null circle, then q(c,a) never takes on val-
ues in the range (0,1), but it can take on values in the range
(1,2).
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3 Circumlinear coordinates and the Ortho-
center hierarchy

In the paper ([16]) we focussed on ortholinear coordinates,
as the Orthocenter is arguably the most important point
in hyperbolic triangle geometry, and secondly on the In-
center hierarchy. In this paper we are primarily interested
in the Circumcenter hierarchy, and we introduce circum-
linear coordinates to work efficiently with both midpoints
and sydpoints simultaneously. While triangle geometry in-
volving sydpoints will be new and somewhat unfamiliar,
the natural beauty and elegance of this theory is very com-
pelling indeed.
Suppose the bilinear form v · u = vAuT in the associated
three-dimensional vector space V = F3 is given by a sym-
metric matrix A, and that T : V → V is a linear trans-
formation given by an invertible 3× 3 matrix M, so that
T (v) = vM = w, with inverse matrix N, so that wN = v.
The new bilinear form ◦ defined by

w1 ◦w2 ≡ (w1N) · (w2N) = (w1N)A(w2N)T

= w1(NANT )wT
2 (9)

has matrix C = NANT .
So let us start with three (projective) points a1, a2 and a3
such that each of the three sides of the triangle a1a2a3 has
either midpoints or sydpoints. That means we can find rep-
resentative vectors v1, v2 and v3 in V so that for any i and j,
v2

i = ±v2
j . There are two possibilities up to relabelling and

re-scaling: 1) v2
1 = v2

2 = v2
3 = 1 (this corresponds to three

midsides) and 2) v2
1 = v2

2 = −v2
3 = 1 (this corresponds to

one midside and two sydsides). We can incorporate both
situations at once by supposing that

v2
1 = v2

2 = εv2
3 = 1 where ε = ±1.

Now we can find a linear transformation to map v1, v2
and v3 to the basis vectors e1 = (1,0,0), e2 = (0,1,0) and
e3 = (0,0,1) respectively. With respect to this new basis,
the bilinear form is then given by a new matrix of the form

C =





1 a b
a 1 c
b c ε



 with adjugate

D =





c2 − ε aε−bc b−ac
aε−bc b2 − ε c−ab
b−ac c−ab a2 −1



 (10)

where the diagonal entries of C ensure that e2
1 = e2

2 = 1 and
e2

3 = ε, and otherwise e1e2 = a, e1e3 = b and e2e3 = c are
arbitrary. So the metrical structure depends on the numbers
a, b and c and (the sign of) ε. Note that

det





1 a b
a 1 c
b c ε



 = −a2ε−b2 − c2 + ε+ 2abc.

This quantity appears as a common factor in several of the
derivations of proportions in the paper, and since it is by as-
sumption non-zero, we simply cancel it without mention.
We now reformulate some of the formulas of the Ortho-
center hierarchy of ([16]) using circumlinear coordinates,
maintaining the convention of using capital letters for var-
ious constructions associated to a base triangle. The pro-
jective matrices corresponding to C and D are denoted C
and D respectively.
Our starting point is that the basic Triangle a1a2a3 has been
projectively transformed so that its Points are

a1 = [1 : 0 : 0] a2 = [0 : 1 : 0] a3 = [0 : 0 : 1] . (11)

The Lines of the Triangle are then

L1 = 〈1 : 0 : 0〉 L2 = 〈0 : 1 : 0〉 L3 = 〈0 : 0 : 1〉 .

The main assumption is that each of the three sides is either
a midside or a sydside, or possibly both, which we have
seen allows us to write the bilinear form using the projec-
tive matrices (10). The Triangle will have three midsides
if ε = 1, and two sydsides and one midside if ε = −1. The
computations are based on two basic operations: finding
joins and meets, which essentially amounts to taking cross
products as in (3) and (4); and finding duals, either by mul-
tiplying transposes of points by C on the left, or transposes
of lines by D on the right as in (5).
Our goal is to establish formulas for important points and
lines to facilitate determining relationships between them:
the reader is encouraged to follow along and check our
computations, which are mostly elementary. Occasionally
we simplify a proportion by cancelling a common factor:
naturally this factor should not be zero, so we state this as
a condition.

3.1 Change of coordinates and the main example

Most of the diagrams in this paper deal with the particular
triangle in Figure 11 created with GSP, with affine points
a1 ≈ [−0.03959,0.15272], a2 ≈ [−0.20363,0.78056]
and a3 ≈ [−1.75344,0.19797], and corresponding rep-
resentative vectors v1 ≈ (−0.237,0.914,5.985), v2 ≈
(−2.036,7.806,10) and v3 ≈ (−7.128,0.805,4.065).
These have been normalized so that

Qv1 = Qv2 = −Qv3

with respect to the bilinear form v · u ≡ vJuT , where J is
defined in (6).
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Figure 11: Basic example triangle with coordinates

We now show how to explicitly change coordinates, fol-
lowing Section 1.5 of [16]. The linear transformation
T (v) = vN, where N is

N =





−0.237 0.914 5.985
−2.036 7.806 10
−7.128 0.805 4.065



 ,

sends e1 = (1,0,0), e2 = (0,1,0) and e3 = (0,0,1) to v1,
v2 and v3 respectively. The inverse matrix M = N−1 sends
the vectors v1, v2 and v3 to e1, e2 and e3. Following (9),
after we apply the linear transformation T, J is replaced by
the matrix

C = NJNT ≈





1.0 1.495 0.627
1.495 1 0.568
0.627 0.568 −1



 with adjugate

D =





1.327 −1.851 −0.222
−1.851 1.393 −0.369
−0.222 −0.369 1.235



 .

We get the constants
a = 1.495 b = 0.627 c = 0.568 ε = −1.

As an example of how to explicitly apply the theorems
of this paper to our specific triangle, consider the mid-
points of the side a1a2 in standard coordinates which are
m = n1+ = [1 : 1 : 0] and m = n1− = [1 : −1 : 0]. Multi-
ply by N and then renormalize so that z = 1, to find these
midpoints in the original triangle to be

n1+ = [1 : 1 : 0]N =
[

−2.273 8.72 15.985
]

=
[

−0.142 0.546 1.0
]

n1− = [1 : −1 : 0]N =
[

1.799 −6.892 −4.015
]

=
[

−0.448 1.72 1.0
]

.

As another example, using the formulas from the Circum-
lines/Circumcenter theorem, we may similarly compute
that the circumcenters c, in agreement with Figure 11, are

c0 =
[

0.268 0.653 1.0
]

c1 =
[

−0.997 1.573 1.0
]

c2 =
[

0.249 1.898 1.0
]

c3 =
[

−1.308 0.241 1.0
]

.

3.2 Altitudes, Orthocenter and Orthic triangle

The Dual lines are
A1 ≡ a⊥1 = CaT

1 = 〈1 : a : b〉
A2 ≡ a⊥2 = CaT

2 = 〈a : 1 : c〉
A3 ≡ a⊥3 = CaT

3 = 〈b : c : ε〉 .
The Dual points are
l1 ≡ LT

1 D =
[

c2 − ε : εa−bc : b−ac
]

l2 =
[

εa−bc : b2 − ε : c−ab
]

l3 =
[

b−ac : c−ab : a2 −1
]

.

The Altitudes are
N1 ≡ a1l1 = 〈0 : ac−b : εa−bc〉
N2 ≡ a2l2 = 〈c−ab : 0 : bc− εa〉
N3 ≡ a3l3 = 〈ab− c : b−ac : 0〉
and the Altitude dual points are
n1 ≡ A1L1 = [0 : −b : a]
n2 ≡ A2L2 = [c : 0 : −a]
n3 ≡ A3L3 = [−c : b : 0] .

The Base points are
b1 ≡ N1L1 = [0 : εa−bc : b−ac]
b2 ≡ N2L2 = [εa−bc : 0 : c−ab]
b3 ≡ N3L3 = [b−ac : c−ab : 0]

and the Base lines are
B1 ≡ n1l1 =

〈

b2 −2abc + a2ε : a
(

ε− c2) : b
(

ε− c2)〉

B2 ≡ n2l2 =
〈

a
(

ε−b2) : c2 −2abc + a2ε : c
(

ε−b2)〉

B3 ≡ n3l3 =
〈

b
(

1−a2) : c
(

1−a2) : b2 −2abc + c2〉 .

Figure 12: Altitudes, Orthocenter, Orthic triangle
and Base center b

Assuming aε−bc �= 0, b−ac �= 0 and c−ab �= 0, the Or-
thic lines are

C1 ≡ b2b3 = 〈ab− c : b−ac : εa−bc〉
C2 ≡ b1b3 = 〈c−ab : ac−b : εa−bc〉
C3 ≡ b1b2 = 〈c−ab : b−ac : bc−aε〉.
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The Orthic points are

c1 ≡ B2B3 =[
(

2ca2 −ba− c
)

ε+ c
(

2b2 + c2 −3abc
)

:

: (ac−b)
(

b2 − ε
)

: (bc−aε)
(

a2 −1
)

]

c2 ≡ B1B3 =[(ab− c)
(

c2 − ε
)

:
(

2ba2 − ca−b
)

ε+

+ b
(

b2 + 2c2 −3abc
)

: (bc−aε)
(

a2 −1
)

]

c3 ≡ B1B2 =[(ab− c)
(

c2 − ε
)

: (ac−b)
(

b2 − ε
)

:

: a
(

a2 −1
)

ε+
(

2ab2 −3a2bc + 2ac2−bc
)

].

The Orthocenter is arguably the most important point in
triangle geometry, it is

h ≡ N1N2 = N2N3 = N1N3

= [(b−ac)(aε−bc):(c−ab)(aε−bc):(ac−b)(ab− c)] .

The dual line is the Ortholine

H ≡ n1n2 = n1n3 = n2n3 = 〈ab : ac : bc〉 .

The Orthic triangle b1b2b3 is perspective with the Trian-
gle a1a2a3 with center of perspectivity the Orthocenter h.
The Triangle Base center theorem states that the Or-
thic dual triangle c1c2c3 is perspective with the Triangle
a1a2a3. The center of perspectivity is the Base center

b =
[

(ab− c)
(

c2 − ε
)

:(ac−b)
(

b2−ε
)

:(bc−εa)
(

a2−1
)]

with dual line the Base axis

B = 〈c + ab : b + ac : εa + bc〉.

In Figure 12 we see the Altitudes, Orthocenter h and the
dual Ortholine H, the Orthic triangle b1b2b3, Orthic dual
triangle c1c2c3, base center b and Base axis B.

3.3 Desargues points and the Orthoaxis

The Desargues points are the meets of corresponding Or-
thic lines and Lines:

g1 ≡C1L1 = [0 : bc− εa : b−ac]
g2 ≡C2L2 = [bc− εa : 0 : c−ab]

g3 ≡C3L3 = [b−ac : ab− c : 0]

and the dual Desargues lines are

G1 =
〈

b2 −a2ε : 2bc−ac2−aε : bc2 + bε−2acε
〉

G2 =
〈

2bc−ab2−aε : c2 −a2ε : b2c + cε−2abε
〉

G3 =
〈

b + a2b−2ac : 2ab− c−a2c : b2 − c2〉 .

Figure 13: Desargues points, Orthic axis S and Or-
thoaxis A

Desargues’ theorem implies that the Desargues points
g1,g2,g3 are collinear. They lie on the Orthic axis

S = 〈ab− c : ac−b : bc−aε〉. (12)

Dually the Desargues lines G1,G2,G3 are concurrent, pass-
ing through the Orthostar

s =





(

2ca2 −3ba + c
)

ε+ c
(

2b2 − c2 −abc
)

:
(

2ba2 −3ca + b
)

ε−b
(

b2 −2c2 + abc
)

:
a
(

1−a2)ε+
(

2ab2 −a2bc + 2ac2−3bc
)



 .

The Orthoaxis A, introduced in [16], is arguably the most
important line in hyperbolic triangle geometry; it and its
dual the Orthoaxis point a are

A ≡ sh =〈(ab− c)
(

a2ε−b2) : (b−ac)
(

a2ε− c2) :

: (bc−aε)
(

b2 − c2)〉

a ≡ SH =
[

c
(

a2ε−b2) : b
(

c2 − εa2) : a
(

b2 − c2)] .

The Base center on Orthoaxis theorem asserts that the Or-
thoaxis A passes through the Base center b.

3.4 Parallels and the Double triangle

Recall from [14] that the parallel line P through a point
a to a line L is the line through a perpendicular to the al-
titude from a to L. This motivates the definition of the
Double triangle of a Triangle. The Parallel lines

P1 ≡ a1n1 = 〈0 : a : b〉
P2 ≡ a2n2 = 〈a : 0 : c〉
P3 ≡ a3n3 = 〈b : c : 0〉

are the joins of corresponding Points a and Altitude points
n, and their duals are the Parallel points

p1 =
[

b2 −2abc + a2ε : bc−aε : ac−b
]

p2 =
[

bc−aε : c2 −2abc + a2ε : ab− c
]

p3 =
[

ε(ac−b) : ε(ab− c) : b2 −2abc + c2] .
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Assuming a �= 0, b �= 0 and c �= 0, the meets of Parallel
lines are the Double points

d1 ≡ P2P3 = [−c : b : a]

d2 ≡ P1P3 = [c : −b : a]

d3 ≡ P1P2 = [c : b : −a]

and their duals are the Double lines

D1 ≡ p2 p3 = 〈2ab− c : b : εa〉
D2 ≡ p1 p3 = 〈c : 2ac−b : εa〉
D3 ≡ p1 p2 = 〈c : b : 2bc− εa〉.

Figure 14: The Double triangle, Orthoaxis A, and the
points z,b,x,h and s

We give here another proof of the following result, involv-
ing a simpler computation than in [16].

Theorem 7 (Double triangle midpoint) The Points a1,
a2, a3 are midpoints of the Double triangle d1d2d3.

Proof. We compute

q(d1,a3) =
−b2 − c2 + 2abc

a2 −b2 − c2 + 2abc
= q(d2,a3).

Similarly, a1 is a midpoint of d2d3, and a2 is a midpoint of
d1d3. �

The Double triangle perspectivity theorem states that the
Double triangle d1d2d3 and the Triangle a1a2a3 are per-
spective from a point, the Double point, or x point

x = [c : b : a]

which lies on the Orthoaxis A. The proof is very simple in
these coordinates: we compute that

a1d1 = 〈0 : −a : b〉
a2d2 = 〈a : 0 : −c〉
a3d3 = 〈−b : c : 0〉

and then observe that these lines meet at x.
The dual of the x point is the X line

X = 〈2ab + c : 2ac + b : 2bc + aε〉.

The Double dual triangle perspectivity theorem asserts that
the Double triangle d1d2d3 and the Dual triangle l1l2l3
are perspective from a point, the Double dual point, or
z point

z =





(

ca2 −2ba + c
)

ε+ c
(

b2 − c2) :
(

ba2 −2ca + b
)

ε−b
(

b2 − c2) :
a
(

1−a2)ε+ ab2−2bc + ac2



 .

Its dual is the Z line

Z = 〈c : b : εa〉 .

The z point lies on the Orthoaxis A, or equivalently the Or-
thoaxis point a lies on the Z line.

