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ABSTRACT

Horosphere is surface in hyperbolic space that is isomet-

ric to the Euclidean plane. In order to correctly visualize

hyperbolic space we embed flat computer screen as horo-

sphere and investigate geometry of central projection of

hyperbolic space onto horosphere. We also discuss real-

ization of hyperbolic isometries. Corresponding algorithms

are implemented in Mathematica package L3toHorospere.

We briefly present the package and obtain some interesting

pictures of hyperbolic polyhedra.
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Centralna projekcija hiperbolǐckog prostora na

horosferu

SAŽETAK

Horosfera je ploha u hiperboličkom prostoru izometrična

euklidskoj ravnini. Kako bismo vjerno prikazali hiper-

bolički prostor, ravni ekran smjestili smo kao horos-

feru, a zatim istraživali geometriju centralnog projici-

ranja hiperboličkog prostora na horosferu. Takoder smo

proučavali realizaciju izometrija hiperboličkog prostora.

Odgovarajući su algoritmi implementirani u Mathematica

paketu L3toHorospere. Dan je kratak prikaz tog paketa i

dobivene su zanimljive slike hiperboličkih poliedara.

Ključne riječi: hiperbolički prostor, horosfera, centralna

projekcija

Introduction

Hyperbolic geometry (or geometry of Bolyai -
Lobachevskii) is together with spherical geometry the
simplest “curved” geometry. Hyperbolic plane, usually
denoted byH2, is usually visualized using various mod-
els of hyperbolic plane. Poincaré disk, Klein disk and
half-plane model are the best known models of hyperbolic
plane.

In the Figure 1, obtained using Mathematica package [10],
the red triangle, together with three triangles obtained by
reflection with respect to its edges are shown in those three
models. Note, that in all pictures, all four triangles are mu-
tually congruent in hyperbolic plane. A region of hyper-
bolic plane is not isometric to a region of “flat”, Euclidean
plane. This means that it is not possible to represent, with-
out distortions, a region of hyperbolic plane on a flat com-
puter screen.
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Figure 1:The same objects in various models of hyperbolic plane
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Therefore, hyperbolic metric of model is not inherited from
the Euclidean plane: distances become infinitely big near
absolute (unit circle in the first two models and x-axis in
the third model). Although to our eyes the absolute is fi-
nite, it represents infinity of the hyperbolic plane.

For hyperbolic spaceH3 there exist analogous models:
Poincaré ball, Klein ball and half-space model. Two ap-
proaches for visualization of the hyperbolic space have
been used so far, and both approaches at least in one in-
stance use some model.

The first is to represent a geometrical object in some model
of hyperbolic space inR3 and then to project it onto com-
puter screen by standard central projection ofR

3. This
approach was used in the famous movieNot knot ([6]).
This is also used a popular way of visualizing large graph
objects and the structure of world wide web (see [7] and
others). Probably the most famous visualizations of hyper-
bolic space so far are done by J. R. Weeks ([11, 12]) and
use this approach.

The second approach is to fix a hyperbolic planeH2 in hy-
perbolic spaceL3, project the space ontoH2 by means of
central projection inL3 and finally visualize the planeH2

using some model on the computer screen. In the master
thesis [1] the author develops ray tracing algorithm for hy-
perbolic space and uses this approach for visualization.

In this paper we take a different approach. We wonder:
how would hyperbolic space look like to us, if we were
there? Equivalently, in terms of computer graphics: how
would the picture look like if we isometrically embed our
flat computer screen intoH3, project the hyperbolic space
on the screen by means of central projection inH3 and then
watch the picture on the screen without any distortions and
models?

