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ABSTRACT

In [9] and [10] we have studied the regular prisms and prism

tilings and their geodesic ball packings in S̃L2R space that
is one among the eight Thurston geometries. This geom-
etry can be derived from the 3-dimensional Lie group of
all 2×2 real matrices with determinant one.

In this paper we consider the regular infinite and bounded
square prism tilings whose existence was proved in [9]. We
determine the data of the above tilings and visualize them

in the hyperboloid model of S̃L2R space.

We use for the computations and visualization of the S̃L2R
space its projective model introduced by E. Molnár.
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O popločavanju pravilnim kvadratskim prizmama

u prostoru S̃L2R

SAŽETAK

U [9] i [10] smo proučavali pravilne prizme, popločavanje
prizmama te njihovo popunjavanje geodetskim kuglama

u prostoru S̃L2R, koji je jedan od osam Thurstonovih
geometrija. Ova se geometrija može dobiti iz 3-
dimenzionalne Lieve grupe svih 2×2 matrica s jediničnom
determinantom.

U ovom članku promatramo popločavanje pravilnim
beskonačnim i omedenim kvadratskim prizmama čije je
postojanje dokazano u [10]. Odredujemo podatke gore
spomenutog popločavanja i vizualiziramo ih u modelu

hiperboloida u S̃L2R prostoru.

Za računanje i vizualizaciju S̃L2R prostora koristimo pro-
jektivni model koji je uveo E. Molnár.

Ključne riječi: Thurstonova geometrija, S̃L2R geo-
metrija, popločavanje, popločavanje prizmama

1 The S̃L2R geometry

The SL2R Lie-group consists of the real 2× 2 matrices(
d b
c a

)
with unit determinantad−cb= 1. TheS̃L2R

geometry is the universal covering group of this group,
and is a Lie-group itself. Because of the 3 independent

coordinates,̃SL2R is a 3-dimensional manifold, with its
usual neighbourhood topology. In order to model the
above structure on the projective spherePS3 and spaceP3

we introduce the new projective coordinates(x0,x1,x2,x3),
where

a := x0 +x3
,b := x1 +x2

,c := −x1 +x2
,d := x0−x3

, (1)

with positive resp. non-zero multiplicative equivalence
as projective freedom. Through the equivalenceSL2R ∼
PSL2R it follows, that

0 > bc−ad= −x0x0−x1x1 +x2x2 +x3x3 (2)

describes the interior af the above one-sheeted hyperboloid
solid H in the usual Euclidean coordinate simplex with
the origin E0(1;0;0;0) and the ideal points of the axes
E∞

1 (1;1;0;0),E∞
2 (1;0;1;0),E∞

3 (1;0;0;1). We shall con-
sider the collineation groupG∗, which acts on the projec-
tive spaceP3 and preserves the polarity, ie. a scalar prod-
uct of signature(−− ++), moreover certain additional
fibering structure. This group leaves the one sheeted hy-
peboloidH invariant. Choosing an appropriate subgroup
G of G∗ as isometry group, the universal covering spaceH̃

of H will be the hyperboloid model of̃SL2R. (See fig. 1.)

The specific isometriesS(φ) is a one parameter group
given by the matrices:

S(φ) =




cosφ sinφ 0 0
−sinφ cosφ 0 0

d b cosφ −sinφ
d b sinφ cosφ


 (3)
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Figure 1: The hypeboloid model of thẽSL2R space with
the ”base plane” and the fibre line e.g. through
the point X(1;1;1

2; 1
3)

The specific isometriesS(φ) is a one parameter group
given by the matrices:

The elements ofS(φ) are the so-called ”fibre transla-
tions” for φ ∈ R. We obtain an unique fibre-line to each
X(x0;x1;x2;x3) ∈ H̃ as the orbit by right action ofS(φ) on
X. The coordinates of points lying on the fibre line through
X can be expressed as the images ofX by S(φ):

(x0;x1;x2;x3)
S(φ)→ (x0cosφ−x1sinφ;

x0sinφ+x1cosφ;x2 cosφ+x3sinφ;−x2sinφ+x3cosφ)
(4)

The points of a fibre line throughX by the usual inhomo-
geneous Euclidean coordinatesx = x1

x0 ,y = x2

x0 ,z = x3

x0 are
given by:

(1;x;y;z)
S(φ)→ (1;

x+ tanφ
1−xtanφ

;
y+ztanφ
1−xtanφ

;
z−ytanφ
1−xtanφ

). (5)

From formulas (4) and (5) we can see theπ periodicity of
the above maps.