4 The Circumcenter hierarchy

We now begin the study of the Circumcenter hierarchy.
The basic assumption that we used to set up circumlinear
coordinates was that each side of the triangle was either a
midside or a sydside. We wish to treat both cases symmet-
rically, hence we introduce the notion that a smydpoint n
of the side ab is either a midpoint or a sydpoint (or pos-
sibly both). Smydpoints exists precisely when 1− q(a,b)
is either a square or the negative of a square (or possibly
both). Our diagrams will illustrate the situation when one
side has midpoints and the other two sides have sydpoints.
We introduce consistent labelling to bring out the four-fold
symmetry in this situation.

4.1 Circumcenters, medians and centroids

By the Side midpoints and Side sydpoints theorems, in Cir-
cumlinear coordinates the smydpoints are

n1+ = [0 : 1 : 1] and n1− = [0 : −1 : 1] on a2a3

n2+ = [1 : 0 : 1] and n2− = [1 : 0 : −1] on a1a3

n3+ = [1 : 1 : 0] and n3− = [1 : −1 : 0] on a1a2.

Note that the indices of our labelling reflect the positions
and relative signs of the non-zero entries.

Theorem 8 (Circumlines/Circumcenters) The six Smyd-
points lie three at a time on four Circumlines

C0 ≡ n1−n2−n3− = 〈1 : 1 : 1〉
C1 ≡ n1−n2+n3+ = 〈−1 : 1 : 1〉
C2 ≡ n2−n1+n3+ = 〈1 : −1 : 1〉
C3 ≡ n3−n1+n2+ = 〈1 : 1 : −1〉 .

The duals are the Circumcenters
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c0 = C⊥
0 =





(a−1)ε− c(a + b− c)+ b :
(a−1)ε−b(a−b + c)+ c :

(a−1)(a−b− c + 1)





c1 = C⊥
1 =





(a + 1)ε− c(a + b + c)+ b :
c− (a + 1)ε−b(a−b− c) :

(a + 1)(a−b + c−1)





c2 = C⊥
2 =





b− (a + 1)ε− c(a−b− c) :
(a + 1)ε−b(a + b + c)+ c :

(a + 1)(a + b− c−1)





c3 = C⊥
3 =





b− (a−1)ε− c(a−b + c) :
c− (a−1)ε−b(a + b− c) :

(a−1)(a + b + c + 1)



 .

Proof. The formulas for the Circumlines can be checked
immediately, the Circumcenter formulas are computations
using duality. �

Figure 15: Circumlines, Circumcenters, Medians and Cen-
troids

Median lines (or just medians) are joins of Points a and
Smydpoints n which lie on the opposite lines:

D1− ≡ a1n1− = 〈0 : 1 : 1〉 D1+ ≡ a1n1+ = 〈0 : −1 : 1〉
D2+ ≡ a2n2+ = 〈1 : 0 : −1〉 D2− ≡ a2n2− = 〈1 : 0 : 1〉
D3− ≡ a3n3− = 〈1 : 1 : 0〉 D3+ ≡ a3n3+ = 〈−1 : 1 : 0〉 .

Figure 15 shows the six Medians and their meets.

Theorem 9 (Centroids) The Median lines D are concur-
rent in threes, meeting at four Centroid points

g0 ≡ D1+D2+D3+ = [1 : 1 : 1]

g1 ≡ D1+D2−D3− = [−1 : 1 : 1]

g2 ≡ D1−D2+D3− = [1 : −1 : 1]

g3 ≡ D1−D2−D3+ = [1 : 1 : −1] .

The dual Centroid lines are

G0 = 〈a + b + 1 : a + c + 1 : b + c + ε〉
G1 = 〈a + b−1 : c−a + 1 : c−b + ε〉
G2 = 〈b−a + 1 : a + c−1 : b− c + ε〉
G3 = 〈a−b + 1 : a− c + 1 : b + c− ε〉.

Proof. Straightforward. �

4.2 CircumCentroids

While many aspects of the Circumcenter hierarchy are in-
dependent of ε, there are some that are not. The following
is an extension of the similarly named result in [16].

Theorem 10 (CircumCentroid axis) The meets of corre-
sponding Circumlines and Centroid lines are collinear pre-
cisely when either b = ±c or ε = 1. If ε = 1, the common
line is the Z axis 〈c : b : εa〉, and the joins of corresponding
Circumcenters and Centroid points meet at the z point. If
b = c, then the common line is 〈b : b : a + ε−1〉, while if
b = −c, then the common line is 〈−b : b : a− ε+ 1〉.

Proof. The meets of Circumlines C0,C1,C2,C3 and cor-
responding Centroid lines G0,G1,G2,G3 are the four Cir-
cumCentroid points

z0 ≡C0G0 = [a−b− ε+ 1 : c−a + ε−1 : b− c]
z1 ≡C1G1 = [b−a− ε+ 1 : 1−a− c− ε : b + c]
z2 ≡C2G2 = [1−a−b− ε : c−a− ε+ 1 : b + c]
z3 ≡C3G3 = [a + b− ε+ 1 : ε−a− c−1 : b− c] .

The determinants

det





a−b− ε+ 1 c−a + ε−1 b− c
b−a− ε+ 1 1−a− c− ε b + c
1−a−b− ε c−a− ε+ 1 b + c





= −4
(

b2 − c2)(ε−1)

det





a−b− ε+ 1 c−a + ε−1 b− c
1−a−b− ε c−a− ε+ 1 b + c
a + b− ε+ 1 ε−a− c−1 b− c





= 4
(

b2 − c2)(ε−1)

show that the CircumCentroid points are collinear pre-
cisely when ε = 1 or b = ±c. If ε = 1 the common
line is 〈c : b : a〉 which in this case agrees with Z =
〈c : b : εa〉. If b = c we can check that the common line
is 〈b : b : a + ε−1〉, and if b = −c the common line is
〈−b : b : a− ε+ 1〉. �
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4.3 Twin Circumcircles of a Triangle

If a triangle has three midsides, then corresponding Cir-
cumcenters will be centers of circles which pass through
all three points, as in the classical triangle in Figure 1. This
situation also holds for a triangle such as a1a2a3 in Figure
16, lying outside the null circle (still in blue) shown with
three of its Midpoints m, (the other three are off the page),
six Midlines M, three of the four Circumlines C, the four
Circumcenters c, and the corresponding Circumcircles.

Figure 16: Circumcenters of a triangle outside the null cir-
cle

But what happens if a triangle has some points inside and
some outside the null circle? In that case it turns out that
we need to consider special pairs of circles, which collec-
tively play the role of circumcircles. We do not know of
any classical precedents for this phenomenon.

Definition 6 Twin circles C and C are twin circumcircles
for a triangle a1a2a3 precisely when each of a1, a2, a3 lie
on either C or C .

Theorem 11 (Twin circumcircles) If a triangle a1a2a3
has smydpoints on all three sides, then the four circumcen-
ters c0,c1,c2,c3 are each the center of twin circumcircles
for a1a2a3.

Proof. If n is a smydpoint of the side akal then its dual
n⊥ passes through two circumcenters, say ci and c j. Let’s
consider just ci. If n is a sydpoint of akal then the Sydpoint
twin circle theorem shows that the circles C

(ak)
ci and C

(al)
ci

are twin circles. If n is a midpoint of akal then the reflec-
tion rn interchanges ak and al and fixes both ci and c j, so
that C

(ak)
ci and C

(al)
ci coincide.

Since ci is perpendicular to two smydpoints on different
lines of the triangle a1a2a3, the argument can be repeated,
so that either there is one circle with center at ci that passes
through all three points, or one of the twin circles C

(ak)
ci and

C
(al)
ci also passes through the third point of the triangle, in

which case these are twin circumcircles. �

Now let’s introduce some labelling and explicit formulas.
Consider the circles Ci = C

(a3)
i centered at ci and passing

through a3, for i = 0,1,2,3. Their equations q(p,ci) =
q(ci,a3) in a variable point p = [x : y : z], can be written,
after factoring a common term −ε+ a2ε+ b2 + c2 −2abc,
as

C0: (1− ε)
(

x2 +y2
)

+2(a− ε)xy+2(b− ε)xz+2(c− ε)yz = 0

C1: (1− ε)
(

x2 +y2
)

+2(a+ ε)xy+2(b+ ε)xz+2(c− ε)yz = 0

C2: (1− ε)
(

x2 +y2
)

+2(a+ ε)xy+2(b− ε)xz+2(c+ ε)yz = 0

C3: (1− ε)
(

x2 +y2
)

+2(a− ε)xy+2(b+ ε)xz+2(c+ ε)yz = 0.

The respective twin circles Ci with equations q(p,ci) =
2−q(ci,a3) can be written as

C 0 : (1 + ε)
(

x2 + y2)+ 2εz2 + 2(a + ε)xy
+ 2(b + ε)xz+ 2(c + ε)yz = 0

C 1 : (1 + ε)
(

x2 + y2)+ 2εz2 + 2(a− ε)xy
+ 2(b− ε)xz+ 2(c + ε)yz = 0

C 2 : (1 + ε)
(

x2 + y2)+ 2εz2 + 2(a− ε)xy
+ 2(b + ε)xz+ 2(c− ε)yz = 0

C 3 : (1 + ε)
(

x2 + y2)+ 2εz2 + 2(a + ε)xy
+ 2(b− ε)xz+ 2(c− ε)yz = 0.

If ε = 1, then each of the four circumcircles Ci passes
through all three points of the triangle, while their twins
C i pass through none of the points of the triangle; even so,
their presence is felt.
In Figure 17 we see a triangle a1a2a3 with all three points
inside the null circle, together with its four pairs of twin
circumcircles, each pair with the same colour. The reader
might enjoy looking for interesting relations between these
circles.

Figure 17: Twin circumcircles for a classical triangle
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4.4 CircumDual points, Tangent lines and Sound
points

If ε = −1, then the circumcircles Ci pass only through c3,

while the twins C i pass through c1 and c2. In each case we
have four twin circumcircle pairs of the Triangle. These
eight circles are shown for our standard example Triangle
in Figure 18, along with the Tangent lines, which we now
introduce.

Figure 18: Twin Circumcircles and Tangent lines

The CircumDual point pi j is the meet of the Dual line
Ai and the Circumline Cj, for i = 1,2,3 and j = 0,1,2,3.
Then

p10 =[a−b : b−1 : −a + 1] p20 =[c−1 : a− c : −a + 1]

p11 =[a−b : −b−1 : a + 1] p21 =[1− c : −a− c : a + 1]

p12 =[a + b : b−1 : −a−1] p22 =[c + 1 : c−a : −a−1]

p13 =[−a−b : b + 1 : 1−a] p23 =[−c−1 : a + c : a−1]

p30 = [ε− c : b− ε : −b + c]
p31 = [c− ε : −b− ε : b + c]
p32 = [−c− ε : b− ε : b + c]
p33 = [−c− ε : b + ε : b− c].

The Tangent line Ti j is the join of the CircumDual point
pi j and the point ai. This line is indeed tangent to the cir-
cumcircle Ci at the point ai if this circle passes through ai.
The twelve Tangent lines are:

T10 = 〈0 : a−1 : b−1〉 T20 = 〈a−1 : 0 : c−1〉
T11 = 〈0 : a + 1 : b + 1〉 T21 = 〈a + 1 : 0 : c−1〉
T12 = 〈0 : a + 1 : b−1〉 T22 = 〈a + 1 : 0 : c + 1〉
T13 = 〈0 : a−1 : b + 1〉 T23 = 〈a−1 : 0 : c + 1〉

T30 = 〈b− ε : c− ε : 0〉
T31 = 〈b + ε : c− ε : 0〉
T32 = 〈b− ε : c + ε : 0〉
T33 = 〈b + ε : c + ε : 0〉 .

The Sound point si j is the meet of the Tangent line Ti j with
the opposite Line Li. The twelve Sound points are:

s10 = [0 : 1−b : a−1] s20 = [1− c : 0 : a−1]

s11 = [0 : −b−1 : a + 1] s21 = [1− c : 0 : a + 1]

s12 = [0 : 1−b : a + 1] s22 = [−1− c : 0 : a + 1]

s13 = [0 : b + 1 : 1−a] s23 = [1 + c : 0 : 1−a]

s30 = [ε− c : b− ε : 0]

s31 = [ε− c : b + ε : 0]

s32 = [c + ε : ε−b : 0]

s33 = [−c− ε : b + ε : 0] .

Figure 19: CircumDual points and Sound points

4.5 Jay and Wren lines

In this section we begin to see more divergence between
the ε = 1 and ε = −1 cases. In the latter case a symme-
try emerges between the Circumcenters c0 and c3, and be-
tween c1 and c2.

Theorem 12 (Jay lines) If ε = 1 then the sets of Sound
points {s10,s20,s30}, {s11,s21,s31}, {s12,s22,s32} and
{s13,s23,s33} are each collinear, while if ε = −1 then
the sets of Sound points {s10,s20,s33}, {s11,s21,s32},
{s12,s22,s31} and {s13,s23,s30} are each collinear. In both
cases the common lines are respectively the four Jay lines

J0 = 〈(a−1)(b−1) : (a−1)(c−1) : (c−1)(b−1)〉

J1 = 〈(a + 1)(b + 1) : (a + 1)(c−1) : (c−1)(b + 1)〉

J2 = 〈(a + 1)(b−1) : (a + 1)(c + 1) : (c + 1)(b−1)〉

J3 = 〈(a−1)(b + 1) : (a−1)(c + 1) : (c + 1)(b + 1)〉 .

Proof. The forms of the Sound points and Jay lines make
verifying these incidences almost trivial. Note that chang-
ing the sign of ε interchanges s30 with s33, and s31 with
s32. This explains why the two lists appear different in
these two cases. �
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In the case of ε = 1 we associate each triple of Sound points
to the Circumline which is involved in each term. In the
case of ε = −1 we associate each triple to the Circumline
which is involved in two of the three elements of the triple.
There are four meets of Circumlines and associated Jay
lines called CircumJay points, namely

t0 ≡C0J0 =[(c−1)(a−b):(−b +1)(a− c):(a−1)(b− c)]
t1 ≡C1J1 =[(c−1)(a−b):−(b +1)(a + c):(a +1)(b + c)]
t2 ≡C2J2 =[(c +1)(a + b):(1−b)(a− c):−(a +1)(b + c)]
t3 ≡C3J3 =[−(c +1)(a + b):(b +1)(a + c):(a−1)(b− c)] .

Note that these formulas are independent of ε.

Theorem 13 (CircumJay) The four CircumJay points
t0,t1,t2,t3 are collinear and lie on the line

T = 〈c + ab : b + ac : a + bc〉.

When ε = 1 this coincides with the Base axis B. When
ε = −1, this is a new line which we call the T axis. In
the case of ε = −1, T,B and L3 are concurrent at a new
point

t = [−(b + ac) : c + ab : 0] .

Proof. The CircumJay point t0 lies on T since

(c−1)(a−b)(c + ab)+ (−b + 1)(a− c)(b + ac)
+ (a−1)(b− c)(a + bc) = 0

and similarly for the other points. The T axis agrees with
the Base axis B = 〈c + ab : b + ac : εa + bc〉 if ε = 1. For
ε = −1, the verification of t = TB is also straightforward,
and clearly it lies on L3. �

Theorem 14 (Wren lines) If ε = 1 then the sets of Sound
points {s11,s22,s33}, {s10,s32,s23}, {s31,s20,s13} and
{s21,s12,s30} are each collinear, while if ε = −1 then
the sets of Sound points {s11,s22,s30}, {s10,s23,s31},
{s13,s20,s32} and {s12,s21,s33} are each collinear. In both
cases the common lines are respectively the four Wren
lines

W0 = 〈(a + 1)(b + 1) : (a + 1)(c + 1) : (b + 1)(c + 1)〉

W1 = 〈(a−1)(b−1) : (c + 1)(a−1) : (c + 1)(b−1)〉

W2 = 〈(b + 1)(a−1) : (a−1)(c−1) : (b + 1)(c−1)〉

W3 = 〈(a + 1)(b−1) : (a + 1)(c−1) : (b−1)(c−1)〉 .