The mathematical answer was well known to very founders
of hyperbolic geometry: there is a peculiar surface in
H3, called horosphere, which is isometric to Euclidean
plane. Therefore, if we isometrically embed a flat, Eu-
clidean screen in hyperbolic space it may become a part of
horosphere. In this paper we discuss necessary mathemat-
ical background regarding central projection of hyperbolic
space onto horosphere, as well as, isometric transforma-
tions of the hyperbolic space. The final result is Mathe-
matica package L3toHorosphere that allows visualization
of H3 by means of central projection onto horosphere and
also visualization of hyperbolic motions. Using this pack-
age many interesting pictures and animations are obtained
(see [3]).

On our request, Prof. Emil Molnár informed us that Prof.
Imre Juhász (the head of Department of Descriptive Ge-
ometry of the University of Miskolc) dealt with a similar

topic in his awarded Scientific Student Circle (OTDK) pa-
per (in 1979) and in his diploma work (1978) at the Debre-
cen University, without any scientific publication on this
topic, later on.

It is also worth mentioning that methods of Descriptive
geometry in hyperbolic space have also been investigated
(see [8, 9]).

Description of hyperbolic isometries is mathematically
simple and found in many classical books, but when it
comes to practical implementation the paper [5] is usually
used. In this work we briefly cover this topic using slightly
different approach that someone may find easier to under-
stand.

The paper is organized as follows. In the first section we
give a brief overview of models of hyperbolic space. In the
second section we study horosphere and central projection
onto horosphere. The third section is devoted to imple-
mentation of isometries of hyperbolic space. In the fourth
section we give some examples of projections and anima-
tions obtained using package L3toHorosphere. In the last
section we compare various approaches in visualizing hy-
perbolic geometry and give some ideas for future work.

Authors would like to thank Prof. Emil Molnár for use-
ful discussions and for careful reading which significantly
improved the final version of the paper.

1 Models of hyperbolic space

1.1 Klein ball and projective model

Klein ball model{P(x,y,z) |x2 +y2+z2 < 1} is interior of
unit sphere inR3. The unit sphere is absolute of this model.
This means that points of unit sphere represent points in in-
finity of the hyperbolic space. Hyperbolic lines and planes
are parts of Euclidean lines and planes. The distance be-
tween pointsP andQ is given by the formula

d(P,Q) =
1
2

log
|QA||PB|
|PA|QB|

, (1)

whereA andB are endpoints of the chord containingP and
Q and| · | denotes the Euclidean distance.

Klein ball model is closely related to Klein projective
model or pseudosphere model. Namely for pointP(x,y,z)
from the Klein model, one can consider homogenous co-
ordinatesP(x : y : z : 1). There are unique coordinates
P̄(x1,x2,x3,x4) representing the same point and satisfying
the relation

−x2
1−x2

2−x2
3 +x2

4 = 1, x4 > 0. (2)

This means that one can regard hyperbolic space as pseu-
dosphere (2) in Minkowski vector spaceR

(3,1), with inner
product· given by matrixJ = diag(−1,−1,−1,1).
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It is interesting that formula (1) for distance translates into

d(P,Q) = cosh−1(P̄ · Q̄),

whereP̄(x1,x2,x3,x4) andQ̄(y1,y2,y3,y4) are coordinates
of these points. Therefore, the isometries of Klein projec-
tive model are those projective transformations that pre-
serve the pseudosphere, i.e. the inner product given by
matrixJ. The importance or this model is its linear nature:
the lines and planes are linear and isometries are repre-
sented as multiplication of vectors by 4×4 matrices that
belong to classical linear groupSO(3,1).

1.2 Half-space model

Half-space model consists of all pointsP(x,y,z) from R
3

satisfying the relationz> 0. The planez= 0 is absolute
of this model. Hyperbolic lines are half-circles orthogonal
to the absolute (i.e. with center on the absolute and lying
in a plane orthogonal to the absolute) and Euclidean rays
orthogonal to the absolute. Planes of this model are half-
spheres and half-planes orthogonal to the absolute. To be
mathematically correct, we add single infinite pointP∞ to
R

3. This point compactifiesR3 to sphereS3 whereas the
absolutez= 0 becomes two-dimensional sphere, like ab-
solute in the other two models. Each plane and each line
in R

3 can be regarded as sphere and circle, containingP∞.
The distance in this model is best described using the met-
ric tensor

ds2 =
dx2 +dy2+dz2

z2 . (3)

The isometries are compositions of reflections and inver-
sions with respect to hyperbolic planes. We are interested
in half-space model since the horosphere has its simplest
representation in this model, as we show in the sequel.