The elements of the isometry group of̃SL2R can be de-
scribed in the above basis by the following matrix:

(a j
i ) =




a0
0 a1

0 a2
0 a3

0
∓a1

0 ±a0
0 ±a3

0 ∓a2
0

a0
2 a1

2 a2
2 a3

2
±a1

2 ∓a0
2 ∓a3

2 ±a2
2


 (6)

where

− (a0
0)

2− (a1
0)

2 +(a2
0)

2 +(a3
0)

2 = −1,

− (a0
2)

2− (a1
2)

2 +(a2
2)

2 +(a3
2)

2 = −1,

−a0
0a0

2−a1
0a

1
2 +a2

0a
2
2 +a3

0a3
2 = 0

−a0
0a1

2−a1
0a

0
2 +a2

0a
3
2 +a3

0a2
2 = 0.

We define the translation groupGT as a subgroup of

S̃L2R isometry group acting transitively on the points ofH̃

and mapping the originE0(1;0;0;0) ontoX(x0;x1;x2;x3).
These isometries and their inverses (up to a positive deter-
minant factor) can be given by the following matrices:

T : (t j
i ) =




x0 x1 x2 x3

−x1 x0 x3 −x2

x0 x1 x2 x3

x1 −x0 −x3 x2




(7)

T−1 : (Tk
j ) =




x0 −x1 −x2 −x3

x1 x0 −x3 x2

−x0 −x1 x2 −x3

−x1 x0 x3 x2




The rotation about the fibre line through the origin
E0(1;0;0;0) by angleω can be expressed by the follow-
ing matrix:

RE0(ω) : (r j
i (E0,ω)) =




0 0 0 0
0 0 0 0
0 0 cosω sinω
0 0 −sinω cosω


 , (8)

while the rotation about the fibre line through point
X(x0;x1;x2;x3) by angleω can be expressed by conjuga-
tion with the following formula: (r j

i (X,ω)) = RX(ω) =

T−1RE0(ω)T.

We can introduce the so called hyperboloid parametriza-
tion as follows

x0 = coshr cosφ,

x1 = coshr sinφ,

x2 = sinhr cos(θ−φ),

x3 = sinhr sin(θ−φ), (9)

where(r,θ) are the polar coordinates of the base plane, and
φ is the fibre coordinate. We note, that

−x0x0−x1x1+x2x2+x3x3 =−cosh2 r +sinh2 r =−1< 0.

(10)
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The inhomogeneous coordinates corresponding to (9), that
play an important role in visualization, are given by

x =
x1

x0 = tanφ,

y =
x1

x0 = tanhr
cos(θ−φ)

cosφ
, (11)

z=
x1

x0 = tanhr
sin(θ−φ)

cosφ
.

2 Geodesics and geodesic balls

In the following we are going to introduce the notion of the
geodesic sphere and ball, using the concept of the metric
tensor field and geodesic curve. After this we visualize the

effects of thẽSL2R isometries using geodesic balls.

Figure 2: Geodesic sphere of radius1 centered at the ori-
gin

The infinitesimal arc-length square can be derived by the
standard method called pull back into the origin. By acting
of (7) on the differentials(dx0;dx1;dx2;dx3), we obtain by
[2], [1] and [3] that in this parametrization the infinitesimal

arc-length square at any point of̃SL2R is the following:

(ds)2 = (dr)2 +cosh2 r sinh2 r(dθ)2 +[(dφ)+sinh2 r(dθ)]2.

(12)

Hence we get the symmetric metric tensor fieldgi j on

S̃L2R by components:

gi j :=




1 0 0
0 sinh2 r(sinh2 r +cosh2 r) sinh2 r
0 sinh2 r 1



 , (13)

The geodesic curves of̃SL2R are generally defined as hav-
ing locally minimal arc length between any two of their
(close enough) points.

Figure 3: Geodesic sphere rotated in 3rd order about a fi-
bre line

By (13) the second order differential equation system of

theS̃L2R geodesic curve of form (11) is the following:

r̈ = sinh(2r) θ̇ φ̇+
1
2

(
sinh(4r)−sinh(2r)

)
θ̇ θ̇,

φ̈ = 2ṙ tanh(r)(2sinh2 (r) θ̇+ φ̇), (14)

θ̈ =
2ṙ

sinh(2r)

(
(3cosh(2r)−1)θ̇+2φ̇

)
.

We can assume, that the starting point of a geodesic
curve is(1,0,0,0), because we can transform a curve into
an arbitrary starting point. Moreover,r(0) = 0, φ(0) =
0, θ(0) = 0, ṙ(0) = cosα, φ̇(0) = −θ̇(0) = sinα and so
unit velocity can be assumed as follows in Table 1 from
[1].

