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ABSTRACT

In [9] and [10] we have studied the regular prisms and prism
tilings and their geodesic ball packings in S/I__EI/? space that
is one among the eight Thurston geometries. This geom-
etry can be derived from the 3-dimensional Lie group of
all 2x 2 real matrices with determinant one.

In this paper we consider the regular infinite and bounded
square prism tilings whose existence was proved in [9]. We
determine the data of the above tilings and visualize them
in the hyperboloid model of S/I__EI/? space.

We use for the computations and visualization of the SLoR
space its projective model introduced by E. Molnar.
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O poploéavanju pravilnim kvadratskim prizmama
u prostoru SLoR

SAZETAK

U [9] i [10] smo proutavali pravilne prizme, poplo¢avanje
prizmama te njihovo popunjavanje geodetskim kuglama
u prostoru S/L\ZT? koji je jedan od osam Thurstonovih
geometrija. Ova se geometrija moZe dobiti iz 3-
dimenzionalne Lieve grupe svih 2x 2 matrica s jedini¢nom
determinantom.

U ovom ¢lanku promatramo poploéavanje pravilnim
beskonaénim i omedenim kvadratskim prizmama ¢&ije je
postojanje dokazano u [10]. Odredujemo podatke gore
spomenutog poplocavanja i vizualiziramo ih u modelu
hiperboloida u ST.EE( prostoru.

Za racunanje i vizualizaciju S/I__Eﬁ prostora koristimo pro-
Jjektivni model koji je uveo E. Molnar.

Kljuéne rijeci: Thurstonova geometrija, S/L\ZT? geo-
metrija, poplo¢avanje, poplo¢avanje prizmama
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1 Theg_\zﬁ geometry

The SL2R Lie-group consists of the real 22 matrices

((j; 2 with unit determinanad — cb= 1. TheS/L\zﬁ
geometry is the universal covering group of this group,
and is a Lie-group itself. Because of the 3 independent

coordinatesSLyR is a 3-dimensional manifold, with its
usual neighbourhood topology. In order to model the
above structure on the projective sph@&® and spacé?

we introduce the new projective coordinatg$ xt, x?, x3),
where

ai=x0+xCbi=xt4+x%ci=—xr+x,d:=x2—x%, (1)

with positive resp. non-zero multiplicative equivalence
as projective freedom. Through the equivaleSteR ~
PSL2R it follows, that

0>bc—ad= —x°

— x4+ 5+ 33 2)
describes the interior af the above one-sheeted hypetholoi
solid H in the usual Euclidean coordinate simplex with
the origin Eg(1;0;0;0 and the ideal points of the axes
E(1;1;0;0,E2(1;0;1;0,E3(1;0;0;1). We shall con-
sider the collineation grou@ .., which acts on the projec-
tive spaceP® and preserves the polarity, ie. a scalar prod-
uct of signature(— — ++), moreover certain additional
fibering structure. This group leaves the one sheeted hy-
peboloidX invariant. Choosing an appropriate subgroup

G of G, as isometry group, the universal covering sp&ce
of 3 will be the hyperboloid model dbL;R. (See fig. 1.)

The specific isometrie$(@) is a one parameter group
given by the matrices:

cosp sing O 0
| —sing cosp O 0
S(e) = d b cosp —sing (3)

d b sing cosp
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Figure 1: The hypeboloid model of tr@\_zﬁ space with
the "base plane” and the fibre line e.g. through
the point X1;1;3; 2)

The specific isometrieS(@) is a one parameter group
given by the matrices:

The elements ofS(p) are the so-called "fibre transla-
tions” for @ € R. We obtain an unique fibre-line to each
X% xL;x2;:x3) € H as the orbit by right action &(¢) on

X. The coordinates of points lying on the fibre line through
X can be expressed as the imageX diy S(@):

(0;x: %2 3) 9 (X% cosp— x!sing;
X0 sin@+ xt cosg; X2 cosp+ X sing; —xZ sin@-+ x° cosyp)

(4)
The points of a fibre line througk by the usual inhomo-

geneous Euclidean coordinates- %,y = §c2572= ﬁg are
given by:

_X+tang  y+ztang z—ytang

9)
1. . . l
(Lxy:2) = ( "1 —xtang’ 1— xtang’ 1— xtan®

) ()

From formulas (4) and (5) we can see theeriodicity of
the above maps.