1.3 Poincaŕe ball model

Poincaré ball model{P(x,y,z) |x2 +y2 +z2 < 1} is the in-
terior of unit sphere inR3. The unit sphere is absolute of
this model. Hyperbolic Lines are parts of circles orthogo-
nal to the absolute and parts of lines orthogonal to the ab-
solute (i.e. passing through the origin). Hyperbolic planes
are parts of spheres orthogonal to the absolute and parts of
planes orthogonal to absolute. The metric tensor reads

ds2 =
dx2 +dy2+dz2

(1−x2−y2−z2)2 .

The isometries are compositions of reflections and inver-
sions with respect to hyperbolic planes. The mapping

f (x,y,z) = (2(x,y,z))/(1+x2+y2 +z2) (4)

is isometry that maps pointP(x,y,z) from Poincaré to
Klein model. Isometry between Poincaré ball model and
half-space model is simple composition of translations and
spherical inversion

g(x,y,z) =
1

x2 +y2+(z−1)2(4x,4y,2(1−x2−y2−z2)).

(5)

2 Horosphere and the related central projec-
tion

2.1 Horosphere

Fix a pointO on absolute and pointM ∈ H3. Horosphere
(with centerO containing pointM) is set of images of point
M in reflections with respect to all planes containingO.
Note that, ifO is finite point andM′ is image ofM then
OM is congruent toOM′ and the horosphere is hyperbolic
sphere with centerO. Therefore, one may think of horo-
sphere as of sphere with center in infinity.

From construction of horosphere it follows that all horo-
spheres are mutually congruent inH3. We want to find the
the simplest one in some model. Consider pointP∞ of the
half-plane model as center of horosphere, and any finite
point M(x0,y0,z0) of that model. All hyperbolic planes
throughP∞ are exactly all Euclidean half-planes orthog-
onal to the absolutez = 0. Therefore, all imagesM′ of
M have the samez−coordinate and the horosphere is the
planez= z0. Note that this special horosphere touches the
absolute in pointP∞. Since isometries are compositions
of inversions and reflections, all horospheres of half-space
model are Euclidean spheres that touch the absolute in its
center, or planes parallel to the absolute.

From the isometries (4) and (5) between models we con-
clude that horospheres in Poincaré ball model are spheres
touching the absolute in their center and in Klein ball
model ellipsoids touching the absolute. The most simple
horospherez = z0 in half-space model has restriction of
the metric tensor (3) equal to

ds2 =
dx2 +dy2

z2
0

,

showing that the horosphere is isometric to the Euclidean
plane, up to a scale. Since in this case the isometry between
horosphere and Euclidean plane is given by the imbedding
itself, the setup consisting of half-space model and horo-
spherez= z0 is the one we use for implementation of the
central projection.

Reparameterizing, one can write metric (3) in the form:

ds2 = e
2t
k

(

dx2 +dy2)+dt2,
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KoG•16–2012 M. Babić, S. Vukmirović: Central Projection of Hyperbolic Space onto a Horosphere

where k > 0 is the the curvature constant (in our case
k = 1). This is so called horospherical coordinate system
of the hyperbolic spaceH3 , which consists of “concen-
tric” horospheres, parameterized by the real line,t ∈ R.
In each horosphere we have Euclidean plane coordinates
(x,y). This was the basic idea for distance measure of János
Bolyai in his absolute geometry (in nowadays formulation,
Lobachevskii distinguished the non-Euclidean case from
the beginning), introduced without any model.