Table 1

Types

0≤ α <
π
4

(H2− like direction)

r(s,α) = arsinh
( cosα√

cos2α
sinh(

√
cos2αs)

)

θ(s,α) = −arctan
( sinα√

cos2α
tanh(

√
cos2αs)

)

φ(s,α) = 2sinαs+θ(s,α)

α =
π
4

(light direction)

r(s,α) = arsinh
(√

2
2

s
)

θ(s,α) = −arctan
(√

2
2

s
)

φ(s,α) =
√

2s+θ(s,α)

π
4

< α ≤
π
2

(fibre− like direction)

r(s,α) = arsinh
( cosα√

−cos2α
sin(

√
−cos2αs)

)

θ(s,α) = −arctan
( sinα√

−cos2α
tan(

√
−cos2αs)

)

φ(s,α) = 2sinαs+θ(s,α)

The equation of the geodesic curve in the hyper-
boloid model – using the usual geographical coordiantes
(λ,α), (−π < λ ≤ π), as general longitude and altitude pa-
rameters for the later geodesic sphere(− π

2 ≤ α ≤ π
2), and

the arc-length parameter 0≤ s∈ R – are determined in [1].
The Euclidean coordinatesX(s,λ,α), Y(s,λ,α), Z(s,λ,α)
of the geodesic curves can be determined by substituting
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the results of Table 1 (see [1]) into the following equations
by (11):

X(s,λ,α) = tanφ(s,α),

Y(s,λ,α) = tanhr(s,α)
(cos(θ(s,α)−φ(s,α))

cosφ(s,α)
cosλ−

−
sin(θ(s,α)−φ(s,α))

cosφ(s,α)
sinλ

)

=
tanhr(s,α)

cosφ(sα)
cos[θ(s,α)−φ(s,α)+ λ], (15)

Z(s,λ,α) = tanhr(s,α)
(cos(θ(s,α)−φ(s,α))

cosφ(s,α)
sinλ+

sin(θ(s,α)−φ(s,α))

cosφ(s,α)
cosλ

)

=
tanhr(s,α)

cosφ(sα)
sin[θ(s,α)−φ(s,α)+ λ].

Figure 4:Touching geodesic spheres of radius1
6 centered

on a fibre line

Definition 2.1 The distance d(P1,P2) between the points
P1 and P2 is defined as the arc length of the geodesic curve
from P1 to P2.

In [10] the third author has investigated the notion of the
geodesic spheres and balls, with the following definition:

Definition 2.2 The geodesic sphere of radiusρ and center
P is defined as the set of all points Q in the space with the
additional condition d(P,Q) = ρ ∈

[
0,

π
2

)
.

Remark 2.3 The geodesic sphere above is a simply con-

nected surface without self intersection in the spacẽSL2R.

Figure 2 shows a sphere with radiusρ = 1 and the origin
as its center.

3 Regular prisms in S̃L2R space

In the paper [9] the third author has defined the prism and

prism-like tilings inS̃L2R space, and also classified the in-
finite and bounded regular prism tilings. Now, we study

the square prisms and prism tilings iñSL2R space, review
their most important properties and compute their metric
data.

Definition 3.1 Let Pi be a S̃L2R infinite solid that is
bounded by one-sheeted hyperbolid surfaces of the model
space, generated by neighbouring ”side fibre lines” pass-
ing through the vertices of a p-gon (Pb) lying in the ”base

plane”. The images of solidsPi by S̃L2R isometry are

called infinite p-sided̃SL2R prisms.

The common part ofPi with the base plane is called the
base figureof Pi and is denoted byP. Its vertices coincide
with the vertices ofPb.

Definition 3.2 A p-sided prism is an isometric image of a
solid, which is bounded by the side surfaces of a p-sided
infinite prismPi , its base figureP and the translated copy
Pt of P by a fibre translation.

The side facesP andPt are called”cover faces”, and are
related by fibre translation along fibre lines joining their
points.

Definition 3.3 An infinite prism inS̃L2R is regular if Pb

is a regular p-gon with center at the origin in the ”base
plane” and the side surfaces are congruent to each other

under anS̃L2R isometry.

Definition 3.4 The regular p-sided prism iñSL2R space
is a prism derived by Definition 3.2 from an infinite regu-
lar p-sided prism (see Definition 3.3).

We consider a monohedral tessellation of the spacẽSL2R
with congruent regular infinite or bounded prisms. A tiling
is called face-to-face, if the intersection of any two tiles
is either empty or a common face, edge or vertex of both
tiles, otherwise it is non-face-to-face.

A regular infinite tilingTi
p(q) in theS̃L2R space is derived

by a rotation subgroupGr
p(q) of the symmetry groupGp(q)

of Ti
p(q). Gr

p(q) is generated by rotationsr1, r2, . . . , rp with
anglesω = 2π

q about the fibre linesf1, . . . , fp through the

vertices of the giveñSL2R p-gonPb, and letPi
p(q) be one

of its tiles, where we can suppose without the loss of gen-
erality, that itsp-gonal base figure is centered at the origin.
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The verticesA1,A2, . . . ,Ap of the base figureP coincide
with the vertices of a regular hyperbolicp-gon in the base
plane with center at the origin, and we can introduce the
following homogeneous coordinates to neighbouring ver-
tices of the base figure ofPi

p(q) in the hyperboloid model

of H̃ = S̃L2R.