The elements of the isometry group 8E2R can be de-
scribed in the above basis by the following matrix:

agl a%O a%3 agZ
Fap +ay & F
@=| 8 & & ©)
2 2 2 2
+al Fa) Fal +aj

where
—(89)% — (89)* + (8§)* + (83)* = 1,
—(89)* — (a)* + (85)* + (a3)* = —1,

— 8gap — agay + agaj + aga; =0
0

0.1 1.0, 2.3 .32
— 8p8 — 8ay +8pA + apd; =

We define the translation grou@t as a subgroup of

SL2R isometry group acting transitively on the pointsiof

and mapping the origifo(1;0;0;0 ontoX (x?;x%;x%; x3).
These isometries and their inverses (up to a positive deter-
minant factor) can be given by the following matrices:

XX 8

- - x0 3
T: ()= WO d 2 3
B X0 3 %
(7
X b —x2 x3
1 3 2
ok | X @ 3 x
T =] S0 g 2 43
- X0 3 X

The rotation about the fibre line through the origin
Eo(1;0;0;0 by anglew can be expressed by the follow-
ing matrix:

0 O 0 0
i 0 O 0 0
REO((*)) . (ri](EOaw)) = 0 0 cos sinw ) (8)
0 0 —sinw cosw

while the rotation about the fibre line through point
X(x%x%;x%x3) by anglew can be expressed by conjuga-
tion with the following formula: (r! (X,w)) = Rx(w) =

T IRg, (W)T.

We can introduce the so called hyperboloid parametriza-
tion as follows

x° = costr cosy,

x! = coshrsing,

x% = sinhr cog0 — @),

x2 = sinhr sin(8 — @), (9)

where(r, 0) are the polar coordinates of the base plane, and
@is the fibre coordinate. We note, that

X% — xIxt 4322 + x3x3 = — coslfr +sintfr = —1 < 0.
(10)
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The inhomogeneous coordinates corresponding to (9), that
play an important role in visualization, are given by

1

X=5= tang,

y= X% = tanhr%, (11)

z= ); =t nHSiné(e) L

2 Geodesics and geodesic balls Figure 3: Geodesic sphere rotated in 3rd order about a fi-

bre line

In the following we are going to introduce the notion of the : ; ;
geodesic sphere and ball, using the concept of the metricBy (/1§)/the second order differential equation system of

tensor field and geodesic curve. After this we visualize the theSL2R geodesic curve of form (11) is the following:

effects of theg_zﬁ isometries using geodesic balls. .1 o
i = sinh(2r) 8o+ > (sinh(4r) —sinh(2r))8e,

@= 2ftanh(r)(2sintf (r) 6+ @), (14)
6= sinEEZr) ((3cosh2r) — 1)+ 2¢).

We can assume, that the starting point of a geodesic
curve is(1,0,0,0), because we can transform a curve into
an arbitrary starting point. Moreover(0) = 0, @(0) =

0, 8(0) =0, f(0) = cosa, ¢(0) = —GSO) = sina and so
Fﬁ't velocity can be assumed as follows in Table 1 from