Proof. Again, with the formulas for Sound points and
Wren lines, it is straightforward to check incidences. As
with the Jay lines, changing the sign of ε interchanges s03
with s33, and s13 with s23. �

Notice that each set of collinear Sound points is associated
to the Circumcenter which is not involved in the indices of

that group. CircumWren points are the meets of Circum-
lines and associated Wren lines. These points are

u0 ≡C0W0

= [(c + 1)(a−b) : −(b + 1)(a− c) : (a + 1)(b− c)]
u1 ≡C1W1

= [(c + 1)(a−b) : (−b + 1)(a + c) : (a−1)(b + c)]
u2 ≡C2W2

= [(c−1)(a + b) : −(b + 1)(a− c) : (−a + 1)(b + c)]
u3 ≡C3W3

= [(−c + 1)(a + b) : (b−1)(a + c) : (a + 1)(b− c)] .

Figure 20: Jay lines J, Wren lines W, T,U,V axes and new
points a,u,t

Theorem 15 (CircumWren) The four CircumWren
points u0,u1,u2,u3 are collinear and lie on the line

U ≡ 〈ab− c : ac−b : bc−a〉.

When ε = 1 this coincides with the Orthic axis S. When
ε =−1, this is a new line which we call the U axis. In case
ε = −1, S,U and L3 are concurrent in a new point

u = [ac−b : c−ab : 0] .

Proof. We may compute that v0 lies on U since

(c + 1)(a−b)(ab− c)− (b + 1)(a− c)(ac−b)

+ (a + 1)(b− c)(bc−a) = 0.

The other incidences are similar. From (12) we recall that
the Orthic axis has equation S = 〈ab− c : ac−b : bc−aε〉
which agrees with U precisely when ε = 1. Again the for-
mula for u is easy. �

In Figure 20 we see the CircumJay points t j (dark blue)
on T, the CircumWren points u j (purple) on U, and the
JayWren points v j (yellow) on V.
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Theorem 16 (CircumJayWren) The lines U, T and H
are concurrent, and pass through

a ≡
[

c
(

a2 −b2) : b
(

c2 −a2) : a
(

b2 − c2)] . (13)

If ε = 1 then a agrees with the Orthoaxis point a =
[

c
(

a2ε−b2) : b
(

c2 − εa2) : a
(

b2 − c2)].

Proof. The concurrence of these lines follows from

det





ab− c ac−b bc−a
c + ab b + ac a + bc

ab ac bc



 = 0.

The common incidence with (13) is also readily checked.
The last statement is self-evident. �

There are four JayWren points which are the meets of as-
sociated Jay lines and Wren lines:

v0 =J0W0 =
[(

c2−1
)

(a−b):
(

b2−1
)

(c−a):
(

a2−1
)

(b−c)
]

v1 =J1W1 =
[(

c2−1
)

(a−b) :
(

b2−1
)

(a + c):
(

1−a2)(b+c)
]

v2 =J2W2 =
[(

c2−1
)

(a+b) :
(

b2−1
)

(a− c):
(

1−a2)(b+c)
]

v3 =J3W3 =
[(

c2−1
)

(a + b):
(

1−b2)(a+c) :
(

a2−1
)

(b−c)
]

.

Theorem 17 (JayWren) The four JayWren points
v0,v1,v2,v3 are collinear and lie on the JayWren axis,
or the V line

V =
〈

c
(

b2−1
)(

a2−1
)

:b
(

c2−1
)(

a2−1
)

: a
(

c2−1
)(

b2−1
)〉

.

Proof. The JayWren point v0 lies on V since

(

c2 −1
)

(a−b)c
(

b2 −1
)(

a2 −1
)

−
(

b2 −1
)

(a− c)b
(

c2 −1
)(

a2 −1
)

+
(

a2 −1
)

(b− c)a
(

c2 −1
)(

b2 −1
)

= 0.

Checking the other incidences is similar. �

4.6 CircumMeets and reflections

One of the interesting features of this situation concerns the
meets of the eight generalized circumcircles forming the
four twin circumcircles of a triangle with six smydpoints.
We establish easily a basic fact.

Figure 21: Circumcircles and CircumMeet points

Theorem 18 (Smydpoint reflection) Suppose that a gen-
eralized circumcircle C has center c j perpendicular to a
smydpoint n. If C passes through a point ak of the Trian-
gle, then it also passes through the reflection rn (ak).

Proof. If n is perpendicular to c j, then the reflection rn in
n fixes the center c j of C , and so fixes C . Thus if C passes
through ak, it also passes through rn (ak). �

This theorem helps explain why in Figure 21 the meets
of the generalized circumcircles lie either on the lines
of the Triangle, or on the Medians. We see that reflec-
tions of Points in Sydpoints are also interesting points of
the Triangle—in fact somewhat surprisingly these Circum-
Meet points are independent of the third Point of the Trian-
gle, and depend only on the particular side on which they
lie. The reader can verify with a dynamic geometry pack-
age that as we vary one point of the Triangle, the gener-
alized circumcircles move, but their meets on the opposite
Line do not.
In general meets of circles are complicated by number-
theoretical issues (circles do not have to meet, after all).
We conjecture that whenever generalized Circumcircles
meet, they do so either on Lines or Medians. We hope to
explain the more detailed structure of these CircumMeet
points in a future paper.

4.7 Sound conics

The twelve sound points are quite interesting, supporting
the linear structures of Jay and Wren lines. They also are
connected with four special conics in an interesting way,
each conic naturally also associated with a circumcenter.
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Figure 22: Sound conics

Theorem 19 The sextuples {s12,s13,s21,s23,s31,s32},
{s12,s13,s20,s22,s30,s33}, {s10,s11,s21,s23,s30,s33} and
{s10,s11,s20,s22,s31,s32} of sound points all lie on conics.
Each of these four Sound conics K j is associated to a
Circumcenter c j.

Proof. We compute the coefficients of the equation of the
(blue) conic

K0 : a1x2 + a2y2 + a3z2 + a4xy + a5xz+ a6yz = 0

passing through points s12,s13,s21,s23,s31 by solving the
linear system

(1−b)2 a2 +(a + 1)2 a3 +(1−b)(a + 1)a6 = 0

(1 + b)2 a2 +(1−a)2 a3 +(1 + b)(1−a)a6 = 0

(1− c)2 a1 +(a + 1)2 a3 +(1− c)(a + 1)a5 = 0

(1 + c)2 a1 +(1−a)2 a3 +(1 + c)(1−a)a5 = 0

(ε− c)2 a1 +(b + ε)2 a2 +(ε− c)(b + ε)a4 = 0

This results in the values

a1 = (c + ε)(b− ε)
(

b2 −1
)(

a2 −1
)

a2 = (c + ε)(b− ε)
(

c2 −1
)(

a2 −1
)

a3 = (c + ε)(b− ε)
(

c2 −1
)(

b2 −1
)

a4 = 2
(

a2 −1
)

(bc + 1)(bε− cε+ bc−1)

a5 = 2(c + ε)(b− ε)
(

b2 −1
)

(ac + 1)

a6 = 2(c + ε)(b− ε)(ab + 1)
(

c2 −1
)

.

When substituting the coordinates of s32 in the above equa-
tion with these coefficients, we obtain equality precisely
when
(

ε2 −1
)(

a2 −1
)

((b− c)
(

4bc + b2 + c2 + 2
)

ε

+(bc−1)
(

b2 + c2 −2
)

) = 0

which is true since ε2 = 1.

By following the same argument, we can obtain the equa-
tions of the (red) conic

K1 : b1x2 + b2y2 + b3z2 + b4xy + b5xz+ b6yz = 0

through s12,s13,s20,s22,s30,s33 with coefficients

b1 = (b + ε)(c + ε)
(

b2 −1
)(

a2 −1
)

b2 = (b + ε)(c + ε)
(

c2 −1
)(

a2 −1
)

b3 = (b + ε)(c + ε)
(

c2 −1
)(

b2 −1
)

b4 = 2(bc−1)
(

a2 −1
)

(bε+ cε+ bc + 1)

b5 = 2(b + ε)(c + ε)(ac−1)
(

b2 −1
)

b6 = 2(b + ε)(c + ε)(ab + 1)
(

c2 −1
)

,

the (green) conic

K2 : c1x2 + c2y2 + c3z2 + c4xy + c5xz+ c6yz = 0

through s10,s11,s21,s23,s30,s33 with coefficients

c1 = (c + ε)(b + ε)
(

b2 −1
)(

a2 −1
)

c2 = (c + ε)(b + ε)
(

c2 −1
)(

a2 −1
)

c3 = (c + ε)(b + ε)
(

c2 −1
)(

b2 −1
)

c4 = 2(bc−1)(bε+ cε+ bc + 1)
(

a2 −1
)

c5 = 2(c + ε)(b + ε)(ac + 1)
(

b2 −1
)

c6 = 2(c + ε)(b + ε)(ab−1)
(

c2 −1
)

,

and the (brown) conic

K3 : d1x2 + d2y2 + d3z2 + d4xy + d5xz+ d6yz = 0

through s10,s11,s20,s22,s31,s32 with coefficients

d1 = (c + ε)(b− ε)
(

b2 −1
)(

a2 −1
)

d2 = (c + ε)(b− ε)
(

c2 −1
)(

a2 −1
)

d3 = (c + ε)(b− ε)
(

c2 −1
)(

b2 −1
)

d4 = 2(bc + 1)(bε− cε+ bc−1)
(

a2 −1
)

d5 = 2(c + ε)(b− ε)(ac−1)
(

b2 −1
)

d6 = 2(c + ε)(b− ε)(ab−1)
(

c2 −1
)

.

We associate each Sound conic K j to the Circumcenter c j
not involved in any of the six Sound points lying on it. �

5 Further directions

We can now extend hyperbolic triangle geometry from
classical triangles to more general ones. Taking duals we
get also analogous results for the Incenter hierarchy, and it
is worthwhile to elaborate these and then investigate fur-
ther the links between Incenter and Circumcenter hierar-
chies.
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The close relations between twin circles ought to have con-
sequences for relativistic physics, as points inside the null
circle correspond to time-like lines and points outside to
space-like lines. The geometry we are investigating sug-
gests these two aspects of relativistic geometry ought to be
much more closely linked.
Another direction is that over certain finite fields, we can
expect some sides to have both midpoints and sydpoints!
This is an interesting aspect for those with a number the-

oretical or combinatorial bend. It turns out that sydpoints
play a big role in the theory of conics in UHG as well, as
we will explain in a future paper.
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ABSTRACT

We develop a generalized triangle geometry, using an ar-

bitrary bilinear form in an affine plane over a general field.

By introducing standardized coordinates we find canonical

forms for some basic centers and lines. Strong concurren-

cies formed by quadruples of lines from the Incenter hi-

erarchy are investigated, including joins of corresponding

Incenters, Gergonne, Nagel, Spieker points, Mittenpunkts

and the New points we introduce. The diagrams are taken

from relativistic (green) geometry.
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Univerzalna afina geometrija trokuta i

četverostruka simetrija sredǐsta upisane kružnice

SAŽETAK

Razvijamo opću geometriju trokuta koristeći proizvoljnu

bilinearnu formu u afinoj ravnini nad općim poljem.

Uvodeći standardizirane koordinate pronalazimo kanonske

oblike nekih osnovnih sredǐsta i pravaca. Proučavamo

snažnu konkurentnost četvorki pravaca koji pripadaju “hi-

jerarhiji sredǐsta upisane kružnice”uključujući i spojnice

odgovarajućih sjecǐsta simetrala kutova trokuta, Geor-

gonnovih točaka, Nagelovih točaka, Mittenpunkova (imen-

ovano sa strane autora, op. ur.) te Novih točaka koje se

uvode u članku. Slike su prikazane u tzv. zelenoj ge-

ometriji.

Ključne riječi: geometrija trokuta, afina geometrija,

racionalna trigonometrija, bilinearna forma, hijerarhija

sredǐsta upisane kružnice, Eulerov pravac, Georgonnova

točka, Nagelova točka, Mittenpunkt, kromogeometrija

1 Introduction

This paper repositions and extends triangle geometry
by developing it in the wider framework of Rational
Trigonometry and Universal Geometry ([10], [11]), valid
over arbitrary fields and with general quadratic forms. Our
main focus is on strong concurrency results for quadruples
of lines associated to the Incenter hierarchy.
Triangle geometry has a long and cyclical history ([1], [3],
[16], [17]). The centroid G = X2, circumcenter C = X3,
orthocenter H = X4 and incenter I = X1 were known to
the ancient Greeks. Prominent mathematicians like Euler
and Gauss contributed to the subject, but it took off mostly
in the latter part of the 19th century and the first part of
the 20th century, when many new centers, lines, conics,
and cubics associated to a triangle were discovered and
investigated. Then there was a period when the subject
languished; and now it flourishes once more—spurred by
the power of dynamic geometry packages like GSP, C.a.R.,
Cabri, GeoGebra, and Cinderella; by the heroic efforts of
Clark Kimberling in organizing the massive amount of in-

formation on Triangle Centers in his Online Encyclopedia
([5], [6], [7]); and by the explorations and discussions of
the Hyacinthos Yahoo group ([4]).

The increased interest in this rich and fascinating subject
is to be applauded, but there are also mounting concerns
about the consistency and accessibility of proofs, which
have not kept up with the greater pace of discoveries. An-
other difficulty is that the current framework is modelled
on the continuum as “real numbers”, which often leads
synthetic treatments to finesse number-theoretical issues.

One of our goals is to provide explicit algebraic formu-
las for points, lines and transformations of triangle geom-
etry which hold in great generality, over the rational num-
bers, finite fields, and even the field of complex rational
numbers, and with different bilinear forms determining the
metrical structure without any recourse to transcendental
quantities or “real numbers”. Of course we proceed only
a very small way down this road, but far enough to es-
tablish some analogs of results that have appeared first in
Universal Hyperbolic Geometry ([14]); namely the con-
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currency of some quadruples of lines associated to the
classical Incenters, Gergonne points, Nagel points, Mitten-
punkts, Spieker points as well as the New points which we
introduce here. We identify the resulting centers in Kim-
berling’s list.
Our basic technology is simple but powerful: we propose
to replace the affine study of a general triangle under a
particular bilinear form with the study of a particular tri-
angle under a general bilinear form—analogous to the
projective situation as in ([14]), and using the framework
of Rational Trigonometry ([10], [11]). By choosing a very
elementary standard Triangle—with vertices the origin and
the two standard basis vectors—we get reasonably pleasant
and simple formulas for various points, lines and construc-
tions. An affine change of coordinates changes any triangle
under any bilinear form to the one we are studying, so our
results are in fact very general.
Our principle results center around the classical four
points, but a big differencewith our treatment is that we ac-
knowledge from the start that the very existence of the In-
center hierarchy is dependent on number-theoretical con-
ditions which end up playing an intimate and ultimately
rather interesting role in the theory. Algebraically it be-
comes difficult to separate the classical incenter from the
three closely related excenters, and the quadratic relations
that govern the existence of these carry a natural four-fold
symmetry between them. This symmetry becomes crucial
to simplifying formulas and establishing theorems. So in
our framework, there are four Incenters I0, I1, I2 and I3, not
one.
To showcase the generality of our results, we illustrate the-
orems not over the Euclidean plane, but in the Minkowski
plane coming from Einstein’s special theory of relativity
in null coordinates, where the metrical structure is deter-
mined by the bilinear form

(x1,y1) · (x2,y2) ≡ x1y2 + y1x2.

