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JÁNOS PALLAGI, BENEDEK SCHULTZ, JENÖ SZIRMAI

Equidistant Surfaces in H2
×R Space

Equidistant Surfaces in H2
×R Space

ABSTRACT

After having investigated the equidistant surfaces (”per-
pendicular bisectors” of two points) in S2

×R space (see
[6]) we consider the analogous problem in H2

×R space
from among the eight Thurston geometries. In [10] the
third author has determined the geodesic curves, geodesic
balls of H2

×R space and has computed their volume, has
defined the notion of the geodesic ball packing and its
density. Moreover, he has developed a procedure to de-
termine the density of the geodesic ball packing for gener-
alized Coxeter space groups of H2

×R and he has applied
this algorithm to them.

In this paper we introduce the notion of the equidistant
surface to two points in H2

×R geometry, determine its
equation and we shall visualize it in some cases. The
pictures have been made by the Wolfram Mathematica
software.

Key words: non-Euclidean geometries, geodesic curve,
geodesic sphere, equidistant surface in H2

×R geometry

MSC 2010: 53A35, 51M10, 51M20, 52C17, 52C22

Ekvidistantne plohe u prostoru H2
×R

SAŽETAK

Nakon istraživanja ekvidistanthih ploha (“okomitih sime-
trala” dviju točaka) u prostoru S2

×R (vidi [6]), raz-
matramo analogni problem u prostoru H2

×R iz osam
Thurstonovih geometrija. U radu [10] treći je autor
odredio geodetske krivulje i kugle prostora H2

×R te
definirao pojam popunjavanja geodetskim kuglama i nje-
govu gustoću. Pored toga, razvio je metodu odred-ivanja
gustoće popunjavanja geodetskim kuglama za generali-
zirane Coxeterove grupe prostora H2

×R i primijenio taj
algoritam na njih. U ovom radu uvodimo pojam ekvidi-
stantne plohe dviju točaka u geometriji H2

×R, odred-ujemo
njihovu jednadžbu i vizualiziramo neke slučajeve. Slike su
napravljene u Wolframovom programu Mathematica.

Ključne riječi: neeuklidske geometrije, geodetska krivu-
lja, geodetska sfera, ekvidistantna ploha u H2

×R geo-
metriji

1 Basic notions of H2
×R geometry

The H2
×R geometry is one one of the eight simply con-

nected 3-dimensional maximal homogeneous Riemannian
geometries. This Seifert fibre space is derived by the direct
product of the hyperbolic plane H2 and the real line R. The
points are described by (P, p) where P ∈ H2 and p ∈ R.
In [2] E. Molnár has shown, that the homogeneous
3-spaces have a unified interpretation in the projective
3-sphere PS3(V4,V 4,R). In our work we shall use this
projective model of H2

×R and the Cartesian homoge-
neous coordinate simplex E0(e0),E∞

1 (e1),E∞
2 (e2), E∞

3 (e3),
({ei} ⊂ V4 with the unit point E(e = e0 + e1 + e2 + e3))
which is distinguished by an origin E0 and by the ideal
points of coordinate axes, respectively. Moreover, y = cx
with 0 < c ∈ R (or c ∈ R \ {0}) defines a point (x) = (y)
of the projective 3-sphere PS3 (or that of the projective
space P3 where opposite rays (x) and (−x) are identified).
The dual system {(ei)} ⊂V 4 describes the simplex planes,
especially the plane at infinity (e0) = E∞

1 E∞
2 E∞

3 , and gen-
erally, v = u 1

c defines a plane (u) = (v) of PS3 (or that of
P3, respectively). Thus 0 = xu = yv defines the incidence
of point (x) = (y) and plane (u) = (v), as (x)I(u) also de-
notes it. ThusH2

×R can be visualized in the affine 3-space
A3 (so in E3) as well.
The point set of H2

×R in the projective space P3, are the
following open cone solid (see Fig. 1-2):

H2
×R :=

{

X(x = xiei) ∈ P3 :−(x1)2 +(x2)2 +(x3)2 < 0 < x0, x1}.

y

z

x

X

X’

P

P’

Base�plane

Fibre�line

P
*
(P,t)

Figure 1: Projective model of H2
×R geometry
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Figure 2: The connection between Cayley-Klein model of
the hyperbolic plane and the ”base plane” of the
model of H2

×R geometry.
In this context E. Molnár [2] has derived the infinitesimal
arc-length square at any point of H2

×R as follows

(ds)2 =
1

−x2 + y2 + z2 ·

[

(x2 + y2 + z2)(dx)2+

2dxdy(−2xy)+ 2dxdz(−2xz)+

(x2 + y2
− z2)(dy)2+

2dydz(2yz)(x2
− y2 + z2)(dz)2

]

. (1)

By introducing the new (t,r,α) coordinates in (2), our for-
mula becomes simplier in (3): −π < α ≤ π and r ≥ 0 with
t ∈ R the fibre coordinate. The proper points can be de-
scribed by the following equations:

x0 = 1, x1 = et coshr,

x2 = et sinhrcosα, x3 = et sinhr sinα. (2)

We apply the usual Cartesian coordinates for the visu-
alization and further computations, i.e. x = x1/x0,y =
x2/x0,z = x3/x0. So the infinitesimal arc length square
with coordinates (t,r,α) at any proper point of H2

×R -
and the symmetric metric tensor gi j obtained from it - are
the following:

(ds)2 = (dt)2 +(dr)2 + sinh2 r(dα)2, (3)

gi j :=





1 0 0
0 1 0
0 0 sinh2 r



 . (4)

By the usual method of the differential geometry we have
obtained the equation system of the geodesic curves [5]:

x(τ) = eτsinv cosh(τcosv),

y(τ) = eτsinv sinh(τcosv)cosu,

z(τ) = eτsinv sinh(τcosv) sinu, (5)

−π < u ≤ π, −

π
2
≤ v ≤

π
2
.

Remark 1.1 The starting point of our geodesics can be
chosen at (1,1,0,0) by the homogeneity of H2

×R.

Definition 1.2 The distance d(P1,P2) between the points
P1 and P2 is defined by the arc length s = τ in (5) of the
geodesic curve from P1 to P2.

Definition 1.3 The geodesic sphere of radius ρ (denoted
by SP1(ρ)) with center at the point P1 is defined as the set of
all points P2 in the space with the condition d(P1,P2) = ρ.
We also require that the geodesic sphere is a simply con-
nected surface without selfintersection inH2

×R space (see
Fig. 3).

Figure 3: Geodesics with varying parameters and the
”base-hyperboloid” in the cone and a geodesic
sphere with radius 2

3 centered at (1,1,0,0).

1.1 Equidistant surfaces in H2
×R geometry

One of our further goals is to visualize and examine the
Dirichlet-Voronoi cells of H2

×R where the faces of the
DV-cells are equidistant surfaces. The definition below
comes naturally.

Definition 1.4 The equidistant surface SP1P2 of two arbi-
trary points P1,P2 ∈ H2

×R consists of all points P′
∈

H2
×R, for which d(P1,P′) = d(P′,P2). Moreover, we re-

quire that this surface is a simply connected piece without
selfintersection in H2

×R space.

It can be assumed by the homogeneity of H2
×R that

the starting point of a given geodesic curve segment is
P1(1,1,0,0). The other endpoint will be given by its
homogeneous coordinates P2(1,a,b,c). We consider the
geodesic curve segment GP1P2 and determine its parame-
ters (τ,u,v) expressed by a,b,c. We obtain by equation
system (5) the following identity :
√

a2
−b2

− c2 = eτsinv (6)

4
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If we substitute this into (5), the equation system can be
solved for (τ,u,v).

τ =
log

√

a2
−b2

− c2

sinv
, if v �= 0. (7)

v = arctan









log
√

a2
−b2

− c2

arccosh
(

a
√

a2
−b2

−c2

)









, (8)

if P2(a,b,c) does not lie on the axis [x] i.e. (b,c) �= (0,0).

tanu =
z(τ)
y(τ)

=
c
b
⇒ u = arctan

( c
b

)

. (9)

Figure 4: Touching geodesic spheres of radius 1
10 cen-

tered on the geodesic curve with starting point
(1,1,0,0) and parameters u = π

4 , v = π
3 �= 0.

Remark 1.5 If P2 ∈ [x], then v = Π
2 and u = 0, and the

geodesic curve is an Euclidean line segment between P1
and P2. If v = 0, then τ = arccosha and the two points
are on the same hyperboloid surface. These special cases
will be discussed in section 3 in terms of the equidistant
surfaces belonging to them.
It is clear that X ∈ SP1P2 iff d(P1,X) = d(X ,P2) ⇒

d(P1,X) = d(XF,PF

2 ), where F is a composition of isome-
tries which maps X onto (1,1,0,0), and then by (7) the
length of the geodesic (e.g. the distance between the two
points) is comparable to d(P1,X). This method leads to the
implicit equation of the equidistant surface of two proper
points P1(1,a,b,c) and P2(1,d,e, f ) in H2

×R:

SP1P2(x,y,z) ⇒

4arccosh2

(

ax−by− cz
√

a2
−b2

− c2
√

x2
− y2

− z2

)

+

log2
(a2

−b2
− c2

x2
− y2

− z2

)

=

= 4arccosh2

(

dx− ey− f z
√

d2
− e2

− f 2
√

x2
− y2

− z2

)

+

log2
(d2

− e2
− f 2

x2
− y2

− z2

)

. (10)

Figure 5: Equidistant surfaces with P1(1,1,0,0) and
P2(1,2,1,1), and the two special cases.

Figure 6: Equidistant surfaces to points
P1(1,

√

2,0,0), P2(1,
√

2, 1
2 ,

√

3
2 ) and

P1(1,
√

2,0,0), P3(1,
√

2,− 1
2 ,

√

3
2 ).

1.2 Some observations

We introduce the next denotations to simplify the equation
(10): a =

−−→

OP1, b =
−−→

OP2 and x =
−→

OX . We define the scalar
product for all vectors u(u1,u2,u3) and v(v1,v2,v3) by the
following equation:

〈u,v〉 = −u1v1 + u2v2 + u3v3,

moreover, we introduce the denotation |v| =
√

−〈v,v〉
similarly to the S2

×R space (see [6]).

With these denotations, the equation of the surface be-
comes shorter and gives important informations about
equidistant surfaces:

arccosh2
(

−〈a,x〉
|a||x|

)

+ log2
(

|a|
|x|

)

=

arccosh2
(

−〈x,b〉
|x||b|

)

+ log2
(

|b|
|x|

)

.

5
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The last step is to notice that arccosh
(

−〈a,x〉
|a||x|

)

is the hy-
perbolic disance between points a and x in the projective
model of the hyperbolic plane. So let ε = dh(a,x) and
δ = dh(x,b). The final form of the equation is the follow-
ing:

ε2 + log2(|a||x|−1) = δ2 + log2(|b||x|−1) (11)

Remark 1.6 This formula also describes the equidistant
surface of S2

×R with the usual Euclidean scalar product,
vector length and angle formula (see [6]).

It is now easy to examine some special cases: when |a| =
|b|, the equidistant surface consists of those points of an

Euclidean plane in our model, which are inner points of
the cone (e.g. proper point of H2

×R). Another special
case appears when a and b are on the same fibre. In this
case (δ = ε) the equidistant surface is the ”positive side”
of a hyperboloid of two sheets.

Our projective method gives us a way of investigation the
H2

×R space, which suits to study and solve similar prob-
lems (see [10]). In this paper we have examined only some
problems, but analogous questions in H2

×R geometry or,
in general, in other homogeneous Thurston geometries are
timely (see [11], [8], [9]).

References

[1] A. M. MACBEATH, The classification of non-
Euclidean plane crystallographic groups. Can. J.
Math., 19 (1967), 1192–1295.
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Mollweide Map Projection

ABSTRACT

Karl Brandan Mollweide (1774-1825) was German mathe-
matician and astronomer. The formulas known after him
as Mollweide’s formulas are shown in the paper, as well as
the proof ”without words”. Then, the Mollweide map pro-
jection is defined and formulas derived in different ways to
show several possibilities that lead to the same result. A
generalization of Mollweide projection is derived enabling
to obtain a pseudocylindrical equal-area projection having
the overall shape of an ellipse with any prescribed ratio of
its semiaxes. The inverse equations of Mollweide projec-
tion has been derived, as well.

The most important part in research of any map projec-
tion is distortion distribution. That means that the paper
continues with the formulas and images enabling us to get
some filling about the linear and angular distortion of the
Mollweide projection.

Finally, several applications of Mollweide projections are
represented, with the International Cartographic Associa-
tion logo as an example of one of its successful applica-
tions.

Key words: Mollweide, Mollweide’s formula, Mollweide
map projection

MSC 2010: 51N20, 01A55, 51-03, 51P05, 86A30

Mollweideova kartografska projekcija

SAŽETAK

Karl Brandan Mollweide (1774-1825) bio je njemački
matematičar i astronom. U ovom radu prikazane su for-
mule nazvane po njemu kao Mollweideove formule, a
uz njih ”dokaz bez riječi”. Zatim je definirana Mollwei-
deova kartografska projekcija uz izvod formula na neko-
liko različitih načina kako bi se pokazalo da postoji vǐse
mogućnosti koje vode do istoga rezultata. Izvedena je ge-
neralizacija Mollweideove projekcije koja omogućava do-
bivanje pseudocilindričnih ekvivalentnih (istopovřsinskih)
projekcija smještenih u elipsu s bilo kojim unaprijed
zadanim odnosnom njezinih poluosi. Izvedene su i inverzne
jednadžbe Mollweideove projekcije.

Najvažniji dio istraživanja svake kartografske projekcije je
ustanovljavanje razdiobe deformacija. Stoga su u radu
dane formule i grafički prikazi koji daju uvid u razdiobu
linearnih i kutnih deformacija Mollweideove projekcije.

Na kraju je prikazano nekoliko primjena Mollweideove pro-
jekcije. Med-u njima je i logotip Med-unarodnoga kartograf-
skog društva, kao jedan od primjera njezine uspješne pri-
mjene.

Ključne riječi: Mollweide, Mollweideova formula, Mollwei-
deova kartografska projekcija

1 Mollweide’s Formulas

In trigonometry, Mollweide’s formula, sometimes referred
to in older texts as Mollweide’s equations, named after
Karl Mollweide, is a set of two relationships between sides
and angles in a triangle. It can be used to check solutions
of triangles.

Let a, b, and c be the lengths of the three sides of a trian-
gle. Let α, β, and γ be the measures of the angles opposite
those three sides respectively. Mollweide’s formulas state
that

a + b
c

=
cos α−β

2
sin γ

2
and

a−b
c

=
sin α−β

2
cos γ

2
.

Each of these identities uses all six parts of the triangle -
the three angles and the lengths of the three sides.

These trigonometric identities appear in Mollweide’s paper
Zusätze zur ebenen und sphärischen Trigonometrie (1808).
A proof without words of these identities (see Fig. 1) is
given in DeKleine (1988) and Nelsen (1993).

7
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Figure 1: Mollweide equation - Proof without Words.
According DeKleine (1988).

One of the more puzzling aspects is why these equations
should have become known as the Mollweide equations
since in the 1808 paper in which they appear Mollweide
refers the book by Antonio Cagnoli (1743-1816) Traité
de Trigonométrie Rectiligne et Sphérique, Contenant des
Méthodes et des Formules Nouvelles, avec des Applica-
tions à la Plupart des Problêmes de l’astronomie (1786)
which contains the formulas. However, the formulas go
back to Isaac Newton, or even earlier, but there is no doubt
that Mollweide’s discovery was made independently of
this earlier work (URL1).

2 Mollweide Map Projection Equations

Pseudocylindrical map projections have in common
straight parallel lines of latitude and curvedmeridians. Un-
til the 19th century the only pseudocylindrical projection
with important properties was the sinusoidal or Sanson-
Flamsteed. The sinusoidal has equally spaced parallels
of latitude, true scale along parallels, and equivalency or
equal-area. As a world map, it has disadvantage of high
distortion at latitudes near the poles, especially those far-
thest from the central meridian (Fig. 2).

Figure 2: Sanson or Sanson-Flamsteed or Sinusoidal pro-
jection

In 1805, Mollweide announced an equal-area world map
projection that is aesthetically more pleasing than the si-
nusoidal because the world is placed in an ellipse with
axes in a 2:1 ratio and all the meridians are equally spaced

semiellipses. The Mollweide projection was the only new
pseudocylindrical projection of the nineteenth century to
receive much more than academic interest (Fig. 3).

Figure 3: Mollweide projection

Mollweide presented his projection in response to a new
globular projection of a hemisphere, described by Georg
Gottlieb Schmidt (1768-1837) in 1803 and having the
same arrangement of equidistant semiellipses for merid-
ians. But Schmidt’s curved parallels do not provide
the equal-area property that Mollweide obtained (Snyder,
1993).
O’Connor and Robertson (URL1) stated that Mollweide
produced the map projection to correct the distortions in
the Mercator projection, first used by Gerardus Mercator
in 1569. While the Mercator projection is well adapted for
sea charts, its very great exaggeration of land areas in high
latitudes makes it unsuitable for most other purposes. In
the Mercator projection the angles of intersection between
the parallels and meridians, and the general configuration
of the land, are preserved but as a consequence areas and
distances are increasingly exaggerated as one moves away
from the equator. To correct these defects, Mollweide drew
his elliptical projection; but in preserving the correct rela-
tion between the areas he was compelled to sacrifice con-
figuration and angular measurement. The Mollweide pro-
jection lay relatively dormant until J. Babinet reintroduced
it in 1857 under the name homalographic. The projection
has been also called the Babinet, homalographic, homolo-
graphic and elliptical projection. It is discussed in many
articles, see for example Boggs (1929), Close (1929), Fee-
man (2000), Philbrick (1953), Reeves (1904) and Sny-
der (1977) and books or textbooks by Fiala (1957), Graur
(1956), Kavrajskij (1960), Kuntz (1990), Maling (1980),
Snyder (1987, 1993), Solov’ev (1946) and Wagner (1949).
The well known equations of the Mollweide projections
read as follows:

x =
√

2Rsinβ (1)

y =
2
√

2
π

Rλcosβ (2)

2β + sin2β = πsinϕ. (3)

8
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In these formulas x and y are rectangular coordinates in
the plane of projection, ϕ and λ are geographic coordi-
nates of the points on the sphere and R is the radius of
the sphere to be mapped. The angle β is an auxiliary an-
gle that is connected with the latitude ϕ by the relation (3).
For given latitude ϕ, the equation (3) is a transcendental
equation in β. In the past, it was solving by using tables
and interpolation method. In our days, it is usually solved
by using some iterative numerical method, like bisection
or Newton-Raphson method.

2.1 First approach

A half of the sphere with the radius R should be mapped
onto the disk with the radius ρ (adopted from Borčić,
1955). If we request that the area of the hemisphere is
equal to the area of the disk, than there is the following
relation:

2R2π = ρ2π (4)

from where we have

ρ =
√

2R. (5)

Let the circle having the radius ρ be the image of the merid-
ians with the longitudes λ = ±

π
2 . From Fig. 4 we see that

the rectangular coordinates x0 and y0 of any point T0 be-
longing to this circle can be written like this:

x0 = ρsinβ (6)

y0 = ρcosβ. (7)

Due to the request that the projection should be pseudo-
cylindrical, the abscise x = x0 for any point with the same
latitude regardless of the longitude the relation (1) holds.

Figure 4: Derivation of Mollweide projection equations

On the other hand, the ordinate y will depend on the lati-
tude and longitude. According to the equal-area condition,
the following relation exists:

y0 : y =
π
2
: λ. (8)

By using (8) and (5), the relation (7) goes into (2). In or-
der to finish the derivation, we need to find the relation
between the auxiliary angle β, and the latitude ϕ. Accord-
ing to the equal-area condition, the area SEE1T0 should
be equal to the area of the spherical segment between the
equator and the parallel of latitude ϕ, which is mapped as
the straight-line segment ST0:

∆OST0 + 2OT0E1 = R2πsinϕ,

that is

ρ2

2
sin(π−2β)+

2ρ
2

βρ = R2πsinϕ (9)

from where we have (3).

2.2 Second approach

Given the earth’s radius R, suppose the equatorial aspect of
an equal-area projection with the following properties:

• A world map is bounded by an ellipse twice broader
than tall

• Parallels map into parallel straight lines with uni-
form scale

• The central meridian is a part of straight line; all
other ones are semielliptical arcs.

Figure 5: Second approach to derivation of Mollweide
projection equations

Suppose an earth-sized map; let us define two regions, S1
on the map and S2 on the earth, both bounded by the equa-
tor and a parallel (URL2). The equal-area property can
be used to calculate x for given ϕ. Given x and λ, y can
be calculated immediately from the ellipse equation, since
horizontal scale is constant.
Equation of ellipse centred in origin, with major axis on
y-axis is:

x2

a2 +
y2

b2 = 1 or

y2 = b2
(

1−
x2

a2

)

.

9
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For 0≤ x ≤ a

y =
b
a

√

a2
− x2.

Area between y-axis and parallel mapped into x = x1 is

S1 = 2
∫ x1

0
ydx = 2

b
a

∫ x1

0

√

a2
− x2dx

Let x = asinβ, 0≤ x ≤ a, 0≤ β ≤
π
2 , dx = acosβdβ, then

∫

√

a2
− x2dx =

∫ √

a2(1− sin2 β) acosβdβ =

a2
∫

cos2 βdβ.

Since cos2 α = 1+cos2α
2

a2
∫

cos2 βdβ = a2
∫ 1 + cos2β

2
dβ =

=
a2

2

(

∫

dβ +

∫

cos2βdβ
)

=
a2

2

(

β +
sin2β

2

)

+C

S1 = 2
b
a

(

a2

2

(

β +
sin2β

2

)

+C
)β

0
=

=
ab
2

(2β + sin2β) = 2R2(2β + sin2β)

for some 0 ≤ β ≤
π
2 , corresponding to x1 = asinβ and be-

cause of abπ = 4R2π.
On a sphere, the area between the equator and parallel ϕ is

S2 = 2πRh = 2πR2 sinϕ

S1 = S2 ⇒ 2R2(2β + sin2β) = 2πR2 sinϕ, i.e. (3).

The auxiliary angle β must be found by interpolation or
successive approximation. Finally, since horizontal scale
is uniform, and abπ = 4R2π, b = 2a and a =

√

2R we have
(1). Due to the relation

y : λ =
b
a

√

a2
− x2 : π

y =
2λ
π

√

2R2
− x2 = 2

√

2R2
−2R2 sin2 β

λ
π

, i.e. (2) holds.

2.3 Third approach

From the theory of map projections we know that general
equations of pseudocylindrical projections have the form:

x = x(ϕ) (10)

y = y(ϕ,λ) (11)

Furthermore, for equal-area pseudocylindrical projection
holds (Borčić, 1955)

y =
R2 cosϕ

dx
dϕ

λ (12)

Let us suppose that a half of the sphere has to be mapped
onto a disc with the boundary

x2 + y2 = ρ2.

In order to have an equal-area mapping of the half of the
sphere with the radius R onto a disc with the radius ρ we
should have

2R2π = ρ2π

from where

ρ2 = 2R2.

That implies

x2 + y2 = 2R2.

Taking into account (12) for λ = ±
π
2

y = ±

R2π
2

cosϕ
dx
dϕ

x2 +
R4π2

4
cos2 ϕ
(

dx
dϕ

)2 = 2R2.

That is a differential equation that could be solved by the
method of separation of variables:

2
√

2R2
− x2dx = R2πcosϕdϕ

where the sign + has been chosen. After integration we can
get

2
∫

√

2R2
− x2dx = R2πsinϕ+C

By the appropriate substitution in the integral on the left
side, or just looking to any mathematical manual we can
get the following:

2 ·
1
2

(

x
√

2R2
− x2 + 2R2 arcsin

x
R
√

2

)

= R2πsinϕ+C

For ϕ = 0, x = 0 andC = 0.
Therefore we have

x
√

2R2
− x2 + 2R2 arcsin

x
R
√

2
= R2πsinϕ. (13)

10
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By substitution (1), (13) goes to (3), while (12) can be writ-
ten as

y =
2λ
π

√

2R2
− x2, which is equivalent to (2).

Remark 1
Although the applied conditionwas that a half of the sphere
has to be mapped onto a disc, the final projection equations
hold for the whole sphere and give its image situated into
an ellipse.
Remark 2
In references, the Mollweide projection is always defined
by equations (1)-(3), which means by using an auxiliary
angle or parameter. My equation (13) shows that there is
no need to use any auxiliary parameter. There exists the
direct relation between the x-coordinate and the latitude ϕ.
Remark 3
The method applied in this chapter can be applied in
derivation of other pseudocylindrical equal-area projec-
tions, as are e.g. Sanson projection, Collignon projection
or even cylindrical equal-area projection.

3 Generalization of Mollweide Projection

Let us consider the shape of the Mollweide projection of
the whole sphere. From the equations (1) and (2), by elim-
ination of β it is easy to obtain the equation of a meridian
in the projection
(

x
√

2R

)2
+

(

πy
2
√

2Rλ

)2
= 1. (14)

It is obvious that for a given λ (14) is the equation of an el-
lipse. It follows that the semiaxis a is constant, while b de-
pends on the longitude λ. If we take λ = π, than b = 2

√

2R,
and

a : b = 1 : 2 (15)

and that is the ratio of semiaxes in the Mollweide projec-
tion. The question arises: is it possible to find out a pseu-
docylindrical equal-area projection that will give the whole
word in an arbitrary ellipse satisfying any given ratio a : b
or b : a? The answer is yes, and we are going to proof it.
Let us denote µ = b : a. First of all, the area of an ellipse
with the semiaxes a and b = µa should be equal to the area
of the whole sphere:

abπ = µa2π = 4R2π.

This is equivalent with

b =
4R2

a
,µ =

4R2

a2 or a = 2R
√µ. (16)

Now, the equation of the ellipse with the centre in the ori-
gin and with the semiaxes a and b reads

x2

a2 +
y2

µ2a2 = 1, or

y2 = µ2(a2
− x2). (17)

Furthermore, the projection should be cylindrical and
equal-area, which is generally expressed by (12). If we
substitute (12) into (17), taking into account that λ = π,
after some minor transformation we can get the following
differential equation with separated variables

R2πcosϕdϕ = µ
√

a2
− x2dx. (18)

Integral of the left side of the equation is elementary, while
for that on the right side we need a substitution

x = asinβ. (19)

This leads to the equation

πcosϕdϕ = 4cos2 βdβ.

The application of the trigonometric identity

cos2 β =
1 + cos2β

2

gives us the following differential equation that is ready for
integration:

πcosϕdϕ = 2(1 + cos2β)dβ.

After integration, we obtain

πsinϕ = 2β + sin2β +C, (20)

where C is an integration constant. By using the natural
conditions ϕ = 0, x = 0 and β = 0 we obtainC = 0. In that
way, the final form of (5.8) is again the known relation (3).
From (18) and (19) we have

dx
dϕ

=
a2πcosϕ

4
√

a2
− x2

=
aπcosϕ
4cosβ

=
R
√µ

πcosϕ
2cosβ

and taking into account (12)

y =
4R2

aπ
λcosβ = µa

λ
π
cosβ = 2R

√

µ
λ
π
cosβ,

while

x = asinβ =
2R
√µ

sinβ.

11
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Let us summarize:

x =
2R
√µ

sinβ.

y = 2R
√

µ
λ
π
cosβ.

2β + sin2β = πsinϕ.

These are equations defining the generalized Mollweide
projection onto an ellipse of any given ratio µ = b : a of
its semiaxes.

Example 1.
Let us take µ = 1, that is a = b, which means that we have
a bounding circle. According to (16) a = b = 2R.

Figure 6: Generalized Mollweide projection onto a disc

Example 2.
Let us take µ = 2, that is b = 2a. According to (16)
a =

√

2R, b = 2
√

2R, and we are able to recognize the clas-
sic Mollweide projection (Fig. 3).

Example 3.
Let us define the ratio µ, by the condition that the linear
scale along the equator equals 1. From the theory of map
projections it is known that the linear scale along parallels
is given by

n =

√

G
Rcosϕ

,

where

G =

(

∂x
∂λ

)2
+

(

∂y
∂λ

)2
.

In our case x = x(ϕ), which means that

∂x
∂λ

= 0.

The condition

n = 1 for ϕ = 0

goes to

∂y
∂λ

= Rcosϕ = R.

Now,

∂y
∂λ

=
2R√µ

π
cosβ = R.

and from there and β = 0 due to ϕ = 0 we have

√

µ =
π
2
, or µ = π2

4 .

Finally, a = 4R
π , b = Rπ and

x =
4
π

Rsinβ

y = Rλcosβ

2β + sin2β = πsinϕ.

It is easy to see that the linear scale in the direction of
meridian is also 1 throughout the equator in this version of
Mollweide projection (Fig. 7). See also Bromley (1965).

Figure 7: Generalized Mollweide projection without lin-
ear distortions along the equator

Remark 4
The same approach can be applied to find a generalized
Mollweide projection satisfaying the condition n = 1 for
ϕ = ϕ0, where 0≤ ϕ0 ≤

π
2 .

12
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4 Inverse Equations ofMollweide Projection

The inverse equations of any map projections read as fol-
lows:

ϕ = ϕ(x,y)

λ = λ(x,y).