2.2 Central projection onto horosphere

We have shown that we can embed flat computer screen
into hyperbolic space as a part of horosphere. What would
an observer see on the screen if he is in the hyperbolic
space? In any geometry, light ray carrying visual infor-
mation from the object to the eye of the observer travels
along geodesic, i.e. along straight line of that geometry.
Klein model is the the easiest to sketch, since the hyper-
bolic lines of that model are parts of Euclidean lines. If we
place the observerO outside the horosphere (see Figure 2,
left) some points cannot be projected (pointN) while oth-
ers have two possible projections along the light ray (point
M). On the other hand, if we place the observer inside the
horosphere (see Figure 2, right) the projection is well de-
fined for all points of hyperbolic space. For this reason, we
chose that observer is inside the horosphere, although it is
possible to consider the other case.

Figure 2: Observer outside and inside the horosphere.

In the half-space model, the pointO(x,y,z) is inside the
horospherez = z0 if the conditionz > z0 holds. Particu-
lar coordinates of pointO doesn’t matter, so we can chose
O(0,0,ω), ω > z0.

Note that all points of half-space model are projected into
finite points of horospherez= z0, except pointsM of the
form M(0,0,z),z> ω that are projected into pointP∞, the
infinite point of the horosphere (i.e. screen).

2.3 Central projection of hyperbolic line segment

In order to visualize polyhedra in hyperbolic space we have
to understand the projection of hyperbolic line segment.

The line segment is projected into intersection of horo-
sphere and the hyperbolic plane determined by the center
of projecectionO and the segment. For our purposes it is
sufficient to consider half-space model, horospherez= z0

and the pointO(0,0,ω),ω > z0.

Recall that hyperbolic line segment is either Euclidean seg-
ment orthogonal to the absolute or circular arc orthogonal
to the absolute. The following cases are possible:

1. If hyperbolic segment is circular arcAB then hyper-
bolic plane containingA,B andO is half-sphere. The
projection of the segment belongs to intersection of
the half-sphere and the horosphere. It is circular arc
A′B′ in horospherez= z0 (see Figure 3).

2. If hyperbolic segment is an Euclidean segmentAB
orthogonal to absolute then the hyperbolic plane
OAB is Euclidean half-plane. The central projection
of segmentAB is

a) Euclidean segmentA′B′ if segmentABhave no
common point withz−axis aboveO (that is
point (0,0,z),z> ω;

b) Euclidean ray starting fromA′ if B is of form
B(0,0,z),z> ω. This ray belongs to the inter-
section line ofα and horosphere;

c) Two disjoint Euclidean rays starting fromA′

andB′ and belonging to the intersection line of
α and horosphere. This happens if segmentAB
has one inner point of the form(0,0,z),z> ω;

d) Empty set if segmentAB is contained in the set
{(0,0,z) |z> ω}.

Figure 3: Central projection of hyperbolic line segment.

Note that that there are two circular arcs in horosphere
z = z0 with endpointsA′ andB′. Therefore, to determine
uniquely the projection of segmentAB we need the pro-
jectionC′ of some pointC belonging to the segmentAB.

Similar holds for Euclidean ray with the endpointA′.
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2.4 Visibility

We assume that polyhedra consists of faces that are not
transparent. Therefore, not all vertices and edges are visi-
ble from the center of projectionO. We may draw nonvis-
ible edges as dashed lines to improve spacial understand-
ing of the polyhedra (see for example Figure 5). Visibil-
ity in Klein ball model coincides with Euclidean visibility.
Therefore, to determine the visibility one can use the stan-
dard algorithms fromR

3.

In reality, the human eye sees the part of scene that is inside
the cone of vision. In computer graphics this translates into
clipping. In this work we don’t mind about cone of vision
and consider mathematical central projection of polyhedra,
i.e. we project points at the front, as well as, at the back of
the observer. However, in our package [4] there is an op-
tion to draw the circle that separates front and back of the
observer. That circle is the intersection of half-sphere with
center(0,0,0) and radiusω and horospherez= h < ω.