In the language of Chromogeometry ([12] , [13]), this
is green geometry, with circles appearing as rectangu-
lar hyperbolas with asymptotes parallel to the coordinate
axes. Green perpendicularity amounts to vectors being Eu-
clidean reflections in these axes, while null vectors are par-
allel to the axes. It is eye-opening to see that triangle ge-
ometry is just as rich in such a relativistic setting as it is in
the Euclidean one!

1.1 Summary of results

We summarize the main results of this paper using Figure
1 from green geometry. As established in ([13]), the trian-
gle A1A2A3 has a green Euler line CHG just as in the Eu-
clidean setting, where C = X3 is the Circumcenter, G = X2
is the Centroid, and H = X4 is the Orthocenter, with the
affine ratio

−→
CG :

−→
GH = 1 : 2, which we may express as

G = 2
3C + 1

3 H. The reader might like to check that using
the green notation of perpendicularity, the green altitudes
really do meet at H, and the green midlines/perpendicular
bisectors really do meet at C.

In the general situation there are four Incenters/Excenters
I0, I1, I2 and I3 which algebraically are naturally viewed
symmetrically. Associated to any one Incenter I j is a Ger-
gonne point Gj = X7 (not to be confused with the centroid
also labelled G), a Nagel point Nj = X8, a Mittenpunkt
Dj = X9, a Spieker point S j = X10 and most notably a New
point L j. It is not at all obvious that these various points
can be defined for a general affine geometry, but this is the
case, as we shall show. The New points L0,L1,L2,L3 are
a particularly novel feature of this paper. They really do
appear to be new, and it seems remarkable that these im-
portant points have not been intensively studied, as they
fit naturally and simply into the Incenter hierarchy, as we
shall see.
The four-fold symmetry between the four Incenters is
maintained by all these points: so in fact there are four
Gergonne, Nagel, Mittenpunkt, Spieker and New points,
each associated to a particular Incenter, as also pointed out
in ([8]). Figure 1 shows just one Incenter and its related
hierarchy: as we proceed in this paper the reader will meet
the other Incenters and hierarchies as well.
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Figure 1: Aspects of the Incenter hierarchy in green ge-
ometry

The main aims of the paper are to set-up a coordinate sys-
tem for triangle geometry that incorporates the number-
theoretical aspects of the Incenter hierarchy, and respects
the four-fold symmetry inherent in it, and then to use this to
catalogue existing as well as new points and phenomenon.
Kimberling’s Triangle Center Encyclopedia ([6]) distin-
guishes the classical Incenter X1 as the first and perhaps
most important triangle center. Our embrace of the four-
fold symmetry between incenters and excenters implies
something of a re-evaluation of some aspects of classical
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triangle geometry; instead of certain distinguished centers
we have rather distinguished quadruples of related points.
Somewhat surprisingly, this point of view makes visible a
number of remarkable strong concurrences—-where four
symmetrically-defined lines meet in a center. The proofs of
these relations are reasonably straight-forward but not au-
tomatic, as in general certain important quadratic relations
are needed to simplify expressions for incidence. Here is a
summary of our main results.

Main Results

i) The four lines I jG j, j = 0,1,2,3, meet in the De
Longchamps point X20 (orthocenter of the Double
triangle) — these are the Soddy lines ([9]).

ii) The four lines I jNj meet in the Centroid G = X2, and
in fact G = 2

3 I j +
1
3 Nj — these are the Nagel lines.

The Spieker points S j also lie on the Nagel lines, and
in fact S j = 1

2 I j +
1
2 Nj.

iii) The four lines I jD j meet in the Symmedian point
K = X6 (isogonal conjugate of the Centroid G) —
the standard such line is labelled L1,6 in [6].

iv) The four lines I jL j meet in the Circumcenter C, and
in fact C = 1

2 I j +
1
2 Lj — the standard such line is

labelled L1,3.

v) The four lines G jNj meet in the point X69 (isotomic
conjugate of the Orthocenter H) — these lines are
labelled L7,8.

vi) The four lines G jD j meet in the Centroid G = X2,
and in fact G = 2

3 D j +
1
3 G j — the standard such line

is labelled L2,7.

vii) The four lines D jS j meet in the Orthocenter H = X4
— the standard such line is labelled L4,7.

viii) The four lines NjL j meet in the point X20 (ortho-
center of the Double triangle), and in fact Lj =
1
2 X20 + 1

2 Nj — the standard such line is labelled L1,3.

ix) The New point Lj lies on the line D jS j which also
passes through the Orthocenter H, and in fact S j =
1
2 H + 1

2 Lj.

In particular the various points alluded to here have consis-
tent definitions over general fields and with arbitrary bilin-
ear forms! The New points are the meets of the lines L1,3
and L4,7, they are the reflections of the Incenters I j in the
Circumcenter C, and they are the reflections of the Ortho-
center H in the Spieker points S j.

It is also worth pointing out a few additional relations be-
tween the triangle centers that appear here: the point X69,
defined as the Isogonal conjugate of the Orthocenter H, is
also the central dilation in the Centroid of the Symmedian
point K; in our notation X69 = δ−1/2 (K) . This implies that
G = 2

3 K + 1
3 X69. In addition the De Longchamps point X20,

defined as the orthocenter of the Double (or anti-medial)
triangle is also the reflection of the Orthocenter H in the
Circumcenter C. These relations continue to hold in the
general situation.
Table 1 summarizes the various strong concurrences we
have found. Note however that not all pairings yield con-
current quadruples: for example the lines joining corre-
sponding Nagel points and Mittenpunkts are not in general
concurrent.

In the final section of the paper, we give some further re-
sults and directions involving chromogeometry.

1.2 Affine structure and vectors

We begin with some terminology and concepts for elemen-
tary affine geometry in a linear algebra setting, follow-
ing [10]. Fix a field F, of characteristic not two, whose
elements will be called numbers. We work in a two-
dimensional affine space A2 over F, with V2 the associated
two-dimensional vector space. A point is then an ordered
pair A ≡ [x,y] of numbers enclosed in square brackets, typ-
ically denoted by capital letters, such as A,B,C etc. A vec-
tor of V2 is an ordered pair v ≡ (x,y) of numbers enclosed
in round brackets, typically u,v,w etc. Any pair of points
A and B determines a vector v =

−→
AB; so for example if

A ≡ [2,−1] and B ≡ [5,1] , then v =
−→
AB = (3,2), and this

is the same vector v =
−→
CD determined by C ≡ [4,1] and

D ≡ [7,3].

Incenter I Gergonne G Nagel N Mittenpunkt D Spieker S New L
Incenter I − X20 G = X2 K = X6 G = X2 C = X3
Gergonne G X20 − X69 G = X2 − −
Nagel N G = X2 X69 − − G = X2 X20
Mittenpunkt D K = X6 G = X2 − − H = X4 H = X4
Spieker S G = X2 − G = X2 H = X4 − H = X4
New L C = X3 − X20 H = X4 H = X4 −

Table 1
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The non-zero vectors v1 ≡ (x1,y1) and v2 ≡ (x2,y2) are
parallel precisely when one is a non-zero multiple of the
other, this happens precisely when

x1y2 − x2y1 = 0.

Vectors may be scalar-multiplied and added component-
wise, so that if v and w are vectors and α,β are numbers,
the linear combination αv + βw is defined. For points A
and B and a number λ, we may define the affine combina-
tion C = (1−λ)A + λB either by coordinates or by inter-
preting it as the sum A+λ

−→
AB. An important special case is

when λ = 1/2; in that case the point C ≡ A/2 + B/2 is the
midpoint of AB, a purely affine notion independent of any
metrical framework.
Once we fix an origin O ≡ [0,0], the affine space A2 and
the associated vector space V2 are naturally identified: to
every point A ≡ [x,y] there is an associated position vector
a =

−→
OA = (x,y). So points and vectors are almost the same

thing, but not quite. The choice of distinguished point also
allows us a useful notational shortcut: we agree that for a
point A ≡ [x,y] and a number λ we write

λ [x,y] ≡ (1−λ)O+ λA = [λx,λy] . (1)

A line is a proportion l ≡ 〈a : b : c〉 where a and b are
not both zero. The point A ≡ [x,y] lies on the line l ≡
〈a : b : c〉 , or equivalently the line l passes through the
point A, precisely when

ax + by + c = 0.

For any two distinct points A1 ≡ [x1,y1] and A2 ≡ [x2,y2],
there is a unique line l ≡ A1A2 which passes through them
both; namely the join

A1A2 = 〈y1 − y2 : x2 − x1 : x1y2 − x2y1〉 . (2)

In vector form, this line has parametric equation l : A1 +λv,
where v =

−−→
A1A2 = (x2 − x1,y2 − y1) is a direction vector

for the line, and λ is a parameter. The direction vector
of a line is unique up to a non-zero multiple. The line
l ≡ 〈a : b : c〉 has a direction vector v = (−b,a).
Two lines are parallel precisely when they have parallel
direction vectors. For every point P and line l, there is
then precisely one line m through P parallel to l, namely
m : P + λv, where v is any direction vector for l. For any
two lines l1 ≡ 〈a1 : b1 : c1〉 and l2 ≡ 〈a2 : b2 : c2〉 which are
not parallel, there is a unique point A ≡ l1l2 which lies on
them both; using (1) we can write this meet as

A ≡ l1l2 =

[

b1c2 −b2c1
a1b2 −a2b1

,
c1a2 − c2a1
a1b2 −a2b1

]

= (a1b2 −a2b1)
−1 [b1c2 −b2c1,c1a2 − c2a1] . (3)

Three points A1 = [x1,y1] ,A2 = [x2,y2] ,A3 = [x3,y3] are
collinear precisely when they lie on a common line, which
amounts to the condition

x1y2 − x1y3 + x2y3 − x3y2 + x3y1 − x2y1 = 0.

Three lines 〈a1 : b1 : c1〉 , 〈a2 : b2 : c2〉 and 〈a3 : b3 : c3〉 are
concurrent precisely when they pass through the same
point, which amounts to the condition

a1b2c3 −a1b3c2 +a2b3c1 −a3b2c1 +a3b1c2 −a2b1c3 = 0.

1.3 Metrical structure: quadrance and spread

We now introduce a metrical structure, which is deter-
mined by a non-degenerate symmetric 2×2 matrix C, with
entries in the fixed field F over which we work. This ma-
trix defines a symmetric bilinear form on vectors, regarded
as row matrices, by the formula

v ·u = vu = vCuT .

Here non-degenerate means detC �= 0, and implies that if
v ·u = 0 for all vectors u then v = 0.
Note our introduction of the simpler notation v · u = vu,
so that also v · v = v2. There should be no confusion with
matrix multiplication, even if v and u are viewed as 1× 2
matrices. Since C is symmetric, v ·u = vu = uv = u · v.
Two vectors v and u are perpendicular precisely when
v · u = 0. Since the matrix C is non-degenerate, for any
vector v there is, up to a scalar, exactly one vector u which
is perpendicular to v.
The bilinear form determines the main metrical quantity:
the quadrance of a vector v is the number

Qv ≡ v · v = v2.

A vector v is null precisely when Qv = v · v = v2 = 0, in
other words precisely when v is perpendicular to itself.
The quadrance between the points A and B is

Q(A,B) ≡ Q−→
AB.

In the Euclidean case, this is of course the square of the
usual distance. But quadrance is a more elementary and
fundamental notion than distance, and its algebraic nature
makes it ideal for metrical geometry using other bilinear
forms (as Einstein and Minkowski tried to teach us a cen-
tury ago!)
Two lines l and m are perpendicular precisely when they
have perpendicular direction vectors. A line is null pre-
cisely when it has a null direction vector (in which case all
direction vectors are null).
We now make the important observation that the affine no-
tion of parallelism may also be recaptured via the bilinear
form. (This result also appears with the same title in [15].)
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Theorem 1 (Parallel vectors) Vectors v and u are paral-
lel precisely when

QvQu = (vu)2 .

Proof. If C =

(

a b
b c

)

, v = (x,y) and u = (z,w) , then an

explicit computation shows that

QvQu−(vu)2 =−
(xw− yz)4 (

ac−b2)2

(ax2 + 2bxy + cy2)2 (az2 + 2bzw+ cw2)2 .

Since the quadratic form is non-degenerate, ac− b2 �= 0,
so we see that the left hand side is zero precisely when
xw − yz = 0, in other words precisely when v and u are
parallel. �

This motivates the following measure of the non-
parallelism of two vectors; the spread between non-null
vectors v and u is the number

s(v,u) ≡ 1−
(vu)2

QvQu
.

This is the replacement in rational trigonometry for the
transcendental notion of angle θ, and in the Euclidean case
it has the value sin2 θ. Spread is a more algebraic, log-
ical, general and powerful notion than that of angle, and
together quadrance and spread provide the foundation for
Rational Trigonometry, a new approach to trigonometry
developed in [10]. The current pre-occupation with dis-
tance and angle as the basis for Euclidean geometry is a
historical aberration contrary to the explicit orientation of
Euclid himself, and is a key obstacle to appreciating and
understanding the relativistic geometry introduced by Ein-
stein and Minkowski.
The spread s(v,u) is unchanged if either v or u are multi-
plied by a non-zero number, and so we define the spread
between any non-null lines l and m with direction vectors v
and u to be s(l,m)≡ s(v,u). From the Parallel vectors the-
orem, the spread between parallel lines is 0. Two non-null
lines l and m are perpendicular precisely when the spread
between them is 1.

1.4 Triple spread formula

We now derive one of the basic formulas in the subject: the
relation between the three spreads made by three (copla-
nar) vectors, and give a linear algebra proof, following the
same lines as the papers [11] and [15].

Theorem 2 (Triple spread formula) Suppose that
v1,v2,v3 are (planar) non-null vectors with respective
spreads s1 ≡ s(v2,v3), s2 ≡ s(v1,v3) and s3 ≡ s(v1,v2) .
Then

(s1 + s2 + s3)
2 = 2

(

s2
1 + s2

2 + s2
3
)

+ 4s1s2s3. (4)

Proof. We may that assume at least two of the vectors are
linear independent, as otherwise all spreads are zero and
the relation is trivial. So suppose that v1 and v2 linearly in-
dependent, and v3 = kv1 + lv2. Suppose the bilinear form
is given by the matrix

C =

(

a b
b c

)

with respect to the ordered basis v1,v2. Then in this basis
v1 = (1,0) ,v2 = (0,1) and v3 = (k, l) and we may compute
that

s3 =
ac−b2

ac
s2 =

l2 (

ac−b2)

a(ak2 + 2bkl + cl2)

s1 =
k2 (

ac−b2)

b(ak2 + 2bkl + cl2)
.