The computation of ϕ and λ from given x and y in Moll-
weide projection is straightforward. In fact, for the given x
from (1) we can get the auxiliary angle β

sinβ =
x

√

2R

Then, from (3) we have

sinϕ =
1
π

(2β + sin2β)

and from (2)

λ =
πy

2
√

2Rcosβ
.

5 Distribution of Distortions in Mollweide
Projection

For the Mollweide projection given by equations (1)–(3) it
can be derived in the straightforward manner:

tanε =
2tanβ

π
λ

m =
πcosϕ

2
√

2cosβcosε

n =
2
√

2cosβ
πcosϕ

2tan
ω
2

=
√

m2 + n2
−2,

where

ε is defined by ε = θ−
π
2 , and θ is the angle between a

meridian and a parallel in the plane of projection
m is a linear scale along meridian
n is a linear scale along parallel
ω is a maximal angular distortion at a point.
The scale of the area p = 1 by definition.
The distribution of distortion of Mollweide projection has
been investigated and represented in tabular and/or graph-
ical form by several authors (Behrmann, 1909, Solov’ev,
1946, Graur, 1956, Fiala, 1957, Maling 1980).

The linear scale along parallels depends on latitude only.
The linear scale along meridians depends both on latitude
and longitude. The only standard parallels are 40◦44’12”N
and S. The only two points with no distortion are the inter-
sections of the central meridian and standard parallels.

Figure 8: The Mollweide projection with Tissot’s indica-
trices of deformation (URL5)

Figure 9: Mollweide projection for the whole word, show-
ing isograms for maximum angular deformation
at 10◦, 20◦, 30◦, 40◦ and 50◦. Parts of the world
map where ω > 80◦ are shown in black (Maling,
1980; Canters and Crols, 2011).

6 Some Applications of Mollweide
Projection

For those who would like to research the Mollweide pro-
jection in more detail, I would recommend the following
web-sites: URL2, URL3 and URL6. Although, due it care-
fully, due to some incorrect statements occurring on the
Internet.
Mollweide’s projection has been extremely influential. Be-
sides the developments by Goode (URL7), derived works
include the interrupted Sinu-Mollweide projection by A.
K. Philbrick (1953), other aspect maps like Bartholomew’s
Atlantis, and simple rescaling by reciprocal factors which
preserve its features - e.g., making the equator a standard
parallel free of distortion (Bromley, 1965), or making the
whole map circular instead of elliptical as indicating in the
Chapter 3.

13
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Figure 10: Oblique aspect of the Mollweide projection
(Solov’ev, 1946, Kavrajskij, 1960

Figure 11: The Atlantis Map (Bartholomew, 1948),
Transversal aspect of the Mollweide projection
(URL3)

Figure 12: Inferred contours of the geoid (in metres) for
the whole word, based upon Kuala’s analysis of
variations in gravity potential with both latitude
and longitude (Maling 1980)

Figure 13: Sea-surface freon levels measured by the Global
Ocean Data Analysis Project. Projected using
the Mollweide projection (URL5).

Figure 14: The Map Room - A weblog about maps (URL8)

Figure 15: Full-sky image of Cosmic Microwave Back-
ground as seen by the Wilkinson Microwave
Anisotropy Probe (URL5).

Remark 5
The Mollweide and Hammer projections are occasionally
confused, since they are both equal-area and share the el-
liptical boundary; however, the latter design has curved
parallels and is not pseudocylindrical (Fig. 16).
The logo of the International Cartographic Associtaion
(ICA) has the world in Mollweide projection in its central
part (Fig. 17). The mission of the ICA is to promote the
discipline and profession of cartography in an international
context.
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Figure 16: Hammer projection (URL 9)

Figure 17: ICA logo (URL4)

7 Conclusions

German mathematician and astronomer Karl Brandan
Mollweide (1774-1825) is known for trigonometric formu-
lae and map projections named after him. It is possible
to derive his projection equations in different ways. One
can choose the classic approach without using calculus,
another using integrals or the third one, which consists of
establishing and solving a differential equation.

Furthermore, it is possible to generalize the Mollweide
projection in order to provide pseudocylindrical equal-area
projections which represent the entire Earth in an ellipse
with any prescribed ratio of its semiaxes. The original
Mollweide projection has the ratio of 2:1. Inverse equa-
tions of Mollweide projection also exist.

The paper also provides the formulae and illustrations
of the distortion distribution in the Mollweide projection.
Considering several applications of Mollweide projections
represented in the paper, it is obvious that even though the
map projection is more than 200 years old, it still has nu-
merous applications. For example, the International Car-
tographic Association has used it in its logo since it was
founded 50 years ago.
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ABSTRACT

In this paper a technique for the construction of quartic
polynomial B-spline patches fitting on analytical surfaces
and triangle meshes is presented. The input data are cur-
vature values and principal directions at a given surface
point which can be computed directly, if the surface is
represented by a vector function.

In the case of discrete surface representation, i.e. on a
triangle mesh the required input data are computed from
a circular neighborhood of a specified triangle facet. Such
a surface patch may replace a well defined region of the
mesh, and can be used e.g. in re-triangulation, mesh-
simplification and rendering algorithms.
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B-splajn dijelovi koji pristaju na plohe i triangu-

larne mreže

SAŽETAK

U ovom se radu prikazuje metoda za konstrukciju kvartnog
polinoma B-splajn dijela podesnog za analitičke plohe i
mreže trokuta. Ulazni podaci su vrijednosti zakrivljenosti
i glavni smjerovi u danoj točki plohe, koji se mogu izravno
računati za plohu zadanu vektorskom funkcijom.

Za slučj diskretne reprezentacije plohe, tj. za triangularnu
mrežu, odgovarajući ulazni podaci računaju se iz kružne
okoline odred-enog trokuta mreže. Takvi dijelovi mogu za-
mijeniti dobro definirano područje mreže, i mogu se upotri-
jebiti npr. u retriangulaciji, simplifikaciji mreže i renderi-
ranju.

Ključne riječi: B-splajn ploha, localna aproksimacija
plohe, glavne zakrivljenosti, mreža trokuta

1 Introduction

Surface patches matching free form surfaces, triangular
meshes or point-based surfaces are widely used in com-
puter graphics and in many applications. Different types
of patches have been developed to reconstruct the surface
geometry.
A technique in [16] which generates a hole-free, piecewise
linear approximation to point-based surfaces uses circular
and elliptical planar surface segments, so-called splats, for
surface reconstruction and high-quality rendering. A cir-
cular splat is given by its center, its normal vector and its
radius. Elliptical splats need two additional vectors to de-
fine the major andminor axes replacing the radius, they can
adapt to the local curvature of the surface. Large number
of linear splats are needed to represent the shape of most
smooth models.
Quadrics are defined in [4] for mesh simplification al-
gorithms which produce an approximation composed of
fewer triangles that preserves surface shape. The quadrics

characterize the local shape of the surface, they are elon-
gated in directions of low curvature and thin in directions
of high curvature. Minimization of a quadric error metric
generates a triangulation with optimal triangle shape. In
[2] quadratic and cubic splats are computed using a mov-
ing least squares procedure. They provide good quality
and high rendering speed using fewer primitives than linear
splats. In [5] a rendering primitive, called differential point
is introduced with embedded curvature information in the
vicinity of the actual point. The method leads to a more
sparsely surface representation, to accelerated shading, to
a point-based simplification technique, and to a better qual-
ity of rendering than a pure splat-based approach. The in-
puts are NURBS surface or polygonal mesh. A differential
point is constructed from a sample point and principal cur-
vatures and principal directions. Practically, a local surface
is defined implicitly in the neighborhood of the point by a
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set of osculating circle arcs in normal planes passing
through given tangent vectors such that the distance of the
circle arc from the surface or mesh is less than a given
tolerance. The necessary curvature values for a mesh are
estimated by the method of Taubin ([15]).

A method for fitting NURBS surfaces for cloud-of-points
data representing rotational surfaces is shown in [1]. First,
a scalar valued B-spline function is fitted to the data, then
it is converted to a parametric NURBS. Three dimensional
object matching is the tool for fitting NURBS surfaces to
point based surfaces or to an other NURBS in [7]. Two in-
trinsic surface properties, the Gaussian and the mean cur-
vatures are used for matching, and an optimal rigid body
transformation is developed. A C2-continuous spline sur-
face is constructed to triangular meshes in [6]. The con-
struction is made in two phases. First, a so called guide sur-
face is constructed from vertices and boundary data, then
it is modified such that the final surface has a good shape
also in the case of triangulation with isolated extraordinary
vertices.

Trigonometric surface patches are constructed from curva-
ture data matching a neighborhood of a face of a triangular
mesh in [14] and a neighborhood on an analytical surface
[13]. The principal directions and curvature values of the
meshed surface are estimated by the method developed in
[11] and [12]. This is a face based method, different from
the vertex based algorithms used in the most papers in the
large literature dealing with discrete differential geometry
([8], [9], [10]).

In this paper the construction of a uniform polynomial
B-spline surface patch of 4× 4 degree from given curva-
ture values is presented. These curvatures are the princi-
pal curvatures of a base surface at a given point. They
determine its osculating circles in the two normal planes
through the principal directions. The construction is made
in two phases. First, the surface interpolates the two cir-
cle arcs by its middle parameter curves, and approximates
four additional surface points at its corner points. Then the
approximation is improved by correcting some boundary
data while minimizing an error between the B-spline patch
and the given base surface.

In Section 2 the approximation of a circular arc by a fourth
degree B-spline curve is analyzed. In Section 3 the com-
putation of a B-spline surface patch of 4×4 degree is pre-
sented from input data, which allow to fit the patch on a
base surface. In Section 4 the generation of the input data
from a base surface is shown in both, analytical and dis-
crete representations. Examples are shown in Section 5.

2 Approximation of a circular arc by a
fourth degree B-spline curve

The uniform polynomial B-spline curve is represented by
the vector function

g(t) =
[

t4 t3 t2 t 1
]

M4 [

p0 p1 p2 p3 p4
]T

, 0 ≤ t ≤ 1, (1)

where the coefficient matrix is

M4 =
1

24













1 −4 6 −4 1
−4 12 −12 4 0
6 −6 −6 6 0
−4 −12 12 4 0
1 11 11 1 0













. (2)

Let the circular arc of radius ρ and central angle 2α be
given in the xz coordinate plane parametrized as follows

c(t) = iρsin(α(2t−1))+kρcos(α(2t−1)), t ∈ [0,1]. (3)

Three points c(0), c(0.5), c(1) and two tangent vectors at
the end points ċ(0) and ċ(1)will be interpolated by solving
the system of linear equations

c(0) = g(0), c(0.5) = g(0.5), c(1) = g(1),

ċ(0) = ġ(0), ċ(1) = ġ(1)

for the unknown control points pi, i = 0 . . .4, where ċ and
ġ denote the derivatives according to the parameter t. A
unique (symbolical) solution exists, and the B-spline curve
with the computed control points approximates the given
circular arc with an error
∫ 1

0
(c(t)−g(t))2dt < 10−18, 2α ≤

π
3
. (4)

In the examples the relative error with respect to the arc
length is even smaller. The limit for the central angle is a
usual limit also in classical approximations.

3 Computation of a B-spline surface patch
of 4×4 degree from given geometric data
(symbolical solution)

The polynomial B-spline surface patch of 4×4 degreewith
uniform knot vector is described by the vector function

r(u,v) =
[

u4 u3 u2 u 1
]

·M ·B·MT
·

[

v4 v3 v2 v 1
]T

, (5)
(u,v) ∈ [0,1]× [0,1].

The geometric data are the points of the control net:
B = [b[i, j]] , i = 0, . . .4, j = 0, . . .4.
The prescribed input data in our surface construction are
the data of two circular arcs lying in two orthogonal planes,
which will be interpolated by the middle parameter curves.
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Four additional boundary data are four corner points of
the required patch. For the parameter curve r(u,0.5) three
points of a circular arc

r(0,0.5) = M11, r(0.5,0.5) = M, r(1,0.5) = M12
and two tangent vectors at the starting and end points M11
and M12,

ru(0,0.5) = T 11, ru(1,0.5) = T 12
respectively, are given. Similarly, the other parameter
curve r(0.5,v) is determined by three points of a circular
arc

r(0.5,0) = M21, (r(0.5,0.5) = M), r(0.5,1) = M22
and by two prescribed tangent vectors at the points M21
and M22

rv(0.5,0) = T 21, rv(0.5,1) = T 22.

The parametrization of these arcs is the same as that of the
curve c(t) in (3). ru and rv denote the partial derivatives of
the function r(u,v) according to u and v, respectively. The
position vectors of the points Mi j are denoted by the same
letter, Ti j denote the corresponding tangent vectors.
The four corner points of the patch denoted by P00, P10,
P01 and P11 according to their parameter values are also
prescribed (Fig. 1). These are in all 13 input data.

Figure 1: The middle parameter curves of the surface
patch pass through M11, M, M12 and M21,
M, M22, respectively, the corner points are
P00, P10, P01 and P11.

The B-spline patch has 25 unknown control points there-
fore, 12 additional data are necessary for the computation.
These are generated from the previous data in the follow-
ing way.

ru(0,0) = −rv(0,0) =
1
4
(M21−M11)

ru(1,0) = rv(1,0) =
1
4
(M12−M21) (6)

ru(1,1) = −rv(1,1) =
1
4
(M12−M22)

ru(0,1) = rv(0,1) =
1
4
(M22−M11)

Four twist vectors at the corner points are determined by
the change of the first partial derivatives while moving

from a corner point into the corresponding midpoint along
a boundary curve.

ruv(0,0) = (rv(0.5,0)−rv(0,0)+ru(0,0.5)− ru(0,0)) ·λ
ruv(1,0) = (−rv(0.5,0)+rv(1,0)+ru(1,0.5)− ru(1,0)) ·λ
ruv(1,1) = (−rv(0.5,1)+rv(1,1)−ru(1,0.5)+ ru(1,1)) ·λ
ruv(0,1) = (rv(0.5,1)−rv(0,1)−ru(0,0.5)+ ru(0,1)) ·λ

(7)

Here the first partial derivatives on the right hand sides are
expressed by the prescribed points Mi j according to the
equations (6). The free parameter λ changes the lengths
of the twist vectors which strongly influence the shape of
the surface patch. It will be determined by minimizing an
error function. Putting all these conditions into a system
of equations does not result in a solution for the unknown
control points of the required patch however, all the equa-
tions are linear ones. Instead of this, the computation is
organized according to the following strategy.
The matrix of the control points B = [b[i, j]] , i =
0, . . .4, j = 0, . . .4 will be partitioned, and the control
points will be computed in three phases. Figure 2 shows
which control points are computed in one step by marking
them with the same symbol.

Figure 2: Partition of the matrix of the control points.

In the first step control points on the boundaries are com-
puted from the data of four boundary curves as the solu-
tion of four systems of linear equations by the interpolation
method of circular arcs in Section 2. Each boundary curve
is determined by three points and two tangent vectors at
the end points. Each system of linear equations result in
five control points. The data and the corresponding solu-
tions are as follows, while the boundary curves of the patch
follow in counter clockwise direction.
For the boundary curve v = 0 the data are P00, M21, P10,
ru(0,0), ru(1,0). The solutions are pu0

i , i = 0, . . .4.
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For the boundary curve u = 1 the data are P10, M12, P11,
rv(1,0), rv(1,1). The solutions are p1v

i , i = 0, . . .4.
For the boundary curve v = 1 the data are P01, M22, P11,
ru(0,1), ru(1,1). The solutions are pu1

i , i = 0, . . .4.
For the boundary curve u = 0 the data are P00, M11, P01,
rv(0,0), rv(0,1). The solutions are p0v

i , i = 0, . . .4.
Not all these solutions will be placed into the matrix of the
control points B.
In the second step the system of linear equations from the
interpolation conditions for the middle parameter curves is
solved.
The data are
r(0.5,0) = M21, r(0.5,0.5) = M, r(0.5,1) = M22,
rv(0.5,0) = T 21, rv(0.5,1) = T22,
r(0,0.5) = M11, r(1,0.5) = M12,
ru(0,0.5) = T11, ru(1,0.5) = T 12
The unique symbolical solution of this system are nine
control points b[i,2], i = 0 . . .4 and b[2, j], j = 0,1,3,4 ex-
pressed with these data and the remaining sixteen control
points.
Now, twelve from the sixteen control points will be re-
placed by the points of the solution in the first step as fol-
lows.

b[1,0] = pu0
1 , b[3,0] = pu0

3 , b[4,1] = p1v
1 , b[4,3] = p1v

3

b[1,4] = pu1
1 , b[3,4] = pu1

3 , b[0,1] = p0v
1 , b[0,3] = p0v

3

b[0,0] =
1
2
(pu0

0 +p0v
0 ), b[4,0] =

1
2
(pu0

4 +p1v
0 ),

b[4,4] =
1
2
(pu1

4 +p1v
4 ), b[0,4] =

1
2
(p0v

4 +pu1
0 ).

We note that the interpolation conditions for the corner
points are not satisfied, but “relaxed” by the last four equa-
tions. They will be corrected by minimizing an error func-
tion in the last step.
In the third step the last four control points are computed
from the system of four linear equations expressed by the
twist vectors at the corner points which are computed ear-
lier from the prescribed data in (7). The solution of the
system of the linear equations are the control points
b[1,1], b[3,1], b[3,3], b[1,3].
Finally, the matrix B = [b[i, j]] , i = 0, . . .4, j = 0, . . .4
is expressed by the prescribed data and the free scalar pa-
rameter λ.
In the fourth step the free parameter λ is determined from
an error function expressing the squared sum of distances
between the prescribed and computed corner points.

d(λ) =(r(0,0)−P00)2 +(r(1,0)−P10)2

+(r(1,1)−P11)2 +(r(0,1)−P01)2 (8)

This function is quadratic in λ, the minimization results in
a unique value of it.

In Example 1 two circular arcs of radius 2 and central an-
gle 2α = π/3 are given in the xz and yz coordinate plane,
respectively. The four corner points are rotated end points
of these circular arcs around the axis z. The computed
B-spline patch interpolates the given arcs within the in-
tegrated error (see (4)) of 10−8, the interpolation error at
the corner points (see (8)) is within 10−16. We note that
the interpolation error of the patch to the data of the given
circular arcs is practically zero (less than 10−28), and it is
independent from the value of λ. The length of the twist
vectors determined by λ effects on the error at the corner
points very strongly. The computed value of λ by mini-
mizing the distance function in (8) is 0.89, while the value
λ = 0 results in a very large error of 1.2.

In Example 2 the data are similar but they determine a hy-
perbolic surface patch. The analysis shows similar results
to that in Example 1.

The Figures 3 and 4 show the middle parameter curves
r(u,0.5) and r(0.5,v) of the resulting patches on the left
hand side, and the patches with the corresponding control
points on the right. The whole control net cannot be shown
clearly, therefore they are omitted in the figures.
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Figure 3: Example 1.
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Figure 4: Example 2.

4 Solution of the fitting problem; computing
the input data of the B-spline patch

A B-spline patch of 4× 4 degree fitting on a base surface
will be determined by two osculating circle arcs of the base
surface lying in two normal planes through the principal
directions at the actual surface point, and four additional
surface points in a neighborhood of this point. The neigh-
borhood is determined by the arc length of the osculating
circle arcs given by the user. Then by measuring the given
arc length on the surface from the point in normal planes
rotating around the surface normal a circular neighborhood
is constructed. In the case of a triangular mesh the neigh-
borhood is constructed around the barycentric center of a
specified face in the mesh.

N

e

e

d
max

d
min

α ρ

arc length

1

2

Figure 5: Circular neighborhood and an osculating circle in
a normal plane.

In Figure 5 such a circular neighborhood is shown with the
two osculating circle arcs of the shortest and largest chord
lengths denoted by dmin and dmax, respectively. They deter-
mine at a regular surface point the orthogonal principal di-
rections e1 and e2, if dmin �= dmax. The central angle 2α and
the radius ρ of an osculating circle arc in a normal plane is
computed from the given arc length s and the correspond-
ing chord length d in the following way ([11], [12]).
From ρα = s and ρsinα = d

2 and the approximation

sinα ≈ α−

α3

6
, 0 < α << 1

follows that

α ≈

√

(1−
d
2s

)6, ρ ≈

s
α
if α �= 0, κn ≈

α
s
.

The tangent vectors at the end points of the arc are com-
puted with the parametrization in the local coordinate sys-
tem determined by the vectors e1, e2, N according to the
vector equation (3) in Section 2.
In the case of an analytical surface the principal curva-
tures and principal directions are computed directly from
the known equation of the surface ([3]), though the con-
struction of the circular neighborhood (more precisely the
points of its boundary) is computed by a discrete method,
while measuring the given arc length along a polygonal
line which approximates the surface curve lying in an in-
tersecting normal plane.
From the constructed circular neighborhood five interpola-
tion points and four tangent vectors to the circular arcs (see
the second step in the computation of the control points in
Section 3) and four surface points on the boundary (deter-
mining the corner points of the patch) are used as direct
input data in the matrix B of the control points. The con-
trol net is expressed symbolically by these input data and
a scalar parameter λ. After replacing the actual numeri-
cal values into the matrix B, only the computation of λ is
necessary in the concrete examples (see the fourth step in
Section 3).
Figure 6 shows the data of a B-spline patch matching a cir-
cular neighborhood on the base surface. The interpolation
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points on the patch boundary Mi j and Pi j (i = 0,1, j =
0,1) are end points of the surface curves in the correspond-
ing normal planes computed as polygonal lines on the sur-
face by measuring the given arc length along them. The
tangent vectors Ti ju and Ti jv (i = 0,1, j = 0,1) at the cor-
ner points are determined as described in the equations (6)
in Section 3.

Figure 6: Input data of a patch computed in a circular
neighborhood of a base surface.

5 Examples

The next two examples are computed with analytical base
surfaces. In this case the principal directions are computed
exactly from the vector functions representing the surfaces.
The number of the computed points on the boundary of the
circular patch is 72 in both examples.

In Example 3 (Fig. 7) the base surface is a cylinder of ra-
dius 10, the circular neighborhood around a surface point is
constructed with the arc length 5. The generated B-spline
surface interpolates the data points of the two middle pa-
rameter curves r(u,0.5) and r(0.5,v) practically with zero
error (less than 10−27). The minimized error of the sum
of squared distances between the prescribed and computed
corner points of the patch (see in (4)) is within the relative
error of 4% with respect to the given arc length measured
on the surface around the given point.

Figure 7: Example 3.

The results are similar in Example 4 (Fig. 8) computed
with a torus. The radius of its meridian circle is 10, the
“radius” of the circular patch is 5, and the interpolation er-
ror at the corner points is here 4% too. Of course, the error
is larger with growing neighborhoods to be approximated.

Figure 8: Example 4.

The B-spline patches in the next two examples are com-
puted on triangulated surfaces, on so-called “synthetic
meshes” generated by a triangulation of the parameter do-
main of the given surfaces. The principal curvatures and
directions are estimated by the method described in Sec-
tion 4. The circular neighborhood is computed around a
chosen triangle face, more exactly around its barycentric
center point in 48 normal planes.

In Example 5 the mesh is a triangulated cylinder of radius
1 (Fig. 9). The circular neighborhood is constructed with
the given arc length of 0.6. The estimation error in the
computation of the principal curvatures is less than 10−3.
The constructed B-spline patch interpolates the data given
in the principal normal sections for the middle parameter
curves practically with zero error. The error at the corner
points is approximately 2 ·10−2.

Figure 9: Example 5.
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In the case of a synthetic mesh of a torus shown in Exam-
ple 6, the results are better due to the dense triangulation.
The error at the corner points of the patch is approximately
10−2.

Figure 10: Example 6.

We note that the presented construction of a circular neigh-
borhood is working also on a “bad triangulation” shown on
the cylinder, where the long, thin triangles have no vertices
in the actual neighborhood. This is due to the face based
estimation of normal curvatures and to an appropriate poly-
hedral data structure representing the mesh, which pro-
vides effective computation of intersections with planes.

Example 7 shows a “real” mesh of a sphere, i.e. a trian-
gulation generated from measured points on the surface of
a sphere offered for test purposes. The computed B-spline
patch matches very well a relatively large neighborhood
shown in Figure 11.

Figure 11: Example 7.

6 Conclusions

Construction of a uniform polynomial B-spline surface
patch of 4× 4 degree from geometric input data has been
presented, which are suitable for the solution of a fitting
problem, how a given neighborhood of a point on a given
surface can be approximated by such a B-spline patch. The

well chosen geometric data define the control points of
the B-spline patch, and they can be computed on analytic
and meshed surfaces by constructing a circular neighbor-
hood around a specified point. The measurement of this
neighborhood is a user specified arc length, which is mea-
sured on the surface around the surface point in normal
sections resulting from a discrete description of the bound-
ary of the neighborhood. In the examples the approxima-
tion of specified neighborhoods by the generated B-spline
patches has been shown with error estimation. The figures,
the symbolic computation of the control points of the B-
spline patch and patch fitting with error estimation have
been made with the algebraic program package Wolfram
Mathematica. The curvature estimation and construction
of the circular neighborhoods on triangular meshes have
been computed with a program developed by the first au-
thor in the program language Java.
Further research is necessary for improving the approx-
imation around the boundaries of the computed surface
patches and for estimating the measurement of matched
neighborhoods with prescribed error tolerances.
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ABSTRACT

We initiate a triangle geometry in the projective metrical
setting, based on the purely algebraic approach of universal
geometry, and yielding in particular a new form of hyper-
bolic triangle geometry. There are three main strands: the
Orthocenter, Incenter and Circumcenter hierarchies, with
the last two dual. Formulas using ortholinear coordinates
are a main objective. Prominent are five particular points,
the b, z, x, h and s points, all lying on the Orthoaxis A. A
rich kaleidoscopic aspect colours the subject.

Key words: universal hyperbolic geometry, triangle geo-
metry, projective geometry, bilinear form, ortholinear co-
ordinates, incenter, circumcenter, orthoaxis
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Univerzalna hiperbolǐcka geometrija III:

Prvi koraci u projektivnoj geometriji trokuta

SAŽETAK

Na temelju algebarskog pristupa univerzalne geometrije,
uvodimo geometriju trokuta u projektivno-metrički okvir.
To rezultira jednim novim oblikom hiperboličke geometrije
trokuta. Tri su glavne okosnice: hijerarhije ortocentara,
sredǐsta upisanih i sredǐsta opisanih kružnica, od kojih su
posljednje dvije dualne. Primjena ortolinearnih koordinata
u formulama ima bitnu ulogu. Istaknuto je pet poseb-
nih točaka (b, z, x, h i s) koje leže na ortogonalnoj osi
A. Bogato, kaleidoskopsko gledǐste karakterizira obradu
teme.

Ključne riječi: univerzalna hiperbolička geometrije, geo-
metrija trokuta, projektivna geometrija, bilinearna forma,
ortolinearne koordinate, sredǐste upisane kružnice, sredǐste
opisane kružnice, ortogonalna os

1 Introduction

Recently there has been a revival of interest in classical
geometry and in particular the study of triangles ([6], [7],
[9], [10], [12], [13], [14]). This paper introduces triangle
geometry into the framework of Universal Hyperbolic Ge-
ometry (UHG) ([18], [19]) and beyond; in the context of
a general metrical structure on the projective plane. The
basic measurements of quadrance and spread replace the
usual notions of distance and angle, and these depend on
a general bilinear form. Hyperbolic geometry provides the
motivation and is used for the illustrations. The approach
is purely algebraic and works over any field not of char-
acteristic two; the reader may easily keep the fundamen-
tal example of the rational number field foremost in mind.
Ultimately this theory is a natural consequence of Rational
Trigonometry ([15], [16], [17]).
Triangle geometry in this setting has features that resem-
ble and also contrast with classical hyperbolic geometry,
studied and described in [1], [2], [3], [4], [5], [11] and
[21]. The Orthocenter hierarchy, involving Altitudes, Or-
thic triangles, the Orthic axis, the Double triangle, and the
Orthoaxis, on which the important s,h,x,b and z points

are to be found, is primary. The Incenter and Circum-
center hierarchies are precisely dual, and their existences
depend on number theoretic conditions, unlike the usual
Euclidean situation. The former contains the Incenters, Bi-
lines (analogs of vertex or angle bisectors), Bipoints, Apol-
lonius points, Centrian lines, Sight lines, Contact points,
Gergonne points and Nagel points etc. The latter contains
Circumlines, Midpoints, Midlines (analogs of perpendicu-
lar bisectors), Medians, Centroids, Sound points, Tangent
lines, Jay lines and Wren lines etc. Duality pervades the
subject; interchanging points and lines, sides and vertices,
and quadrance and spread.
This paper is largely self-contained; we start with a gen-
eral introduction to universal metrical projective geome-
try. When we study a triangle a1a2a3, it will prove conve-
nient to use a linear transformation to change coordinates,
so that we may assume that a1 = [1 : 0 : 0] , a2 = [0 : 1 : 0]
and a3 = [0 : 0 : 1] , with the orthocenter represented by
h = [1 : 1 : 1]. With these ortholinear coordinates the bilin-
ear form is given by a pair of inverse symmetric projective
matrices:

B =





a 1 1
1 b 1
1 1 c



 , A = B−1 =





1−bc c−1 b−1
c−1 1−ac a−1
b−1 a−1 1−ab



 . (1)
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This shifts projective triangle geometry from the study of
a general triangle under a particular bilinear form to the
study of a particular triangle under a general bilinear
form, giving a simpler and more general theory.
Formulas will be our main aims; most of these depend
on the three parameters a,b,c occurring in (1), and hope-
fully will provide a solid platform for further investiga-
tions. They also suggest a possible alternative to trilinear
coordinates in affine/Euclidean triangle geometry. This pa-
per introduces a rich theory which has many additional re-
lationships and remarkable aspects which will be further
studied in the coming years.