| Table 1 |
| Tyes | |
. cosa .
_ _ . . o r(sa)= arsmt‘( s T sml‘(\/cosas))
Figure 2: Geodesic sphere of radidscentered at the ori- O<a<z sina
gn (H2 — like direction) S(s.00= farctar< Vcos tant( COSZ]S))
The infinitesimal arc-length square can be derived by the @(s,a) = 2sinas+ 6(s,a)
standard method called pull back into the origin. By acting NG
of (7) on the differential$dx’; dx'; dx?; dx®), we obtain by . r(s,0) = arsinr(7 )
[2], [1] and [3] that in this parametrization the infinitesim a=7 3
arc-length square at any point8E,R is the following: (light directior) B(s.a) = “"“Ctar(7 )
) 5 20 sin? 5 o 5 @(s,0) = V2s+6(s,a)
(ds)” = (dr)“ 4 coslfrsinhfr(d8)“ 4 [(d@) + sintrr(d6)]-. (s0) :arsin% O 7CO5215))
(12) I[<G<I[ _COSZX
4 -2 _ sina —
Hence we get the symmetric metric tensor fielg on | (fibre ke direction) | 0>~ ~ 38N J=g5ez @ cosZis))
SL2R by components: ®(s,a) =2sinas+6(s o)
1 -0 0 The equation of the geodesic curve in the hyper-
gj:= [0 sinffr(sintfr+cositr) sinkfr |,  (13) boloid model — using the usual geographical coordiantes
0 sintfr 1 (A,0), (—t< A <), as general longitude and altitude pa-

rameters for the later geodesic spherg < a < 7), and

The geodesic curves 8L,R are generally defined as hav- the arc-length parameter0s € R — are determined in [1].

ing locally minimal arc length between any two of their The Euclidean coordinate§(s,A,a), Y(s,A,a), Z(s,A,q)
(close enough) points. of the geodesic curves can be determined by substituting
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the results of Table 1 (see [1]) into the following equations 3 Regular prisms in SL,R space
by (11):

In the paper [9] the third author has defined the prism and

X(s,A,0) = tang(s,a
(sA.a) s, ), prism-like tilings inSL2R space, and also classified the in-

Y(s A, ) = tanhr (s ) (cos(e(s,a) —¥S%) oo finite and bounded regular prism tilings. Now, we study
) cosp(s,a) the square prisms and prism tilings$h >R space, review
_sin(6(s,a) —g(s,a)) sin)\) their most important properties and compute their metric
cosp(s,a) data.
_ tanhr(s,a) .
= cospsn) CHOSA) —ASA)+AL (15)  pefinition 3.1 Let 7' be a SR infinite solid that is
bounded by one-sheeted hyperbolid surfaces of the model
0 - .
Z(s,A,a) =tanhr (s a) (COS( (50) —¥s o)) SinA+ space, generated by neighbouring "side fibre lines” pass-
) cosy(s, ) ing through the vertices of a p-gof®¥) lying in the "base
sin(8(s o) — @(s,a)) cog\) plane”. The images of solid$' by SL,R isometry are
¢ hrcosxp(s,a) called infinite p-side®L2R prisms.
= an7(5’0‘)sin[e(s,O()—(p(s,01)+)\]. _
cosp(sa) The common part of' with the base plane is called the

base figureof P' and is denoted b. Its vertices coincide
with the vertices of®.

Definition 3.2 A p-sided prism is an isometric image of a
solid, which is bounded by the side surfaces of a p-sided
infinite prism?', its base figuré® and the translated copy

Pt of P by a fibre translation.

The side face® and?' are called’cover faces”, and are
related by fibre translation along fibre lines joining their
points.

Definition 3.3 An infinite prism inSL,R is regular if PP
is a regular p-gon with center at the origin in the "base

Figure 4: Touching geodesic spheres of radiisentered plane ary_ifle.ade surfaces are congruent to each other
on a fibre line under anSL2R isometry.

Definition 2.1 The distance (P1,P») between the points ~ Definition 3.4 The regular p-sided prism iSL>R space
P, and B is defined as the arc length of the geodesic curve is @ prism derived by Definition 3.2 from an infinite regu-
from R to P. lar p-sided prism (see Definition 3.3).

In [10] the third author has investigated the notion of the We consider a monohedral tessellation of the sg&lcdR
geodesic spheres and balls, with the following definition: with congruent regular infinite or bounded prisms. A tiling
is called face-to-face, if the intersection of any two tiles
is either empty or a common face, edge or vertex of both

Definition 2.2 The geodesic sphere of radipgnd center files, otherwise it is non-face-to-face.