Then (4) is an identity, satisfied for all a,b,c,k and l. �

We now mention three consequences of the Triple spread
formula, taken from [10]. The Equal spreads theorem as-
serts that if s1 = s2 = s, then s3 = 0 or s3 = 4s(1− s). This
follows from the identity (s+ s+ s3)

2 − 2
(

s2 + s2 + s2
3
)

−

4s2s3 = −s3
(

s3 −4s+ 4s2). The Complementary spreads
theorem asserts that if s3 = 1 then s1 + s2 = 1. This fol-
lows by rewriting the Triple spread formula in the form
(s3 − s1 − s2)

2 = 4s1s2 (1− s3).
And the Perpendicular spreads theorem asserts that if
v and u are non-null planar vectors with perpendicular
vectors v⊥ and u⊥, then s(v,u) = s

(

v⊥,u⊥
)

. This fol-
lows from the Complementary spreads theorem, since if
s
(

v,v⊥
)

= s
(

u,u⊥
)

= 1, then s
(

v⊥,u⊥
)

= 1− s
(

v⊥,u
)

=
1− (1− s(v,u)) = s(v,u).

1.5 Altitudes and orthocenters

Given a line l and a point P, there is a unique line n
through P which is perpendicular to the line l; it is the line
n : P + λw, where w is a perpendicular vector to the direc-
tion vector v of l. We call n the altitude to l through P.
Note that this holds true even if l is a null line; in this case
a direction vector v of l is null, so the altitude to l through
P agrees with the parallel to l through P.
We use the following conventions: a set {A,B} of two dis-
tinct points is a side and is denoted AB, and a set {l,m}
of two distinct lines is a vertex and is denoted lm. A set
{A1,A2,A3} of three distinct non-collinear points is a tri-
angle and is denoted A1A2A3. The triangle A1A2A3 has
lines l3 ≡ A1A2, l2 ≡ A1A3 and l1 ≡ A2A3 (by assumption
no two of these are parallel), sides A1A2,A1A3 and A2A3,
and vertices l1l2, l1l3 and l2l3.
The triangle A1A2A3 also has three altitudes n1,n2,n3
passing through A1,A2,A3 and perpendicular to the oppo-
site lines A2A3, A1A3,A1A2 respectively. The following

67



KoG•16–2012 N. Le, N. J. Wildberger: Universal Affine Triangle Geometry and Four-fold Incenter Symmetry

holds both for affine and projective geometries: we give
a short and novel proof here for the general affine case.

Theorem 3 (Orthocenter) For any triangle A1A2A3 the
three altitudes n1,n2,n3 are concurrent at a point H.

Proof. Suppose that a1,a2,a3 are the associated position
vectors to A1,A2,A3 respectively. Since no two of the
lines of the triangle A1A2A3 are parallel, the Perpendicular
spreads corollary implies that no two of the three altitude
lines are parallel. Define H to be the meet of n1 and n2,
with h the associated position vector. In the identity

(h−a1)(a3 −a2)+(h−a2) (a1 −a3) = (h−a3)(a1 −a2)

the left hand side equals 0 by assumption, so the right hand
is also equal to 0, implying that h−a3 is perpendicular to
the line a1a2. Therefore, the three altitude lines n1,n2,n3
are concurrent at the point H. �

We call H the orthocenter of the triangle A1A2A3.

1.6 Change of coordinates and an explicit example

If we change coordinates via either an affine transforma-
tion in the original affine space A2, or equivalently a linear
transformation in the associated vector space V2, then the
matrix for the form changes in the familiar fashion. Sup-
pose φ : V → V is a linear transformation given by an in-
vertible 2× 2 matrix M, so that φ(v) = vM = w, with in-
verse matrix N, so that wN = v. Define a new bilinear form
◦ by

w1 ◦w2 ≡ (w1N) · (w2N) = (w1N)C (w2N)T

= w1(NCNT )wT
2 . (5)

So the matrix C for the original bilinear form · becomes the
matrix D ≡ NCNT for the new bilinear form ◦.

Example 1 We illustrate these abstractions in a concrete
example that will be used throughout in our diagrams.
Our basic Triangle shown in Figure 2 has points A1 ≡
[3,1], A2 ≡ [4,4] and A3 ≡ [47/5,29/5], and lines A1A2 =
〈−3 : 1 : 8〉, A1A3 = 〈−3 : 4 : 5〉 and A2A3 = 〈1 : −3 : 8〉.
The bilinear form we will consider is that of green ge-
ometry in the language of chromogeometry ([12], [13]),

determined by the symmetric matrix Cg =

(

0 1
1 0

)

and

corresponding quadrance Q(x,y) = 2xy. After translation
by (−3,−1) we obtain ˜A1 = [0,0], ˜A2 = [1,3], ˜A3 =
[32/5,24/5]. The matrix N and its inverse M

N =

(

1 3
32
5

24
5

)

M = N−1 =

(

− 1
3

5
24

4
9 − 5

72

)

send [1,0] and [0,1] to ˜A2 and ˜A3, and ˜A2 and ˜A3 to [1,0]
and [0,1] respectively. So the effect of translation followed

by multiplication by M is to send the original triangle to
the standard triangle with points [0,0] , [1,0] and [0,1].
The bilinear form in these new standard coordinates is
given by the matrix NCgNT which is, up to a multiple,

C =

( 1
4 1
1 64

25

)

=

(

a b
b c

)

.

We will shortly see that the Orthocenter in standard coor-
dinates is (ac−b2)−1 [b(c−b) ,b(a−b)] . In our example
this would be the point

[

− 13
3 , 25

12
]

, and to convert that back
into the original coordinates, we would multiply by N to
get
[

− 13
3

25
12

]

N =
[

9 −3
]

and translate by (3,1) to get the original orthocenter
H = [12,−2] . This is shown in Figure 2, along with the
Centroid G = [82/15,18/5] and the Circumcenter C =
[11/5,32/5]—we will meet these points shortly.

C

A

A
A

e

G

H

1

2

3

4 8

4

Figure 2: Euler line in green geometry

1.7 Bilines

A biline of the non-null vertex l1l2 is a line b which passes
through l1l2 and satisfies s(l1,b) = s(l2,b). The existence
of bilines depends on number-theoretical considerations of
a particularly simple kind.

Theorem 4 (Vertex bilines) If v and u are linearly inde-
pendent non-null vectors, then there is a non-zero vector
w with s(v,w) = s(u,w) precisely when 1 − s(v,u) is a
square. In this case we may renormalize v and u so that
Qv = Qu, and then there are exactly two possibilities for
w up to a multiple, namely v + u and v− u, and these are
perpendicular.

Proof. Since v and u are linearly independent, any vector
can be written uniquely as w = kv + lu for some numbers
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k and l. The condition s(v,w) = s(u,w) amounts to

(vw)2

QvQw
=

(uw)2

QuQw
⇐⇒ u2 (

kv2 + lvu
)2

= v2 (

kvu + lu2)2

⇐⇒ u2
(

k2 (

v2)2
+ 2lkv2 (vu)+ l2 (vu)2

)

=

= v2
(

k2 (vu)2 + 2lku2 (vu)+ l2 (

u2)2
)

⇐⇒ k2u2(v2)2
+l2u2 (vu)2 =k2v2 (vu)2+ l2v2(u2)2

⇐⇒
(

v2u2 − (vu)2
)

(

k2v2 − l2u2) = 0.

Since v and u are by assumption not parallel, the first term
is non-zero by the Parallel vectors theorem, and so the con-
dition s(v,w) = s(u,w) is equivalent to k2v2 = l2u2. Since
v,u are non-null, v2 and u2 are non-zero, so k and l are also,
since by assumption w = kv + lu is non-zero.
So if s(v,w) = s(u,w) then we may renormalize v and u
so that v2 = u2 (by for example setting ṽ = kv and ũ = lu,
and then replacing ṽ, ũ by v,u again), and then 1− s(v,u) =

(vu)2 /
(

v2)2 is a square. There are then two solutions:
w = v + u and w = v− u, corresponding to l = ±k. Since
(v + u)(v−u) = v2 −u2 = 0, these vectors are perpendic-
ular. The converse is straightforward along the same lines.

�

Example 2 In our example triangle of Figure 2, v1 =
−−→
A2A3 = (27/5,9/5), v2 =

−−→
A1A3 = (32/5,24/5) and v3 =

−−→
A1A2 = (1,3) , so

s(v2,v3) = 1−
(

v2CgvT
3
)2

(

v2CgvT
2
)(

v3CgvT
3
) =

25
16

is a square, so the vertex at A1 has bilines. Since Qv2 =
v2CgvT

2 = 1536/25 and Qv3 = v3CgvT
3 = 6, we can renor-

malize v2 by scaling it by 5/16 to get u2 =
−−→
A1B = (2,3/2)

so that now Qu2 = Qv3 . This means that u2 + v3 =
−−→
A1C1

and u2−v3 =
−−→
A1C2 are the direction vectors for the bilines

of the vertex at A1.

A

C

A

C

B

A

v

u

I

b

b

I

I

1

1

2

2

3

3

2

4 8

8

4

Figure3 : Green bilines b at A1

These are shown in Figure 3, along with three of the four
Incenters I (the other two vertices also have bilines, and

they are mutually concurrent). Naturally this triangle has
been chosen carefully to ensure that Incenters do exist. In
green geometry, a vertex formed from a light-like line and
a time-like line will not have bislines, not even approxi-
mately over the rational numbers.

2 Standard coordinates and triangle
geometry

Our principle strategy to study triangle geometry is to ap-
ply an affine transformation to move a general triangle to
standard position:

A1 = [0,0] A2 = [1,0] and A3 = [0,1] . (6)

With this convention, A1A2A3 will be called the (standard)
Triangle, with Points A1,A2,A3. The Lines of the Trian-
gle are then

l1 ≡ A2A3 = 〈1 : 1 : −1〉 l2 ≡ A1A3 = 〈1 : 0 : 0〉

l3 ≡ A2A1 = 〈0 : 1 : 0〉 .

All further objects that we define with capital letters
refer to this standard Triangle, and coordinates in this
framework are called standard coordinates. In general
the standard coordinates of points and lines in the plane
of the original triangle depend on the choice of affine
transformation—we are in principle free to permute the
vertices—but triangle centers and central lines will have
well-defined standard coordinates independent of such per-
mutations.
Since we have performed an affine transformation, what-
ever metrical structure we started with has changed as in
(5). So we will assume that the new metrical structure, in
standard coordinates, is determined by a bilinear form with
generic symmetric matrix

C ≡

(

a b
b c

)

. (7)

We assume that the form is non-degenerate, so that the de-
terminant

∆ ≡ detC = ac−b2

is non-zero. Another important number is the mixed trace

d ≡ a + c−2b.

It will also be useful to introduce the closely related sec-
ondary quantities

a ≡ c−b b ≡ a− c c ≡ a−b

to simplify formulas. For example d = a+ c.
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Theorem 5 (Standard triangle quadrances and spreads)
The quadrances and spreads of A1A2A3 are

Q1 ≡ Q(A2,A3) = d Q2 ≡ Q(A1,A3) = c
Q3 ≡ Q(A1,A2) = a

and

s1 ≡ s(A1A2,A1A3) =
∆
ac

s2 ≡ s(A2A3,A2A1) =
∆
ad

s3 ≡ s(A3A1,A3A2) =
∆
cd

.

Furthermore

1− s1 =
b2

ac
1− s2 =

(c)2

ad
1− s3 =

(a)2

cd
.

Proof. Using the definition of quadrance,

Q1 ≡ Q(A2,A3) = Q−−−→
A2A3

= (−1,1)C (−1,1)T

= a + c−2b = d

and similarly for Q2 and Q3.Using the definition of spread,

s1 ≡ s(A1A2,A1A3) = s((1,0) ,(0,1))

= 1−

(

(1,0)C (0,1)T
)2

(

(1,0)C (1,0)T
)(

(0,1)C (0,1)T
)

= 1−
1
ac

b2 =
∆
ac

and similarly for s2 and s3. �

2.1 Basic affine objects in triangle geometry

We now write down some basic central objects which fig-
ure prominently in triangle geometry, all with reference to
the standard triangle A1A2A3 in the form (6). The deriva-
tions of these formulas are mostly immediate using the
two basic operations of joins (2) and meets (3). We be-
gin with some purely affine notions, independent of the
bilinear form.
The Midpoints of the Triangle are

M1 =

[

1
2
,

1
2

]

M2 =

[

0,
1
2

]

M3 =

[

1
2
,0

]

.

The Medians are

d1 ≡ A1M1 = 〈1 : −1 : 0〉 d2 ≡ A2M2 = 〈1 : 2 : −1〉
d3 ≡ A3M3 = 〈2 : 1 : −1〉 .

The Centroid is the common meet of the Medians

G =

[

1
3
,

1
3

]

.

The Circumlines are the lines of the Medial triangle
M1M2M3, these are

b1 ≡ M2M3 = 〈2 : 2 : −1〉 b2 ≡ M3M1 = 〈2 : 0 : −1〉
b3 ≡ M1M2 = 〈0 : 2 : −1〉 .

The Double triangle of A1A2A3 (usually called the anti-
medial triangle) is formed from lines through the Points
parallel to the opposite Lines. This is D1D2D3 where

D1 = [1,1] D2 = [−1,1] D3 = [1,−1] .

The lines of D1D2D3 are

D2D3 = 〈1 : 1 : 0〉 D1D3 = 〈1 : 0 : −1〉
D1D2 = 〈0 : 1 : −1〉 .

Figure 4 shows these objects for our example Triangle.

A

D

M

A
G

D
M

A

D

M

1

1

1

2

2

2

3

3

3

4 8

4

Figure 4: The Medial triangle M1M2M3 and Double tri-
angle D1D2D3

2.2 The Orthocenter hierarchy

We now introduce some objects involving the metrical
structure, and so the entries a,b,c of C from (7). Recall
that a ≡ c−b and c = a−b.
The Altitudes of A1A2A3 are the lines

n1 = 〈c : −a : 0〉 n2 = 〈b : c : −b〉 n3 = 〈a : b : −b〉 .

Theorem 6 (Orthocenter formula) The three Altitudes
meet at the Orthocenter

H =
b
∆

[a,c] .

Proof. We know that the altitudes meet from the Ortho-
center theorem. We check that n1 passes through H by
computing b∆−1 (ac−ac) = 0.
Also n2 passes through H since

b
∆

(ba+ cc)−b =
b
∆

(

b(c−b)+ c(a−b)−ac + b2) = 0

and similarly for n3. �
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The Midlines m1,m2 and m3 are the lines through the
midpoints M1,M2 and M3 perpendicular to the respective
sides— these are usually called perpendicular bisectors.
They are also the altitudes of M1M2M3:

m1 =
〈

−2c : 2a : b
〉

m2 = 〈2b : 2c : −c〉
m3 = 〈2a : 2b : −a〉 .

Theorem 7 (Circumcenter) The Midlines m1,m2,m3
meet at the Circumcenter

C =
1

2∆
[cc,aa] .

Proof. We check that m1 passes through C by computing

1
2∆

(

−2c2c + 2a2a
)

+ b

=
1

2(ac−b2)

(

−2(a−b)2 c + 2(c−b)2 a
)

+(a− c) = 0

and similarly for m2 and m3. �

C

A

A
A

e

G

H

1

2

3

4 8

8

4

Figure 5: The Euler line of a triangle

As Gauss realized, this is also a consequence of the Ortho-
center theorem applied to the Medial triangle M1M2M3,
since the altitudes of the Medial triangle are the Midlines
of the original Triangle.
The three altitudes of the Double triangle D1D2D3 are

t1 =
〈

c : −a : −b
〉

t2 = 〈b : c : −a〉 t3 = 〈a : b : −c〉 .

Theorem 8 (Double orthocenter formula) The three al-
titudes of the Double triangle meet in the De Longchamps
point

X20 ≡
1
∆

[

b2 −2bc + ac,b2−2ab + ac
]

.