In Figure 11 (a) this is the black circle. The observer is
inside the blue cube, so all its edges are visible, but some
part of the cube is in the front and some part is in the back
of the observer.

3 Isometries of hyperbolic space

The isometries of hyperbolic space are mathematically
well known. The fastest and most elegant way to imple-
ment the isometries is to represent them as 4×4 matrices
that are applied to column vectors of homogenous coordi-
nates of points in Klein projective model. The homogenous
coordinates are of the formP(x1 : x2 : x3 : x4), where ho-
mogeneity means that coordinates(λx1 : λx2 : λx3 : λx4),
for eachλ 6= 0 represent the same point.

As explained in Subsection 1.1 the isometries of Klein
model belong to linear groupSO(3,1). They are linear
mappings preserving Minkowski inner product, i.e. ma-
trix A of an isometry satisfiesATJA = J, where J =
diag(−1,−1,−1,1) is diagonal matrix of the inner prod-
uct. Any hyperbolic isometry is composition of less than
four reflections with respect to hyperbolic planes. In this
review we don’t want to exhaust all isometries, so we
present only isometries that are composition at most two
plane reflections.

3.1 Reflection with respect to plane (or point)

Plane in the Klein projective model is represented by hy-
perplane in the vector spaceR

(3,1), so it has an equation

α1x1 + α2x2 + α3x3 + α4x4 = 0

The plane has normal vectornα = (α1 : α2 : α3 : −α4)
T

with respect to the inner product given by matrixJ. One
can show that the reflectionSα with respect to the planeα
has the matrix

S[nα] = I4−2
nαnα

TJ
nαTJnα

, (6)

whereI4 is 4× 4 identity matrix. It is important to note
that the numeratornαnT

αJ is 4×4 matrix, while denomi-
natornT

αJnα is squared norm of vectornα and therefore a
number. Vectornα is considered column, whilenT

α is row
vector.

Figure 4: Cube and its reflections.

The Figure 4 shows consecutive reflections of the blue
cube with respect to the opposite faces (red cubes).

One can show that reflectionS[P] with respect to point
P(x1 : x2 : x3 : x4) is given by the matrix

S[P] = I4−2
PPTJ
PTJP

,

which uses the same formula as the reflection 6 with re-
spect to hyperplane. The reflectionS[P] is formally de-
fined as composition of three reflectionsS[γ] ◦S[β] ◦S[α]
with respect to three mutually orthogonal planesα,β andγ
that intersect in the point P.

The Figure 5 represents the red cube and its reflection with
respect to its vertex.

Figure 5: Central reflection of a cube.
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3.2 Translation

Translation is compositionS[β] ◦ S[α] of two reflections
with respect to hyperparallel planesα andβ, i.e. the planes
that have common normal linen, (that line is unique in hy-
perbolic geometry). IfA andB are intersections ofn with
α and β, respectively, we call it translation fromA to B
and denote itT[AB]. Note thatT[AB] is not translation by
vectorAB, since the notion of vector is not possible to de-
fine in hyperbolic geometry. Many other properties of hy-
perbolic translation are quite different from its Euclidean
counterpart. For example, we haveT[AB](A) = B and if
T[AB](M) = N then hyperbolic segmentsAB andMN are
not congruent ifM 6= A. Moreover, the relationAB≤ MN
always hold.

This is illustrated in Figure 6 which represent translation
of a cube along its edge, i.e. form one vertex to another.
Unlike in the Euclidean case, the face of the cube is not
translated to the opposite face.

a

b

Figure 6: Central projection of cube and its translate.

To find matrix of translation denote byC the hyperbolic
midpoint of segmentAB. One can show thatT[AB] =
S[β]◦S[α] = S[C]◦S[A] and hence its matrix is product of
known matrices:

T[AB] = S[C]S[A].