1.1 Projective linear algebra and Universal geometry

In this section we introduce the main objects: (projective)
points and lines, via projective linear algebra. This is linear
algebra with vectors and matrices defined only up to non-
zero scalar multiples. We write the usual vectors andmatri-
ces with round brackets, while projective vectors and pro-
jective matrices, in square brackets, are by definition un-
changed if we multiply all coordinates simultaneously by
a non-zero number. So while −→v ≡ (3,1,2) ≡

(

3 1 2
)

represents a usual row vector (or 1× 3 matrix), the corre-
sponding projective row vector is a =

[

3 1 2
]

. By def-
inition a is also equal to

[

−3 −1 −2
]

or to
[

6 2 4
]

.
We will generally use bold labels to represent projective
matrices: while

A =





2 1 4
0 3 1
0 0 1



 and B =





3 −1 −11
0 2 −2
0 0 6





denote ordinarymatrices, the corresponding projective ma-
trices are

A =





2 1 4
0 3 1
0 0 1



 =





6 3 12
0 9 3
0 0 3



 ,

B =





3 −1 −11
0 2 −2
0 0 6



 =
1
6





3 −1 −11
0 2 −2
0 0 6



 .

Inverses are easier to compute in the projective setting,
since determinants in the denominator can be dispensed
with: for example A−1 = B, so that integer arithmetic only
is required. While in general projective matrices cannot be
added, they can be multiplied!
We now introduce additional notation and terminology that
allows us to work consistently with both row and column
vectors horizontally. A non-zero projective row vector a
will be written in either of the following forms:

a ≡

[

x y z
]

≡ [x : y : z]

and will be called a (projective) point. A non-zero projec-
tive column vector L will be written as

L ≡





l
m
n



 ≡ 〈l : m : n〉

and will be called a (projective) line. The point a ≡

[x : y : z] and the line L ≡ 〈l : m : n〉 are incident precisely
when lx+my+nz= 0; equivalently a lies on L, or L passes
through a. The corresponding matrix equation is

aL ≡

[

x y z
]





l
m
n



 = [x : y : z]〈l : m : n〉 = 0. (2)

Three or more points are collinear precisely when they all
lie on a line L, and three or more lines are concurrent pre-
cisely when they all pass through a point a.

The join a1a2 of distinct points a1 ≡ [x1 : y1 : z1] and a2 ≡

[x2 : y2 : z2] is the line

a1a2 ≡ [x1 : y1 : z1]× [x2 : y2 : z2]

≡ 〈y1z2 − y2z1 : z1x2 − z2x1 : x1y2 − x2y1〉 .

The meet L1L2 of distinct lines L1 ≡ 〈l1 : m1 : n1〉 and
L2 ≡ 〈l2 : m2 : n2〉 is the point

L1L2 ≡ 〈l1 : m1 : n1〉× 〈l2 : m2 : n2〉

≡ [m1n2 −m2n1 : n1l2 −n2l1 : l1m2 − l2m1] .

These operations, using the usual Euclidean cross product,
are well-defined, and will be used repeatedly in this paper.
The symbol × in the linear algebra context avoids confu-
sion with matrix multiplication.
Then a1a2 is the unique line incident with both a1 and a2,
and L1L2 is the unique point incident with both L1 and L2.
A complete symmetry or duality between points and lines
is a key feature of this subject.
We also recall a few more definitions from [18] and [19].
A side a1a2 ≡ {a1,a2} is a set of two points. A ver-
tex L1L2 ≡ {L1,L2} is a set of two lines. A triangle
a1a2a3 ≡ {a1,a2,a3} is a set of three non-collinear points,
and a trilateral L1L2L3 ≡{L1,L2,L3} is a set of three non-
concurrent lines.

A triangle a1a2a3 determines an associated trilateral
L1L2L3, where L1 ≡ a2a3, L2 ≡ a1a3 and L3 ≡ a1a2. Sym-
metrically a trilateral L1L2L3 determines an associated tri-
angle a1a2a3, where a1 ≡ L2L3, a2 ≡ L1L3 and a3 ≡ L1L2.
The triangle a1a2a3 has three sides, namely a1a2, a2a3 and
a1a3, as well as three vertices, namely L1L2, L2L3 and
L1L3. In this paper we concentrate on triangles.
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1.2 Projective bilinear forms

We now introduce a metrical structure on our three-
dimensional vector space; this will be done via a symmet-
ric bilinear form−→v 1 ·

−→v 2 ≡
−→v 1A−→v T

2 given by an invertible
symmetric 3×3 matrix A, where−→v 1 and −→v 2 are ordinary
row vectors, and T denotes transpose. We wish to trans-
fer this bilinear form to projective points and lines: let’s
start with perpendicularity. Recall that vectors−→v 1,

−→v 2 are
perpendicular precisely when −→v 1 ·

−→v 2 = 0.

Denote by A and B the projective matrices associated to
A and its inverse matrix B respectively. Points a1 and a2
are perpendicular precisely when a1AaT

2 = 0, and in this
case we write a1 ⊥ a2. This is a symmetric relation. Du-
ally, lines L1 and L2 are perpendicular precisely when
LT

1 BL2 = 0; we write L1 ⊥ L2. It is useful to restate these
relations by introducing a formal notion of duality: the pro-
jective point a and the projective line L are dual precisely
when

L = a⊥ ≡ AaT or equivalently a = L⊥
≡ LT B.

So two points, or two lines, are perpendicular precisely
when one is incident with the dual of the other. It now
follows that a1 ⊥ a2 precisely when a⊥1 ⊥ a⊥2 , since the
latter condition is

0 =
(

AaT
1
)T B

(

AaT
2
)

=
(

a1AT )

B
(

AaT
2
)

= a1 (AB)
(

AaT
2
)

= a1AaT
2 . (3)

A point a is null precisely when it is perpendicular to itself,
that is, when aAaT = 0. Dually a line L is null precisely
when it is perpendicular to itself, that is, when LT BL = 0.

Our main interests are hyperbolic and elliptic geometries,
which arise respectively from the special cases

A = J ≡





1 0 0
0 1 0
0 0 −1



 = B, A = I≡





1 0 0
0 1 0
0 0 1



 = B.

(4)

But other possibilities are also of interest, and for triangle
geometry also important, as we shall soon see.

1.3 Visualization

The Figures in this paper all come from hyperbolic geome-
try: we represent the point a ≡ [x : y : z] by the affine point
[X ,Y ] ≡ [x/z,y/z] , and the line L ≡ 〈l : m : n〉 by the linear
equation lX + mY + n = 0, which would be the hyperbolic
line (l : m :−n) in [18]. Null points are those a for which
x2 + y2

− z2 = 0; the corresponding affine points lie on the
null circle X2 + Y 2 = 1, always in blue. Null lines are

tangent to this null circle. The duality becomes exactly
the projective polarity between points and lines associated
with the null circle.

a

l

a

l

a

l

1

1

2

2

3

3

2
2

3

1

LA
L

L

2

1

3

A

A

A

Figure 1: A Triangle a1a2a3 and its Dual triangle l1l2l3
We will adopt the general convention that triangle geome-
try constructs associated to a particular triangle are Cap-
italized (a familiar idea for German readers). So Fig-
ure 1 shows a Triangle a1a2a3, in yellow, with the nota-
tion we will consistently use: the Points of the triangle are
a1,a2,a3, the Lines are L1 ≡ a2a3, L2 ≡ a1a3,L3 ≡ a1a2,
the Dual points are l1 ≡ L⊥

1 , l2 ≡ L⊥

2 , l3 ≡ L⊥

3 , the Dual
lines are A1 ≡ a⊥1 , A2 ≡ a⊥2 ,A3 ≡ a⊥3 , and the Dual trian-
gle is l1l2l3, in light blue. Points and their dual lines are
generally pictured with the same colour.

1.4 Quadrance and spread

An inverse pair of symmetric projective matrices A and
B give us more than perpendicularity: they allow the in-
troduction of metrical quantities into algebraic geometry.
This has been a blind spot in the history of the subject!
The quadrance q(a1,a2) between points a1 and a2, and
the spread S (L1,L2) between lines L1 and L2, are the re-
spective numbers

q(a1,a2) ≡ 1−
(

a1AaT
2
)2

(

a1AaT
1
)(

a2AaT
2
) and

S (L1,L2) ≡ 1−
(

LT
1 BL2

)2

(

LT
1 BL1

)(

LT
2 BL2

) . (5)

While the numerators and denominators of these expres-
sions depend on choices of representative vectors and ma-
trices for a1,a2,A,L1,L2 and B, the quotients are indepen-
dent of scaling, so the overall expressions are indeed well-
defined projectively.
Clearly q(a,a) = 0 and S (L,L) = 0, while q(a1,a2) = 1
precisely when a1 ⊥ a2, and dually S (L1,L2) = 1 precisely
when L1 ⊥ L2. An argument similar to (3) shows that for
points a1 and a2,

S
(

a⊥1 ,a⊥2
)

= q(a1,a2) . (6)
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Quadrance and spread are undefined if one or both of the
points or lines involved is null. We will adopt the zero
denominator convention: statements involving a fraction
with zero in the denominator are empty, and a variant:
statements involving a proportion with all entries zero are
empty.

Example 1 In the hyperbolic case, the quadrance between
a1 ≡ [x1 : y1 : z1] and a2 ≡ [x2 : y2 : z2] is

q(a1,a2) ≡ 1−
(x1x2 + y1y2 − z1z2)

2
(

x2
1 + y2

1 − z2
1
)(

x2
2 + y2

2 − z2
2
)

= −

(y1z2 − y2z1)
2 +(z1x2 − z2x1)

2
− (x1y2 − y1x2)

2
(

x2
1 + y2

1 − z2
1
)(

x2
2 + y2

2 − z2
2
) (7)

and the spread between L1 ≡ 〈l1 : m1 : n1〉 and L2 ≡

〈l2 : m2 : n2〉 is

S (L1,L2) ≡ 1−
(l1l2 + m1m2 −n1n2)

2
(

l2
1 + m2

1 −n2
1
)(

l2
2 + m2

2 −n2
2
)

= −

(m1n2 −m2n1)
2 +(n1l2 −n2l1)2

− (l1m2 − l2m1)
2

(

l2
1 + m2

1 −n2
1
)(

l2
2 + m2

2 −n2
2
) .

(8)

Example 2 In the elliptic case, the quadrance between
a1 ≡ [x1 : y1 : z1] and a2 ≡ [x2 : y2 : z2] is

q(a1,a2) ≡ 1−
(x1x2 + y1y2 + z1z2)

2
(

x2
1 + y2

1 + z2
1
)(

x2
2 + y2

2 + z2
2
)

=
(y1z2 − y2z1)

2 +(z1x2 − z2x1)
2 +(x1y2 − y1x2)

2
(

x2
1 + y2

1 + z2
1
)(

x2
2 + y2

2 + z2
2
) (9)

and the spread between L1 ≡ 〈l1 : m1 : n1〉 and L2 ≡

〈l2 : m2 : n2〉 is

S (L1,L2) ≡ 1−
(l1l2 + m1m2 + n1n2)

2
(

l2
1 + m2

1 + n2
1
)(

l2
2 + m2

2 + n2
2
)

=
(m1n2 −m2n1)

2 +(n1l2 −n2l1)2 +(l1m2 − l2m1)
2

(

l2
1 + m2

1 + n2
1
)(

l2
2 + m2

2 + n2
2
) .

(10)

Theorem 1 (Null quadrance/spread) If a1 and a2 are
distinct points, then q(a1,a2) = 0 precisely when a1a2 is a
null line. If L1 and L2 are distinct lines, then S (L1,L2) = 0
precisely when L1L2 is a null point.

Proof. We prove the first statement, the second follows
by duality. Suppose that A is a 3× 3 invertible symmetric
matrix with B the adjugate matrix (the inverse of A up to a
scalar), so we may write

A≡





a b c
b d f
c f g



 , B≡





dg− f 2 c f −bg b f − cd
c f −bg ag− c2 bc−a f
b f − cd bc−a f ad−b2



 .

Since L ≡ a1a2 is a null line precisely when LT BL = 0,
the theorem is a consequence of the following remarkable
identity in the various variables, involving only vectors and
the usual linear algebra:
(

(x1,y1,z1)A(x1,y1,z1)
T
)(

(x2,y2,z2)A(x2,y2,z2)
T
)

−

−

(

(x1,y1,z1)A(x2,y2,z2)
T
)2

= (y1z2 − y2z1,z1x2 − z2x1,x1y2 − x2y1) ·B·

· (y1z2 − y2z1,z1x2 − z2x1,x1y2 − x2y1)
T . �

In the paper [17] we show that this general projective met-
rical geometry obeys exactly the same main trigonometric
laws as those of Universal Hyperbolic Geometry as set out
in the paper [18], independent of the quadratic form. In
particular the laws of trigonometry for hyperbolic and el-
liptic geometries, which are both projective theories, are
exactly identical. This is indeed Universal Geometry.

1.5 Linear transformations and the Fundamental the-
orem of projective geometry

A bilinear form −→v 1 ·
−→v 2 = −→v 1A−→v T

2 is transformed when
we change coordinates. Suppose we have an invert-
ible linear transformation T (−→v ) ≡ −→v M = −→w on three-
dimensional space, acting on row vectors via right mul-
tiplication by an invertible 3× 3 matrix M, with inverse
matrix N, so that −→w N = −→v . Define a new bilinear form�

by

−→w 1 �
−→w 2 ≡ (−→w 1N) · (−→w 2N) = (−→w 1N)A(−→w 2N)

T

= −→w 1
(

NANT )

−→w T
2 .

So the matrix A for the original bilinear form · becomes the
matrix NANT for the new bilinear form �.

The linear transformation T acting on row vectors induces
a projective transformation T on one-dimensional sub-
spaces, which are essentially (projective) points, as well as
two-dimensional subspaces, which are essentially (projec-
tive) lines. Let M and N be the projective matrices associ-
ated to M and N. On points, we define T(a) = aM. To see
how T acts on lines, we use duality; the point a is incident
with the line L precisely when aL = 0, which is precisely
when (aM)(NL) = 0, so we require that T(L) ≡ NL. In
this way incidence is preserved when we apply a linear
transformation to both points and lines.

The notion of perpendicularity is also modified: the points
a1 and a2 are �-perpendicular precisely when a1N and
a2N are perpendicular, in other words precisely when
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a1
(

NANT )

aT
2 = 0, while the lines L1 and L2 are �-per-

pendicular precisely when LT
1
(

MT BM
)

L2 = 0. The in-
verse pair of symmetric projective matrices

˜A = NANT and ˜B = MT BM

determine new notions of duality: a⊥ = ˜AaT and
L⊥ = LT

˜B as well as new quadrances and spreads:

q̃(a1,a2) ≡ 1−

(

a1˜AaT
2

)2

(

a1˜AaT
1

)(

a2 ˜AaT
2

) and

˜S(L1,L2) ≡ 1−

(

LT
1
˜BL2

)2

(

LT
1
˜BL1

)(

LT
2
˜BL2

) . (11)

Recall that the Fundamental theorem of projective ge-
ometry in this setting is really basic linear algebra: a
general linear transformation of three-dimensional space
maps any three linearly independent vectors −→v 1,

−→v 2,
−→v 3

to any other three vectors. If in addition we are given
a fourth vector −→v 4 = λ1

−→v 1 + λ2
−→v 2 + λ3−→v 3 with none

of λ1,λ2,λ3 zero, then we can send −→v 1,
−→v 2,

−→v 3 respec-
tively to (1/λ1,0,0), (0,1/λ2,0), (0,0,1/λ3) , so that −→v 4
is sent to (1,1,1) . When we view this projectively, we
have essentially a proof of the Fundamental theorem: we
can construct a projective linear transformation that sends
four generic projective points a1,a2,a3 and a4 (no three
collinear) respectively to [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] and
[1 : 1 : 1].

1.6 An example with the basic Triangle

We illustrate these abstractions in a concrete example. Our
basic Triangle shown in Figure 2 comes from the hyper-
bolic plane where the points originally have the approxi-
mate values:

a1≈[−0.4 : 0.4 : 1],a2≈[−0.7 :−0.4 : 1],a3≈[0.1 : 0.1 : 1]

corresponding to the affine points A1 ≈ [−0.4,0.4], A2 ≈

[−0.7,−0.4], A3 ≈ [0.1,0.1]. The following calculations
are subject to round-off and approximation.
The Orthocenter, using formulas for hyperbolic geometry
altitudes, is h ≈ [−0.286886 : 0.217349 : 1]. Now

(x,y,z)





−0.4 0.4 1
−0.7 −0.4 1
0.1 0.1 1



 = (−0.2869,0.2173,1)

has the solution (x,y,z)≈ (0.586371,0.117125,0.296503).
We conclude that the transformation T (v) = vN where

N ≡





0.586371 0 0
0 0.117125 0
0 0 0.296503









−0.4 0.4 1
−0.7 −0.4 1
0.1 0.1 1





=





−0.2345484 0.2345484 0.586371
−0.0819875 −0.04685 0.117125
0.0296503 0.0296503 0.296503





sends (1,0,0), (0,1,0) , (0,0,1) to multiples of
(−0.4,0.4,1), (−0.7,−0.4,1), (0.1,0.1,1) respectively,
and also (1,1,1) to (−0.2869,0.2173,1).

a

a

a

A

s

h
1

10

1

-1

-1

2

3

Figure 2: Basic triangle a1a2a3 with Orthocenter h
Orthostar s, and Orthoaxis A

The inverse projective matrix N−1 = M projectively sends
the points a1,a2,a3 to [1 : 0 : 0] , [0 : 1 : 0] , [0 : 0 : 1] and h
to [1 : 1 : 1]. Recalling the definition of J in (4), the bi-
linear form in the new standard coordinates is given (ap-
proximately) by the pair of projective inverse matrices
A = NJNT and B = MT JM, which are

A ≈





−0.2338 −0.0604 −0.1739
−0.0604 −0.00480 −0.0385
−0.1739 −0.0385 −0.0862



 and

B ≈





−0.7173 1 1
1 −6.745 1
1 1 −1.692





so that

a ≈−0.7173, b ≈−6.745, c ≈−1.692.

As an application, let’s look at an important point asso-
ciated to the Triangle a1a2a3 called the Orthostar s =
[a +2 : b +2 : c + 2]. In our example this would be the
point [1.2827 :−4.745 : 0.308] , and to convert that back
into the original projective or hyperbolic coordinates, we
would multiply by N to get

[1.2827 :−4.745 : 0.308]N≈ [0.0973 : 0.5322 : 0.2877]≈
≈ [0.34 : 1.85 : 1]

which agrees approximately with the affine value for s of
[0.34,1.85] in Figure 2. In the same spirit, the Orthoaxis
A ≡ hs would have standard coordinates
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[1 : 1 : 1]× [a +2 : b +2 : c + 2] = 〈c−b : a− c : b−a〉 ≈
≈ 〈5.053 : 0.9747 :−6.0277〉.

Since this is a line, to convert back to the original coordi-
nates we would multiply by M on the left:

M





5.053
0.9747
−6.0277



 ≈





−47.08
18.02
−17.42



 ≈





2.702
−1.03

1.0





giving the line 2.702X − 1.03Y + 1 = 0 with projective
coordinates 〈2.702 :−1.03 : 1〉 or hyperbolic coordinates
(−2.702 : 1.03 : 1). The Orthoaxis A appears in Figure 2
as the orange line.

1.7 Midpoints, midlines, bilines and bipoints

There are four more important metrical concepts that play
a big role in projective triangle geometry. A side ab has a
midpoint m precisely when m is a point lying on ab which
satisfies q(a,m) = q(m,b), and it has a midline M pre-
cisely when M is a line passing through a midpoint, per-
pendicular to the corresponding line ab of the side. Mid-
lines are called perpendicular bisectors in Euclidean ge-
ometry; we prefer the more compact terminology, which
emphasizes the duality between midpoints and midlines.
Figure 3 shows our standard Triangle a1a2a3 that we will
be using throughout this paper, together with its six Mid-
points m and six Midlines M.

a

a

a

m

m

m

m

m

m

1

2

3s

M

M

M

M

M

M

Figure 3: Midpoints m and Midlines M of the Triangle
a1a2a3

Dually a vertex KL has a biline B precisely when B is a
line passing throughKL which satisfies S (K,B) = S (B,L),
and it has a bipoint b precisely when b is a point lying on

a biline, perpendicular to the corresponding point KL of
the vertex. Bilines are called angle or vertex bisectors in
Euclidean geometry. Bipoints have no Euclidean analogs.
Figure 4 shows the six Bilines B and four of the six Bi-
points b of our standard Triangle. Both Figures 3 and
4 have interesting collinearities and concurrences that the
reader might like to observe; we will explore these later.

a

a

a

b B

B
B

B

B

B

b

b b

1

2

3

Figure 4: Bilines B and Bipoints b

We will see that the existence of midpoints and bilines de-
pends on certain quadratic equations having solutions, with
the consequence that sides and vertices generally have zero
or two midpoints, or bilines. In a general triangle there
are then several possibilities about which sides and ver-
tices have midpoints or bilines. In future work we will ex-
plore interesting variants to these concepts which partially
replace them when they do not exist.

2 Ortholinear coordinates

2.1 The Orthocenter theorem

Here is a main theorem which will be pivotal in our ap-
proach to triangle geometry in this general projective set-
ting. There has recently been renewed interest in the Or-
thocenter in hyperbolic geometry ([8]); deservedly so.

Theorem 2 (Orthocenter theorem) Suppose that a1a2a3
is a triangle which is not a right triangle, so that no two
of the three lines L1 ≡ a2a3, L2 ≡ a1a3 and L3 ≡ a1a2 are
perpendicular. Then the altitude lines (or just altitudes)
N1 ≡ a1L⊥

1 , N2 ≡ a2L⊥

2 and N3 ≡ a3L⊥

3 are defined and
concurrent. Their common meet, the Orthocenter h, does
not lie on L1,L2 or L3.

Proof. If a1a2a3 is not a right triangle, then none of the
points a1,a2,a3 are dual to the opposite lines L1,L2,L3, so
the three altitudes N1 ≡ a1L⊥

1 , N2 ≡ a2L⊥

2 and N3 ≡ a3L⊥

3
are well-defined. Set h ≡ N1N2, with the idea of proving
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that N3 is also incident with h. Now h does not lie on any
of the lines L1,L2 or L3, since otherwise a1a2a3 would be
a right triangle, contrary to our assumption. From the Fun-
damental theorem of projective geometry, we can apply a
linear transformation to change coordinates so that

a1 = [1 : 0 : 0] ,a2 = [0 : 1 : 0] ,a3 = [0 : 0 : 1] ,h = [1 : 1 : 1] .

It follows that

L1 = a2a3 = [0 : 1 : 0]× [0 : 0 : 1] = 〈1 : 0 : 0〉 ,
L2 = a1a3 = [1 : 0 : 0]× [0 : 0 : 1] = 〈0 : 1 : 0〉 ,
L3 = a1a2 = [1 : 0 : 0]× [0 : 1 : 0] = 〈0 : 0 : 1〉 , (12)

and

N1 = a1h = [1 : 0 : 0]× [1 : 1 : 1] = 〈0 : 1 :−1〉 ,
N2 = a2h = [0 : 1 : 0]× [1 : 1 : 1] = 〈1 : 0 :−1〉 .

Suppose that the inverse projective matrix B for the
quadratic form in these new coordinates is

B ≡





a d e
d b f
e f c



 .

Then since L1 ⊥ N1

〈1 : 0 : 0〉T B〈0 : 1 :−1〉= [d − e] = 0

and since L2 ⊥ N2

〈0 : 1 : 0〉T B〈1 : 0 :−1〉= [d − f ] = 0.

From these two equations we deduce that e = f , so that
also

〈0 : 0 : 1〉T B〈1 :−1 : 0〉 = [e− f ] = 0,

which implies that a3h = 〈1 :−1 : 0〉 is indeed perpendic-
ular to L3. So N3 = a3L⊥

3 = a3h passes through h, which
does not lie on L1,L2 or L3. �

Theorem 3 (Ortholinear forms) If a1 = [1 : 0 : 0], a2 =
[0 : 1 : 0], a3 = [0 : 0 : 1] and h = [1 : 1 : 1] is the orthocen-
ter of a1a2a3, then either

B =





a 1 1
1 b 1
1 1 c



 or B =





a 0 0
0 b 0
0 0 c



 .

The second possibility occurs precisely when a1a2a3 is a
fully right triangle: any two of its lines are perpendicular.

Proof. This follows from the proof of the previous theo-
rem: the orthocenter being h implies that d = e = f . So up
to a re-scaling, the possibilities are either d = e = f = 1 or
d = e = f = 0.

Let us now consider the second alternative: where

B =





a 0 0
0 b 0
0 0 c





and each of a,b,c is non-zero by assumption. This then
yields the dual points of the triangle to be 〈1 : 0 : 0〉T B =
[1 : 0 : 0], and also [0 : 1 : 0] and [0 : 0 : 1]. The dual points
are then exactly the same as the original points, so this is a
fully right triangle: all three points and lines are mutually
perpendicular. �

To summarize, we state the following result.

Theorem 4 (Ortholinear coordinates) If the triangle
a1a2a3 is not a right triangle, then we may change co-
ordinates so that the bilinear form is given by the pair of
projective matrices

B =





a 1 1
1 b 1
1 1 c



 , A = B−1 =





1−bc c−1 b−1
c−1 1−ac a−1
b−1 a−1 1−ab





(13)

which depend only on the three numbers a,b,c, and so that
a1,a2,a3 and the orthocenter h have the forms

a1 ≡ [1 : 0 : 0] , a2 ≡ [0 : 1 : 0] , a3≡ [0 : 0 : 1] ,h≡ [1 : 1 : 1] .

We say refer to this as the standard bilinear form, and
that a1a2a3 is the standard triangle, or just the Trian-
gle. The coordinates of this framework are called ortho-
linear coordinates. We will henceforth assume that we
have made this choice of coordinates.
The duals of the Altitudes N1 = 〈0 : 1 :−1〉, N2 =
〈1 : 0 :−1〉, N3 = 〈1 :−1 : 0〉 are the Altitude points

n1 = NT
1 B = [0 : b−1 : 1− c],

n2 = NT
2 B = [a−1 : 0 : 1− c],

n3 = NT
3 B = [a−1 : 1−b : 0] . (14)

The dual of the Orthocenter h = [1 : 1 : 1] is the Ortholine

H=A [1 :1 : 1]T =〈b+c−bc−1 :a+c−ac−1 :a+b−ab−1〉.

Theorem 5 (Null points/lines) The point p ≡ [x : y : z] in
Ortholinear coordinates is a null point precisely when

(1−bc)x2 +(1−ac)y2 +(1−ab)z2+

+ 2(c−1)xy + 2(b−1)xz+ 2(a−1)yz = 0.

The line L ≡ 〈l : m : n〉 is a null line precisely when

al2 + bm2 + cn2 + 2lm+ 2ln + 2mn = 0.
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Proof. These follow by using (13) to expand the respective
conditions

[x : y : z]A [x : y : z]T = 0 and

〈l : m : n〉T B〈l : m : n〉 = 0. �

Corollary 1 Using ortholinear coordinates, the Points
a1 ≡ [1 : 0 : 0], a2 ≡ [0 : 1 : 0] and a3 ≡ [0 : 0 : 1] are null
points precisely when bc = 1,ac = 1 and ab = 1 respec-
tively, and the Lines L1 ≡ 〈1 : 0 : 0〉, L2 ≡ 〈0 : 1 : 0〉 and
L3 ≡ 〈0 : 0 : 1〉 are null lines precisely when a = 0,b = 0
and c = 0 respectively.

Define

D ≡ abc−a−b− c+2. (15)

Then it is straightforward to check that

detB = det





a 1 1
1 b 1
1 1 c



 = D and

detA = det





1−bc c−1 b−1
c−1 1−ac a−1
b−1 a−1 1−ab



 = −D2.

Theorem 6 (Triangle quadrances and spreads) Using
Ortholinear coordinates, the quadrances q1 ≡ q(a2,a3) ,
q2 ≡ q(a1,a3) , q3≡ q(a1,a2) and spreads S1 ≡ S (L2,L3) ,
S2 ≡ S (L1,L3) , S3 ≡ S (L1,L2) of the standard Triangle
a1a2a3 are

q1 =
−Da

(ab−1)(ac−1)
, q2 =

−Db
(ab−1)(bc−1)

,

q3 =
−Dc

(ac−1)(bc−1)

and

S1 =
bc−1

bc
, S2 =

ac−1
ac

, S3 =
ab−1

ab
.

These numbers also satisfy

1−q1 =
(a−1)2

(ab−1)(ac−1)
,

1−q2 =
(b−1)2

(ab−1)(bc−1)
,

1−q3 =
(c−1)2

(ac−1)(bc−1)
(16)

and

1−S1 =
1
bc

, 1−S2 =
1
ac

, 1−S3 =
1

ab
. (17)

Proof. These are straightforward computations. �

Although it will play only a small role in this paper, we
also introduce the most important number associated to the
Triangle, and a formula for it in terms of a,b,c.