Proof. We check that t1 passes through X20 by computing

1
∆

(

c
(

b2 −2bc + ac
)

−a
(

b2 −2ab + ac
))

−b

=
1
∆

((a−b)
(

b2 −2bc + ac
)

− (c−b)
(

b2 −2ab + ac
)

− (a− c)
(

ac−b2)) = 0

and similarly for t2 and t3. �

The existence of an Euler line in relativistic geometries was
established in [13], here we extend this to the general case.

Theorem 9 (Euler line) The points H,C and G are con-
current, and satisfy G = 1

3 H + 2
3C. The Euler line e ≡CH

is

e =
〈

∆−3bc : −∆ + 3ba : bb
〉

.

Proof. Using the formulas above for H and C, we see that

1
3

H +
2
3

C =

(

1
3

)

1
∆

[ba,bc]+
(

2
3

)

1
2∆

[cc,aa]

=
1

3∆
[

ac−b2,ac−b2] =
1
3

[1,1] = G.

Computing the equation for the Euler line CH is straight-
forward. �

In Figure 5 we illustrate the situation with our basic ex-
ample triangle with the Altitudes, Medians and Midlines
meeting to form the Orthocenter H, Centroid G and Cir-
cumcenter C respectively on the Euler line e.
The bases of altitudes of M1M2M3 are:

E1 =
1

2d
[c,a] E2 =

1
2c

[c,a] E3 =
1
2a

[c,a] .

The joins of Points and corresponding bases of altitudes of
M1M2M3 are

A1E1 = 〈a : −c : 0〉 A2E2 = 〈a : c : −a〉
A3E3 = 〈a : c : −c〉 .

Theorem 10 (Medial base perspectivity) The three lines
A1E1,A2E2,A3E3 meet at the point

X69 =
1

a + c−b
[c,a] .

Proof. Straightforward. �

2.3 Bilines and Incenters

We now introduce the Incenter hierarchy. Unlike the Or-
thocenter hierarchy, this depends on number-theoretical
conditions. Recall that d ≡ a + c−2b.

Theorem 11 (Existence of Triangle bilines) The Trian-
gle A1A2A3 has Bilines at each vertex precisely when we
can find numbers u,v,w in the field satisfying

ac = u2 ad = v2 cd = w2. (8)
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Proof. From the Vertex bilines theorem, bilines exist pre-
cisely when the spreads s1, s2, s3 of the Triangle have the
property that 1− s1,1 − s2,1− s3 are all squares. From
the Standard triangle quadrances and spreads theorem, this
occurs for our standard triangle A1A2A3 precisely when we
can find u, v, w satisfying (8). �

There is an important flexibility here: the three Incenter
constants u,v,w are only determined up to a sign. The
relations imply that

d2u2 = v2w2 c2v2 = u2w2 a2w2 = u2v2.

So we may choose the sign of u so that du = vw, and mul-
tiplying by u we get

acd = uvw.

From this we deduce that

du = vw cv = uw and aw = uv. (9)

The quadratic relations (8) and (9) will be very impor-
tant for us, for they reveal that the existence of the Incenter
hierarchy is a number-theoretical issue which depends not
only on the given triangle and the bilinear form, but also
on the nature of the field over which we work, and they
allow us to simplify many formulas involving u,v and w.
Because only quadratic conditions are involved, we may
always extend our field by adjoining (algebraic!) square
roots to ensure that a given triangle has bilines.
The quadratic relations carry an important symmetry: we
may replace any two of u,v and w with their negatives, and
the relations remain unchanged. So if we have a formula
F0 involving u,v,w, then we may obtain related formulas
F1,F2,F3 by replacing v,w with their negatives, u,w with
their negatives, and u,v with their negatives respectively.
Adopting this convention allows us to exhibit the single
formula F0, since then F1,F2,F3 are determined—we refer
to this as quadratic symmetry, and will make frequent
use of it in the rest of this paper.
From now on our working assumption is that: the stan-
dard triangle A1A2A3 has bilines at each vertex, implying
that we have Incenter constants u,v and w satisfying (8)
and (9). So u,v and w now become ingredients in our for-
mulas for various objects in the Incenter hierarchy, along
with the numbers a,b and c (and d) from the bilinear form

C =

(

a b
b c

)

.

Theorem 12 (Bilines) The Bilines of the Triangle are
b1+ ≡ 〈v : w : 0〉 and b1− ≡ 〈v : −w : 0〉 through A1,
b2+ ≡ 〈u : u + w : −u〉 and b2− ≡ 〈u : u−w : −u〉 through
A2, and b3+ ≡ 〈u− v : u : −u〉 and b3− ≡ 〈u + v : u : −u〉
through A3.

Proof. We use the Bilines theorem to find bilines through
A1 = [0,0] . The lines meeting at A1 have direction vectors
v1 = (0,1) and v2 = (1,0) , with Qv1 = (0,1)C (0,1)T = c
and Qv2 = (1,0)C (1,0)T = a.Nowwe renormalize and set
u1 = v

w v1 to get Qu1 = v2

w2 c = a = Qv2 . So the biliness at A1
have direction vectors

u1 + v2 =
v
w

(0,1)+ (1,0) =
(

1,
v
w

)

and

u1 − v2 =
v
w

(0,1)− (1,0) =
(

−1,
v
w

)

and the bilines are b1+ ≡ 〈v : w : 0〉 and b1− ≡ 〈v : −w : 0〉.
Similarly you may check the other bilines through A2 and
A3. �

Theorem 13 (Incenters) The triples {b1+,b2+,b3+},
{b1+,b2−,b3−}, {b1−,b2+,b3−} and {b1−,b2−,b3+} of
Bilines are concurrent, meeting respectively at the four
Incenters

I0=

[

−uw
uv−uw+ vw

,
uv

uv−uw+ vw

]

=
1

(d + v−w)
[−w,v]

I1=

[

uw
−uv + uw+ vw

,
−uv

−uv + uw+ vw

]

=
1

(d − v + w)
[w,−v]

I2=

[

uw
uv + uw+ vw

,
uv

uv + uw+ vw

]

=
1

(d + v + w)
[w,v]

I3=

[

uw
uv + uw− vw

,
uv

uv + uw− vw

]

=
1

(d − v−w)
[−w,−v].

Proof. We may check concurrency of the various triples
by computing

det





v w 0
u u + w −u

u− v u −u



= det





v w 0
u u−w −u

u + v u −u





= det





v −w 0
u u−w −u

u− v u −u



= det





v −w 0
u u + w −u

u + v u −u



= 0.

The corresponding meet of 〈v : w : 0〉, 〈u : u + w : −u〉 and
〈u− v : u : −u〉 is

b1+b2+b3+ =

[

−uw
uv−uw+ vw

,
uv

uv−uw+ vw

]

=
u

aw− cv + du
[−w,v]

=
1

(d + v−w)
[−w,v] ≡ I0.

We have used the quadratic relations, and the last equality
is valid since

u(d + v−w)− (aw− cv + du) = cv−aw+ uv−uw = 0.

The computations are similar for the other Incenters. �
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The reader should check that the formulas for I1, I2, I3 may
also be obtained from I0 by the quadratic symmetry rule
described above. From now on in such a situation we will
only write down the formula corresponding to I0, and we
will also often omit algebraic manipulations involving the
quadratic relations.
The Incenter altitude ti j is the line through the Incenter I j
and perpendicular to the Line li of our Triangle. There are
twelve Incenter altitudes; three associated to each Incenter.
The Incenter altitudes associated to I0 are

t10 = 〈c(d + v−w) : −a(d + v−w) : av + cw〉
t20 = 〈b(d + v−w) : c(d + v−w) : bw− cv〉
t30 = 〈a(d + v−w) : b(d + v−w) : aw−bv〉.

The Contact points Ci j are the meets of corresponding
Incenter altitudes ti j and Lines li. There are twelve Con-
tact points; three associated to each Incenter. The Contact
points associated to the Incenter I0 are

C10 =
1

(d + v−w)
[a−w,c+ v]

C20 =
1

c(d + v−w)
[0,cv−bw]

C30 =
1

a(d + v−w)
[bv−aw,0].

4

4

8 12

12

8
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b
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Figure 6: Green bilines b, Incenters I, Contact points and
Incircles

In Figure 6 we see our standard example Triangle in the
green geometry with Bilines b at each vertex, meeting
in threes at the Incenters I. The Contact points are also
shown, as are the Incircles, which are the circles with re-
spect to the metrical structure centered at the Incenters and
passing through the Contact points: they have equations in
the variable point X of the form Q(X , I) = Q(C, I) where I
is an incenter and C is one of its associated Contact points.
In this green geometry such circles appear as rectangular
hyperbolas, with axes parallel to the coordinate axes.

2.4 New points

One of the main novelties of this paper is the introduc-
tion of the four New points L j associated to each Incenter
I j. It is surprising that these points have seemingly slipped
through the radar: they deserve to be among the top twenty
in Kimberling’s list, in our opinion.
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Figure 7: Green Incenter altitudes, New points L and In-
New center C

Theorem 14 (New points) The triples {t11,t22,t33},
{t10,t23,t32}, {t20,t13,t31} and {t30,t12,t21} of Incenter
altitudes are concurrent. Each triple is associated to the
Incenter which does not lie on any of the lines in that triple.
The points where these triples meet are the New points Li;
for example {t11,t22,t33} meet at

L0 =
1

2∆
[au + cv + bw+ cc,cu−bv−aw+ aa] .

Proof. We check that L0 as defined is incident with t11 =
〈c(d − v + w) : −a(d − v + w) : −av− cw〉 by computing

((c−b)u + cv + bw+ c(a−b))(a−b)(a + c−2b−v +w)

+ ((a−b)u−bv−aw+a(c−b)) (−(c−b)(a+c−2b−v+w))

−2
(

ac−b2)((c−b)v +(a−b)w)

= a3c + 2ab3−2a2cb−a2b2 −ac3 + 2ac2b + c2b2

−2cb3 + b2v2 −b2w2 −acv2 + acw2

=
(

ac−b2)(

a2 − c2 −2ab + 2cb− v2+ w2) = 0

using the quadratic relations (8). The computations for the
other Incenter altitudes and L1,L2,L3 are similar. �

The In-New lines are the joins of corresponding Incenter
points and New points. The In-New line associated to I0 is

I0L0 = 〈−aad +
(

ac + ab−2b2)v + aaw :

ccd + ccv +
(

ac + cb−2b2)w : −aaw− ccv〉.
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Theorem 15 (In-New center) The four In-New lines I jL j
are concurrent and meet at the circumcenter

C =
1

2∆
[cc,aa] ,

and in fact C is the midpoint of I jL j.

Proof. We check that C is the midpoint of I jL j by comput-
ing

1
2

I j +
1
2

L j =

(

1
2

)

1
(d +v−w)

[−w,v]

+

(

1
2

)

1
2∆

[(c−b)u+cv+bw+c(a−b),(a−b)u−bv−aw+a(c−b)]

=
1

4∆(d +v−w)
[2c(a−b) (d +v−w) ,2a(c−b) (d +v−w)]

=
1

2∆
[cc,aa] = C.

�

The In-New center theorem shows that what we are calling
the In-New lines are also the In-Circumcenter lines, the
standard one which is labelled L1,3 in [6]. The Incenter al-
titudes, New points and In-New lines are shown in Figure
7.
The proofs in these two theorems are typical of the ones
which appear in the rest of the paper. Algebraic manipula-
tions are combined with the quadratic relations to simplify
expressions. Although sometimes long and involved, the
verifications are in principle straightforward, and so from
now on we omit the details for results such as these.

3 Transformations

Important classical transformations of points associated to
a triangle include dilations in the centroid, and the isogo-
nal and isotomic conjugates. It is useful to have general
formulae for these in our standard coordinates.

3.1 Dilations about the Centroid

The dilation δ of factor λ centered at the origin takes [x,y]
to λ [x,y] . This also acts on vectors by scalar multiplying,
and in particular it leaves spreads unchanged and multi-
plies any quadrance by a factor of λ2. Similarly the dila-
tion centered at a point A takes a point B to A + λ

−→
AB. Any

dilation preserves directions of lines, so preserves spreads,
and changes quadrances between points proportionally.
Given our Triangle A1A2A3 with centroid G, define the
central dilation δ−1/2 to be the dilation by the factor −1/2
centered at G. It takes the three Points of the Triangle to the
midpoints M1,M2,M3 of the opposite sides. This medial
triangle M1M2M3 then clearly has lines which are parallel
to the original triangle.

Since the central dilation preserves spread, the three alti-
tudes of A1A2A3 are sent by δ−1/2 to the three altitudes of
the medial triangle, which are the midlines/perpendicular
bisectors of the original Triangle, showing again that δ−1/2
sends the orthocenter H to the circumcenter C, and as in
the Euler line theorem it follows that G lies on e = HC,
dividing HC in the affine ratio 2 : 1.
We will see later that the central dilation also explains
aspects of the various Nagel lines (there are four), since
δ−1/2 takes any Incenter Ii to an incenter of the Medial
triangle, called a Spieker point Si. It follows that the
four joins of Incenters and corresponding Spieker points
all pass through G, and G divides each side IiSi in the affine
ratio 2 : 1.
The inverse of the central dilation δ−1/2 is δ−2, which takes
the Points of A1A2A3 to the points of the Double triangle
D1D2D3, which has A1A2A3 as its medial triangle.

Theorem 16 (Central dilation formula) The central di-
lation takes X = [x,y] to

δ−1/2 (X) =
1
2

[1− x,1− y]

while the inverse central dilation δ−2 takes X to δ−2 (X) =
[1−2x,1−2y].

Proof. If Y = δ−1/2 (X) then affinely 1
3 X + 2

3Y = G so that

Y =
3
2

G−
1
2

X =
1
2

[1− x,1− y].

Inverting, we get the formula for δ−2 (X). �

Example 3 The central dilation of the Orthocenter is

δ−1/2 (H) =
1
2

[

1−
b(c−b)

∆
,1−

b(a−b)

∆

]

=
1

2∆
[c(a−b) ,a(c−b)] =

1
2∆

[cc,aa] = C

which is the Circumcenter.

Example 4 The inverse central dilation of the Orthocen-
ter is the De Longchamps point X20—the orthocenter of
the Double triangle D1D2D3

δ−2 (H) = X20 ≡

[

1−
2b(c−b)

∆
,1−

2b(a−b)

∆

]

=
1
∆

[

b2 −2cb + ac,b2−2ab + ac
]

.

3.2 Reflections and Isogonal conjugates

Suppose that v is a non-null vector, so that v is not perpen-
dicular to itself. It means that we can find a perpendicular
vector w so that v and w are linearly independent. Now if
u is an arbitrary vector, write u = rv + sw for some unique
numbers r and s, and define the reflection of u in v to be

rv (u) ≡ rv− sw.
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If we replace v with a multiple, the reflection is unchanged.
Now suppose that l and m are lines which meet at a point
A, with respective direction vectors v and u. Then the re-
flection of m in l is the line through A with direction vector
rv (u). It is important to note that if n is the perpendicular
to l through A, then

rl (m) = rn (m) .

Our standard triangle A1A2A3 determines an important
transformation of points.

Theorem 17 (Isogonal conjugate) If X is a point dis-
tinct from A1,A2,A3, then the reflections of the lines
A1X ,A2X ,A3X in the bilines at A1,A2,A3 respectively meet
in a point i(X), called the isogonal conjugate of X . If
X = [x,y] then

i(X) =
x + y−1

ax2 + 2bxy + cy2−ax− cy
[cy,ax] .