To find the hyperbolic midpointC of the segmentAB one
can use the formula:

C = A
√

(BTJB)(ATJB)+B
√

(ATJA)(ATJB).

Figure 7: Dodecahedron and its translates.

3.3 Rotation

Hyperbolic rotation is compositionR[p,φ] = S[β]◦S[α] of
two reflections with respect to planes that intersect along
axes of rotation, the linep = α∩β, and the angle between
α and β equalsφ

2. From formula (1) it follows that Eu-
clidean rotations that fix the originO(0,0,0) are also hy-
perbolic rotations. The consequence is that the angles in
the origin of the Klein ball model are the same as Euclidean
angles (this doesn’t hold for any other point of Klein ball
model). Therefore, to perform the rotation about linep,
translatep to the origin, rotate around translated linep′ as
Euclidean rotation and finally translate back. To be more
specific, ifQ∈ p is any point ofp, thenR[p,φ] is given by
the matrix:

R[p,φ] = T[OQ]◦R[p′,φ]◦T[QO],

where homogenous coordinates of the origin areO(0 : 0 :
0 : 1), p′ = T[QO][p], andR[p′,φ] is 4×4 matrix

R[p′,φ] =

(

RE[p′,φ] 0
0 1

)

.

Here we denote byRE[p′,φ] the 3×3 Euclidean matrix of
rotation around Euclidean linep′ by angleφ.

Figure 8: Consecutive rotations of regular octahedron.
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3.4 Limit rotation

The limit or horocyclic rotation is probably the most in-
triguing isometry of hyperbolic plane, since it doesn’t ex-
ist in Euclidean geometry. Limit rotation is composition
S[β]◦S[α] of two reflections with respect to parallel hyper-
bolic planesα andβ, i.e. the planes with single common
point on the absolute.

Figure 9: Horocylic rotation in the Klein ball model.

We now describe general formulas of limit rotation. Note
that parallel planesα andβ in Klein ball model are parts of
Euclidean planesα andβ that intersect along lineq touch-
ing the absolute in pointP(x0,y0,z0) (see Figure 9).

Planesα andβ have normal vector of the form

Pcosφ+(q×P)sinφ = (a1(φ),a2(φ),a3(φ)),

for someφ = φα,φ = φβ. One can show that the normal
vector of these planes inR(3,1) in homogenous coordinates
is given by:

n(φ)= (a1(φ) : a2(φ) : a3(φ) : a1(φ)x0+a2(φ)y0+a3(φ)z0).

Now, the 4×4 matrix of the limit rotationS[β]◦S[α] is the
productS[n(φβ)]S[n(φα)] of their reflection matrices.

In the Figure 10 a horocyclic rotation is consecutive ap-
plied on the blue cube in both directions. One can imagine
that “small” cubes converge to a single point in infinity -
the center of horocyclic rotation. Of course, all the cubes
are congruent but the cubes further from the observer ap-
pear smaller.

Figure 10:Horocylic rotation applied on cube.

4 Mathematica package L3toHorosphere

Mathematica packageL3toHorospherehas three main fea-
tures:

• central projection of hyperbolic polyhedra onto
horosphere;

• visualization of the polyhedra and its projection in
half-space model;

• realization of isometries of hyperbolic space.

Within the package, user can define any polyhedral surface
in hyperbolic space by defining its faces (as lists of ver-
tices) and vertices (using coordinates in any model). The
polyhedral surface than can be repositioned using various
hyperbolic isometries. Finally, the projection of the poly-
hedral surface onto horosphere can be obtained (see figures
from Section 3).

a

b

Figure 11:Observer inside a cube: a) projection,
b) situation in the half-space model.

To achieve better understanding of what’s going on, user
can also visualize the polyhedral surface and its projection
onto horosphere in the half-space model (see Figure 11).
Visibility is implemented only for convex polyhedra with-
out boundary.