Theorem 7 (Triangle quadrea) The quadrea A of the tri-
angle a1a2a3 is

A ≡ q2q3S1 = q1q3S2 = q1q2S3 =
D2

(ab−1)(ac−1)(bc−1)
.

Proof. This follows directly from the formulas of the pre-
vious theorem. �

We cannot help but point out an important trigonometric
formula that follows from this: the Extended Spread law
asserts that
S1
q1

=
S2
q2

=
S3
q3

=
A

q1q2q3
.

2.2 Cevians, traces, Desargues theorem and Canoni-
cal lines

Consider a variable point p ≡ [x : y : z] distinct from
the Points a1,a2,a3 of the Triangle a1a2a3. The lines
a1 p,a2 p,a3p are the Cevian lines, or just Cevians, of p.
These are

a1 p = [x : y : z]× [1 : 0 : 0] = 〈0 : z :−y〉 ,
a2 p = [x : y : z]× [0 : 1 : 0] = 〈z : 0 :−x〉 ,
a3p = [x : y : z]× [0 : 0 : 1] = 〈y :−x : 0〉 .

The points t1 ≡ (a1 p)L1,t2 ≡ (a2 p)L2,t3 ≡ (a3p)L1 are
the trace points, or just traces, of p. These are

t1 = 〈0 : z :−y〉× 〈1 : 0 : 0〉 = [0 : y : z] ,
t2 = 〈z : 0 :−x〉× 〈0 : 1 : 0〉 = [x : 0 : z] ,
t3 = 〈y :−x : 0〉× 〈0 : 0 : 1〉 = [x : y : 0] .

Theorem 8 (Desargues theorem) Suppose that p ≡

[x : y : z] is a point that does not lie on any of the Lines
of the triangle, with traces t1,t2,t3. Then the points
g1 ≡ (t2t3)L1,g2 ≡ (t1t3)L2,g3 ≡ (t1t2)L3 are collinear,
and their join is the line S (p) ≡ 〈yz : xz : xy〉 .

Proof. Using the formulas above for the traces, we com-
pute

g1 ≡ (t2t3)L1 = 〈−yz : xz : xy〉× 〈1 : 0 : 0〉
= [0 : xy :−xz] = [0 : y :−z] ,

g2 ≡ (t1t3)L2 = 〈yz :−xz : xy〉× 〈0 : 1 : 0〉
= [xy : 0 :−yz] = [x : 0 :−z] ,

g3 ≡ (t1t2)L3 = 〈yz : xz :−xy〉× 〈0 : 0 : 1〉
= [xz :−yz : 0] = [x :−y : 0] .
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We have used the fact that x,y,z are all non-zero, by as-
sumption, to cancel these common factors as they occur.
The points g1,g2,g3 are collinear since

det





0 y −z
x 0 −z
x −y 0



 = 0

and their join is

[0 : y :−z]× [x : 0 :−z] = 〈yz : xz : xy〉 ≡ S (p) . �

p

g

t

a
g

t

a

g

t
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1

1

1

2

2

2

3

3

3

s(p)

S(p)

A(p)

Figure 5: Cevians, traces and the lines S(p) and A(p)

Associated to p is the dual of the line S (p):

s(p) ≡ S (p)⊥ = 〈yz : xz : xy〉T B
= [xy + xz+ ayz : xy + yz+ bxz : xz+ yz+ cxy].

Furthermore, the join of p and s(p)

A(p) ≡ ps(p) = 〈y2z− yz2 + cxy2
−bxz2 :

xz2
− x2z+ ayz2

− cyx2 :

x2y− xy2 + bzx2
−azy2

〉

is the canonical line of the generic point p. This is an in-
teresting and important construction that is not available in
Euclidean geometry, and it has many applications. In the
special case when p = h, the Orthocenter of a1a2a3, the
canonical line A ≡ A(h) will be called the Orthoaxis of the
triangle, and will be seen to be the most important line in
triangle geometry.
There is also a dual formulation: consider a line M dis-
tinct from the Lines L1,L2,L3. The points L1M,L2M,L3M
are the Menelaus points of M. If M ≡ 〈l : m : n〉 then the
Menelaus points are

L1M = [0 : n :−m] , L2M = [n : 0 :−l] , L3M = [m :−l : 0] .

The lines T1 ≡ (L1M)a1,T2 ≡ (L2M)a2,T3 ≡ (L3M)a3 are
the trace lines of M, these are

T1 = 〈0 : m : n〉 , T2 = 〈l : 0 : n〉 , T3 = 〈l : m : 0〉 .

Theorem 9 (Desargues dual theorem) Suppose that
M = 〈l : m : n〉 is a line that does not pass through any of
the Points of the triangle, with trace lines T1,T2,T3. Then
the lines (T2T3)a1,(T1T3)a2,(T1T2)a3 are concurrent, and
they pass through the point [mn : ln : lm].

Proof. This is dual to the previous theorem. �

Note that the transforms implicit in both these theorems
are of the form x : y : z → x−1 : y−1 : z−1 which makes it
clear that they are inverses of each other.

2.3 Existence of midpoints and bilines

Theorem 10 (Side midpoints) Suppose that p1 and p2
are non-null, non-perpendicular points, forming a non-
null side p1 p2. Then p1 p2 has a non-null midpoint m pre-
cisely when 1−q(p1, p2) is a square, and in this case there
are exactly two perpendicular midpoints m.

Proof. We suppose without loss of generality that p1 =
a1 ≡ [1 : 0 : 0] and p2 = a2 ≡ [0 : 1 : 0] so that by the Tri-
angle quadrances and spreads theorem

1−q(p1, p2) =
(c−1)2

(bc−1)(ac−1)
.

By assumption each of c−1,bc−1 and ac−1 are nonzero.
An arbitrary point m on ab = 〈0 : 0 : 1〉 has the form
m = [x : y : 0], which is null precisely when (bc−1)x2 +
(ac−1)y2 + 2(1− c)xy = 0, by the Null point theorem.
Assuming that m is non-null, we compute that

q(p1,m)=
Dcy2

(bc−1)((bc−1)x2 +(ac−1)y2 + 2(1− c)xy)

q(p2,m)=
Dcx2

(ac−1)((bc−1)x2 +(ac−1)y2 + 2(1− c)xy)
.

By assumption p1 p2 is non-null, so by the Corollary to the
Null points/lines theorem, c �= 0, and so the above expres-
sions are equal precisely when x2 (bc−1)= y2 (ac−1) has
a solution, which occurs precisely when 1−q(p1, p2) is a
square. In fact if

1
(bc−1)(ac−1)

= r2 (18)

then the two midpoints are m = [(ac−1)r :±1 : 0], and
they are perpendicular, since

[(ac−1)r : 1 : 0]A [(ac−1)r :−1 : 0]T

=(ac−1)
(

1− (bc−1)(ac−1)r2) = 0. �

We refer to the pair of midpoints m of a side as opposites.
It follows that the dual midline M of a midpoint m passes
through the opposite midpoint. While the next theorem is
dual to the previous one, we give a direct proof.
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Theorem 11 (Vertex bilines) Suppose that L1 and L2 are
non-null non-perpendicular lines forming a non-null ver-
tex L1L2. Then L1L2 has a non-null biline B precisely when
1−S (L1,L2) is a square, and in this case there are exactly
two perpendicular bilines B.

Proof. We suppose without loss of generality that L1 =
〈1 : 0 : 0〉 and L2 = 〈0 : 1 : 0〉 , so that from the Triangle
quadrances/spreads theorem

1−S (L1,L2) =
1

ab
.

An arbitrary line through L1L2 = [0 : 0 : 1] has the form
B = 〈l : m : 0〉, which by the Null spread theorem is null
precisely when al2 + bm2 + 2lm = 0, and then

S (L1,B) =
(ab−1)m2

a(al2 + bm2 + 2lm)
and

S (L2,B) =
(ab−1)l2

b(al2 + bm2 + 2lm)
.

By assumption L1L2 is non-null, so by the Corollary to
the Null points/lines theorem, ab−1 �= 0, and so the above
expressions are equal precisely when l2a = m2b has a solu-
tion, which occurs precisely when 1−S (L1,L2) is a square.
In fact if
1
ab

= w2 (19)

then the two bilines are B = 〈l : m : 0〉 = 〈bw :±1 : 0〉 and
they are perpendicular since

〈bw : 1 : 0〉T B〈bw :−1 : 0〉 = b
(

abw2
−1

)

= 0. �

We refer to the pair of bilines B of a vertex as opposites.
It follows that the dual bipoint b of a biline B lies on the
opposite biline.

3 Orthocenter Hierarchy

We now initiate our study of triangle geometry construc-
tions involving perpendicularity. The focus is on the Or-
thocenter h and various other key points that are related
to the most important line in the subject: the Orthoaxis
A. The computations are based on ortholinear coordinates;
finding meets and joins, which essentially amount to tak-
ing cross products; and finding duals, either by multiply-
ing transposes of points by A (on the left) or transposes of
lines by B (on the right). Our goal is to establish formulas
for important points and lines to facilitate the understand-
ing of relationships between them: the reader is encour-
aged to follow along and check our computations, which
are mostly elementary.

3.1 Triangle lines, dual points, dual lines

We start with a review of the basic Triangle a1a2a3, whose
Points a and Lines L are

a1 = [1 : 0 : 0] , a2 = [0 : 1 : 0] , a3 = [0 : 0 : 1] and
L1 = 〈1 : 0 : 0〉 , L2 = 〈0 : 1 : 0〉 , L3 = 〈0 : 0 : 1〉 .

TheDual points l1 ≡ L⊥

1 , l2 ≡ L⊥

2 , l3 ≡ L⊥

3 are the duals of
the Lines L, and the Dual lines A1 ≡ a⊥1 , A2 ≡ a⊥2 , A3 ≡ a⊥3
are the duals of the Points a. These are

l1 = [a : 1 : 1] , l2 = [1 : b : 1] , l3 = [1 : 1 : c] and
A1 = 〈1−bc : c−1 : b−1〉,
A2 = 〈c−1 : 1−ac : a−1〉,
A3 = 〈b−1 : a−1 : 1−ab〉.

The Altitudes are N1 ≡ a1l1, N2 ≡ a2l2, N3 ≡ a3l3, and the
Altitude dual points are n1 ≡A1L1, n2 ≡A2L2, n3≡A3L3.
These are, as established previously,

N1 = 〈0 : 1 :−1〉 , N2 = 〈1 : 0 :−1〉 , N3 = 〈1 :−1 : 0〉 and
n1 = [0 : b−1 : 1− c] , n2 = [a−1 : 0 : 1− c] ,
n3 = [a−1 : 1−b : 0] .

The dual of the Orthocenter h = [1 : 1 : 1] is the Ortholine

H = 〈b + c−bc−1 : a + c−ac−1 : a + b−ab−1〉.
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Figure 6: Altitudes, Base points, Orthocenter h, Orthline
H and Orthic triangle

The Base points b1 ≡ N1L1, b2 ≡ N2L2, b3 ≡ N3L3 are the
meets of corresponding Altitudes N and Lines L, and the
Base lines B1 ≡ n1l1, B2 ≡ n2l2, B3 ≡ n3l3 are their duals.
These are

b1 = [0 : 1 : 1] , b2 = [1 : 0 : 1] , b3 = [1 : 1 : 0] and
B1 = 〈b + c−2 : a(1− c) : a(1−b)〉 ,

B2 = 〈b(1− c) : a + c−2 : b(1−a)〉 ,

B3 = 〈c(1−b) : c(1−a) : a + b−2〉.
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The Orthic lines C1 ≡ b2b3, C2 ≡ b1b3, C3 ≡ b1b2 are the
joins of Base points b, and the Orthic points c1 ≡ B2B3,
c2 ≡ B1B3, c3 ≡ B1B2 are the meets of Base lines B. These
are

C1 = 〈−1 : 1 : 1〉 , C2 = 〈1 :−1 : 1〉 , C3 = 〈1 : 1 :−1〉 ,
c1 = [2−a : b : c] , c2 = [a : 2−b : c] , c3 = [a : b : 2− c].

The Orthic triangle b1b2b3 is perspective with the Trian-
gle a1a2a3, with center of perspectivity the Orthocenter h,
since the Altitudes are the lines of perspectivity.

Theorem 12 (Triangle Base center) The Orthic dual tri-
angle c1c2c3 is perspective with the Triangle a1a2a3, and
the center of perspectivity is the Base center b = [a : b : c].

Proof.We compute the lines

a1c1 = [1 : 0 : 0]× [2−a : b : c] = 〈0 :−c : b〉 ,
a2c2 = [0 : 1 : 0]× [a : 2−b : c] = 〈c : 0 :−a〉 ,
a3c3 = [0 : 0 : 1]× [a : b : 2− c] = 〈−b : a : 0〉

and check that these are all incident with b ≡ [a : b : c] . �
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Figure 7: Orthic dual triangle c1c2c3 and Base center b

Note that there is a bit of duplication of symbols here, the
letter b being used in the same formula with two different
meanings, hopefully without undue confusion. The Base
center is an important triangle point, as we shall see; its
dual is the Base axis

B ≡ 〈a−b− c + 2bc−abc :
−a + b− c +2ac−abc :
−a−b + c +2ab−abc〉.

Figure 7 shows the three Orthic lines C1,C2,C3 but only
one of the Orthic points, namely c1, since the other points
are off the screen. The mathematical symmetry between
points and lines is not respected by our biology; lines tend
to be more visible, while points are simpler.

3.2 Orthic axis and Orthoaxis (they are different!)

The Desargues points g1 ≡ C1L1, g2 ≡ C2L2, g3 ≡ C3L3
are the meets of corresponding Orthic linesC and Lines L,
and the Desargues lines G1 ≡ c1l1, G2 ≡ c2l2, G3 ≡ c3l3
are the joins of corresponding Orthic points and Dual
points. These are

g1 = [0 : 1 :−1] , g2 = [1 : 0 :−1] , g3 = [1 :−1 : 0] and
G1 = 〈b− c : a + ac−2 : 2−a−ab〉,
G2 = 〈2−ba−b : c−a : b + ab−2〉,
G3 = 〈c + bc−2 : 2−ac− c : a−b〉.

Theorem 13 (Triangle orthic axis) The Desargues
points g1,g2,g3 are collinear, and lie on the Orthic
axis S ≡ 〈1 : 1 : 1〉. The Desargues lines G1,G2,G3
are concurrent, and pass through the Orthostar s ≡

[a +2 : b +2 : c + 2]. The Orthic axis and Orthostar are
dual.
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Figure 8: Desargues points g, Orthic axis S, Orthoaxis A

Proof. The Desargues points g1,g2,g3 are collinear ei-
ther by Desargues theorem applied to the Cevian triangle
b1b2b3 of the Orthocenter h, or directly since

det





0 1 −1
1 0 −1
1 −1 0



 = 0.

Their join, the Orthic axis, is

S ≡ g1g2 = [0 : 1 :−1]× [1 : 0 :−1] = 〈−1 :−1 :−1〉
= 〈1 : 1 : 1〉 .

Dually the Desargues lines G1,G2,G3 are concurrent,
which we can check by evaluating the corresponding de-
terminant. The common point through which they pass is
the Orthostar

s ≡ S⊥ = 〈1 : 1 : 1〉T B = [a +2 : b +2 : c + 2] .

This is clearly dual to the Orthic axis. �

35



KoG•15–2011 N. J. Wildberger: Universal Hyperbolic Geometry III: First Steps in Projective Triangle Geometry

We now come to the feature attraction of this paper: the
Orthoaxis A is the join of the Orthocenter h and the Or-
thostar s, or equivalently the canonical line of h. It is

A ≡ hs = [1 : 1 : 1]× [a +2 : b +2 : c + 2]

= 〈c−b : a− c : b−a〉.

Note that the Orthoaxis A is perpendicular to the Orthic
axis S, since the Orthostar s lies on the Orthoaxis. The
Orthoaxis is the most important line in projective triangle
geometry.

The Orthoaxis point a ≡ HS is the dual of the Orthoaxis;
it is

a = A⊥ = 〈c−b : a− c : b−a〉T B
= [(a−1)(b− c) : (b−1)(a− c) : (c−1)(a−b)] .

Theorem 14 (Base center on Orthoaxis) The Base cen-
ter b lies on the Orthoaxis A.

Proof. We check incidence between the Base center b =
[a : b : c] and the Orthoaxis A = 〈c−b : a− c : b−a〉:

bA = [a : b : c]〈c−b : a− c : b−a〉
= [a(c−b)+ b(a− c)+ c(b−a)] = 0. �

The AntiOrthic lines T1 ≡ a1g1,T2 ≡ a2g2,T3 ≡ a3g3 are
the joins of corresponding Points a and Desargues points
g, and the AntiOrthic points t1 ≡ A1G1,t2 ≡ A2G2,t3 ≡
A3G3 are the meets of corresponding Dual lines A and De-
sargues lines G. They have the form

T1 = 〈0 : 1 : 1〉 , T2 = 〈1 : 0 : 1〉 , T3 = 〈1 : 1 : 0〉 and
t1 = [2 : b +1 : c + 1],

t2 = [a +1 : 2 : c + 1],

t3 = [a +1 : b +1 : 2] .

The AntiBase points e1 ≡ T2T3,e2 ≡ T1T3,e3 ≡ T1T2 are
the meets of AntiOrthic lines T , and the AntiBase lines
E1 ≡ t2t3,E2 ≡ t1t3,E3 ≡ t1t2 are the joins of AntiOrthic
points t. They have the form

e1 = [−1 : 1 : 1] , e2 = [1 :−1 : 1] , e3 = [1 : 1 :−1]

and

E1 = 〈b + c + bc−3 : (1− c)(a + 1) : (1−b)(a + 1)〉 ,

E2 = 〈(1− c)(b + 1) : (a + c + ac−3) : (1−a)(b + 1)〉 ,

E3 = 〈(1−b)(c + 1) : (1−a)(c + 1) : (a + b + ab−3)〉 .
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Figure 9: AntiBase points and the AntiOrthic triangle
e1e2e3

Theorem 15 (AntiOrthic perspectivity) The AntiOrthic
triangle e1e2e3 and the Triangle a1a2a3 are perspective
from the Orthocenter h.

Proof. This is equivalent to the statement that the Alti-
tudes N pass through the corresponding AntiBase points
e. For example N1 is incident with e1, since e1N1 =

[−1 : 1 : 1]〈0 : 1 :−1〉 = 0, and similarly N2 is incident
with e2, and N3 is incident with e3. �

It is perhaps worth mentioning that one can work out for-
mulas for these various constructs directly in hyperbolic
geometry in terms of the coordinates of a general triangle.
However this proves rather taxing; even the Orthocenter
involves for each coefficient a homogeneous polynomial
of degree six with 24 terms. The system presented here
punches far above its weight, as the relative simplicity of
the formulas so far confirms.

3.3 Parallels and the Double triangle

In universal hyperbolic geometry, the notion of parallel
is more specialized than in classical hyperbolic geometry.
We do not refer to two lines (or two points) as being par-
allel. Rather we refer to a line P through a point a being
parallel to a line L : it means that P is perpendicular to
the altitude from a to L. In Euclidean geometry this is like
defining parallel lines to be “perpendicular to a perpendic-
ular”: a local definition rather than a global one. This mo-
tivates the important construction of the Double triangle of
a Triangle.

The Parallel lines P1 ≡ a1n1, P2 ≡ a2n2, P3 ≡ a3n3 are
the joins of corresponding Points a and Altitude points n,
and the Parallel points p1 ≡ A1N1, p2 ≡ A2N2, p3 ≡ A3N3
are their duals: meets of corresponding Dual lines A and
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Altitudes N. These are

P1 = 〈0 : c−1 : b−1〉, P2 = 〈c−1 : 0 : a−1〉,
P3 = 〈b−1 : a−1 : 0〉 and
p1 = [2−b− c : 1−bc : 1−bc],
p2 = [1−ac : 2−a− c : 1−ac],
p3 = [1−ab : 1−ab : 2−a−b].

TheDouble points d1 ≡P2P3, d2 ≡P1P3, d3≡P1P2 are the
meets of Parallel lines P, and the Double lines D1 ≡ p2 p3,
D2 ≡ p1 p3, D3 ≡ p1 p2 are the joins of Parallel points p.
These are

d1=[1−a : b−1 : c−1], d2=[a−1 : 1−b : c−1],

d3=[a−1 : b−1 : 1− c] and
D1=〈a+2b+2c−bc−abc−3:(ac−1)(b−1):(ab−1)(c−1)〉,
D2=〈(bc−1)(a−1):2a+b+2c−ac−abc−3:(ab−1)(c−1)〉,
D3=〈(bc−1)(a−1) :(ac−1)(b−1): 2a+2b+c−ab−abc−3〉.
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Figure 10: Parallel lines and the Double triangle d1d2d3

The triangle d1d2d3 is the Double triangle of the Triangle
a1a2a3. The following theorems seem remarkable.

Theorem 16 (Double triangle midpoint) The Points
a1,a2,a3 are midpoints of the Double triangle d1d2d3.

Proof. Using the expressions above, we compute that

q(a3,d1) =

D(a+b−2)

4a+4b+4c−ab−ac−bc−a2
−b2

−c2 +abc2 +ab2c+a2bc−4abc−5

= q(a3,d2)

where D is the determinant defined in (15), and where a
common factor of (ab−1) in the numerator and denomi-
nator has been cancelled provided that ab �= 1. So a3 is a
midpoint of d1d2. Similarly a1 is a midpoint of d2d3, and
a2 is a midpoint of d1d3. �

Theorem 17 (Double triangle null points) The Double
triangle d1d2d3 has a null point precisely when all of its
points are null points, and this occurs precisely when the
quadrea A of the Triangle a1a2a3 is equal to 1.

Proof. Using the Null point theorem,
d1 = [1−a : b−1 : c−1] is null precisely when

0 = (1−bc)(1−a)2 +(1−ac)(b−1)2 +(1−ab)(c−1)2

+(2c−2)(1−a)(b−1)+ (2b−2)(1−a)(c−1)+

+(2a−2)(b−1)(c−1).

After expanding and simplifying, the right hand side is the
symmetric expression

5−4a−4b−4c+ab +ac+bc+a2+ b2 + c2+

+ 4abc−abc2
−ab2c−a2bc.

This same expression arises for the nullity of d2 =
[a−1 : 1−b : c−1] and d3 = [a−1 : b−1 : 1− c], so if
one point of the Double triangle is null, so are the other
two.
Using the Triangle quadrea theorem, the difference be-
tween the quadrea A of the Triangle and 1 is

(abc−b−c−a+2)2

(ab−1) (ac−1) (bc−1)
−1 =

5−4a−4b−4c+ab+ac+bc+a2+b2+c2+4abc−abc2
−ab2c−a2bc

(bc−1) (ac−1) (ab−1)
.

So the Double triangle has null points precisely when the
quadrea A is equal to 1. �

In our standard example, the Triangle has approximate
quadrea A ≈ 1.04, which explains why the points of the
Double triangle in Figure 10 appear close to being null
points.

Theorem 18 (Double triangle perspectivity) The Dou-
ble triangle d1d2d3 and the Triangle a1a2a3 are perspec-
tive from a point, the Double point, or x point, which is
x ≡ [a−1 : b−1 : c−1]. The x point lies on the Orthoaxis
A.

Proof.We compute the lines

a1d1 = [1 : 0 : 0]×[1−a : b−1 : c−1]= 〈0 : 1− c : b−1〉,
a2d2 = [0 : 1 : 0]×[a−1 : 1−b : c−1]= 〈c−1 : 0 : 1−a〉,
a3d3 = [0 : 0 : 1]×[a−1 : b−1 : 1− c]= 〈1−b : a−1 : 0〉.

These lines are concurrent (compute a determinant), and
the common meet is

x = 〈0 : 1− c : b−1〉× 〈c−1 : 0 : 1−a〉

=
[

(a−1)(c−1) : (b−1)(c−1) : (c−1)2
]

= [a−1 : b−1 : c−1] .
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We have cancelled a common factor c − 1; should this
be zero, then the three lines are concurrent since two of
them are equal. The x point lies on the Orthoaxis A ≡ hs
since [a−1 : b−1 : c−1] is a (projective) linear combi-
nation of the Orthocenter h ≡ [1 : 1 : 1] and the Orthostar
s ≡ [a +2 : b +2 : c + 2]. �
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Figure 11: The Double point, or x point

The dual of the x point is the X line

X = 〈a−2b−2c +3bc−abc+1 :
−2a + b−2c +3ac−abc+1 :
−2a−2b + c +3ab−abc +1〉.

Theorem 19 (Double dual triangle perspectivity) The
Double triangle d1d2d3 and the Dual triangle l1l2l3 are
perspective from a point, the Double dual point, or z
point, which is z ≡ [a +1 : b +1 : c + 1]. The z point lies
on the Orthoaxis.
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Figure 12: The Double dual point, or z point

Proof.We compute the lines

l1d1 = [a : 1 : 1]× [1−a : b−1 : c−1]

= 〈c−b : 1−ac : ab−1〉,
l2d2 = [1 : b : 1]× [a−1 : 1−b : c−1]

= 〈bc−1 : a− c : 1−ab〉,
l3d3 = [1 : 1 : c]× [a−1 : b−1 : 1− c]

= 〈1−bc : ac−1 : b−a〉.

These lines are concurrent and their common meet is z ≡
[a +1 : b +1 : c + 1]. This point lies on the Orthoaxis since
it is a (projective) linear combination of the Orthocenter
h ≡ [1 : 1 : 1] and the Orthostar s ≡ [a +2 : b +2 : c + 2].

�

The dual of the z point is the Z line

Z ≡〈a + bc−abc−1 : b + ac−abc−1 : c + ab−abc−1〉.

The AltDual lines K1 ≡ a1n1, K2 ≡ a2N2, K3 ≡ a3n3 are
the joins of corresponding Points a and Altitude points n,
and the AltDual points k1 ≡ A1N1, k2 ≡ A2N2, k3 ≡ A3N3
are meets of corresponding Dual lines A and Altitudes N.
These are

K1 = 〈0 : c−1 : b−1〉, K2 = 〈c−1 : 0 : a−1〉,
K3 = 〈b−1 : a−1 : 0〉 and
k1 = [2−b− c : 1−bc : 1−bc],
k2 = [1−ac : 2−a− c : 1−ac],
k3 = [1−ab : 1−ab : 2−a−b].

Clearly the AltDual triangle k1k2k3 is perspective to the
Triangle, since the Altitudes pass through both Points and
AltDual points, but in addition, as Figure 13 suggests, it
is also in perspective with the Double triangle. The center
of perspectivity, the AltDual point k, does not generally
lie on the Orthoaxis. We leave this result to the reader, as
well as the following exercise investigating other perspec-
tive centers of various secondary triangles associated to our
basic Triangle.
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Figure 13: AltDual triangle k1k2k3 and the AltDual point k

Exercise 1 Show that the following pairs of triangles are
perspective, and find the centers of perspectivity: i) c1c2c3
and p1 p2 p3, ii) b1b2b3 and d1d2d3, iii) b1b2b3 and l1l2l3,
iv) c1c2c3 and d1d2d3, v) c1c2c3 and l1l2l3, vi) k1k2k3 and
d1d2d3. Can you find more?
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3.4 Special points on the Orthoaxis

There are five interesting, and related, points on
the Orthoaxis A = 〈c−b : a− c : b−a〉, namely
the points z = [a +1 : b +1 : c + 1], b = [a : b : c],
x = [a−1 : b−1 : c−1], h = [1 : 1 : 1] and s =
[a +2 : b +2 : c + 2]. Of course there very well may be
more! In Figure 14 we see them in this particular order.

Theorem 20 (Orthoaxis harmonic ranges) The points
z,b,x,h form a harmonic range. The points z,b,h,s also
form a harmonic range.
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Figure 14: Orthoaxis A and points z,b,x,h and s

Proof. Recall that the points z,b,x,h form a harmonic
range precisely when the cross ratio R(z,x : b,h) = −1.
Define the following vectors which represent each of the
five points:

−→z = (a + 1,b + 1,c + 1),
−→

b = (a,b,c) ,
−→x = (a−1,b−1,c−1),
−→

h = (1,1,1) ,
−→s = (a + 2,b + 2,c + 2).

Then −→z +−→x = 2
−→

b and −→z −
−→x = 2

−→

h so that b and h
are harmonic conjugates with respect to z and x, so that
R(z,x : b,h) = −1. Similarly −→z +

−→

h = −→s and −→z −

−→

h =
−→

b so that b and s are harmonic conjugates with respect to
z and h, so that R(z,h : b,s) = −1. �

There are three more cross ratios naturally determined by
the five points. We will leave it to the reader to check that
in addition

R(z,x : b,s)=−3, R(b,h : x,s)=−1/2, R(z,h : x,s) =−2.

Theorem 21 (Second double triangle perspectivity)
The Triangle a1a2a3 and the double triangle of the Double
triangle d1d2d3 are perspective from the Second double
point, or y point.
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Figure 15: The double of the Double triangle and the y
point

Proof. We leave the proof to the reader. The formula for y
is somewhat lengthy to write out. �

It is worth pointing out that in general the y point does not
lie on the Orthoaxis A, although it often, as in our example,
gets very close! It is also worth noting that the obvious pat-
tern does not appear to continue; the double of the double
of the Double triangle is not in general perspective with the
original Triangle.