P is defined as the set of all points Q in the space with the g
additional condition dP.Q) = p € [0, ). A regular infinite tilingT},(q) in the SL,R space is derived
by a rotation subgrou@},(q) of the symmetry grou,(q)
Remark 2.3 The geodesic sphere above is a simply con- of T;,(q). G,(q) is generated by rotatioms, r2, ..., rp with
nected surface without self intersection in the spgb\éi_ anglesw = %’T about the fibre linedy, ..., fp through the
vertices of the giveL,R p-gon®®, and letP},(q) be one

Figure 2 shows a sphere with radips= 1 and the origin  of its tiles, where we can suppose without the loss of gen-
as its center. erality, that itsp-gonal base figure is centered at the origin.
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The verticesAy, A, ..., Ap of the base figuré coincide
with the vertices of a regular hyperbolegon in the base
plane with center at the origin, and we can introduce the
following homogeneous coordinates to neighbouring ver-
tices of the base figure dfp(q) in the hyperboloid model

of 3 = SL,R.

Figure 6: Regular infinite prism tiIingTL(B)

—om
LetR,) be the rotation matrix of the angie= — %" about
the fibre line through®,. Consider the half poirf of the

=2m
q

fibre line segment between the poirﬂrtgsandAiQAZ . The

base curve(AyAz) will be the locus of common points of

the fibre lines through the line segméwtF with the "base

Figure 5: The P!, (8) tile centered at the origin of the reg-  plane” of the model. This also determines the side surfaces
ular infinite tiling T( ) of g>ip(q)_

Using the above described method we can computgghe
A1 = (1;0;0:x3), parameter of the vertex coordinates, we obtain the follow-

ing th 9):
A2=(1;0;—X3sin(2—;1);X3c05(2%[)), ing theorem (see [9])

ATt
As = (1,0~ xgsin( p) X3COS( )) Theorem 3.6 The vertices A A2, A3 of the base figure

P of Tg(q) are determined for parameters ¢ 3, and
7 < g€ N by coordinates in (16) where

ey

Ao = (130, xasin((p 1>2p>X3cos<<p 1>2p>> (16)

V/3cosZ™ 2"—sin%" .
Zsrn T3 a7

The side curves(AA1)(i =1,...,p;Aps1 = Ag) Of the X3 =
base figure are derived from each other %yrotation

about thex-axis, so they are congruentgL\zﬁ sense. The

necessary requirement to the existencé*gt]), that the Therefore, the vertices of the prisri(q) base figureP
surfaces of the neighbouring side facesﬂ%g,f(q ) are de- are the following:
rived from each other bﬁﬂ > < g € N) rotation about
the common fibre line.
We have the following theorem ([9]):
V3cosi! —sindt

A = (1,0;0; T)?

Theorem 3.5 There exists regular infinite prismtiling 2sin + /3

(q) foreach3<peN, where <q \/_$ fcosZ" in%"_ \j\/ﬁcos : 2q

1
A= (1;0;—" = :
2= 2 25|n2"+\/§ 2 2sinZ' 1 /3
The coordinates of thé;, Ay, ..., A, vertices of the base
figure and thus the corresponding “fibre side lines” (the fi- \[$ \/_cos— - srn— \J \/ﬁcos— —sin2t

q
bre lines through th_e vertices ef the base figure) can befs = (1'0’7 25|n2n+\/§ ' 2S|n2n+\/_
computed for any givelip,q) pair of parameters. More- 18
over the equation of the(A,Ag) curve can be determined (18)
as follows.
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Similarly to the regular infinite prism tilings we get the
types of the regular bounded prism tilings which are classi-
fied in [9] where the third author has proved, that a regular
bounded prism tiling are non-face-to-face one. In this pa-
per we visualize in Fig. 8 only some neighbouring prisms
of a bounded regular prism tilinga(8) where the height

of the prisms ar%. When visualizing prism tilings we use
different colors to note the neighbourhooding prisms.

In this paper we have mentioned only some problems in

discrete geometry of théfg_ﬁ space, but we hope that
from these it can be seen that our projective method suits
to study and solve similar problems (see [4], [7], [8], [10])

Figure 7: Regular infinite prism tiIingrL(S)

With an analogous argument we also proved the following

theorem, which seems to be a new, important result:
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