33
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Now we only list the functions implemented in the pack-
age. Some functions have options that can be obtained us-
ing commandOptions[function]. More details can be
found in the user guide file that is delivered with the pack-
age [4].

drawProjection[ω, k, vert, faces, options]
- project polyhedra given byfaces and vertex coor-
dinatesvert from point O(0,0,ω) onto horosphere
z= k,ω > k.

modelHS[ω, k, vert, faces, options] - in
half-space model draws polyhedra given byfaces
and vertex coordinatesvert and its central projection
from pointO(0,0,ω) onto horospherez= k,ω > k).

reflect[nVector] - returns 4×4 matrix of reflection
with respect to planeα with normal vectornVector.
The normal vector is given in homogenous coordinates,
i.e. is list of 4 numbers.

reflect[P] - returns 4× 4 matrix of reflection with
respect to pointP given in homogenous coordinates.
translate[A,B] - returns 4×4 matrix of translation
from A to B.

rotate[A,B][φ] - returns 4×4 matrix of rotation by
angleφ around lineAB.

limitRotate[P][p][φ] - returns 4× 4 matrix of
limit rotation by “angle” φ 6= π

2(modπ) around line
with directionp and containing unit pointP (P orthog-
onal to p). The pointsP and p are given in the form
(x,y,z).

Klein2HS[pt] - converts Klein projective pointpt of
form (x1 : x2 : x3 : x4) to half-space model.

HS2Klein[pt] - converts half space pointpt of the
form (x,y,z),z> 0 to Klein projective point.

m[A,B] - returns midpoint of segmentAB. All points
are in Klein projective coordinates(x1 : x2 : x3 : x4).

normalVector[pt1, pt2, pt3] - returns projective
normal vector of plane determined by three points. All
points are in Klein projective coordinates(x1 : x2 : x3 :
x4).

edges[faces] - returns edges of polyhedra with faces
given byfaces.

5 Conclusion and future work

The main advantage of our horosperical projection are re-
alistic images of hyperbolic space. As in Euclidean central
projection, closer objects appear larger. Furthermore, we
don’t use models of particular parameterizations - our pro-
jections are geometrically invariant and represent what flat
Euclidean eye would really see in the hyperbolic space.
All other approaches “cheat” in some way. The inevitable
drawback of our approach is that projection of hyperbolic
segment, in generic case, is circular arc that is complex to
render. However, this is not heavy task for modern com-
puters.

The sum of the angles in a hyperbolic triangle is strictly
less thanπ. Therefore, when sketching hyperbolic objects
we usually draw them to be curved concave. However, the
projections we get in this paper are curved convex, what
may bother someone’s intuition. It is interesting that if the
observer is placed outside the horosphere (first picture in
Figure 2) the projections become curved concave. The Fig-
ure 12 (a) shows projection of a cube obtained using this
approach.

It would be interesting to implement horosperical central
projection of hyperbolic space in some more efficient pro-
gramming language than Mathematica. This would allow
us rendering of more complex hyperbolic scenes and prob-
ably lead to very interesting and unusual pictures. How-
ever, we are of opinion that even basic Mathematica pack-
age [4] we developed, can be very useful for better under-
standing of hyperbolic geometry and can be used as a good
starting point for more complex visualizations.

One of classical scenes is Figure 12 (b), from videoNot
knot([6]), used to cover many mathematical books. It rep-
resents tiling of hyperbolic space with regular dodecahe-
drons. This classic idea is common inspiration in math-
ematical art and jewelry making (see [2]). The natural
question is to see regular hyperbolic tilings rendered using
horospherical central projection.

a

b

Figure 12

Another interesting topic is stereoscopic vision of hyper-
bolic scenes investigated in the paper [11]. Our prelimi-
nary testing, surprisingly, gave positive results, i.e. the hu-
man visual system seems to be able to “see” in hyperbolic
space.
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