4 Incenter Hierarchy

Although the Incenter and Circumcenter hierarchies are
exactly dual, we treat first the former, which is closer to the
Euclidean situation and so more familiar. It is also simpler,
on account of the difference between (18) and (19).

4.1 Bilines, Incenters and Apollonians

From the Vertex bilines theorem, Bilines of the Triangle
exist precisely when the spreads S1,S2,S3 have the prop-
erty that 1−S1,1−S2,1−S3 are all squares. In Figure 16,
where we are working approximately, this amounts to each
of these quantities being positive, which they are, and so
there are six Bilines B, two opposite ones for each vertex,
and six dual Bipoints b, two opposite ones lying on each
Dual line.
From the Triangle quadrances and spreads theorem, Bi-
lines exist precisely when we can find u,v,w satisfying the
quadratic relations
1
bc

= u2,
1
ac

= v2,
1

ab
= w2. (20)
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But there is also a cubic relation
1

abc
= uvw (21)

which we are able to impose, by taking the product of the
three quadratic relations (20), and possibly changing the
sign of any or all of u,v,w (they must all be non-zero).
These relations (20) and (21) will play an essential
role in what follows; any triple {u,v,w} satisfying
them gives rise to three more such triples: namely
{u,−v,−w} ,{−u,v,−w} and {−u,−v,w}. So there is a
fourfold Klein-type symmetry occurring here. Another im-
plication is that we also have the relations

u = avw, v = buw, w = cuv. (22)

We saw at the end of the proof of the Vertex bilines theo-
rem, that Bilines for the vertex L1L2 are B = 〈bw :±1 : 0〉.
We see now from (22) that these can be rewritten as
〈v : u : 0〉 and 〈v :−u : 0〉.
So the Bilines B are

〈0 : w : v〉,〈0 : w :−v〉 through a1,

〈w : 0 : u〉,〈w : 0 :−u〉 through a2,

〈v : u : 0〉,〈v :−u : 0〉 through a3.

The Bipoints b are dual, and are

[v + w : v + bw : w+ cv] , [v−w : v−bw :−w+ cv]
on A1,

[u + aw : u + w : w+ cu] , [u−aw : u−w :−w+ cu]

on A2,

[u + av : v + bu : u + v], [u−av : v−bu :−u + v]
on A3.
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Figure 16: Bilines, Bipoints, Incenters and Inlines

Theorem 22 (Incenters) Bilines B are concurrent in
threes, meeting at four Incenters i0, i1,i2 and i3. Bipoints b
are collinear in threes, joining on four Inlines I0, I1, I2 and
I3.

Proof. The following triples of Bilines B are concurrent:

〈0 : w :−v〉 , 〈w : 0 :−u〉 , 〈v :−u : 0〉
through i0 ≡ [u : v : w] ,

〈0 : w :−v〉 , 〈w : 0 : u〉 , 〈v : u : 0〉
through i1 ≡ [−u : v : w] ,

〈0 : w : v〉 , 〈w : 0 :−u〉 , 〈v : u : 0〉
through i2 ≡ [u :−v : w] ,

〈0 : w : v〉 , 〈w : 0 : u〉 , 〈v :−u : 0〉
through i3 ≡ [u : v :−w] .

We check this by computing

det





0 w −v
w 0 −u
v −u 0





=det





0 w −v
w 0 u
v u 0





=det





0 w v
w 0 −u
v u 0





=det





0 w v
w 0 u
v −u 0



 = 0.

The corresponding meets are 〈0 : w :−v〉× 〈w : 0 :−u〉 =
[

−uw :−vw :−w2] = [u : v : w] ≡ i0 and similarly for the
other Incenters. The situation with Bipoints b is dual. �

At this point, it appears that there is no intrinsic reason
to prefer one Incenter over the others; our notation seems
somewhat arbitrary. However it is possible that this sym-
metry may eventually be broken.

Apollonian points a are meets of Bilines B and corre-
sponding Lines L. There are six; they have the form

[0 : v : w] , [0 : v :−w] ,

[u : 0 : w] , [u : 0 :−w] ,

[u : v : 0] , [u :−v : 0] (23)

on L1,L2,L3 respectively. TheApollonian lines A are joins
of Bipoints b and corresponding Dual points l.

40



KoG•15–2011 N. J. Wildberger: Universal Hyperbolic Geometry III: First Steps in Projective Triangle Geometry

a

a

a

i

b
a

a

a

a

a
a

B

B

B

B

A
A

A

A

A

A B

B

I

I

I

I

b

b b

i

i

i

1

2

3

3

1

2

L

L

L

Figure 17: Apollonian points a and lines A

Theorem 23 (Apollonian harmonic conjugates) The
two Apollonian points on a side of the Triangle are har-
monic conjugates with respect to the two Points of that
side.

Proof. Consider the side a2a3 with Apollonian points
[0 : w : v] and [0 : w :−v] . Then it is a standard fact that
the projective points determined by the vectors (0,v,w) and
(0,v,−w) are harmonic conjugates with respect to those
determined by the vectors (0,v,0) and (0,0,w). �

We leave the dual result concerning Apollonian lines to the
reader.

A famous property of the Apollonian points in the Eu-
clidean case is that the three circles built from pairs of these
as diameters meet at the two Isodynamic points. This prop-
erty is modified in the projective setting, by introducing an
important variant of a circle. Given two points a and b, the
Thaloid of the side ab is the locus of a point p satisfying
the property that pa ⊥ pb, or equivalently

S (pa, pb) = 1. (24)

It is straightforward that this is a conic. It is not generally
a (metrical) circle, but shares some of its properties.

An Apollonian Thaloid is a Thaloid of a side consisting
of two Apollonian points, both on a Line of the triangle.
There are three Apollonian Thaloids, one for each side of
the Triangle.

Theorem 24 (Isodynamic points) If two Apollonian
Thaloids meet at a point s, then the third does too.

Proof. The equations of the three Thaloids are obtained
directly from the forms of the Apollonians in (23) and the

defining relation (24):

bcx2
−acy2

−2bzx + 2azy = 0,

acy2
−abz2

−2cxy + 2bxz = 0,

abz2
−bcx2

−2ayz+ 2cxy = 0.

If we add these three equations we get zero on both sides,
so they are dependent. So if two Thaloids have a common
point s, then this is shared by the third. �
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Figure 18: Apollonian Thaloids and Isodynamic points
s1,s2

Such a common point of the three Apollonian Thaloids
is an Isodynamic point; Figure 18 shows two such: s1
and s2, together with the line through them. In the Eu-
clidean case this is the Brocard line, which also passes
through the orthocenter—here in the projective situation
that is not generally the case, even though it appears to in
this example. In the Euclidean case the centers of the three
Apollonian circles are collinear, falling on the Lemoine
line: something analogous happens here but it requires ad-
ditional ideas which we leave for another occasion.

4.2 Centrians, InCentrians, Contact points and Incir-
cles

Theorem 25 (Centrian lines) The Apollonian points a
are collinear in threes, joining on four Centrian lines J.
The Apollonian lines A are concurrent in threes, meeting
at four Centrian points j.

Proof. The following triples of Apollonian points are
collinear:

[0 : v :−w], [u : 0 :−w], [u :−v : 0] on J0 ≡ 〈vw : uw : uv〉 ,
[0 : v :−w], [u : 0 : w], [u : v : 0] on J1 ≡ 〈−vw : uw : uv〉 ,
[0 : v : w], [u : 0 :−w], [u : v : 0] on J2 ≡ 〈vw :−uw : uv〉 ,
[0 : v : w], [u : 0 : w], [u :−v : 0] on J3 ≡ 〈vw : uw :−uv〉 .
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The collinearities may easily be checked by computing de-
terminants. The corresponding meets are [0 : v :−w]×
[u : 0 :−w] = 〈vw : uw : uv〉 ≡ J0 and similarly for the
other Centrian lines. The situation with the Apollonian
lines A is dual; here are the formulas for the Centrian
points:

j0 ≡ [uv + uw+ avw : uv + vw+ buw : uw+ vw+ cuv],
j1 ≡ [uv + uw−avw : uv− vw+ buw : uw− vw+ cuv],
j2 ≡ [uv−uw+ avw : uv + vw−buw : vw−uw+ cuv],
j3 ≡ [uw−uv + avw : vw−uv + buw : uw+ vw− cuv]. �

The four Incenters and the four Centrian points are corre-
sponding, since the three Bilines that meet in an Incenter
also give rise to the three Apollonian points lying on a par-
ticular Centrian line, which is dual to a particular Centrian
point. The InCentrian lines are joins of corresponding
Incenters i and Centrian points j. These have the form

i0 j0 = 〈cv−bw : aw− cu : bu−av〉,
i1 j1 = 〈cv−bw : aw+ cu :−bu−av〉,
i2 j2 = 〈−cv−bw : aw− cu : bu + av〉,
i3 j3 = 〈cv + bw :−aw− cu : bu−av〉.

While it is easy to check that the Incenters lie on these
InCentrian lines, showing that the Centrian points do so
requires the quadratic relations. (The reader is encouraged
to check this).

The InCentrian points are meets of corresponding Inlines
I and Centrian lines J, and are dual to the InCentrian lines.
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Figure 19: Centrians, Incentrians and Base center b

Theorem 26 (InCentrian center) The four InCentrian
lines are concurrent, and meet at the Base center b. The
four InCentrian points are collinear, and join on the Base
axis B.

Proof. The InCentrian line i0 j0 = 〈cv−bw : aw− cu : bu−av〉
passes through b = [a : b : c] since

[a : b : c]〈cv−bw : aw− cu : bu−av〉
= [(cv−bw)a +(aw− cu)b +(bu−av)c] = 0.

Similarly j1i1, j2i2, j3i3 also pass through b. The second
statement follows by duality. �

The InDual lines are joins of Incenters i and Dual points l.
They may also be described as altitudes from Incenters to
the Lines, and there are 12. The InDual lines associated to
the Incenters are:

〈v−w : aw−u : u−av〉, 〈v−bw : w−u : bu− v〉,
〈cv−w : w− cu : u− v〉 to i0 = [u : v : w] ,

〈v−w : aw+ u :−u−av〉, 〈v−bw : w+ u :−bu− v〉,
〈cv−w : w+ cu :−u− v〉 to i1 = [−u : v : w] ,

〈−v−w : aw−u : u + av〉, 〈−v−bw : w−u : bu + v〉,
〈−cv−w : w− cu : u + v〉 to i2 = [u :−v : w] ,

〈v + w :−aw−u : u−av〉, 〈v + bw :−w−u : bu− v〉,
〈cv = w :−w− cu : u− v〉 to i3 = [u : v :−w] .

The InDual points are meets of Inlines I and Lines L, and
are dual to InDual lines.

The Contact points are meets of corresponding InDual
lines and Lines L; there are a total of 12. They may also be
described as the bases of the altitudes from the Incenters to
the Lines. The Contact points associated to the Incenters
are:

[0 : u−av : u−aw], [v−bu : 0 : v−bw] ,

[w− cu : w− cv : 0] to i0 = [u : v : w] ,

[0 : u + av : u + aw], [v + bu : 0 : v−bw] ,

[w+ cu : w− cv : 0] to i1 = [−u : v : w] ,

[0 : u + av : u−aw], [v + bu : 0 : v + bw] ,

[w− cu : w+ cv : 0] to i2 = [u :−v : w] ,

[0 : u−av : u + aw], [v−bu : 0 : v + bw] ,

[w+ cu : w+ cv : 0] to i3 = [u : v :−w] .

The Contact lines are joins of corresponding InDual
points and Dual points l. Figure 20 shows the InDual lines
and Contact points. The latter are intimately connected
with important conics associated to the Triangle—the In-
circles.
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Figure 20: InDual lines, Contact points and Incircles

A circle is the locus of a point p satisfying q(p,c) = K
for some fixed point c and some fixed number K: this
is a conic. Circles centered at the Incenters and passing
through the associated Contact points are tangent to the
Lines at these points, and are called Incircles; there are in
this case four, and these are also shown in Figure 20.
Note that in this particular case the two Incircles whose
centers are outside the null circle have a quite different
character from the two with interior centers. The former
are often called ‘curves of constant width’ in the classical
literature, and are tangent to the null circle at the points
where the dual of the center (in this case an Inline) meets
it. Circles can take on different forms, appearing in our
affine view also as hyperbolas outside the null circle, tan-
gent to it at these same points. See [18] for some pictures;
also the video UnivHypGeom25: Geometer’s Sketchpad
and Visualizing circles in Universal Hyperbolic Geometry
in the YouTube playlist [20].

4.3 Sight lines, Gergonne and Nagel points

A Sight line is the join of a Contact point with the Point
a opposite to the Line that it lies on. A Sight point is the
dual of a Sight line. There are 12 Sight lines; three asso-
ciated to each Incenter, and four incident with each Point.
The Sight lines associated to the Incenters are:

〈0 : u−aw :−u + av〉, 〈v−bw : 0 :−v + bu〉,
〈w− cv :−w+ cu,0〉 to i0 = [u : v : w] ,

〈0 :−u−aw : u + av〉, 〈v−bw : 0 :−v−bu〉,
〈w− cv :−w− cu,0〉 to i1 = [−u : v : w] ,

〈0 : u−aw :−u−av〉, 〈−v−bw : 0 : v + bu〉,
〈w+ cv :−w+ cu,0〉 to i2 = [u :−v : w] ,

〈0 : u + aw :−u + av〉, 〈v + bw : 0 :−v + bu〉,
〈−w− cv : w+ cu,0〉 to i3 = [u : v :−w] .

Theorem 27 (Gergonne points) The three Sight lines as-
sociated to an Incenter meet at a Gergonne point g. These
are:

g0 = [−abcu + acv + abw−1 : bcu−abcv + abw−1 :
bcu + acv−abcw−1],

g1 = [abcu + acv + abw+1 :−bcu−abcv + abw+1 :
−bcu + acv−abcw+1],

g2 = [−abcu−acv + abw+1 : bcu + abcv + abw+1 :
bcu−acv−abcw+1],

g3 = [−abcu + acv−abw+1 : bcu−abcv−abw+1 :
bcu + acv + abcw+1].

Proof. We check that g0 as defined is incident with the
Sight line 〈0 : u−aw :−u + av〉 by computing

[−abcu + acv + abw−1 : bcu−abcv + abw−1 :
bcu + acv−abcw−1]〈0 : u−aw :−u + av〉

=
[

−a
(

v−w+ abw2
−acv2

−buw+ cuv
)]

= 0

using the quadratic relations and (22). The computations
for the other Sight lines and g1,g2,g3 are similar. �

An InGergonne line is the meet of a corresponding Incen-
ter i and Gergonne point g. An InGergonne point is the
join of a corresponding Inline and Gergonne line G. The
four InGergonne lines are

g0i0 = 〈v−w−bcuv + bcuw : w−u + acuv−acvw :
u− v−abuw+ abvw〉,

g1i1 = 〈w− v + bcuv−bcuw :−w−u−acuv−acvw :
u + v + abuw+ abvw〉,

g2i2 = 〈v + w+ bcuv + bcuw : u−w−acuv + acvw :
− v−u−abuw−abvw〉,

g3i3 = 〈v + w+ bcuv + bcuw :−u−w−acuv−acvw :
u− v−abuw+ abvw〉.
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Figure 21: Sight lines, Gergonne points g, InGergonne
lines and the z point
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Theorem 28 (InGergonne center) The four InGergonne
lines are concurrent, and meet at the z point.

Proof. We check that g0i0 passes through z =
[a +1 : b +1 : c + 1] by computing

[a +1 : b +1 : c + 1]·

〈v−w−bcuv+bcuw:w−u+acuv−acvw:u−v−abuw+abvw〉
= [av−bu−aw+ cu+bw− cv−abuw+acuv+abvw

−bcuv−acvw+ bcuw]

= (a−b)(cuv−w)+(c−a)(buw−v)+(b−c)(avw−u)= 0

where we have used the relations (22). Similarly g1i1, g2i2,
g3i3 also pass through the z point. �

Theorem 29 (Nagel points) The following triples of Sight
lines are concurrent. Each triple involves one Sight line
associated to each of the Incenters, and so is associated to
the Incenter with which it does not share a Sight line:

〈0 :−u−aw : u + av〉, 〈−v−bw : 0 : v + bu〉,
〈−w− cv : w+ cu : 0〉 to i0 = [u : v : w] ,

〈0 : u−aw :−u + av〉, 〈v + bw : 0 :−v + bu〉,
〈w+ cv :−w+ cu : 0〉 to i1 = [−u : v : w] ,

〈0 : u + aw :−u + av〉, 〈v−bw : 0 :−v + bu〉,
〈w− cv :−w− cu : 0〉 to i2 = [u :−v : w] ,

〈0 : u−aw :−u−av〉, 〈v−bw : 0 :−v−bu〉,
〈w− cv :−w+ cu : 0〉 to i3 = [u : v :−w] .

The points where these triples meet are the Nagel points

n0 = [abcu + acv + abw+1 : bcu + abcv + abw+1 :
bcu + acv + abcw+1],

n1 = [abcu−acv−abw+1 : bcu−abcv−abw+1 :
bcu−acv−abcw+1],

n2 = [−abcu + acv−abw+1 :−bcu + abcv−abw+1 :
−bcu + acv−abcw+1],

n3 = [−abcu−acv + abw+1 :−bcu−abcv + abw+1 :
−bcu−acv + abcw+1].

Proof. We check that n0 as defined is incident with
〈0 :−u−aw : u + av〉 by computing

[abcu + acv + abw+1 : bcu + abcv + abw+1 :
bcu + acv + abcw+1]〈0 :−u−aw : u + av〉

=
[

a
(

v−w−abw2 + acv2
−buw+ cuv

)]

= 0

using the quadratic relations and (22). The computations
for the other Sight lines and n1,n2,n3 are similar. �

The joins of Incenters i and corresponding Nagel points n
are the InNagel lines. They are

n0i0 = 〈w− v−bcuv + bcuw : u−w+ acuv−acvw :
v−u−abuw+ abvw〉,

n1i1 = 〈v−w+ bcuv−bcuw : w+ u−acuv−acvw :
−u− v + abuw+abvw〉,

n2i2 = 〈−v−w+ bcuv + bcuw :−u + w−acuv + acvw :
v + u−abuw−abvw〉,

n3i3 = 〈−v−w+ bcuv + bcuw : u + w−acuv−acvw :
−u + v−abuw+abvw〉.
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Figure 22: Nagel points n, InNagel lines and the x point

Theorem 30 (InNagel center) The four InNagel lines are
concurrent, and meet at the x point.

Proof.We check that n0i0 passes through x = [a−1 : b−1 :
c−1] by computing

[a−1 : b−1 : c−1]〈w− v−bcuv + bcuw :
u−w+ acuv−acvw : v−u−abuw+ abvw〉

= [bu−av + aw− cu−bw+ cv+abuw−acuv−abvw+

+ bcuv + acvw−bcuw]= 0

as in the proof of the InGergonne center theorem. The
other incidences are similar. �

The joins of corresponding Gergonne points and Nagel
points are the Gergonne-Nagel lines. They are

g0n0 = 〈a(bc−1)(bw− cv) : b(ac−1)(cu−aw) :
c(ab−1)(av−bu)〉,

g1n1 = 〈−a(bc−1)(bw− cv) : b(ac−1)(cu + aw) :
− c(ab−1)(av + bu)〉,

g2n2 = 〈−a(bc−1)(bw+ cv) :−b(ac−1)(cu−aw) :
c(ab−1)(av + bu)〉,

g3n3 = 〈a(bc−1)(bw+ cv) :−b(ac−1)(cu + aw) :
− c(ab−1)(av−bu)〉.
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Theorem 31 (Gergonne-Nagel center) The four
Gergonne-Nagel lines are concurrent, and meet at the
Gergonne-Nagel center, or u point, which is

u = [(ac−1)(ab−1) : (bc−1)(ab−1) : (bc−1)(ac−1)] .

Proof. We may check directly that the u point defined as
above does indeed lie on each Gergonne-Nagel line: this
does not require use of the quadratic or cubic relations. �
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Figure 23: Gergonne-Nagel lines and the
Gergonne-Nagel center: the u-point

We leave it as an exercise for the reader to establish that the
u point lies on the Orthoaxis precisely when the numbers
a,b,c are not distinct.

5 Circumcenter Hierarchy

There is a fundamental duality between the Incenter and
Circumcenter hierarchies, since from (6) a point m is a
midpoint of a side ab precisely when its dual line M = m⊥

is a biline of the dual vertex a⊥b⊥. So by dualizing we can
transform all known facts about the Incenter hierarchy of a
triangle to the Circumcenter hierarchy of the dual triangle,
and vice versa. This is a striking difference between pro-
jective Triangle geometry and the more familiar Euclidean
version, and sheds also some light on the latter.

All the results of this section are consequences of the
dual results established in the previous section, after some
book-keeping between the two hierarchies.
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Figure 24: Midpoints m, Midlines M, Circumcenters c,
Circumlines C

We will now assume that the triangle a1a2a3 has Mid-
points m, and so also Midlines M. This occurs precisely
when 1−q1,1−q2,1−q3 are all squares, and in this case
there are six Midpoints, two on each side. This is equiva-
lent to the Dual triangle l1l2l3 having bilines. EachMidline
M passes through a Midpoint m, since any two Midpoints
of a side are perpendicular.

Theorem 32 (Circumlines) Midpoints m are collinear in
threes, joining on four Circumlines C. Midlines M are
concurrent in threes, meeting at four Circumcenters c.

Median lines (or just medians) D are joins of correspond-
ing Midpoints m and Points a. There are six Medians, two
passing through each Point. The duals are the Median
points d, the meets of correspondingMidlinesM and Dual
lines A.
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Figure 25: Medians D, Median points d, Centroids g,
Centroid lines G
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Theorem 33 (Median harmonic conjugates) The two
Median lines through a vertex of the Triangle are har-
monic conjugates with respect to the two Lines of that
vertex.

Theorem 34 (Centroids) The Median lines D are concur-
rent in threes, meeting at four Centroid points g. The Me-
dian points d are collinear in threes, joining on four Cen-
troid lines G.

A Median Thaloid is a Thaloid of a side consisting of two
Median points, both on a Dual line of the Triangle. There
are three Median Thaloids.

Theorem 35 (Isostatic points) If two Median Thaloids
meet at a point r, then the third does too.

Such a common point is an Isostatic point; Figure 26
shows the three Median Thaloids as well as two Isostatic
points: r1 and r2, and their join.
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Figure 26: Median Thaloids and Isostatic points r1 and r2

The four Circumlines and the four Centroid lines are cor-
responding, since the three Midpoints that join in a Cir-
cumline also give rise to the three Median lines passing
through a particular Centroid line, which is dual to a partic-
ular Centroid line. CircumCentroid points are meets of
corresponding Circumlines and Centroid lines. Circum-
Centroid lines are partially analogous to Euler lines, be-
ing joins of Circumcenters and Centroids. The next result
shows that the z point might also be called the Euler cen-
ter!

Theorem 36 (CircumCentroid axis) The four Circum-
Centroid points are collinear, and join on the Z line. The
four CircumCentroid lines are concurrent, and meet at the
z point.
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Figure 27: CircumCentroids, the Z line and the z point

CircumDual points are meets of Circumlines and Dual
lines. There are twelve CircumDual points, four on each
Dual line, three on each Circumline. CircumDual lines
are duals of CircumDual points. Tangent lines are joins
of corresponding CircumDual points and Points; there are
twelve. Tangent points are duals of Tangent lines.
A Circumcircle is a circle centered at a Circumcenter
passing through one, hence all of the Points. These are
shown in Figure 28, with CircumDual points and Tangent
lines, which really are tangent to the Circumcircles.
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Figure 28: CircumDuals points, Tangent lines, Circumcir-
cles and Sound points

Sound points are meets of Tangent lines and Lines; there
are twelve, three associated to each Circumline. They are
also shown in Figure 28. Sound lines are the duals of
Sound points.
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Theorem 37 (Jay lines) The three Sound points associ-
ated to a particular Circumline C join on a Jay line J.

There are four Jay lines, and Jay points j are their du-
als. CircumJay points are meets of Circumlines and as-
sociated Jay lines; there are four, and CircumJay lines are
their duals; joins of Circumcenters and Jay points.
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Figure 29: Jay points and lines, CircumJay points and
lines, and the Base center b

Theorem 38 (CircumJay center) The four CircumJay
points join on the Base axis B. The four CircumJay lines
meet at the Base center b.

Theorem 39 (Wren lines) Sound points associated to dif-
ferent Circumlines are collinear in threes, and join on four
Wren lines W.

The duals of the Wren lines are Wren points w. To each
Wren line we associate the Circumline not associated to the
Sound points on it. CircumWren points are the meets of
Circumlines and associated Wren lines, and CircumWren
lines are their duals.

Theorem 40 (CircumWren center) The four Circum-
Wren points join on the Orthic axis S. The four Circum-
Wren lines meet at the Orthostar s.
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Figure 30: Wren points and lines, CircumWren points and
lines, and the Orthostar s

A JayWren point is the meet of associated Jay lines and
Wren lines; there are four. The duals are the JayWren
lines.

Theorem 41 (JayWren center) The four JayWren points
join on the JayWren axis, or the V line. The four JayWren
lines meet at the JayWren center, or v point.

This is a good point to remark that in the projective situa-
tion there are remarkable additional constructions, that are
available at times when midpoints and bilines may not ex-
ist, which allow a wide extension of many of the theorems
in this paper. This topic will be developed elsewhere.
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Figure 31: JayWren points and lines, JayWren center v and
axis V
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6 Bridging between the Incenter and Cir-
cumcenter hierarchies

Although we have so far emphasized the complete duality
between the Incenter and Circumcenter hierarchies, it is
also the case that there are numerous remarkable connec-
tions between the two. We give a brief indication of this
with three examples, leaving proofs to another occasion.
We assume we have a (generic) triangle a1a2a3 with both
Bilines and Midpoints (so both hierarchies exist). This is,
at least approximately, the situation with our example Tri-
angle.

Theorem 42 The JayWren center v, the Gergonne-Nagel
center u and the Orthocenter h are collinear.

a

v

u

h

a

a

1

2

3

Figure 32: Jay-Wren-Gergonne-Nagel axis

Theorem 43 (InCirc joins/meets) The 16 InCirc joins
joining the four Incenters i and the four Circumcenters c
meet also four at a time at four InCirc centers r.
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Figure 33: InCirc joins and InCirc centers

The four Incenters i, four Circumcenters c and four InCirc
centers r form a pleasant symmetrical configuration of 12
points.

Theorem 44 (InCentroid joins/meets) The 16 InCen-
troid joins joining the four Incenters i and the four Cen-
troid points g meet two at a time at 24 InCentroid meets
which lie, 8 each, on the Lines.
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Figure 34: InCentroid lines and meets

An interesting direction is to ponder the implications of
this work for classical Euclidean triangle geometry. There
are also many further phenomenon in the projective setting
with no obvious affine/Euclidean parallel, which will be
studied in future papers. The author will shortly post Tri-
angle Geometry GSP worksheets on his UNSW website.
Hopefully these, together with the formulas and pictures
in this paper, will empower and encourage the reader to
make his/her own discoveries!
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ABSTRACT

Based on the requests from architects, we developed a
system which allows to interactively design and subdivide
flexible triangular surfaces. Due to economical reasons the
number of different types of building elements should be
small. For that reason we only use equilateral base tri-
angles of unique size with the possibility of subdivision.
To allow to interactively move vertices and to ensure con-
stant edge length we use force-directed methods instead
of inverse kinematics. This paper describes the data struc-
ture, the algorithm and the influence of subdivision on the
kinematic flexibility of the mesh.

Key words: subdivision, uniform 1-to-4 split, flexible
mechanism, force directed algorithm
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Interaktivno modeliranje i razdioba fleksibilnog

mehanizma jednakostranǐcnih trokuta

SAŽETAK

Prema zahtjevima arhitekata razvijamo sustav koji dozvo-
ljava interaktivnu tvorbu i razdiobu fleksibilne triangulirane
plohe. Broj različitih sastavnih dijelova iz ekonomskih ra-
zloga treba biti mali. Zbog toga koristimo samo sukladne
jednakostranične bazne trokute s mogućnošću razdiobe.
Kako bismo dozvolili interaktivno kretanje vrhova i osi-
gurali konstantnost duljine bridova umjesto inverzne kine-
matike koristimo metodu upravljanja silom. Rad opisuje
strukturu podataka, algoritam i utjecaj razdiobe na kine-
matičku fleksibilnost mreže.