Proof. First we reflect the vector a = (x,y) in the bi-
lines 〈v : w : 0〉 and 〈v : −w : 0〉 through A1. We do this
by writing (x,y) = r (w,v)+ s(w,−v) = (rw+ sw,rv− sv)
and solving to get r = (2vw)−1 (vx + wy) and s =

(2vw)−1 (vx−wy) . The reflection is then

r (w,v)− s(w,−v) =
1

2vw
(vx + wy)(w,v)

−
1

2vw
(vx−wy)(w,−v) =

(wy
v

,
vx
w

)

which is, up to a multiple and using the quadratic relations,
(

w2y,v2x
)

= (cdy,adx) = d (cy,ax) .

So reflection in the biline at A1 takes the line A1X to
the line A1 + λ1 (cy,ax) . Similarly, by computing the re-
flections of (x−1,y) and (x,y−1) in the bilines at A2
and A3, we find that the lines A2X and A3X get sent
to the lines A2 + λ2 (ax +(a−d)y−a,−ax−ay + a) and
A3 + λ3 (−cx− cy + c,x(c−d)+ cy− c) respectively. It is
now a computation that these three reflected lines meet at
the point i(X) as defined above. �

Example 5 The isogonal conjugate of the centroid G is
the symmedian point

K ≡ i
([

1
3
,

1
3

])

=
1

2(a + c−b)
[c,a] = X6.

Example 6 The isogonal conjugate of the Orthocenter H
is the Circumcenter:

i
([

b(c−b)

∆
,

b(a−b)

∆

])

=
1

2∆
[c(a−b),a(c−b)]

= C = X3.

3.3 Isotomic conjugates

Theorem 18 (Isotomic conjugates) If X is a point dis-
tinct from A1,A2,A3, then the lines joining the points
A1,A2,A3 to the reflections in the midpoints M1,M2,M3 of
the meets of A1X ,A2X ,A3X with the lines of the Triangle
are themselves concurrent, meeting in the isotomic conju-
gate of X. If X = [x,y] then

t (X) =

[

y(x + y−1)

x2 + xy + y2− x− y
,

x(x + y−1)

x2 + xy + y2− x− y

]

.

Proof. The point X ≡ [x,y] has Cevian lines which meet
the lines A2A3,A1A3,A1A2 respectively in the points
[

x
x + y

,
y

x + y

] [

0,
y

1− x

] [

x
1− y

,0
]

.

These three points may be reflected respectively in the
midpoints [1/2,1/2], [0,1/2], [1/2,0] to get the points
[

y
x + y

,
x

x + y

] [

0,
1− x− y

1− x

] [

1− x− y
1− y

,0
]

.

The lines 〈x : −y : 0〉, 〈1− x− y : 1− x : −1 + x + y〉 and
〈1− y : 1− x− y : −1 + x + y〉 joining these points to the
original vertices meet at t (X) as defined above. �

Example 7 The isotomic conjugate of the Orthocenter H
is

t
([

(c−b)b
ac−b2 ,

(a−b)b
ac−b2

])

=

[

a−b
a + c−b

,
c−b

a + c−b

]

≡X69.

4 Strong concurrences

4.1 Sight Lines, Gergonne and Nagel points

We now adopt the principle that algebraic verifications of
incidence, using the quadratic relations, will be omitted.
A Sight line si j is the join of a Contact point Ci j with the
Point Ai opposite to the Line that it lies on, and is natu-
rally associated with the Incenter I j. There are twelve Sight
lines; three associated to each Incenter:

s10 = 〈c + v : −a+ w : 0〉
s20 = 〈cv−bw : c(d + v−w) : −cv + bw〉
s30 = 〈a(d + v−w) : −aw+ bv : aw−bv〉
s11 = 〈c− v : −a−w : 0〉
s21 = 〈−cv + bw : c(d − v + w) : cv−bw〉
s31 = 〈a(d − v + w) : aw−bv : −aw+ bv〉
s12 = 〈c + v : −a−w : 0〉
s22 = 〈cv + bw : c(d + v + w) : −cv−bw〉
s32 = 〈a(d + v + w) : aw+ bv : −aw−bv〉
s13 = 〈c− v : −a+ w : 0〉
s23 = 〈−cv−bw : c(d − v−w) : cv + bw〉
s33 = 〈a(d − v−w) : −aw−bv : aw+ bv〉.
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Figure 8: Green Sight lines, Gergonne points G, In-
Gergonne lines and In-Gergonne center X20

Here we introduce a well-known center of the triangle, the
Gergonne point (see for example [2], [9]).

Theorem 19 (Gergonne points) The triples {s10,s20,s30},
{s11,s21,s31}, {s12,s22,s32} and {s13,s23,s33} of Sight
lines are concurrent. Each triple is associated to an Incen-
ter, and the meets of these triples are the Gergonne points
Gj. The Gergonne point associated to I0 is

G0 =
b−u

2(du− cv + aw)−∆
[w− a,−v− c] .

The join of a corresponding Incenter I j and Gergonne point
G j is an In-Gergonne line or Soddy line. There are four
Soddy lines, and

I0G0 =〈2bcv +(∆−2bc)w− (∆−2bc)d :
2baw+(∆−2ba)v +(∆−2ba)d :
− (∆−2ba)v− (∆−2bc)w〉.

Theorem 20 (In-Gergonne center) The four In-
Gergonne/Soddy lines I jG j are concurrent, and meet at
the De Longchamps point

X20 =
1
∆

[

b2 −2cb + ac,b2−2ab + ac
]

which is the orthocenter of the Double triangle. Further-
more the midpoint of HX20 is the Circumcenter C, so that
X20 lies on the Euler line.

Proof. The concurrency of the In-Gergonne/Soddy lines
I jG j is as usual. The equation

1
2∆

[b(c−b) ,b(a−b)]+
1

2∆
[

b2 −2cb + ac,b2−2ab + ac
]

=
1

2∆
[c(a−b),a(c−b)] = C

shows that C = 1
2 H + 1

2 X20. Since the Euler line is e =CH,
X20 lies on e. �

Figure 8 shows the Gergonne points G and the In-
Gergonne lines meeting at X20.

Theorem 21 (Nagel points) The triples {s11,s22,s33},
{s10,s32,s23}, {s20,s31,s13} and {s30,s21,s12} of Sight
lines are concurrent. Each triple involves one Sight line
associated to each of the Incenters, and so is associated to
the Incenter with which it does not share a Sight line. The
points where these triples meet are the Nagel points Nj.
For example, {s11,s22,s33} meet at

N0 =
1
∆

[(b + u)a+ cv + bw,(b + u)c−bv−aw].

Proof. We check that N0 as defined is incident with
〈c− v : −a−w : 0〉 by computing

(b + u)a+ cv + bw
∆

(c− v)+
(b + u)c−bv−aw

∆
(−a−w)

=
−cduv2+aduw2+ccv2w+aavw2−acadv−accdw

∆
=0

using the quadratic relations, (8) and (9).
The computations for the other Sight lines and N1,N2,N3
are similar. �
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Figure 9: Green Sight lines, Nagel points N, In-Nagel
lines and In-Nagel center G = X2

The join of a corresponding Incenter and Nagel point is an
In-Nagel line. There are four In-Nagel lines, and

I0N0 = 〈2v + w−d : v + 2w+ d : −v−w〉 .

In classical triangle geometry, the line I0N0 is called simply
the Nagel line.

Theorem 22 (In-Nagel center) The four In-Nagel lines
I jNj are concurrent, and meet at the Centroid G = X2, and
in fact G = 2

3 I j +
1
3 Nj.
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Proof. Using the formulas above for I0 and N0, we see that

2
3

I0 +
1
3

N0 =

(

2
3

)

1
(d + v−w)

[−w,v]

+

(

1
3

)

1
∆

[(b + u)a+ cv + bw,(b + u)c−bv−aw]

=
1

3∆(d + v−w)
[∆(d + v−w) ,∆(d + v−w)]

=
1
3

[1,1] = G.

�

The join of a corresponding Gergonne point Gj and Nagel
point Nj is a Gergonne-Nagel line. There are four
Gergonne-Nagel lines, and

G0N0 = 〈−au + av + aw : cu + cv + cw : −cw−av〉 .
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69
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Figure 10: Green Gergonne-Nagel center X69 and Nagel-
New center X20

Theorem 23 (Gergonne-Nagel center) The four
Gergonne-Nagel GjNj lines are concurrent, and meet at
the isotomic conjugate of the Orthocenter,

X69 =
1

a + c−b
[c,a] .

The join of a corresponding New point Lj and Nagel point
Nj is a Nagel-New line. There are four Nagel-New lines,
and the one associated to I0 is

L0N0 =〈ac−3ab + 2b2− cu + bv + aw :

3cb−ac−2b2+ au + cv + bw :
(a− c)b +(a− c)u− av + cw〉.

Theorem 24 (Nagel-New center) The four Nagel-New
lines NjL j meet in the De Longchamps point X20, and in
fact L j = 1

2 N0 + 1
2 X20.

Proof. We check that

1
2

X20 +
1
2

N0 =

(

1
2

)

1
∆

[

b2 −2cb + ac,b2−2ab + ac
]

+

(

1
2

)

1
∆

[(b + u)a+ cv + bw,(b + u)c−bv−aw]

=
1

2∆
[au + cv + bw+ cc,cu−bv−aw+ aa] = L0.

�

4.2 InMid lines and Mittenpunkts

The join of an Incenter I j with a Midpoint Mi is an InMid
line. There are twelve InMid lines:

I0M1 = 〈v + w−d : v + w+ d : −v−w〉
I0M2 = 〈v + w−d : 2w : −w〉
I0M3 = 〈2v : v + w+ d : −v〉
I1M1 = 〈v + w+ d : v + w−d : −v−w〉
I1M2 = 〈v + w+ d : 2w : −w〉
I1M3 = 〈2v : v + w−d : −v〉
I2M1 = 〈v−w−d : v−w+ d : −v + w〉
I2M2 = 〈v−w−d : −2w : w〉
I2M3 = 〈2v : v−w+ d : −v〉
I3M1 = 〈−v + w−d : −v + w+ d : v−w〉
I3M2 = 〈−v + w−d : 2w : −w〉
I3M3 = 〈−2v : −v + w+ d : v〉 .

Theorem 25 (InMid lines) The triples of In-
Mid lines {I1M1, I2M2, I3M3}, {I0M1, I2M3, I3M2},
{I0M2, I1M3, I3M1} and {I0M3, I1M2, I2M1} are concur-
rent. Each triple involves one InMid line associated to
each of three Incenters, and so is associated to the Incenter
which does not appear. The points where these triples meet
are the Mittenpunkts D j. For example, {I1M1, I2M2, I3M3}
meet at

D0 =
1

2(a + c−b + u− v+w)
[c + u + w,a + u− v].

The join of a corresponding Incenter I j and Mittenpunkt
D j is an In-Mitten line. There are four In-Mitten lines,
and

I0D0 =〈(c + d)v + aw−ad : cv+(a + d)w+ cd :−aw−cv〉.
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Figure 11: Green InMid lines and Mittenpunkts D

Theorem 26 (In-Mitten center) The four In-Mitten lines
are concurrent and meet at the symmedian point (see Ex-
ample 3)

K = X6 =
1

2(a + c−b)
[c,a] .

The join of a corresponding Gergonne point G j and Mit-
tenpunkt D j is a Gergonne-Mitten line. There are four
Gergonne-Mitten lines and

D0G0 =

〈 (∆−4bd)u+(4cc−∆)v+2(4aa−∆)w+(a−2a)∆ :
−(∆−4bd)u+2(4cc−∆)v+(4aa−∆)w−(c−2c)∆ :

(∆−4cc)v+(∆−4aa)w−b∆

〉

.

Theorem 27 (Gergonne-Mitten center) The four
Gergonne-Mitten lines GjD j meet in the Centroid G = X2,
and in fact G = 2

3 D j +
1
3 G j.

Proof. We use the formulas above for D0 and G0 to com-
pute

2
3

D0 +
1
3

G0

=

(

2
3

)

1
2(a + c−b + u− v+w)

[c + u + w,a + u− v]

+

(

1
3

)

b−u
2(du− cv + aw)−∆

[w− (c−b) ,−v− (a−b)]

=
1
3

[1,1] = G.

�

The join of a corresponding Mittenpunkt Dj and New point
Lj is a Mitten-New line. There are four Mitten-New lines
and

D0L0 = 〈av + bw− cd : bv + cw+ ad : −b(v + w)〉 .

Theorem 28 (Mitten-New center) The four Mitten-New
lines D jL j are concurrent, and meet at the Orthocenter

H =
1
∆

[ba,bc] .

Figure 12 shows the four In-Mitten lines meeting at K =
X6, the four Gergonne-Mitten lines meeting at G = X2 and
the four Mitten-New lines meeting at H = X4.
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Figure 12: Green Mitten-New center H, Gergonne-Mitten
center G and In-Mitten center K

4.3 Spieker points

The central dilation of an Incenter is a Spieker point.
There are four Spieker points S0, S1, S2, S3 which are cen-
tral dilations of I0, I1, I2, I3 respectively.

Theorem 29 (Spieker points) The four Spieker points are

S0 =
1
2

1
(d + v−w)

[v + d,−w+ d]

S1 =
1
2

1
(d − v + w)

[−v + d,w+ d]

S2 =
1
2

1
(d + v + w)

[v + d,w+ d]

S3 =
1
2

1
(d − v−w)

[−v + d,−w+ d].

Proof. We use the central dilation formula which takes
I0 = (d + v−w)−1 [−w,v] to the point

S0 ≡ δ−1/2 (I0) =
1
2

[

1−
−w

d + v−w
,1−

v
d + v−w

]

=
1

2(d + v−w)
[v + d,−w+ d]

and similarly for the other Spieker points. �
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Theorem 30 (Spieker-Nagel lines) The Spieker points lie
on the corresponding In-Nagel lines, and in particular S0,
S1, S2, S3 are the midpoints of the sides I0N0, I1N1, I2N2,
I3N3 respectively.

Proof. We check that in fact S0 is the midpoint of I0N0 by
computing

1
2

I0 +
1
2

N0 =
1
2

1
(d + v−w)

[−w,v]

+
1
2

1
∆

[(b + u)(c−b)+ cv + bw,(b + u)(a−b)−bv−aw]

= S0.

The computations for the other In-Nagel lines and S1, S2,
S3 are similar. �
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Figure 13: Green Spieker points S and Mitten-Spieker cen-
ter H

The joins of corresponding Mittenpunkts D j and Spieker
points S j are the Mitten-Spieker lines. There are four
Mitten-Spieker lines, and

D0S0 = 〈av + bw− cd : bv + cw+ ad : −b(v + w)〉 .

Theorem 31 (Mitten-Spieker center) The four Mitten-
Spieker lines DjS j are concurrent and meet at the Ortho-
center H = X4.

Theorem 32 (New Mitten-Spieker) The Spieker point S j
is the midpoint of HLj, so that the corresponding New
point L j also lies on the corresponding Mitten-Spieker line.

Proof. The midpoint of HL0 is

1
2

H +
1
2

L0 =
1

2∆
[b(c−b),b(a−b)]

+
1

4∆
[(c−b)u + cv + bw+ c(a−b),

(a−b)u−bv−aw+ a(c−b)]

=
1

4(ac−b2)
[ac−b2 +(c−b)(u+b)+cv+bw,

ac−b2 +(a−b)(u + b)−aw−bv]

=
1

4(ac−b2)
[ac−b2 +(c−b + w)(u + b),

ac−b2 +(a−b− v)(u + b)]

=
1
4

[

1 +
(c−b + w)

u−b
,1 +

(a−b− v)
u−b

]

=
1

4(u−b)
[c−2b + u + w,a−2b+u− v].