Figure 5: ThePi
4(8) tile centered at the origin of the reg-

ular infinite tiling Ti
4(8)

A1 = (1;0;0;x3),

A2 = (1;0;−x3sin(
2π
p

);x3 cos(
2π
p

)),

A3 = (1;0;−x3sin(
4π
p

);x3 cos(
4π
p

)),

. . . ,

Ap = (1;0;−x3sin((p−1)
2π
p

);x3 cos((p−1)
2π
p

)) (16)

The side curvesc(AiAi+1)(i = 1, . . . , p;Ap+1 ≡ A1) of the
base figure are derived from each other by2π

p rotation

about thex-axis, so they are congruent iñSL2R sense. The
necessary requirement to the existence ofTi

p(q), that the
surfaces of the neighbouring side faces ofPi

p(q) are de-

rived from each other by2π
q ( 2p

p−2 < q∈ N) rotation about
the common fibre line.

We have the following theorem ([9]):

Theorem 3.5 There exists regular infinite prism tiling
Ti

p(q) for each3≤ p∈ N, where 2p
p−2 < q.

The coordinates of theA1,A2, . . . ,Ap vertices of the base
figure and thus the corresponding ”fibre side lines” (the fi-
bre lines through the vertices of the base figure) can be
computed for any given(p,q) pair of parameters. More-
over the equation of thec(A2A3) curve can be determined
as follows.

Figure 6: Regular infinite prism tilingTi
4(8)

LetR
−2π

q
A2

be the rotation matrix of the angleω =− 2π
q about

the fibre line throughA2. Consider the half pointF of the

fibre line segment between the pointsA3 andA
R

−2π
q

A2
1 . The

base curvec(A2A3) will be the locus of common points of
the fibre lines through the line segmentA2F with the ”base
plane” of the model. This also determines the side surfaces
of Pi

p(q).

Using the above described method we can compute thex3

parameter of the vertex coordinates, we obtain the follow-
ing theorem (see [9]):

Theorem 3.6 The vertices A1,A2,A3 of the base figure
P of Pi

3(q) are determined for parameters p= 3, and
7≤ q∈ N by coordinates in (16) where

x3 =

√√√√
√

3cos2π
q −sin2π

q

2sin2π
q +

√
3

. (17)

Therefore, the vertices of the prismsPi
3(q) base figureP

are the following:

A1 = (1;0;0;

√√√√
√

3cos2π
q −sin 2π

q

2sin2π
q +

√
3

),

A2 = (1;0;−
√

3
2

√√√√
√

3cos2π
q −sin 2π

q

2sin2π
q +

√
3

;−
1
2

√√√√
√

3cos2π
q −sin 2π

q

2sin2π
q +

√
3

),

A3 = (1;0;

√
3

2

√√√√
√

3cos2π
q −sin 2π

q

2sin2π
q +

√
3

;−
1
2

√√√√
√

3cos2π
q −sin 2π

q

2sin2π
q +

√
3

)

(18)
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Figure 7: Regular infinite prism tilingTi
4(8)

With an analogous argument we also proved the following
theorem, which seems to be a new, important result:

Theorem 3.7 The vertices A1,A2,A3,A4 of the base fig-
ure P of Pi

4(q) are determined for parameters p= 4, and
5≤ q∈ N by coordinates in (16) where

x3 =

√√√√cosπ
q −sinπ

q

cosπ
q +sinπ

q

, (19)

Using this, the vertices of the prismsP base figure are:

A1 = (1;0;0;

√√√√cosπ
q −sinπ

q

cosπ
q +sinπ

q

),

A2 = (1;0;−

√√√√cosπ
q −sinπ

q

cosπ
q +sinπ

q

;0),

A3 = (1;0;0;−

√√√√cosπ
q −sinπ

q

cosπ
q +sinπ

q

),

A4 = (1;0;

√√√√cosπ
q −sinπ

q

cosπ
q +sinπ

q

;0). (20)

Figure 8: Regular bounded prism tilingT4(8)

Similarly to the regular infinite prism tilings we get the
types of the regular bounded prism tilings which are classi-
fied in [9] where the third author has proved, that a regular
bounded prism tiling are non-face-to-face one. In this pa-
per we visualize in Fig. 8 only some neighbouring prisms
of a bounded regular prism tilingT4(8) where the height
of the prisms are34. When visualizing prism tilings we use
different colors to note the neighbourhooding prisms.

In this paper we have mentioned only some problems in

discrete geometry of thẽSL2R space, but we hope that
from these it can be seen that our projective method suits
to study and solve similar problems (see [4], [7], [8], [10]).
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