Ključne riječi: razdioba, uniformna 1-4 podjela, fleksibilni
mahanizam, algoritam upravljanja silom

1 Introduction

In order to design the booth of the University of Applied
Arts Vienna at the Vienna Fair 20111 (see Figure 1), the
Department of Geometry was asked how to interactively
model a surface consisting of equilateral triangles of dif-
ferent sizes. This surface, covered with sound-absorbing
material (see Figure 2), was floating above the booth like
a cloud and was therefore called Acoustic Cloud by re-
sponsible architect Juliana Herrero. For the arrangement
of the triangles she required a tool which allows her to
individually subdivide triangles of the mesh and to inter-
actively move vertices while keeping the side lengths of
the triangles constant. This yields a triangular mechanism
whose kinematic behavior – to our knowledge – can not
be simulated with existing software packages. Just as well,
the theoretical solution of the task is almost impossible.
Therefore, we developed a tool which attempts a numeri-
cal solution by using force-directed methods. In this paper
we present the algorithm and discuss the kinematic restric-

tions which come along with the subdivision of the surface.
Depending on the subdivision levels of adjacent triangles
subdivision can enhance flexibility or not, as can be seen
from the example depicted in Figure 6 and Figure 9.
Before we will describe our algorithm in Section 2 we
will review related work. However, since this paper is
mainly concerned with the practical application of a force-
directed algorithm to a kinematic problem, we will re-
strict us to a short overview. Usually, force directed al-
gorithms are associated with the drawing of graphs, where
they are used to position the nodes of the graph in an aes-
thetically pleasing way by assigning forces to edges and
nodes. Historically, the work of Tutte [9] can be considered
as one of the first force-directed algorithms. Tutte only
used springs of ideal length zero and no repulsive forces.
Eades [3] and Fruchterman and Reingold [4] used spring
forces, similar to those in Hooke’s law. Both methods ap-
ply repulsive forces between all nodes and attractive forces
to nodes connected by edges. However, force-directed
algorithms have been applied to other domains as well.

1The Vienna Fair is an international contemporary art fair focusing on Central and Eastern Europe. http://www.viennafair.at
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Figure 1: The booth of the University of Applied Arts Vi-
enna at the Vienna Fair 2011. (Photo by Virgil
Widrich)

Figure 2: A close-up of the Acoustic Cloud. (Photo by
Virgil Widrich)

Examples include the work of Quinn and Breuer [8] who
describe a force-directed method to place components on
printed circuit boards. Provot [7] used a force-directed al-
gorithm to simulate the behavior of cloth by approximat-
ing it by a deformable surface composed of a network of
masses and springs. Djidjev [1] published a force-directed
method to smooth unstructured triangular and tetrahedral
meshes. Recently, Gruber et al. [5] described a method
which optimizes given grids with rectangular topology on
an arbitrary parametric double-curved surface in regard to
orthogonality and, optionally, locally almost constant grid
size.

2 Algorithm

2.1 Basic Data Structure

In the following we consider an initial equilateral triangu-
lar mesh M = (V,T ) where V is a set of vertices and T is

Figure 3: Subdivision of a triangle with a 1-to-4 split.

a set of equilateral non-subdivided (Level 0) triangles with
side-length a. At this point we should stress that equilat-
erality is not a necessity and the algorithm can be easily
adapted to arbitrary triangular meshes. Additionally a set
of edges E is stored. Basically, a vertex v is defined by
its position in R

3 and an edge e = (v0,v1) connects vertex
v0 with v1. An edge also stores references to its adjacent
triangles n0 and n1. Note, that a triangle is only consid-
ered adjacent if both vertices v0 and v1 are corners of the
triangle.
A triangle t = (v0,v1,v2) is defined by the three corners
v0, v1 and v2. Furthermore, references to the three edges
e0 = (v0,v1), e1 = (v1,v2) and e2 = (v2,v0) are stored.
These data structures are shown in Appendix A in List-
ing 1, Listing 2 and Listing 3 along with further variables
which will be described later.

2.2 Subdivision

For subdivision we use a uniform 1-to-4 split, which di-
vides a triangle ti at subdivision level i into four triangles
ti+1
0 , ti+1

1 , ti+1
2 and ti+1

3 as depicted in Figure 3. The 1-
to-4 split is a commonly used method for subdivision and
remeshing of triangles, e.g., Loop subdivision [6] and But-
terfly subdivision [2] both use 1-to-4 refinement. To re-
cursively traverse the hierarchy it is necessary that ti stores
pointers to these four child triangles which in turn have to
store a pointer to their parent ti. The level itself is also
stored in the data structure of the triangle.
A uniform 1-to-4 split introduces new vertices vc0, vc1 and
vc2 at the center of the edge ei

0, ei
1 and ei

2 of ti. These
vertices are only added to V if a vertex with the same
coordinates does not already exist. We will refer to ei

j,
j ∈ {0,1,2} as the support edge of vc j and to vc j as the
center vertex of ei

j.

Further, each edge ei
j, j ∈ {0,1,2} will be divided into two

parts ei+1
j1 and ei+1

j2 . ei
j stores references to these two child

edges which in turn store a pointer to their parent ei
j. Also,

ei
j stores a pointer to the corresponding center vertex vc j.
These six edges are added to E along with the three new
edges ei+1

new0, ei+1
new1 and ei+1

new2 of ti+1
3 . In the following we
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Figure 4: Two inflexible center vertices vk,vl (red) of a
subdivided triangle t induce a further inflexi-
ble vertex vm (yellow).

Figure 5: An example for propagation of inflexibility: 1.
the two inflexible vertices v1 and v2 will cause
va to become inflexible. 2. va together with
the already existing inflexible vertex v3 induce
a further inflexible point vb.

will call an edge e0 with only one neighboring triangle (ei-
ther n0 or n1) a border edge.

2.3 Kinematic Restrictions

Different subdivision levels between adjacent triangles re-
strict the movability of the mechanism in certain ways, i.e,
just because an edge has been subdivided it does not mean
that it is allowed to fold at its center vertex.

2.3.1 Inflexible Vertices

We will refer to a vertex as flexible if the corresponding
support edge is allowed to fold, otherwise inflexible. All
vertices which are corners of a triangle at level 0 are flexi-
ble. The flexibility of vertices vc j, j ∈ {0,1,2} introduced
during subdivision is algorithmically determined by per-
forming the following test. If there already exists a vertex
v∗ with the same coordinates then v∗ is marked as flexible.
Otherwise, we check if the corresponding support edge e j
is a border edge. If it is, vc j is flexible, if it is not vc j is
inflexible. In other words, a center vertex v with support
edge e is inflexible if and only if one of the adjacent trian-
gles of e is subdivided, otherwise v is flexible.

Figure 6: An example of a 3D mechanism. Different
subdivision levels result in inflexible vertices
(shown in red and yellow). Such vertices pre-
vent folding of their support edge and there-
fore restrict the movability of the mechanism
in regard to interactive displacement.

2.3.2 Induced Inflexible Vertices

However, the test in Section does not capture all kinematic
restrictions because it does not take into account the con-
figuration of the neighborhood. Certain configurations can
cause a propagation of inflexibility through the mesh, in
other words, inflexible vertices can induce further inflexi-
ble vertices what we therefore call induced inflexible ver-
tices in the following. To detect these induced inflexible
vertices we run a second test after the above mentioned
test.
If a triangle t is subdivided and two of the three center
vertices vk and vl of its edges are inflexible (as shown in
Figure 4) then the third center vertex vm also becomes in-
flexible because of the following reason. If vk is inflexible
then the corresponding support edge ek is not allowed to
fold, the same holds true for vl and its support edge el .
Therefore the edge ekl between vk and vl is also rigid, even
if the sub-triangles of t are further subdivided. ek and el
together with ekl as a distance piece between them make
the triangle t rigid.
The introduction of an induced inflexible vertex can lead
to further induced inflexible vertices. A simple example is
shown in Figure 5. To handle this possible series of reac-
tions, the test has to be repeated until no further induced
inflexible vertices are found. Figure 6 shows a 3D exam-
ple of a surface with different subdivision levels and the
different types of inflexible vertices.

2.4 Force-directed Placement

An important feature of the tool is that the surface can be
interactivelymodeled bymoving vertices. Since a theoreti-
cal calculationwith inverse kinematic of such a mechanism
is almost impossible, we attempt a numerical solution with
force-directed methods. The iterative force-directed algo-
rithm is responsible for arranging the vertices in a way that
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Figure 7: In order to keep the distance between two in-
flexible vertices v0 and v1 constant, their dis-
placements have to be applied twice to the cor-
responding vertices vlever0 and vlever1 instead
to v0 and v1.

guarantees that edges keep their predefined ideal length.
In case of equilateral triangles the idealLength = 0.5i

· a,
where i is the subdivision level of the edge and a is the
side length of a level 0 triangle. However, the set of edges
E contains more information than necessary for the simu-
lation. Therefore, we derive a minimal set of edges F ⊆ E
which completely describes the flexible mechanism.

To determine the edges of F , we initially loop only through
edges e which do not have a parent2. In order to decide
which parts of the edge hierarchy of e belong to F , we
start the following recursive process. If e does not have
any children, the edge itself belongs to F . Otherwise, we
check if the center vertex of e is inflexible in which case
e is also part of F . However, if the center vertex is flexi-
ble then the process is repeated recursively for e = ec0 and
e = ec1 where ec0 and ec1 are the two child edges of e.

For each vertex v a displacement vector vdisp is stored
which is set to zero at the beginning of each iteration.
Afterward, the algorithm loops through each edge e =
(v0,v1) ∈ F and calculates the deviation ∆ from the actual
edge length ∆ = eideal −‖v01‖ where v01 = vpos

1 − vpos
0 . If

v0 is flexible then d := ε ·∆ ·
v01

‖v01‖
is subtracted from vdisp

0 ,
where ε > 0 is a small constant. Similarly d is added to
vdisp

1 if v1 is flexible.

No displacement is added to inflexible points because their
position has to remain at the center of their rigid support
edge. This calculation will be performed later. However, if
both vertices of an edge are inflexible, as depicted in Fig-
ure 7, a problem arises because the edge would not have
the effect of a distance piece anymore. We solved the prob-
lem by transferring the edges’ distance keeping force onto
other suitable vertices. Let e0 be the support edge of v0,
e1 the support edge of v1 and t the triangle which contains
e0 and e1. Further, let e2 be the third edge of t. Then the
displacements caused by e will be applied twice to the cor-
responding vertices vlever0 and vlever1 of e2.

Figure 8: An example for the planarity condition of an
(induced) inflexible vertex v with support edge
e and adjacent triangles t0 and t1: The left
image shows the subdivision level of triangles
and the flexibility of vertices. The right image
shows the trapezoids implied by v for t0 (red)
and t1 (orange). The corners of each separate
trapezoid together with v have to be coplanar.
The different sizes of the trapezoids are a result
from the different subdivisions at both sides of
e. The smaller orange trapezoid allows folding
the mesh at the dotted line, which would not be
the case if the three adjacent level 2 triangles
would have been chosen for the trapezoid.

Once all edges have been processed the aggregated dis-
placement of each vertex is added to its position. Finally,
the calculation of the position of inflexible vertices is per-
formed. This calculation has to be carried out in a hier-
archical top to down manner to make sure that the center
vertex of the parent of an edge f is already at the right po-
sition before calculating the position of a possible center
vertex of f .
These steps are summarized in Listing 4 in Appendix A.

2.4.1 Planarity Condition and Convergence Speed

Because the algorithm described above only takes edge
lengths and not planarity into account it will converge
slowly to the solution. However, an (induced) in-
flexible vertex will not only make its support edge
rigid but will also make parts of the surface pla-
nar. We take advantage of this theoretical fact to im-
prove the converge speed of the algorithm. Let us
assume that v is an (induced) inflexible vertex with
e being its support edge and let ti

0 and ti
1 be the adjacent

triangles of e at level i. In the following let us consider
ti
0 to be subdivided (the same process is performed for ti

1
if it is subdivided). Figure 8 shows a possible configura-
tion. Inside the hierarchy of ti

0 we search for three triangles
incident to v with the following properties:

1. All three triangles are on the same subdivision
level m

2. There is no higher level k > m which fulfills condi-
tion (1), i.e., m is maximal2Note, that this are not only edges on subdivision level 0.
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Figure 9: An example of a mesh with subdivisions up to level 2 which was designed with the described tool (level 0 =
green, level 1 = blue and level 2 = red). Whereas triangles on subdivision level 0 and 1 have high flexibility,
the level 2 triangles – as chosen in this example – have no further influence on the kinematic behavior of the
mechanism. Inflexible vertices are shown in red and induced inflexible vertices are colored yellow.

All vertices of these three triangles have to be coplanar, be-
cause the support edge e of v can be thought of as a frame
joint for the two triangles ta and tb as seen in Figure 8. To-
gether with the remaining triangle tc they form an isosceles
trapezoid. v stores these vertices in an array called trape-
zoidVertices0 in the data structure. After displacement of
the vertices in the force-directed algorithm, the vertices of
this array are orthogonally projected onto their regression
plane. This procedure increases the speed of the algorithm
considerably.

2.4.2 Termination Condition

The steps outlined above are repeated iteratively until all
displacements are below a certain threshold, mathemati-
cally vdisp < ε ∀v ∈V .

3 Operations

An important aspect in the development of the system was
interactivity. Users should be able to easily work with the
mesh in order to facilitate the design process. Therefore

all operations can be performed with a single mouse click
together with keyboard shortcuts.

The system allows to append edges of side length a to cor-
ners of level 0 triangles. If adding a new edge yields a new
base triangle (i.e., a triangle at subdivision level 0) then
this triangle is automatically added to T . Only edges with
no adjacent triangles can be removed. Existing triangles
– independent of their subdivision level – can be subdi-
vided with a 1-to-4 split, as described in Section 2.2. When
deleting a triangle two cases can occur: If a triangle ti with
i = 0 (base triangle) is deleted then edges not adjacent to
any remaining triangles are deleted automatically as well.
In case i > 0 all four triangles of the parent triangle from ti,
including edges and vertices which are no longer part of a
remaining triangle, are deleted in order to guarantee a well-
defined subdivision hierarchy. Dragging a vertex with the
left (right) mouse button moves it horizontally (vertically).
Once the position of a vertex changes the arrangement of
the mesh has to be recalculated which is handled by the
force-directed algorithm described in Section 2.4.
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4 Conclusions

In this paper we described a tool to interactively design tri-
angular mechanisms by extending the mesh, subdividing
triangles, and moving vertices (Figure 9 shows an exam-
ple). Although we restricted ourselves – due to the initial
artistic concept – to equilateral triangles it should be noted
that the algorithm can be easily modified to general trian-
gles.
To simulate the kinematic behavior of the mesh we used an
iterative force directed algorithm. As it turned out, subdivi-
sions must not necessarily increase the flexibility, because
in many cases inflexibility propagates quite easily. This
means that subdivision has to be applied well-considered
in order to raise flexibility. From a designer’s point of view,
this may be very restrictive. In general the flexibility can
be improved if one allows small deviations from the ideal
edge length. Experiments showed that ignoring the pla-
narity condition (see Section 2.4.1) and allowing for the
edge length to deviate only by 1% from its predefined ideal
length, increases the flexibility already considerably.

A Data Structures and Pseudo Code

struct sVertex

{

float [3] position ;

float [3] displacement;

bool flexible ;

bool inducedInflexible;

sEdge *supportEdge ;

Array <sVertex *> trapezoidVertices0;

Array <sVertex *> trapezoidVertices1;

};

Listing 1: Vertex data structure

struct sEdge

{

sVertex *v0;

sVertex *v1;

sVertex *center ;

sEdge *c0; // child 0

sEdge *c1; // child 1

sEdge *parent ;

sTriangle * n0;

sTriangle * n1;

float idealLength ;

int level;

};

Listing 2: Edge data structure

struct sTriangle

{

sVertex * v0;

sVertex * v1;

sVertex * v2;

sEdge* e0;

sEdge* e1;

sEdge* e2;

sTriangle * c0; // child 0

sTriangle * c1; // child 1

sTriangle * c2; // child 2

sTriangle * c3; // child 3

sTriangle * parent ;

int level;

};

Listing 3: Triangle data structure

foreach (sVertex v)
v. displacement = (0,0,0);

foreach (sEdge e) {

float [3] l = e.v0.position - e.v1.position ;

float ∆ = e.idealLength - l.length ();

l. normalize ();

if (e.v0.flexible == true)

e.v0.displacement += -ε*∆*l;
if (e.v1.flexible == true)

e.v1.displacement += ε*∆*l;

if (e.v0.flexible == false &&

e.v1. flexible == false) {

// find lever0 and lever1 , see Fig . 6

lever0 .displacement += -2*ε*∆*l;
lever1 .displacement += 2*ε*∆*l;

}

}

foreach (sVertex v)

v. position += v. displacement;

calcPositionOfInflexiblePoints ();

foreach (trapezoid t) {

Plane regPlane = calcRegressionPlane(t);

foreach (Vertex v in t.vertices )

regPlane .orthoProject(v);

}

Listing 4: Pseudocode for the force-directed algorithm
from Section 2.4
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Lokacija objekata u ravnini

SAŽETAK

U radu razmatramo izravni i obratni problem lokacije

objekata u ravnini uz korištenje različitih kvazimetričkih

funkcija s odgovarajućim ilustracijama. Dano je nekoliko

primjera iz različitih područja primjena.

Ključne riječi: grupiranje podataka, klasteri, problem

lokacije, k-sredina, k-median, optimizacija

1 Uvod

U radu razmatramo sljedeći problem lokacije: Uz pret-
postavku da su poznate lokacije objekata c1, . . . , ck
u ravnini, dani skup točaka S = {ai = (xi,yi) : i =
1, . . . ,m}, (m� k) treba grupirati (razdijeliti) na k
nepraznih disjunktnih skupova (klastera) π1, . . . ,πk,
tako da j-tom klasteru πj pripadnu one točke koje
su u nekom smislu najbliže j-tom centru cj . Al-
ternativno, ovaj problem mogao bi se postaviti i na
drugi način. Uz pretpostavku da je poznata particija
Π = {π1, . . . ,πk} sastavljena od nepraznih disjunktnih
podskupova (klastera) zadanog skupa S ⊂ R

2, treba
odrediti centre c1, . . . , ck ∈ R

2 klastera π1, . . . ,πk.

Odgovarajući obratni problem bio bi traženje opti-
malne lokacije centara c�1, . . . , c

�
k ∈R

2, na osnovi kojih
bi mogli definirati i odgovarajuće optimalne klastere
π�1 , . . . ,π

�
k.

Broj svih particija m-članog skupa S sastavljenih od
nepraznih disjunktnih skupova π1, . . . ,πk jednak je
Stirlingovom broju druge vrste

{

m
k

}

(vidi [10], str. 257
ili [22]), gdje je
{

m

k

}

=
1
k!

k
∑

j=1

(−1)k−j
(

k

j

)

jm,

koji u praktičnim primjenama može biti izuzetno ve-
lik (vidi [17]). Problem traženja optimalne particije
spada u NP-teške probleme (vidi [7]) nekonveksne
optimizacije općenito nediferencijabilne funkcije više
varijabli, koja najčešće posjeduje značajan broj sta-
cionarnih točaka.

Postoji opsežna recentna literatura iz ovog područja
s različitim i brojnim primjenama, a može se pro-
naći pod nazivom problem k-sredina ili problem k-
medijana1 [11, 12, 16–18]. Tako se mogu pronaći
brojne primjene u poljoprivredi (primjerice, razvrsta-
vanje oranica prema plodnosti zemljišta), biologiji
(primjerice, klasifikacija kukaca u grupe), genetici,
medicini, prometu, kod biranja lokacije građevinskih
objekata, kod razumijevanja klimatskih kretanja, u
upravljanju (primjerice, rangiranje gradova i općina
za potrebe financijske podrške), u poslovanju, u
društvenim i humanističkim znanostima itd. Nave-
dimo nekoliko konkretnih primjera:

Primjer 1. (Primjena u potresnom inženjerstvu)

Metode grupiranja podataka često se koriste u ra-
zličitim inženjerskim primjenama. Navedimo jednu
primjenu u za život važnom potresnom inženjerstvu.
Na osnovi seizmoloških podataka iz prethodnog raz-
doblja klasterskom analizom moguće je procijeniti
mjesta nepouzdana za lokaciju građevinskih objekata.
U radu [21] prikazana je primjena klasterske analize u
procjenjivanju oštećenja cjevovoda (voda, nafta, plin)
i prepoznavanju područja nastajanja visokih oštećenja
na njima. Ta mjesta uglavnom su problematična po-
dručja (seizmički kritična) i visoko rizična u nastaja
nju nedostataka i kvarova na cjevovodima. Razumi-
jevanje razloga nastajanja oštećenja na tim mjestima
može poboljšati prevenciju i ublažavanje oštećenja
cjevovoda.

∗ Rad je napisan uz potporu Ministarstva znanosti, tehnologije i

športa Republike Hrvatske u okviru projekta 235-2352818-1034.

1engl. k-means problem, k-median problem
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Primjer 2. (Pretraživanje teksta)

Postoji opsežna literatura o primjeni klasterske ana-
lize kod pretraživanja teksta (vidi primjerice [7, 14]),
pri čemu uzorak od jedne ili više riječi treba pronaći u
nekom dokumentu. U ovom slučaju općenito se radi o
izuzetno velikim skupovima podataka visoke dimenzije,
a rezultat pretrage očekuje se u realnom vremenu.

Primjer 3.

(Detekcija opasnih mjesta u prometu)

U doktorskoj dizertaciji [11] navodi se primjer primje-
ne klasterske analize kod detekcije opasnih mjesta na
autocesti “New Jersey Turnpike”. Na osnovi podataka
o mjestima i vrsti prometnih nezgoda detektiraju se
kritične lokacije.

Primjer 4. (Definiranje izbornih jedinica)

Pretpostavimo da su poznati podaci (ai,wi), i= 1, . . . ,n
o lokacijama naselja ai s brojem glasača wi. Treba
odrediti izborne jedinice π1, . . . ,πk, tako da za svaku
izbornu jedinicu πj vrijedi

(i) (1−p)mk ≤ |πj | ≤ (1 +p)mk ,

(ii) d(cj ,ai)≤ r, ∀ai ∈ πj ,

gdje su c1, . . . , ck centri izbornih jedinica, m =
∑n
i=1wi, a p > 0 i r > 0 su zadani brojevi. Uvjet (i)

osigurava ravnomjernost broja glasača po izbornim je-
dinicama do na p%, a uvjet (ii) definira maksimalnu
udaljenost centra cj izborne jedinice πj do naselja u
toj izbornoj jedinici.

Primjer 5.

Promatramo skup korisnika koje na neki način treba
povezati s još neizgrađenim objektima kao što su prim-
jerice željezničke stanice, sportski kompleksi, knjižni-
ce, antene ili supermarketi. Ovdje se prirodno po-
javljuje problem određivanja optimalne lokacije obje-
kata, tako da objekti u nekom smislu budu što bliže
korisnicima. Osim toga dodatno možemo zahtijevati
da troškovi povezivanja budu primjereno raspodijeljeni
na sve korisnike te isto tako da prihodi koje ostvaruju
objekti budu primjereno rasopodijeljeni na sve objekte
i na taj način svi korisnici kao i objekti budu zado-
voljni. U tom slučaju navedeni optimizacijski pro-
blem može se promatrati kao specijalni oblik problema
lokacije, koji je u engleskom govornom području po-
znat pod nazivom “facility location games” (vidi pri-
mjerice [3, 9]).

2 Izravni problem lokacije

Funkciju d : R
2×R

2 → R+, koja ima barem svojstvo
pozitivne definitnosti

d(x,y)≥ 0 & d(x,y) = 0⇔ x= y,

i pomoću koje se lako računa centar c svakog
diskretnog skupa π ⊂ R

2

c= argmin
z∈conv(π)

∑

a∈π

d(z,a), (1)

zovemo kvazimetrička funkcija2 (vidi primjerice [13,
20]). Najpoznatija kvazimetrička funkcija je tzv.
kvazimetrička funkcija najmanjih kvadrata dLS(a,b) =
‖a− b‖22, a,b ∈ R

2, koja osim svojstva pozitivne defi-
nitnosti ima i svojstvo simetričnosti, ali ne zadovo-
ljava nejednakosti trokuta. Centar c diskretnog skupa
π⊂R

2 u ovom slučaju je centroid c= 1
|π|

∑

a∈π
a (u fizici

i mehanici težište ili Steinerova točka) skupa π.

Za dani skup točaka S = {ai = (xi,yi) ∈ R
2 : i =

1, . . . ,m}⊂R
2 izravni problem lokacije možemo defini-

rati na dva načina:

A: Ako su poznati centri c1, . . . , ck ∈ R
2 (k � m),

treba odrediti particiju skupa S sastavljenu od
nepraznih disjunktnih skupova π1, . . . ,πk, tako
da bude

ai ∈ πj ⇔ d(cj ,ai)≤ d(cs,ai),

∀s= 1, . . . ,k; (2)

B: Ako je poznata particija Π = {π1, . . . ,πk} skupa
S sastavljena od nepraznih disjunktnih skupova,
treba odrediti centre c1, . . . , ck ∈ R

2, (k � m)
klastera prema (1).

Primjerice ako su u Primjeru 4 poznati centri c1, . . . , ck
izbornih jedinica, a treba definirati izborne jedinice
π1, . . . ,πk, radi se o rješavanju izravnog problema A.
Korištenjem različitih kvazimetričkh funkcija dobi-
vaju se razni principi – kriteriji grupiranja. Osim
spomenute kvazimetričke funkcije najmanjih kvadrata
dLS , u literaturi [2, 4, 7, 11, 13, 15, 17] često se koristi

2Oznaka v = argmin
u∈D

f(u) znači da funkcija f u točki v ∈D postiže svoju najmanju vrijednost na skupu D
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(i) d1(a,b) = ‖a− b‖1 = |x1−x2|+ |y1− y2|,

a= (x1,y1), b= (x2,y2)

(Manhattan ili taxicab udaljenost)

(ii) d∞(a,b) = ‖a− b‖∞ = max{|x1−x2|, |y1− y2|},

a= (x1,y1), b= (x2,y2)

(Čebiševljeva udaljenost)

(iii) dB(a,b) = x1 ln
x1

x2
+ y1 ln

y1

y2
−x1− y1 +x2 + y2,

a= (x1,y1), b= (x2,y2)

(Bregmanova generalizirana I-udaljenost

ili Kullbach-Leiblerova udaljenost).

Spomenimo da kvazimetričke funkcije d1 i d∞ zado-
voljavaju još dodatno svojstva simetričnosti i ne-
jednakosti trokuta te su zbog toga prave metričke
funkcije, za razliku od Bregmanove generalizirane I-
udaljenosti dB za koju se lako vidi da ne zado-
voljava niti jedno od spomenutih svojstava metrike.
Navedena Bregmanova generalizirana I-udaljenosti dB
samo je jedna iz klase kvazimetričkih funkcija koje
su u literaturi poznate kao Bregmanove udaljenosti.
Važno svojstvo Bregmanovih udaljenosti je lako raču-
nanje centra diskretnog skupa u smislu formule (1),
a za mnoge ovakve kvazimetričke funkcije za centar
diskretnog skupa mogu se dobiti i eksplicitne formule
(vidi [13]). U literaturi postoji veliki broj različitih
primjena klasterske analize koje se zasnivaju na ko-
rištenju Bregmanovih udaljenosti kao što su primjerice
teorija informacija, klasifikacija teksta, obrada signa-
la, analiza govora itd. Više o tome se može naći u
[1].

2.1 Izravni problem lokacije uz dLS
kvazimetričku funkciju

Za dani skup točaka S ⊂ R
2 potražit ćemo rješenje

izravnog problema lokacije A i izravnog problema B
uz korištenje dLS kvazimetričke funkcije. Ako su po-
znati centri c1, . . . , ck ∈ R

2, particiju Π = {π1, . . . ,πk}
određujemo principom minimalnih udaljenosti tako
da bude (vidi [7, 13, 17, 19])

ai ∈ πj ⇔ ‖cj−ai‖2 ≤ ‖cs−ai‖2, ∀s= 1, . . . ,k. (3)

Za k = 2 ovaj problem (vidi [19]) svodi se na određi-
vanje simetrale dužine c1c2, a može se eksplicitno ri-
ješiti kao što je prikazano na Slici 1.

a) m= 10000, k = 2

2 4 6 8 10

2

4

6

8

10

b) m= 10000, k = 5

2 4 6 8 10

2

4

6

8

10

Slika 1: Grupiranje skupa S u klastere

Pokazuje se da u općem slučaju ovaj problem vodi
na konstrukciju Voronoijevih dijagrama (vidi [7, 13,
15, 17]). O konstrukciji Voronoijevih dijagrama vidi
također [8]. Na Slici 1 ovaj problem ilustriran je pri-
mjenom vlastitog Mathematica–modula zam= 10000
podataka u ravnini i k = 2, odnosno k = 5 centara.

Ako je poznata particija Π = {π1, . . . ,πk} skupa S =
{ai = (xi,yi) ∈ R

2 : i= 1, . . . ,m} ⊂ R
2, centre klastera

c1, . . . , ck dobivamo na sljedeći način (vidi [17])

cj = argmin
z∈conv(πj)

∑

a∈πj

‖z−a‖22 =





1
|πj|

∑

ai∈πj

xi,
1
|πj |

∑

ai∈πj

yi



 . (4)

2.2 Izravni problem lokacije uz d1 metričku
funkciju

Za dani skup točaka S ⊂ R
2 potražit ćemo rješenje

izravnog problema lokacije A i izravnog problema B uz
korištenje d1 metričke funkcije. Ako su poznati centri
c1, . . . , ck ∈ R

2, particiju Π = {π1, . . . ,πk} određujemo
principom minimalnih udaljenosti tako da bude

ai ∈ πj ⇔ ‖cj−ai‖1 ≤ ‖cs−ai‖1, ∀s= 1, . . . ,k. (5)

Na Slici 2 ovaj problem ilustriran je primjenom vlasti-
tog Mathematica–modula za m = 10000 podataka u
ravnini i k = 2, odnosno k = 5 centara.

a) m= 10000, k = 2

2 4 6 8 10

2

4

6

8

10

b) m= 10000, k = 5

2 4 6 8 10

2

4

6

8

10

Slika 2: Grupiranje skupa S u klastere
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Ako je poznata particija Π = {π1, . . . ,πk} skupa S =
{ai = (xi,yi) ∈ R

2 : i= 1, . . . ,m} ⊂ R
2, centre klastera

c1, . . . , ck dobivamo na sljedeći način (vidi [17])

cj = argmin
z∈conv(πj)

∑

ai∈πj

‖z−a‖1 =

(

med
ai∈πj

xi, med
ai∈πj

yi

)

, (6)

gdje je med
ai∈πj

xi oznaka za medijan niza kojeg čine

apscise svih točaka iz klastera πj .