Now a judicious use of the quadratic relations, which we
leave to the reader, shows that this is S0. The computations
for the other Spieker points are similar. �

The proof shows in fact that there is quite some variety
possible in the formulas for the various points and lines in
this paper.

5 Future Directions

This paper might easily be the starting point for many more
investigations, as there are lots of additional points in the
Incenter hierarchy that might lead to similar phenomenon.
In a related but slightly different direction, the basic idea
of Chromogeometry ([12], [13]) is that we can expect
wonderful relations between the corresponding geometri-
cal facts in the blue (Euclidean bilinear form x1x2 + y1y2),
red (bilinear form x1x2 − y1y2) and green (bilinear form
x1y2 + y1x2) geometries.
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Figure 14: Blue, red and green Incenter circles

A spectacular illustration of this is the following, which we
will describe in detail in a future work: if we have a triangle
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A1A2A3 that has both blue, red and green Incenters (a rather
delicate issue, as it turns out), then remarkably the four red
Incenters and four green Incenters lie on a conic, in fact a
blue circle, as in Figure 14. Similarly, the four red Incen-
ters and four blue Incenters lie on a green circle, and the
four green Incenters and four blue Incenters lie on a red cir-
cle. The centers of these three coloured Incenter circles are
exactly the respective orthocenters Hb,Hr,Hg which form
the Omega triangle of the given triangle A1A2A3, intro-
duced in [12].
In particular the four green Incenters I that have appeared
in our diagrams are in fact concyclic in a Euclidean sense,
as well as in a red geometry sense. By applying central di-
lations, we may conclude similar facts about circles pass-
ing through Nagel points and Spieker points. Many more
interesting facts wait to be discovered.
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Stručni rad
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Obujam rotacijskog tijela

SAŽETAK

U ovom članku su opisane klasične metode diska i ljuske

za računanje volumena rotacijskih tijela. Takod-er je na-

vedena metoda za računanje volumena rotacijskih tijela

pomoću dvostrukog integrala, te Guldin-Pappusov poučak

kao neposredna posljedica te metode.

Ključne riječi: volumen, rotacijsko tijelo, metoda diska,

metoda ljuske, dvostruki integral

1 Uvod

Računanje obujma rotacijskog tijela je uobičajena tema ko-
ja se pojavljuje u kolegijima iz matematike na preddiplom-
skoj razini studiranja [1]. Udžbenici obično sadrže dvije
klasične metode izvoda formula za računanje obujma rota-
cijskog tijela:

• metodu ljuske, gdje se tijelo podijeli vertikalno na
tanke koncentrične ljuske oko osi vrtnje,

• metodu diska, koja se sastoji u djeljenju tijela hori-
zontalno na tanke slojeve okomite na os vrtnje.

Metodu odabiremo prema načinu zadavanja područja ko-
je rotira i prema izboru osi rotacije o čemu će biti govora
nešto kasnije. U ovom članku su opisane metode ljuske i
diska, a takod-er i metoda računanja volumena rotacijskog
tijela pomoću dvostrukog integrala. Metode diska i ljuske
se mogu izvesti iz spomenutog dvostrukog integrala ko-
rištenjem Fubinijevog teorema. Direktna posljedica dvos-
trukog integrala za računanje volumena rotacijskog tijela
je i Guldin-Pappusov poučak. Svi rezultati su bez gubitka
općenitosti prikazani za slučaj rotacije oko osi y.

2 Klasične metode

Izvedimo formulu za računanje obujma rotacijskog tijela
metodom ljuske. Promotrimo područje Ω koje je omed-eno
neprekidnim funkcijama y = f1(x) i y = f2(x) izmed-u x = a
i x = b kao u primjeru na slici 1.

f (x)

f (x)

a b

y

2

1

x

Slika 1: Područje omed-eno funkcijama f1(x) i f2(x)
izmed-u a i b

Za svaku točku T (x,y) ∈ Ω x-koordinata predstavlja uda-
ljenost točke T od osi rotacije y. Označimo s V (Ω,y) obu-
jam tijela dobivenog rotacijom područja Ω oko osi y. Oda-
beremo odred-eni x ∈ [a,b]. Promotrimo vertikalnu trakicu
koja se prostire od donjeg do gornjeg ruba lika Ω širine
dx kao na slici 1. Kada vertikalna trakica rotira oko osi
y, dobivamo vertikalnu cilindričnu ljusku približnog obuj-
ma 2πx( f2(x)− f1(x))dx. Zbrajanjem obujama ljusaka za
sve x ∈ [a,b] dobivamo približni obujam rotacijskog tije-
la. Prelaskom na limes, kada širina trakice teži prema nuli,
zbroj prelazi u integral

V (Ω,y) =

Z b

a
2πx( f2(x)− f1(x))dx,

koji predstavlja točnu vrijednost obujma rotacijskog tijela
dobivenu metodom ljuske (detaljnije obrazloženje pogle-
dajte u [1], točka 7.5.2, stranica 318).
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Sada ćemo izvesti formulu za računanje obujma rotacij-
skog tijela metodom diska. Pretpostavimo da je područje
Ω omed-eno funkcijama x = g1(y) i x = g2(y) izmed-u y = c
i y = d kao u primjeru na slici 2.

d

c

y

x

g (x)
2

g (x)
1

Slika 2: Područje omed-eno funkcijama g1(y) i g2(y)
izmed-u c i d

Fiksiramo y ∈ [c,d] i promotrimo vodoravnu trakicu duž
lika Ω visine dy kao na slici 2. Kada trakica rotira oko osi
y, dobivamo vodoravni disk približnog obujma π(g2

2(y)−
g2

1(y))dy. Zbrajanjem obujama svih diskova za y ∈ [c,d]
dobivamo približni obujam rotacijskog tijela. Prelaskom
na limes, kada visina vodoravne trakice teži prema nuli,
zbroj postaje integral

V (Ω,y) =

Z d

c
π(g2

2(y)−g2
1(y))dy,

koji predstavlja točnu vrijednost obujma rotacijskog tije-
la dobivenumetodom diska (detaljnije obrazloženje pogle-
dajte u [1], točka 7.5.2, stranica 318).

3 Obujam kao dvostruki integral

Neka je Ω zatvoreno područje koje se nalazi u ravnini z = 0
i ne siječe os y, kao na slici 3.

y

x

Slika 3: Zatvoreno područje Ω koje rotiramo oko osi y.

Kada lik Ω rotiramo oko osi y dobivamo rotacijsko tijelo
prikazano na slici 4.

Slika 4: Rotacijsko tijelo nastalo rotacijom područja Ω
sa slike 3.

Izvedimo formulu za računanje obujma rotacijskog tijela
uz pomoć dvostrukog integrala. Za svaku točku T (x,y) ∈
Ω, promotrimo sitni pravokutnik sa središtem u točki T po-
vršine dS. Kada pustimo da pravokutnik rotira oko osi y,
dobijemo prstenasti dio rotacijskog valjka obujma 2πxdS.
Zbroj svih takvih prstenastih dijelova daje približnu vri-
jednost obujma rotacijskog tijela. Ukoliko prijed-emo na
limes, kada površina pravokutnika teži prema nuli, dobije-
mo formulu za obujam rotacijskog tijela pomoću dvostru-
kog integrala:

V (Ω,y) =
ZZ

Ω
2πxdS. (1)

Primijetimo da se opisane metode računanja obujma ro-
tacijskog tijela odnose na slučajeve kada os rotacije y ne
siječe lik Ω.
Postavlja se pitanje kako odrediti obujam rotacijskog tijela
kada os rotacije y siječe lik Ω kao na slici 5.

y

x

Slika 5: Os rotacije y siječe područje Ω.

U tom slučaju potrebno je rotirati lik koji se dobije kao
unija dijela područja s desne strane osi y i zrcalne slike po-
dručja s lijeve strane osi y kako je prikazano na slici 6.
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y

x

Slika 6: Unija dijela područja Ω s desne strane osi y i
zrcalne slike dijela područja Ω s lijeve strane
osi y.

Slika 7: Rotacijsko tijelo koje nastaje rotacijom po-
dručja Ω sa slike 5 oko osi y.

Primjer koji slijedi pokazuje da prikazani pristup računanja
obujma pomoću dvostrukog integrala ima nekih prednosti
u odnosu na klasične metode. Naime, prilikom računanja
dvostrukog integrala možemo koristiti polarne koordinate
u kojima je odred-ivanje integrala u nekim slučajevima je-
dnostavnije nego u Kartezijevim koordinatama.
Neka je Ω područje u ravnini omed-eno jediničnom
kružnicom x2 + y2 = 1 i pravcima y =

√
3x i y = −x kao

na slici 8. Izračunajmo, koristeći integrale, obujam tijela
dobivenog rotacijom područja Ω oko osi y.
• Koristeći metodu ljuske dobijemo sljedeću formulu za
obujam rotacijskog tijela

V (Ω,y) =

Z 1
2

0
2π(

√
3x + x)dx +

Z

√
2

2

1
2

2π(
√

1− x2 + x)dx

+

Z 1
√

2
2

2π(2
√

1− x2)dx.

• Prema metodi diska traženi obujam se računa po formuli

V (Ω,y)=

Z 0

−
√

2
2

π(1−y2−y2)dy+

Z

√
3

2

0
π
(

1−y2−
y2

3

)

dy.

• Prema formuli (1) obujam rotacijskog tijela možemo iz-
računati prelaskom na polarne koordinate na sljedeći način

V (Ω,y) =

ZZ

Ω
2πxdS = 2π

Z π
3

− π
4

dφ
Z 1

0
r · r cosφdr

= 2π
Z

π
3

− π
4

cosφdφ
Z 1

0
r2dr = 2πsinφ

∣

∣

∣

∣

π
3

− π
4

r3

3

∣

∣

∣

∣

1

0
=

π
3
(
√

3+
√

2).

Prema tome, obujam rotacijskog tijela se u ovom primje-
ru izračuna nešto lakše pomoću dvostrukog integrala nego
klasičnom metodom ljuske.

y

x

Slika 8: Područje omed-eno jediničnom kružnicom x2 +
y2 = 1 i pravcima y =

√
3x i y = −x.

Slika 9: Rotacijsko tijelo koje nastaje rotacijom po-
dručja sa slike 8 oko osi y.

4 Izvod klasičnih metoda

Sada ćemo pokazati kako možemo dobiti klasične metode
diska i ljuske iz formule (1).
Promotrimo najprije područje Ω koje je omed-eno nepre-
kidnim funkcijama y = f1(x) i y = f2(x) izmed-u x = a i
x = b kao u primjeru na slici 1. Prema Fubinijevom te-
oremu dvostruki integral I =

RR

Ω 2πxdS možemo izračunati
pomoću jednostrukih integrala na sljedeći način

I =
Z b

a

(

Z f2(x)

f1(x)
2πxdy

)

dx =
Z b

a
2πx( f2(x)− f1(x))dx,
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što predstavlja dobro poznatu formulu koja se dobije me-
todom ljuske.
Pretpostavimo sada da je područje Ω omed-eno funkcijama
x = g1(y) i x = g2(y) izmed-u y = c i y = d kao u primjeru
na slici 2. I u ovom slučaju, koristeći Fubinijev teorem,
svedemo dvostruki integral I na formulu

I =
Z d

c

(

Z g2(y)

g1(y)
2πxdx

)

dy =
Z d

c
π(g2

2(y)−g2
1(y))dy,

koja odgovara metodi diska.
Sada se postavlja pitanje zbog čega su klasične metode
za računanje obujma rotacijskog tijela u suštini jednake,
iako su na prvi pogled geometrijski posve različite. Od-
govor na spomenuto pitanje je vrlo jednostavan. Naime,
koristeći formulu

RR

Ω 2πxdS zapravo zbrajamo obujme pr-
stenastih dijelova rotacijskog valjka dobivene rotiranjem
pravokutnika sa središtem u T (x,y) površine dS oko y-osi.
Zbrajanje svih obujama možemo provoditi na dva različita
načina:
• Odaberemo odred-eni x = x0. Zbrajanjem obujama prste-
nastih dijelova rotacijskog valjka koji odgovaraju točkama
(x0,y) za sve y takve da je (x0,y) ∈ Ω, dobijemo vertikal-
nu cilindričnu ljusku. Sada treba samo zbrojiti obujme tih
ljusaka da bismo dobili približni obujam rotacijskog tijela.
Opisani postupak zapravo predstavlja metodu ljuske.
• Neka je y = y0 fiksan. Zbroj obujama prstenastih dije-
lova rotacijskog valjka koji odgovaraju točkama (x,y0) za
sve x takve da je (x,y0) ∈ Ω predstavlja vodoravni disk.
Sada zbrojimo obujme svih takvih diskova da bismo dobili
približni obujam rotacijskog tijela. Opisani postupak nije
ništa drugo nego metoda diska.
Dakle, dvije klasične metode slijede iz dvostrukog inte-
grala tako da se prstenasti dijelovi rotacijskog valjka, čiji
obujmi se zbrajaju, pažljivo poslože na odgovarajući način.

5 Guldin-Pappusov poučak

Promotrimo zatvoreno područje Ω u ravnini z = 0 koje ne
siječe os y kao na slici 3. Označimo sa C težište područja
Ω, a s D površinu od Ω. Uz navedene oznake, Guldin-
Pappusov poučak u klasičnom obliku kaže da je obujam
rotacijskog tijela dobivenog rotacijom područja Ω oko osi
y dan formulom:

V (Ω,y) = 2πxCD ,

gdje je xC apscisa težišta C područja Ω. Drugim riječima,
obujam torusa koji se dobije rotacijom područja Ω oko osi
y je jednak obujmu cilindra osnovice Ω i visine 2πxC.
Izvedimo sada Guldin-Pappusov poučak koristeći dvostru-
ki integral za računanje obujma rotacijskog tijela. Prisjeti-
mo se da se koordinate težistaC(xC,yC) lika Ω površine D
računaju prema formulama

xC =

RR

Ω xdS
D

, yC =

RR

Ω ydS
D

.

Sada iz formule (1) slijedi:

V (Ω,y) =
ZZ

Ω
2πxdS = 2π

ZZ

Ω
xdS = 2πxCD ,

pri čemu smo koristili linearnost integrala i definiciju
težišta.

6 Zaključak

Metoda odred-ivanja obujma rotacijskog tijela pomoću
dvostrukog integrala je zanimljiva ne samo s matema-
tičkog, nego i sa stanovišta metodike nastave. Ponovimo
neke od prednosti opisane metode:

• Metoda predstavlja poopćenje metode diska, metode
ljuske i Guldin-Pappusovog poučka. Svi navedeni
rezultati slijede neposredno iz formule (1).

• Primjena tehnika računanja dvostrukog integrala,
kao što je prelazak na polarne koordinate, u nekim
slučajevima pojednostavljuje postupak računanja.

• Odabir klasične metode za računanje obujma rotacij-
skog tijela ovisi o obliku tijela. Za primjenu meto-
de odred-ivanja obujma pomoću dvostrukog integrala
oblik tijela nije bitan.
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Volumes of Solids of Revolution. A Unified Appro-
ach, arXiv:1205.2204v1 [math.HO] 10 May 2012

Tatjana Slijepčevíc-Manger
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