2.3 Izravni problem lokacije uz d∞ metričku
funkciju

Za dani skup točaka S ⊂ R
2 potražit ćemo rješenje

izravnog problema lokacije A i izravnog problema B uz
korištenje d∞ metričke funkcije. Ako su poznati centri
c1, . . . , ck ∈ R

2, particiju Π = {π1, . . . ,πk} određujemo
principom minimalnih udaljenosti tako da bude

ai ∈ πj ⇔ ‖cj−ai‖∞ ≤ ‖cs−ai‖∞,

∀s= 1, . . . ,k. (7)

Na Slici 3 ovaj problem ilustriran je primjenom vlasti-
tog Mathematica–modula za m = 10000 podataka u
ravnini i k = 2, odnosno k = 5 centara.

a) m= 10000, k = 2

2 4 6 8 10

2

4

6

8

10

b) m= 10000, k = 5

2 4 6 8 10

2

4

6

8

10

Slika 3: Grupiranje skupa S u klastere

Ako je poznata particija Π = {π1, . . . ,πk} skupa S =
{ai = (xi,yi) ∈ R

2 : i= 1, . . . ,m} ⊂ R
2, centre klastera

c1, . . . , ck dobivamo na sljedeći način

cj = argmin
z∈conv(πj)

∑

a∈πj

‖z−a‖∞. (8)

2.4 Izravni problem lokacije uz Bregmanovu
generaliziranu I-udaljenost

Za dani skup točaka S ⊂ R
2 potražit ćemo rješenje

izravnog problema lokacije A i izravnog problema
B uz korištenje kvazimetričke funkcije dB koja je u

literaturi poznata kao Bregmanova generalizirana I-
udaljenost. Ako su poznati centri c1, . . . , ck ∈R

2, par-
ticiju Π = {π1, . . . ,πk} određujemo principom mini-
malnih udaljenosti tako da bude

ai ∈ πj ⇔ dB(cj ,ai)≤ dB(cs,ai), ∀s= 1, . . . ,k. (9)

Na Slici 4 ovaj problem ilustriran je primjenom vlasti-
tog Mathematica–modula za m = 10000 podataka u
ravnini i k = 2, odnosno k = 5 centara. Primijetimo
da su rubovi dobivenih disjunktnih skupova krivulje.

a) m= 10000, k = 2

2 4 6 8 10

2
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b) m= 10000, k = 5
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Slika 4: Grupiranje skupa S u klastere

Ako je poznata particija Π = {π1, . . . ,πk} skupa S =
{ai = (xi,yi) ∈ R

2 : i= 1, . . . ,m} ⊂ R
2, centre klastera

c1, . . . , ck dobivamo primjenom geometrijske sredine
na podatke iz klastera

cj = argmin
z∈conv(πj)

∑

a∈πj

dB(z,a) =











∏

ai∈πj

xi





1/|πj|

,





∏

ai∈πj

yi





1/|πj |





. (10)

2.5 Mathematica–modul

Sve prikazane ilustracije izrađene su vlastitim
Mathematica–modulom Particija[a, c, d]. Modulu
se predaje lista podataka a, lista centara c i ranije
definirana kvazimetrička funkcija d. Za svaki ele-
ment a[[i]] liste a modul pronalazi najbliži cen-
tar c[[j]], a nakon toga element a[[i]] pridružuje
klasteru pi[[j]]. Elementi svakog klastera prikazuju
se točkicama jedne boje. Centri klastera označeni su
crnim točkama.
In[1]:= Particija[a_, c_, d_] :=

Module[{m=Length[a], k=Length[c], pi,tab,min,imin},

slc=ListPlot[c,

PlotStyle -> {Black, AbsolutePointSize[5]}];

(* separacija *)

pi = Table[{}, {j, k}];

Do[

tab = Table[d[c[[j]], a[[i]]], {j, k}];

min = Min[tab];

imin = Position[tab, min][[1]];
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Do[

If[imin=={j}, pi[[j]]=Append[pi[[j]], a[[i]]]],

{j, k}],

{i, m}];

(* crtanje *)

tab = Table[

ListPlot[pi[[j]],

PlotStyle->{Opacity[.5], Hue[.13 j^2]}],

{j, k}];

Show[tab,slc, AspectRatio->Automatic, ImageSize->200]

]

Lista podataka a treba biti sastavljena od objekata
oblika {x,y}. To znači da podaci mogu dolaziti iz
proizvoljno odabranog područja Ω ⊂ R

2. Primjerice,
naredbom

RandomReal[10, {10000, 2}]

definira se 10000 uniformno distribuiranih slučajnih
točaka iz kvadrata [0,10]× [0,10]. Lista centara c oda-
bire se po volji. Kvazimetrička funkcija d definira se
kao funkcija dviju varijabli. Primjerice, kvazimetrička
funkcija najmanjih kvadrata dLS definira se naredbom

d[x_, y_] := Norm[x - y, 2]^2

a metrička funkcija d1 naredbom

d[x_, y_] := Norm[x - y, 1]

Podatke, kvazimetričku funkciju i poziv modula, pri-
mjerice za slučaj prikazan na Slici 2b, možemo imple-
mentirati na sljedeći način.
In[2]:= SeedRandom[3]

a = RandomReal[10, {10000, 2}];

c = {{5,4}, {6,3}, {8,6}, {2,4}, {3,8}};

d[x_, y_] := Norm[x - y, 1]

Particija[a, c, d]

Pri tome naredba SeedRandom[3] osigurava da ćemo
svakim pokretanjem programa dobiti iste slučajne
brojeve. Izvođenje programa za navedene primjere
traje 1−2 sekunde.

3 Obratni problem lokacije

Zadan je skup točaka S = {ai = (xi,yi) ∈ R
2 : i =

1, . . . ,m} ⊂R
2 u ravnini i neka kvazimetrička funkcija

d : R
2 ×R

2 → R+. Treba pronaći optimalne centre
c�1, . . . , c

�
k ∈R

2 tako da bude

F (c�1, . . . , c
�
k) = min

c1,...,ck∈conv(S)
F (c1, . . . , ck), (11)

gdje je F : R
2k→ R

F (c1, . . . , ck) =
m
∑

i=1

min
1≤j≤k

d(cj ,ai). (12)

Poznavajući centre c�1, . . . , c
�
k principom minimalnih

udaljenosti moguće je definirati optimalnu particiju
Π� = {π�1 , . . . ,π

�
k} (problem A u t.2 ). Primjerice

problem određivanja optimalnih izbornih jedinica iz
Primjera 4 jedan je obrnuti problem lokacije, a može
se definirati na sljedeći način.

F (c1, . . . , ck) =
n
∑

i=1

wi min
1≤j≤k

d(cj ,ai) −→ min,

uz uvjete:

(i) (1−p)mk ≤ |πj | ≤ (1 +p)mk , j = 1, . . . ,k

(ii) d(cj ,ai)≤ r, ∀ai ∈ πj , ∀j = 1, . . . ,k.

Kao što smo već ranije spomenuli, ovaj problem u
literaturi se može pronaći pod nazivom problem k-
sredina ili problem k-medijana, a u općem slučaju
radi se o problemu traženja globalnog minimuma više-
dimenzionalne nediferencijabilne funkcije (vidi [5, 6])
koja može imati veći broj lokalnih minimuma (vidi
primjerice [11, 15]). O metodama za rješavanje ovog
problema može se vidjeti primjerice u [16, 18].

Najpoznatiji postupak za rješavanje ovog problema je
algoritam k-sredina (vidi [7, 11, 13, 15, 17, 19, 20]),
kojim nažalost možemo pronaći lokalni minimum kri-
terijske funkcije cilja. Ipak, višestrukim pokretanjem
ovog algoritma s različitim početnim aproksimaci-
jama, možemo pronaći optimalno rješenje (vidi [15]).
Niže navodimo skicu algoritma k-sredina za opći slučaj
kada je S ⊂ R

n.

Algoritam 1.

(Standardni algoritam k-sredina)3

Korak 1: Izabrati Π = {π1, . . . ,πk};

Korak 2: Izračunati: θ = (c1, . . . , ck), pri čemu je cj =
argmin
z∈Rn

∑

ai∈πj

d(z,ai);

Izračunati F1 = F (θ);

Korak 3: Pomoću centara iz θ prema principu min-
imalnih udaljenosti formirati novu particiju
N = {ν1, . . . ,νk};
Izračunati nove centre: ζ = (ζ1, . . . , ζk), pri
čemu je ζj = argmin

z∈Rn

∑

ai∈νj

d(z,ai);

Izračunati F2 = F (ζ);

Korak 4: Ako je F2 <F1, staviti θ= ζ; F1 = F2 i prijeći
na Korak 3; u suprotnom STOP.

3Odgovarajuća programska podrška dostupna je na adresi: http://www.mathos.hr/oml/software.htm
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Perspective Collineation and Osculating Circle of
Conic in PE-plane and I-plane

ABSTRACT

All perspective collineations in a real affine plane are classi-

fied according to a constant cross-ratio and the position of

the center and axis. A special attention will be given to the

conditions which basic elements of perspective collineation

have to fulfill in order to obtain the touch or osculation

or hyperosculation of two conics. On the affine models

of an isotropic and pseudo - Euclidean plane the osculat-

ing circle of a conic is constructed by using perspective

collineations.

Key words: perspective collineation, homology, elation,

constant cross - ratio, conic, osculating circle
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Perspektivna kolineacija i oskulacijska kružnica
konike u PE-ravnini i I-ravnini

SAŽETAK

Sve perspektivne kolineacije u realnoj afinoj ravnini klasifi-

ciraju se s obzirom na karakterističnu konstantu te položaj

središta i osi. Pokazuje se, kako odabrati temeljne ele-

mente perspektivne kolineacije kako bi se neka konika i

njezina slika dodirivale u jednoj ili dvije točke, oskulirale

se ili hiperoskulirale. Na afinim se modelima izotropne i

pseudoeuklidske ravnine pomoću perspektivne kolineacije

konstruiraju oskulacijske kružnice konika.

Ključne riječi: perspektivna kolineacija, homologija,

elacija, karakteristična konstanta, konika, oskulacijska

kružnica

1 Introduction

The transformation of a real projective plane known
as a collineation maps points to points, lines to lines
and preserves the incidence relation. Any collineation
that has one range of invariant points (o) and a pen-
cil of invariant lines (S) is called a perspective
collineation. The fixed line o is called the axis and
the fixed point S is called the center of the perspec-
tive collineation. All lines joining the pairs of corre-
sponding points are called rays and pass through the
center S. The intersection point of two corresponding
lines lies on the axis o. Every perspective collineation
is a projective transformation since the cross rations
of four distinct points of a range of points and four
distinct lines of a pencil of lines are invariant. Here
are some basic properties of a perspective collineation
([1], [2]).

Teorem 1. A perspective collineation is uniquely de-
termined by its center S, axis o and one pair of
corresponding points A,A1. (Instead of corresponding
points a pair of corresponding lines can be given.)

Teorem 2. If A,A1 denote a pair of corresponding
points, S the center of perspective collineation and K

the intersection point of the ray SA and the axis o

(K = SA∩o), then the cross ratio (AA1,KS) is con-
stant. This constant cross ratio is marked by k and

generally, is a real nonzero number.

Teorem 3. All perspective collineations form a group
under the operation of composition.

2 Classification of plane perspective

collineations

According to the mutual position of the center and
axis all perspective collineations are divided into two
subsets: homologies and elations. A perspective
collineation is called an elation if its axis o and cen-
ter S are incident, otherwise it is called a homology.
In each of these subsets the affine elations and affine
homologies known as a point reflection, line reflection
and translation are extracted. (Table 1)
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(AA ;KS) = k ∈ R \ {0}
1

Perspective collineations

in narrow sense

S and o at finity

HOMOLOGIES

S∉ o ; k ≠1

S

o

K

A

A
1

ELATIONS

S ∈ o ; k = 1 

S=K

o

A

A
1

Perspective affinities

S at infinity, o at finity

k = (AA ;K) 
1

Dilations (homotheties)

S at finity, o at infinity

k = (AA ;K) 
1

Elations in narrow sense

S and o at finity

Shears

S at infinity, o at finity
Harmonic perspective

collineations

k = -1 

Point reflections

k = -1 

Line reflections

k = -1 ;        ⊥ oAA  
1

Translations

S and o at infinity

Table 1

All the cases may be summarized as follows:

Homologies may be classified into:

2.1 Perspective collineations in narrow sense
are homologies with the finite center S and finite
axis o, the constant cross ratio of a perspective
collineation is a real nonzero number. An in-
volutive perspective collineation in narrow sense
is called a harmonic perspective collineation, its
constant cross ratio equals −1.

2.2 Perspective affinities are homologies with the
center S at infinity and the finite axis o. The
constant cross ratio of a perspective affinity is
division ratio k = (AA1;K) where A, A1 is a
pair of corresponding points and K is the in-
tersection point of the ray AA1 and the axis o
(K =AA1∩o). A division ratio of three collinear
points is an invariant of a perspective affinity.
An involutive perspective affinity is called line
reflection. Consequently, its constant cross ratio
equals −1.

2.3 Perspective similarities or dilations or ho-
motheties are homologies with the finite cen-
ter S and axis o at infinity. The constant cross
ratio of a perspective similarity is the division
ratio k= (AA1;S) where A,A1 is a pair of corre-
sponding points. An involutive perspective sim-
ilarity is called a point reflection. Consequently,
its constant cross ratio equals −1.

Elations are perspective collineations for which the
center and axis are incident, that is S =K. The con-
stant cross ratio of all elations is equal to 1.

The elations may be classified as follows:

2.4 Elations in narrow sense- with the finite cen-
ter and finite axis

2.5 Shears- with the center at infinity

2.6 Translations - with the center and axis at in-
finity

Shears and translations map the line at infinity to
itself. Thus, they are affine transformations. An
affine transformation preserves division ratio of three
collinear points.

3 Construction of the osculating circle

of a conic at an arbitrary point

The order of a conic is an invariant of perspective
collineation, i.e., a perspective collineation maps con-
ics into conics. Affine transformations preserve the
line at infnity, hence they map a conic into a conic
of the same type (i.e. ellipse is mapped into ellipse,
hyperbola is mapped into hyperbola and parabola is
mapped into parabola). Two conics intersect in four
points, some of which may coincide or be real or imag-
inary. If two real intersection points coincide, the con-
ics c and c1 touch at this so-called touching point. If
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three real intersection points coincide, c and c1 are
osculating conics at this point. If four real intersec-
tion points coincide, c and c1 are hyperosculating con-
ics at this point. A special attention will be given
to the conditions which basic elements of perspective
collineation have to fulfill in order to obtain the touch
or osculation or hyperosculation of two conics.
If a conic c touches the axis o at a point A or
passes through the center S (S /∈ o) of a perspective
collineation, then the conic c will be mapped into a
conic c1 which touches the conic c at the point A or
at the point S, respectively.
If a conic c touches the axis o at a point A and
passes through the center S (S /∈ o) of a perspec-
tive collineation, the points S and A are the touching
points of the conics c and c1. A conics with two com-
mon touching points can also be obtained if the point
S and the line o are a pole and a polar with respect
to a conic c. In this case the intersections of the axis
and the conic c are common points of tangency for c
and c1. If the center of a perspective collineation is
within the conic c than the intersection points will be
a pair of conjugate imaginary points.
If the conics c and c1 are osculating conics, they de-
termine an elation with the common tangent at the
point of tangency as its axis (the point of tangency is
different from the center of the elation). Also if a conic
c passes through the center of an elation and doesn’t
touch the axis, then the conics c and c1 are osculating
conics.
If a conic c touches axis o at the center S of elation
then conic c will be mapped into hyperosculating conic
c1.

All these aforementioned facts provide that by us-
ing the appropriate perspective collineation for given
conic c it is possible to construct an osculating or hy-
perosculating conic or a conic c1 which touches the
conic c at one or two points.
By applying a perspective collineation an osculating
circle of a conic in the Euclidean plane and on the
projective models of some projective - metric planes
is constructed in [4] and [5]. By using an elation the
same constructions can be made on the affine models
of the pseudo - Euclidean and isotropic plane.

3.1 Pseudo - Euclidean plane

The ordered triple {f,I,J} is called the absolute fig-
ure of the pseudo - Euclidean plane where I and J
are two real absolute points on the absolute line f.
According to their position with respect to the abso-
lute figure, the proper conics of the pseudo - Euclidean

plane may be divided into nine types [4]. A circle is a
conic incidental with both absolute points.

Let the absolute figure of PE - plane be {f,I,J} where
the line f is a line at infinity and the points I and J
are the points at infinity on perpendicular lines i and
j. Let the pseudo - Euclidean ellipse c be presented by
a circle in the Euclidean sense. It needs to construct
the osculating circle of c at its arbitrarily chosen point
A. By using the appropriate elation the given ellipse c
can be mapped into its osculating circle c1 at the given
point A. The construction is carried out in steps:
The point A is selected for the center of an elation.
The intersection points of the rays AI and AJ with
the ellipse c are marked by I ′ and J ′. I ′, I and J ′,J are
the pairs of corresponding points of that elation. The
line f ′ = I ′J ′ corresponds to the absolute line f . The
lines f and f ′ intersect at the point at infinity, thus
the axis o is parallel to the line f ′ and passes through
the center S. The elation (A,o,I,I ′) maps the given
conic c into an osculating circle c1 (Figure 1).

c1

A

c

i

j

f’

I’

J’

X

o

Figure 1

3.2 Isotropic plane

The ordered pair {f,F} is called the absolute figure of
the isotropic plane where the point F is called the ab-
solute point on the absolute line f [3]. Let the affine
model of an isotropic plane with the absolute figure
at infinity be given. Let the absolute point F be on
the line fF . A circle of the isotropic plane is a conic
touching f at F. Let a conic c and the tangent at a
point A on the conic are given.There are two ways to
find an elation that will map the given conic c into the
osculating circle c1 at the point A:

The first way is to take the tangent a of the conic c in
the point A for the axis of an elation, and then find
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the center S of the elation on the axis. If the tangent
a is taken for the axis of an elation then the tangent f ′

to the conic c corresponds to the absolute tangent f
of the osculating conic c1 passes through the intersec-
tion point of the lines a and f . The point of tangency
F ′ of f ′ and c and the absolute point F are a pair of
corresponding points, and the ray FF ′ intersects the
axis a at the center S of an elation (Figure 2).

A

F’

S

Y’

f’

c

a

Y1

c1

fF

Figure 2

The second way is to take the point A for the center
of elation and then find the axis of the elation. If the
point A is taken for the center of an elation, then AF
is the ray the elation. The point F ′ is the intersec-
tion point of the ray AF and the conic c. The line
pair f,f ′ is a pair of corresponding lines. The axis o
passes through the point A and intersection point of
the lines f ′ and f , thus it is parallel to f ′. (Figure 3).

A=S

F’

f’

c

a

c1

fF

o

Figure 3
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Application of Boškovíc’s Geometric Adjustment
Method on Five Meridian Degrees

ABSTRACT

In this paper, the first method of adjustment, proposed by
Josip Rud-er Bošković, is described in detail, on the exam-
ple on five meridian degrees. Bošković sets three condi-
tions on the data of the lengths of the meridian degrees to
calculate corrections that would fix all degrees in order to
get a better estimate of true values. The conditions that
have to be satisfied are explained by geometric method
which Bošković described in all his studies. For the pur-
pose of this paper, in the process of computing these five
meridian degrees, data from Bošković original book have
been used.

Geometric solution, described by Bošković himself, is not
easy to understand at first, as this is noted by other au-
thors who have studied Bošković’s method as well. Hence,
geometric description of the Bošković’s method is shown
in analytical form as well.

Key words: Josip Rud-er Bošković, geometric adjustment
method
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Primjena Boškovíceve geometrijske metode
izjednačenja na pet meridijanskih stupnjeva

SAŽETAK

U ovom radu detaljno je prikazana prva metoda izjedna-
čenja, koju je osmislio Josip Rud-er Bošković, na primjeru
pet stupnjeva meridijana. Bošković je izračunao popravke
kojima bi popravio duljine meridijanskih stupnjeva i na
taj način dobio što bolje procjene njihovih pravih vrije-
dnosti. Postavljajući tri uvjeta tom prilikom formirao je
svoju metodu izjednačenja koju je primijenio na podatke o
duljinama meridijanskih stupnjeva. Uvjeti koji moraju biti
zadovoljeni objašnjeni su geometrijskom metodom kakvu
Bošković opisuje u svim svojim djelima. U postupku
računanja, koja su provedena u ovom radu na pet me-
ridijanskih stupnjeva, korǐsteni su podaci iz Boškovićevih
originalnih djela.

Geometrijsko rješenje kako ga je Bošković opisao nije
odmah lako razumljivo, što su uočili i drugi autori koji
su proučavali Boškovićevu metodu. Stoga će geometrij-
ski opisana Boškovićeva metoda biti takod-er prikazana i u
analitičkom obliku.

Ključne riječi: Josip Rud-er Bošković, geometrijska
metoda izjednačenja

1 Introduction

Rud-er Josip Bošković (Dubrovnik, 18th May 1711 - Milan,
13th February 1787) began to publish theses on Earth’s
shape and size as a young scientist. These issues were
a major scientific problem of the 18th century. In 1739,
when he was only 28, he published two dissertations: De
veterum argumentis pro telluris sphaericitate (On the ar-
guments of the ancients for the sphericity of the Earth) and

Dissertatio de telluris figura (A dissertation on the shape
of the Earth).

During the 18th century scientists were having a great dis-
cussion about the question whether the Earth was oblate or
oblong (prolate) at the poles. In the late 17th century, New-
ton proved that the Earth should be flattened at the poles
because of its rotation. Domenico Cassini assumed the op-
posite, that Earth had the shape of an egg so, at the end of
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17th and the beginning of 18th century he conducted com-
prehensive geodetic observations to prove his assumption.

During this period there were two basic methods for deter-
mining the Earth’s figure: pendulum experiments and the
determination of the meridian arc length. The idea of the
second method was to determine the length of the merid-
ian arc that corresponded to one degree of latitude. French
Academy carried out the measurements during 1730s to
test theoretical interpretations of the Earth’s figure.

2 Bošković’s Thoughts on the Shape of the
Earth

Bošković thought that the irregularity of the shape of the
Earth could be examined in the way to ”exactly determine
two meridian degrees in different longitudes, but in the
same latitude” [1]. Bošković wanted to measure a meridian
degree at some latitude, on which another meridian degree
is accurately determined, but at a different longitude. Pope
Benedict XIV gave, Cardinal Valenti, the State Secretary
of the Holy See, permission for Bošković to perform ”as-
tronomical and geographical journey” along the meridian
from Rome to Rimini in the Papal State because Rome and
Rimini are approximately at the same meridian. The area
comprised of two meridian degrees (Fig. 1). The length
of the middle meridian degree, between Rome and Rim-
ini, could be compared with the length of the measured
meridian degree in the south France. This length of the
meridian degree was measured ten years earlier in Perpig-
nan, by Jacques Cassini and Nicolas Louis de Lacaille (De
la Caille). In Fig. 1, the labels A, B, C, D, E , F , G, H, I
and L show points of the chain of triangles between Rome
and Rimini with the names of the hills on which points are
located.

Bošković chose ChristopherMaire for companion. In 1755
Bošković and Maire published the first results of those
measurements and the analysis of measured data in the
book De Litteraria Expeditione per Pontificiam ditionem
ad dimentiendas duas Meridiani gradus et corrigendam
mappam geographicam (A scientific journey through the
Papal State with the purpose of measuring two degrees of
meridian and correcting a geographical map) in more than
500 pages.

Figure 1: Arc of the meridian Rome-Rimini and the sys-
tem of the triangle chain between them (as in
Fig. 2 in the first annex from the book Voyage
astronomique ...).

Bošković published his results of geodetic measurements
three more times:

• in 1757, in the abstract form for the journal of the
Academy of Bologne

• in 1760, in the supplement of the Benedict Stay’s
poem and

• in 1770, in French translation of his major geodetic
work Voyage astronomique... in which he gave an
example of adjustment.

In 1760 Bošković started processing the results of mea-
surements of meridian degrees that were conducted after
1736.
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In order to accurately determine the figure of the Earth,
Bošković, in his first attempt to determine ellipticity, com-
pared five arc lengths of one meridian degree, which he
considered to be sufficiently accurate and in his second
attempt he compared nine meridian degrees. The mea-
surements of the five meridian degrees were carried out in
Quito, in the Cape of Good Hope, in Paris, in Lapland and
his own, carried out in Rome, Italy [2].

Whereas astronomical and geodetic measurements are li-
able with errors caused by various sources, Bošković was
aware that the causes of errors could not be fully elimi-
nated during the construction of instruments and measure-
ments. When comparing mentioned degrees of meridian,
Bošković could not determine such an ellipsoid consistent
with all the measurements. He decided to determine cor-
rections that would fix all degrees and get a better estimate
of true values. He formed his own adjustment method of
the results of measurements proposing three conditions for
determining the corrections.

3 Bošković’s Adjustment Method

In his works Bošković presented only geometric approach
to obtain corrections. In the summary of his main book
[1] Bošković stated that he used algebraic approach only
to derive short formulas based on the geometric solution,
which immediately gave the solution.

Bošković has set the problem in the following way. It is
necessary to calculate the mean ellipticity (fr. ellipticit,
lat. ellipticitate) of all meridian degrees, which are mutu-
ally compared. Taking into account the relation that has to
have differences of (compared)meridian degrees as well as
the laws of probabilities regarding to corrections, it is nec-
essary to adjust the degrees to be reduced to this relation.
To obtain such mean, which is not simply arithmetic mean,
but tied by certain law of fortuitous combinations and the
calculus of probabilities, and considering a certain num-
ber of meridian degrees, the corrections have to be found
and applied to each measured meridian degree, taking into
account the following three conditions [1], [3], [5]:

1. The differences of the meridian degrees are propor-
tional to the differences of the versed sines1 of dou-
ble latitudes

2. The sum of the positive corrections is equal to the
sum of the negative ones (by their absolute values)
and

3. The absolute sum of all the corrections, positive as
well as negative, is the least possible one, in case in
which first two conditions are fulfilled.

Bošković formed the first condition out of the requirements
of the law of balance, or the assumption that the Earth had
the shape of an ellipsoid. Starting from the laws of grav-
ity, Isaac Newton, in the second half of the 17th century,
claimed that as the result of the Earth’s rotation around its
axis and the mutual attraction between the planets’s mass,
Earth should be flattened at the poles. Newton (1726) [4] in
his Principia in Volume 3, Proposition 20 says: ”Whence
arises this Theorem, that the increase of weight in passing
from the equator to the poles is nearly as the versed sine
of double the latitude; or, which comes to the same thing,
as the square of the right sin of the latitude; and the arcs
of the degrees of latitude in the meridian increase nearly in
the same proportion.”.

The second condition emerged from the fact that the de-
flections of the pendulum or observer’s errors that increase
or decrease the meridian degrees have the same degree of
probability, or the errors with positive and negative signs
are equally probable. To fulfil the second condition, the
sum of all the values of corrections should be equalized to
zero and Bošković said that this was the only condition in
which the sum of the positive can be equalized with the
sum of the negative ones.

The third condition is necessary to approximate the mea-
sured values as much as possible because the measurement
errors are probably very small. Also, this third condi-
tion, Bošković proposed because the solution was not com-
pletely defined with the first two conditions [3], [5].

In the process of computation, performed for the purpose
of this paper, measured values shown in Table 1 are used.
The arc lengths of meridian and their corresponding lat-
itudes (2nd and 4th column of Table 1) have been taken
out of Bošković’s original books [1], [3], [5]. Other values
from the Table 1 are calculated from these values. Instead
of versed sines of double latitudes, a half of their values
are taken (according to [2]).

1versed sines - reversed sin, a trigonometric function of an angle or arc which are not in use today, and is defined as versinϕ = 1− cosϕ.
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Place of the mea-
sured meridian de-
gree

Latitude of the mea-
sured degree

1/2versin multiplied
by 10 000

Arc length [toise] Differences from
the first degree
measured in Quito
[toise]

Quito 0◦ 0’ 0 (AA) 56 751 (Aa) 0 (aa)
Cape of Good Hope 33◦ 18’ 3014 (AB) 57 037 (Bb) 286 (Ob)
Rome 42◦ 59’ 4648 (AC) 56 979 (Cc) 228 (Pc)
Paris 49◦ 23’ 5762 (AD) 57 074 (Dd) 323 (Qd)
Lapland 66◦ 19’ 8387 (AE) 57 422 (Ee) 671 (Re)

Table 1: Five measured meridian degrees and their latitudes (names of places and the values in the second and fourth
columns are taken from [3]).

Bošković’s procedure for determining the corrections can
be described as following. Versed sines of double latitudes
of five meridian degrees are put in a rectangular coordinate
system on the abscissa (Fig. 2). The points B, C, D and
E are drawn as if they were measured at the equator from
the point A. On the vertical axis aA, bB, cC, dD and eE
segments are put. They represent the five lengths of the
corresponding measured arcs (in toises2 per degree) that
need to be fixed. These segments are perpendicular to AF .
The size of the AF can be considered as one unit in length,
while the A, B, C, D and E are represent the five values
of the sin2ϕ marked on the unit interval. Equator passes
through point A, and the North Pole through point F .

Figure 2: Proportionality for the degrees.

Bošković said that any straight line which intersects those
segments could determine a degree which would satisfy

the first condition. If we draw a straight line A′F ′ through
the point A′, which is parallel to AF , the determinedmerid-
ian degrees will intersect that straight line at points B′, C′,
D′ and E ′. Values E ′M, D′L, C′K, B′I and A′A′ (zero),
given in such way, represent the differences of the degrees
according to a degree at the equator and they are propor-
tional to the values A′E ′, A′D′, A′C′, A′B′ and A′A′ (zero)
or a versed sines AE , AD, AC, AB and AA (zero) [3]. The
proportionality for the measured degree at the point e with
dashed (blue and green) lines is shown in Figure 2.
Bošković’s first condition can be expressed analytically in
such way that the corrections can be expressed with the
equation of the first degree which includes two (unknown)
sizes, values k and l, as well as the degrees of meridian and
corresponding versed sines of double latitudes:

Li + vi = kversin2ϕi + l, (i = 1,2, · · · ,n), (1)

where is
l - the length of a meridian degree at the equator
k - the excess of a degree at the pole over one at the equator,
Li - the length of an arc at location i
ϕi - the latitude of the midpoint of the arc at location i
vi - the corrections of a meridian degree.

In order to determine the first point of the required straight
line the second condition, that the sum of the positive cor-
rections is equal to the sum of the negative ones (by their
absolute values), will be applied.
The ordinate segments eM, dL, cK, bI and aA′ are cor-
rections with positive (blue segments in Fig. 3) or nega-
tive sign (red segments in Fig. 3). Their sign depends on
whether the points e, d, c, b and a are located on one or the
other side of straight line A′H in relation to AF . The sec-
ond conditionwill be satisfied when the line passes through
the common centre of gravity G of those points. Accord-
ing to the centre of the gravity, the sum of the distances
of all points on one side, in any direction, is equal to the

2Toise - the old measure unit which are not in use today, 1 toise = 1.949 m.
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sum of the distances of all points on the opposite side of
the straight line [3].

Figure 3: Simplified Fig. 7 from Bošković’s first annex
with auxiliary sizes needed for calculation.

The coordinates of the barycentre G are determined by the
values AS and SG (values shown in Fig. 3 with green lines).
Latitude which corresponds to the position of the point G
is defined by the distance AS. The value AS was calcu-
lated by dividing the sum of values in the third column of
Table 1 with the number of the measurements.

AS =
AA + AB + AC+ AD + AE

5
= 4362.2 (2)

The value SG defines position of point G completely. This
value is applied perpendicularly to AF , and is calculated
as the arithmetic mean of the values that are in the fourth
column of Table 1.

SG =
Aa + Bb +Cc + Dd+ Ee

5
= 57052.6 (3)

AS and SG define the first meridian degree which defines
the straight line. Through point G the infinite number of
straight lines can be drawn that will satisfy the first two
conditions.

Analytically, second condition can be written as follows

m

∑
j=1

v+
j = −

u

∑
k=1

v−k , (4)

where
∑m

j=1 v+
j – the sum of m positive corrections,

∑u
k=1 v−k – the sum of u negative corrections.

The second condition derived from the expression (4) can
also be written in the following form

n

∑
i=1

vi = 0, (5)

where
n = m+ u – is the number of measurements.

In order to fully determine the straight line it is necessary
to determine one more point. In this case we can use the
third condition.
To satisfy the third condition it is necessary to determine in
which order the moving straight line, which rotates around
the point G, passes each point. Visualize a line with a start-
ing position SGT (as it is shown with light green line in the
Fig. 3) that rotates clockwise around the pointG. In the be-
ginning it will close a small angle, and corrections will be
big. By rotating the straight line, the absolute values of
corrections will decrease until the line reaches any point a,
b, c, d or e. When the line falls into any of these points, the
correction in that point will be cancelled. As soon as the
line passes that point, correction which corresponds to that
particular point will change sign and it will begin to grow.
At the same time, corrections of the other points to which
line has not yet come will continue to decrease. Accord-
ingly, the absolute sum of all correctionswill decrease until
the sum of the corrections that increase is not greater than
the sum of the corrections that decrease. This conclusion
comes from the fact that the sums of the corrections with
the positive and negative signs are the same if we consider
their absolute value and each of the sums contains half of
the total sum.
The order in which the moving straight line passes through
any point can be determined numerically. Bošković, how-
ever specifies that calculating will not be necessary. Struc-
ture itself, provided it is true, will be sufficient to determine
the order in which the line passes through each point.
The line XY is drawn parallel to AF thought the point G
(Fig. 3). Perpendiculars to the AF which pass through
points A, B, C, D and E will intersect the line XY in o,
p, q and r, respectively. If we visualize that the barycen-
ter G is the center of a rectangular coordinate system, the
angles SGY , YGT , T GX and XGS form the quadrants of
this coordinate system. Firstly, it should be determined in
which quadrant every point is, since each of them are left
or right in relation to SGT , depending on whether their
versed sines are smaller or larger than the AS. Also, each
point must be below or above XGY depending on whether
its degree is smaller or larger than the SG [3].
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Quito (a) Cape of Good
Hope (b)

Rome (c) Paris (d) Lapland (e)

A 4362.2 (AS) 1348.2 (BS) -286.8 (CS) -1400.8 (DS) -4025.8 (ES)
B 301.6 (Xa) 15.6 (ob) 73.6 (pc) -21.4 (qd) -369.4 (re)
C=A/B 14.5 86.4 -3.9 65.4 10.9

Table 2: Auxiliary computation for solving the third condition.

Also the tangents of the angles which make GS or GT to
the line that passes through each point (shown with dashed
blue line in Fig. 3) should be found. If the line passes
through the point e then the re is in relation to Gr, as the
radius according to the tangent of the angle reG, or eGT .
This relation can be written as follows (shown with orange
lines in Fig. 3):

tanreG =
Gr
re

. (6)

Since Gr (equals to ES) is the residual of versed sines of
e and versed sines of AS (values in Table 2, row A) and
re is the residual of degrees Ee and SG (values in Table 2,
row B), these values should be divided and used to sort a
series of numbers (values in Table 2, row C). The series
begins with a growing range of positive numbers (points
contained in the first and the third quadrant of the coor-
dinate system), and continues with a descending range of
negative numbers (points that are contained in the second
and the fourth quadrant of the coordinate system).
To determine all required values from Table 2 it is neces-
sary to calculate the distances aX , bo, cp, dq, and er (Ta-
ble 2, row B) to the straight line XY . These distances are
calculated as residuals of NG and values aa, Ob, Pc, Qd
and Re (values in the fifth column, Table 1). The value NG
equals to the arithmetic mean of the numbers of the fifth
column in Table 1 and amounts to 301.6.
Distances AS, BS,CS, DS and ES of points a, b, c, d and e
in relation to the straight line SGT are equal to the differ-
ence of the size AS from the sizes AA, AB, AC, AD and AE
(the third column in Table 1). The calculated distances are
shown in Table 2, row A.
Tangents of the angles (Table 2, row C) are calculated as
the ratio of the size of the line A and B in Table 2. Arrang-
ing a series with the resulting values from the row C, the
rotating line intersects the points in the order e, a, d, b, c.
To find the position of the straight line that will satisfy the
required minimum (the sum of all corrections are at least
possible) the absolute values of the sizes from row A in
Table 2 are summed in the mentioned order until the sum
of the values do not pass half of their total sum.

The first absolute value for the point e equals 4025.8 and
it is less than the half of the total absolute sum which is
5710. Then the e value is added to the following value
from the series (a) 4362.2. Their sum equals 8388 which
exceeds half of the total absolute sum. When the rotating
straight line passes the point a, the size exceeds half of
their total absolute sum. In this way we get the minimum
that is required.

Analytically this condition can be written as follows:

n

∑
i=1

|vi| = minimum. (7)

By finding the straight line that satisfies the conditions de-
fined by two meridian degrees all other degrees and their
corrections can be found.

To determine the corrections bi, ck, dl and em, the value
fV (the residual between the length of the degree at the
pole and at the equator) needs to be calculated, using the
ratio:

aN : NG = a f : fV ⇒ fV =
NG ·a f

aN
= 691.4. (8)

Respecting the requirement of proportionality with the
residuals of the sizes Oi, Pk, Ql and Rm of the Ob, Pc,
Qd and Re, the corrections of certain meridian degrees can
be calculated. The quantities Oi, Pk, Ql, and Rm (Table 3,
column 2) are the distances from the straight line aV to the
line a f . The procedure for their calculation is shown on
the example of the values Oi, which is obtained from the
ratio:

a f : aO = fV : Oi ⇒ Oi =
aO · fV

a f
= 208.4. (9)

And the values Ob, Pc, Qd and Re (Table 3, column 3 and
Table 1, row 5) are the differences of certain meridian de-
grees from the first meridian (Aa) because it stays without
correction.
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Quito (a) Cape of Good Hope (b) Rome (c) Paris (d) Lapland (e)
Distances of straight lines aV i a f [toise] 0 208.4 321.3 398.4 579.9
Residual from the first degree [toise] 0 286 228 323 671
Corrections [toise] 0 -77.6 +93.3 +75.4 -91.1

Table 3: Calculated values of corrections.

Sum of the corrections (Table 3, column 4) with a positive
and with a negative sign are equal in absolute value and
equals 168.7 toises which satisfies the second condition.
Five meridian arc lengths and straight line that satisfies
conditions are shown in Figure 4. Equation of a straight
line that satisfies all conditions can be written as follows:

L = 0.07versin2ϕ+56751. (10)

Figure 4: Five meridian arc lengths and Bošković’s
straight line that satisfies conditions.

4 Conclusions

The straight line which passes through points a andG gives
the smallest sum of all corrections (satisfying the third con-
dition), and the sum of positive and negative corrections
is equal in its absolute value (satisfying the second condi-
tion). Point a remains without correction since the straight
line, that gives the minimum, passes exactly through that
point.

Bošković defined and applied the principle in which the
measured values can be approximated with linear func-
tion. With defined conditions, unknowns and adjusted

values can be determined. With equation of a straight line,
Bošković linked the determined length of meridian degrees
and versed sines of their corresponding latitudes, and as
unknown sizes he determined values of parameters of the
straight line (k and l).

In this paper we presented a method of adjustment pro-
posed by Bošković and developed by Laplace. Today this
method is mostly known as L1-norm method. It uses only
one condition (the third one) out of the three proposed by
Bošković.
Difficulties in implementation of L1-norm occurred when
it was needed to adjust a greater number of unknowns.
With the development of computer technology and al-
gorithms based on linear programming this is no longer
insuperable problem.

Today themost used method of adjustment is the method of
least squares, also known as L2-norm method. Bošković’s
adjustment method certainly cannot replace the now well
established method of least squares, but this does not ex-
clude the possibility that these two methods can be used
parallel and complement each other. The most significant
contribution of Bošković’s method, and also its most im-
portant application is the detection of gross errors in mea-
surements which gives excellent results.
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Dražen Tutíc

e-mail: dtutic@geof.hr

Faculty of Geodesy University of Zagreb
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Scope of Construction Pit Excavation.

ABSTRACT

One of the frequent problems that the civil engineering
experts have to deal with during planning the process of
building is to define the scope of construction pit excava-
tion. The most common method to solve this problem is
to use the so-called elevational projection. In this article
we show the phases of defining the scope of construction
pit excavation together with one example from the civil
engineering practice and how to use some tasks from ba-
sic theory of elevational projection to solve such problems.
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pit excavation
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Primjena kotirane projekcije u odred-ivanju obima

iskopa grad-evinske jame

SAŽETAK

Jedan od čestih problema s kojim se grad-evinski inženjeri
susreću tijekom planiranja procesa izgradnje je definiranje
obima iskopa grad-evinske jame. Za rješavanje navedenog
problema najčešće se koristi kotirana projekcija. U ovom
članku navode se faze rješavanja obima iskopa grad-evinske
jame i pokazuje se jedan primjer iz prakse te kako se ni-
zom elementarnih položajnih zadataka riješenih u kotiranoj
projekciji dolazi do rješenja.

Ključne riječi: kotirana projekcija, obim iskopa
grad-evinske jame

1 Uvod

Kotirana projekcija je metoda ortogonalnog projiciranja na
horizontalnu ravninu pri čemu je točka odred-ena svojom
projekcijom (tlocrtom) i kotom. Kota točke je mjerni broj
koji predstavlja udaljenost te točke od horizontalne rav-
nine na koju projiciramo i izražava se u metrima. Ravninu
projekcije uobičajeno uzimamo tako da sve njezine točke
imaju kotu 0, smatramo da je ona na nultoj nadmorskoj
visini i zovemo nultom horizontalnom ravninom, [1], [2].
Ravnina se u kotiranoj projekciji prikazuje projekcijom
svojih slojnica, a to su presječnice te ravnine s horizontal-
nim ravninama. Sve slojnice jedne ravnine su med-usobno
paralelne. Analogno se teren prikazuje projekcijama svojih
slojnica koje su takod-er dobivene zamišljenim presjekom
terena s horizontalnim ravninama, tj. to su linije na kojima
sve točke terena imaju istu kotu. Nagib ravnine definira se
kao tangens priklonog kuta te ravnine, [1], [2].
Ovim člankom želimo pokazati jedan konkretan primjer
gdje se kotirana projekcija primjenjuje u praksi, a to je
odred-ivanje obima iskopa grad-evinske jame.
Izgradnja svake grad-evine sastoji se od više različitih
procesa povezanih u jednu logičnu cjelinu. Prije početka

izgradnje grad-evine svakako se mora izvršiti iskop mate-
rijala čija složenost i obim, pa u konačnici i organizacija
izvod-enja ovisi o različitim faktorima, od kojih su najčešći
oblik i veličina grad-evine, konfiguracija terena ili vrsta tla.
Razlikujemo dva osnovna slučaja. Prvi slučaj se odnosi
na grad-evine koje nemaju ukopanih (podrumskih) di-
jelova, već je jedino potrebno iskopati manje količine
materijala na mjestima gdje je potrebno izgraditi temelje
grad-evine. Drugi slučaj je kad grad-evina ima polu-
ukopane ili ukopane dijelove, koji iziskuju iskop veće
količine materijala odnosno zahtijevaju iskop “grad-evinske
jame”. Predmet ovog rada je pokazati upotrebu kotirane
projekcije u odred-ivanju obima takvih iskopa, a pokazat će
se i jedan primjer iz grad-evinske prakse.

2 Odred-ivanje obima iskopa grad-evinske
jame

2.1 Osnovni koraci

Plan iskopa grad-evinske jame je sastavni dio Projekta orga-
nizacije grad-enja, odnosno sheme organizacije gradilišta.
Obim iskopa je potrebno odrediti u fazi planiranja iz-
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gradnje grad-evine kako bi se u sklopu sheme orga-
nizacije gradilišta mogli odrediti slobodni prostori za
postavljanje ostalih privremenih objekata kao što su
uredi, skladišta, otvorene deponije materijala, prometne
površine, nepokretni strojevi (toranjske dizalice), itd.
Svaki problem odred-ivanja obima iskopa grad-evinske jame
je jedinstven, jer ovisi o različitim faktorima. Bez obzira
na tu činjenicu, postupak rješavanja tog problema je uvi-
jek isti, te se može postaviti u tri osnovna koraka; (1)
analiziranje projektne dokumentacije – tlocrta i presjeka
grad-evine; (2) analiziranje posebnih uvjeta i podataka o
okolini; (3) odred-ivanje obima iskopa grad-evinske jame na
osnovu navedenih podataka.

2.2 Analiza projektne dokumentacije

Analizom projektne dokumentacije, koja med-u ostalim
sadrži i tlocrte i nacrte grad-evine, odred-uju se osnovni po-
daci o iskopu kao što su tlocrtni oblik dna iskopa, dubina
iskopa ili potreba za iskopom u fazama. Tlocrtni oblik dna
iskopa kojeg prikazujemo u kotiranoj projekciji ovisi o o-
bliku i vrsti temelja grad-evine. Rub dna iskopa paralelno
slijedi rub dna temelja grad-evine na odred-enoj udaljenosti
(najčešće 0,5m do 1m) i na taj način dobiva se manipula-
tivni prostor koji je potreban zbog lakše izgradnje.
Dubina iskopa je najčešće jednaka po cijeloj tlocrtnoj
površini grad-evine, uz odred-ene izuzetke ovisne o vrsti
temelja ili odred-enim drugim posebnostima projekta, npr.
konfiguraciji terena. Vrsta temelja utječe na dubinu
ovisno o tome je li ispod grad-evine predvid-ena jedin-
stvena temeljna ploča (tada je dubina iskopa konstantna)
ili su za temeljenje grad-evine predvid-eni trakasti temelji
s temeljnim stopama (tada se predvid-aju posebna pro-
dubljenja iskopa na njihovim mjestima).
Ostale posebnosti projekta koje mogu imati utjecaja na
dubinu iskopa su razna projektna rješenja (npr. otvori
za dizala ili razne crpne stanice) koja iziskuju dodatna
(najčešće manja) produbljenja iskopa.

2.3 Analiza posebnih uvjeta i podataka o okolini

Postoji mnogo različitih uvjeta, koji mogu utjecati na obim
iskopa materijala, a najvažniji su: (1) konfiguracija terena;
(2) vrsta materijala koji se mora iskopati; (3) veličina i o-
blik grad-evinske čestice – parcele; (4) položaj i veličina
postojećih i budućih objekata poput grad-evina, prometnica
ili drveća, [4].

2.3.1 Konfiguracija terena

Konfiguracija terena utječe prvenstveno na dubinu i oblik
ruba iskopa. Ukoliko je površina terena horizontalna, u-
tjecaj je najčešće malen, dubina iskopa je jednaka po ci-
jeloj površini tlocrta grad-evine, a rub iskopa je uvijek na
jednakoj udaljenosti od grad-evine. Na Slici 1 prikazan je
u kotiranoj projekciji iskop na ravnom terenu nadmorske
visine 0m. Dno iskopa treba biti na -4m nadmorske visine.
Oko čitavog ruba zamišljenog tlocrta grad-evine dodano je

0,5 m manipulativnog prostora. Kosine iskopa su u ovom
slučaju četiri ravnine nagiba n = 1 koje se med-usobno si-
jeku u četiri presječnice, te se s terenom sijeku na koti
0. Presječnica dviju ravnina je pravac čije točke dobi-
vamo presijecanjem istoimenih slojnica tih dviju ravnina,
a presjek kosine iskopa s terenom dobiva se presijeca-
njem slojnica ravnine s istoimenim slojnicama terena. Na
Slici 2 prikazana je kotirana projekcija grad-evinske jame
sa sličnim tlocrtom grad-evine, dno iskopa takod-er treba
biti na -4m nadmorske visine kao i u prethodnom slučaju,
ali sada teren nije horizontalan. U ovom slučaju dubina
iskopa se mijenja, a rub iskopa je na različitim udaljeno-
stima od grad-evine. Rub iskopa dobivamo presijecanjem
slojnica ravnina iskopa s istoimenim slojnicama terena i to
je topografska linija. Zbog nagiba terena potrebno je voditi
računa da se predvidi mogućnost slijevanja oborinskih
voda u grad-evinsku jamu, te da se izgradnjom zaštitnih
kanala ili dodatnih konstrukcija (produbljenja za crpljenje
unutar grad-evinske jame) omogući njihovo slobodno otje-
canje ili njihovo sigurno zahvaćanje i odvodnja. Ovdje je
oko ruba iskopa na udaljenosti od 1m predvid-en zaštitni
kanal koji zbog pada terena ima svoj prirodan pad i ispuste
u skladu s konfiguracijom (padom) terena.

Slika 1: Oblik grad-evinske jame ukoliko je teren hori-
zontalan

Slika 2: Oblik grad-evinske jame ukoliko je teren pod
nagibom
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2.3.2 Vrsta materijala

Vrsta materijala koja se mora iskopati prvenstveno
odred-uje nagib kosine iskopa. S obzirom na geomehanička
svojstva materijala – tla, u praksi se za nagib kosine uzi-
ma vrijednost tangensa priklonog kuta 45◦, tj. nagib rav-
nine n = tanα = 1. Taj nagib je prikladan kod iskopa u
šljunčanom tlu ili u zemlji. Kod iskopa u čvršćem mate-
rijalu (npr. kameni materijal ili šljunak s udjelom gline)
prikloni kut kosine može biti i veći od 45◦, a iznimno za
iskope u čvrstim stijenama može biti i okomit. S obzirom
da su u prirodimoguće razne kombinacijematerijala, točan
nagib kosine mora se odrediti geomehaničkim ispitivanji-
ma, [3], [4].

2.3.3 Veličina i oblik grad-evinske čestice – parcele

Veličina i oblik grad-evinske čestice utječu najviše na
veličinu iskopa, npr. ukoliko se grad-evina nalazi preblizu
ruba čestice, pa nije moguće izvesti iskop u potpunosti
s predvid-enim nagibom kosine, potrebno je ili povećati
nagib kosine iskopa (ukoliko to geomehaničke karakteri-
stike dozvoljavaju) ili u potpunosti zamijeniti kosinu
iskopa s potpornom konstrukcijom za zaštitu grad-evinske
jame od urušavanja (armirano-betonska (AB) dijafragma,
čelične talpe i sl.).

2.3.4 Položaj i veličina postojećih i budućih objekata

Ukoliko na grad-evinskoj parceli ili izvan nje postoje o-
bjekti poput grad-evina ili prometnica, potrebno je izvesti
iskop na način da se ne ugrozi sigurnost korištenja nave-
denih objekata ili same grad-evinske jame. Potrebna si-
gurnost će se postići na način da se osiguraju dovoljne
udaljenosti ruba iskopa od svih postojećih i budućih obje-
kata ili prometnica, ili da se smanje nagibi kosina iskopa,
a sve kako navedeni objekti svojom težinom ne bi ugrozili
postojanost kosine iskopa, [3].

2.4 Primjer odred-ivanja veličine i oblika iskopa
grad-evinske jame – primjer iz grad-evinske prakse

2.4.1 Uvod – geodetska podloga

Geodetske podloge postojećeg stanja sadrže razne po-
datke, poput visinskih kota terena i objekata, rubova
katastarskih čestica, rubova postojećih objekata, položaja
prometnica, decimetarske mreže, oznake smjera sjevera,
itd. Uobičajeno je da slojnice terena nisu ucrtane u pod-
logu, osim u slučajevima kada je za tim posebno izražena
potreba. Položaj slojnica terena se može odrediti ručno in-
terpolacijom ili pomoću raznih specijaliziranih računalnih
programa kao na predmetnoj podlozi ispod (Slika 3).
Ručna interpolacija značila bi npr. za slojnicu terena 151
približnim računom naći nekoliko točaka koje su na koti
151 te ih spojiti topografskom linijom. U primjeru na Slici
3 to bi bilo izmed-u točaka s kotama 150,65 i 151,22, zatim
izmed-u 150,38 i 151,49 itd.

Slika 3: Geodetska podloga grad-evinske čestice s ucr-
tanim položajem grad-evine i osnovnim po-
dacima

2.4.2 Korak 1. – Analiza projektne dokumentacije

Analizom projektne dokumentacije za odabranu
grad-evinu, utvrd-eni su sljedeći podaci potrebni za defini-
ranje obima iskopa grad-evinske jame:

• način temeljenja grad-evine je temeljna ploča jednake
debljine ispod cjelokupne površine grad-evine

• donja visinska kota temeljne ploče je jednaka po ci-
jeloj površini i iznosi +147,50 mnv

• ispod temeljne ploče po cijeloj površini se nalazi
tamponski sloj šljunka debljine 50cm

• na predmetnoj grad-evini nisu projektirani nikakvi
dodatni elementi, koji bi zahtijevali dodatna lokalna
produbljenja grad-evinske jame, jer zgrada nema
dizalo i nema crpne stanice za otpadne vode

• kada se u obzir uzmu dubina objekta, debljina tam-
ponskog sloja šljunka ispod temeljne ploče, i sve
posebnosti projektnog rješenja grad-evine, donja kota
iskopa grad-evinske jame se nalazi na visini +147,00
mnv

• s obzirom na tehnologiju izgradnje, potreban je ma-
nipulativni prostor širine 1m uz temeljnu ploču, te je
za toliko potrebno povećati dno iskopa grad-evinske
jame

2.4.3 Korak 2. – Analiza posebnih uvjeta i podataka o
okolini

Analizom posebnih uvjeta i podataka o okolini odred-eni su
sljedeći podaci bitni za iskop grad-evinske jame:

• teren je jednoliko nagnut na cjelokupnoj površini
grad-evinske parcele, a prosječni nagib terena je pri-
bližno 20% (n = tanα = 1

5 )

• najviša točka grad-evinske parcele ima visinsku kotu
približno +154,10 mnv, a najniža točka ima visinsku
kotu približno +146,70 mnv
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• s obzirom na položaj objekta, konfiguraciju terena
i hidrološke uvjete, nije predvid-ena izrada dodatnih
konstrukcija za prihvat oborinskih voda

• geomehaničkim ispitivanjima utvrd-eno je da se is-
pod cjelokupne površine grad-evinske parcele nalazi
sloj zaglinjenog šljunka debljine 6m, te da se
cjelokupna grad-evinska jama nalazi unutar nave-
denog sloja

• nagib ravnine, odnosno plohe kosine iskopa
grad-evinske jame će s obzirom na vrstu tla (zagli-
njeni šljunak) biti postavljen na n = 2

• grad-evina se nalazi na dovoljno velikoj udaljenosti
od rubova parcele i svih susjednih postojećih i
budućih objekata, pa je iskop grad-evinske jame
moguće napraviti u cijelosti s istim nagibom kosine
(n = 2), bez izgradnje dodatnih potpornih konstruk-
cija

2.4.4 Korak 3. – izrada plana iskopa grad-evinske jame

Na osnovu geodetske podloge, te analize projektne doku-
mentacije i posebnih uvjeta i podataka o okolini, što
je detaljno objašnjeno u 2.4.2 i 2.4.3 napravljen je os-
novni plan iskopa grad-evinske jame (Slika 4), a potom je
odred-en rub iskopa kao presječna krivulja dobivena pre-
sijecanjem istoimenih slojnica ploha iskopa grad-evinske
jame i terena (Slika 5). Za potrebe izrade presječne krivulje
bilo je potrebno interpolirati dodatnu slojnicu terena na
koti +148,50 mnv, kako bi se detaljnije mogla odrediti
presječna krivulja na zakrivljenoj plohi iskopa na zapad-
noj strani objekta.

Slika 4: Osnovni plan iskopa grad-evinske jame

Slika 5: Presječna krivulja izmed-u ploha iskopa
grad-evinske jame i terena

2.4.5 Odred-ivanje ostatka sheme organizacije gradilišta

Nakon odred-ivanja presječne krivulje izmed-u ploha iskopa
grad-evinske jame i terena, moguće je pristupiti izradi o-
statka sheme organizacije gradilišta, pa se u sljedećim ko-
racima uz iskop grad-evinske jame u shemu moraju ucrtati
položaji i dimenzije sljedećih trajnih i privremenih obje-
kata:

• toranjska dizalica

• sve prometne površine

• privremeni objekti za radnike na gradilištu (uredi,
sanitarni objekti, itd.)

• privremeni skladišni objekti (materijal i alat)

• privremene deponije materijala

• instalacije (električna energija, vodovod, kanali-
zacija)

Sve navedeno možemo vidjeti u dovršenoj shemi organi-
zacije gradilišta na Slici 6.

3 Zaključak

Odred-ivanje obima iskopa grad-evinske jame u praksi se
radi pomoću kotirane projekcije. Poznato je da se kotirana
projekcija primjenjuje kod rješavanja mnogih zadataka u
niskogradnji (projektiranje cesta, željeznica, trasiranje...),
no ovim člankom htjeli smo pokazati da se kotirana projek-
cija primjenjuje i u organizaciji gradilišta. Radi se zapravo
o nizu elementarnih položajnih zadataka riješenih u kotira-
noj projekciji kao što su postavljanje ravnine odred-enog
nagiba, odred-ivanje presječnica dviju ravnina, konstru-
iranje presječnice ravnine i terena, interpolacija slojnica
itd. Možemo dakle zaključiti da je geometrija u srži
mnogih zadataka s kojima se projektanti svakodnevno
susreću u praksi.
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Slika 6: Shema organizacije gradilišta
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vozila pri zemljanim radovima, Biblioteka Mineral,
Busines Media Croatia, Zagreb, 2007
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