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ABSTRACT

Karl Brandan Mollweide (1774-1825) was German mathe-
matician and astronomer. The formulas known after him
as Mollweide’s formulas are shown in the paper, as well as
the proof ”without words”. Then, the Mollweide map pro-
jection is defined and formulas derived in different ways to
show several possibilities that lead to the same result. A
generalization of Mollweide projection is derived enabling
to obtain a pseudocylindrical equal-area projection having
the overall shape of an ellipse with any prescribed ratio of
its semiaxes. The inverse equations of Mollweide projec-
tion has been derived, as well.

The most important part in research of any map projec-
tion is distortion distribution. That means that the paper
continues with the formulas and images enabling us to get
some filling about the linear and angular distortion of the
Mollweide projection.

Finally, several applications of Mollweide projections are
represented, with the International Cartographic Associa-
tion logo as an example of one of its successful applica-
tions.

Key words: Mollweide, Mollweide’s formula, Mollweide
map projection
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Mollweideova kartografska projekcija

SAŽETAK

Karl Brandan Mollweide (1774-1825) bio je njemački
matematičar i astronom. U ovom radu prikazane su for-
mule nazvane po njemu kao Mollweideove formule, a
uz njih ”dokaz bez riječi”. Zatim je definirana Mollwei-
deova kartografska projekcija uz izvod formula na neko-
liko različitih načina kako bi se pokazalo da postoji vǐse
mogućnosti koje vode do istoga rezultata. Izvedena je ge-
neralizacija Mollweideove projekcije koja omogućava do-
bivanje pseudocilindričnih ekvivalentnih (istopovřsinskih)
projekcija smještenih u elipsu s bilo kojim unaprijed
zadanim odnosnom njezinih poluosi. Izvedene su i inverzne
jednadžbe Mollweideove projekcije.

Najvažniji dio istraživanja svake kartografske projekcije je
ustanovljavanje razdiobe deformacija. Stoga su u radu
dane formule i grafički prikazi koji daju uvid u razdiobu
linearnih i kutnih deformacija Mollweideove projekcije.

Na kraju je prikazano nekoliko primjena Mollweideove pro-
jekcije. Med-u njima je i logotip Med-unarodnoga kartograf-
skog društva, kao jedan od primjera njezine uspješne pri-
mjene.

Ključne riječi: Mollweide, Mollweideova formula, Mollwei-
deova kartografska projekcija

1 Mollweide’s Formulas

In trigonometry, Mollweide’s formula, sometimes referred
to in older texts as Mollweide’s equations, named after
Karl Mollweide, is a set of two relationships between sides
and angles in a triangle. It can be used to check solutions
of triangles.

Let a, b, and c be the lengths of the three sides of a trian-
gle. Let α, β, and γ be the measures of the angles opposite
those three sides respectively. Mollweide’s formulas state
that

a + b
c

=
cos α−β

2
sin γ

2
and

a−b
c

=
sin α−β

2
cos γ

2
.

Each of these identities uses all six parts of the triangle -
the three angles and the lengths of the three sides.

These trigonometric identities appear in Mollweide’s paper
Zusätze zur ebenen und sphärischen Trigonometrie (1808).
A proof without words of these identities (see Fig. 1) is
given in DeKleine (1988) and Nelsen (1993).
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Figure 1: Mollweide equation - Proof without Words.
According DeKleine (1988).

One of the more puzzling aspects is why these equations
should have become known as the Mollweide equations
since in the 1808 paper in which they appear Mollweide
refers the book by Antonio Cagnoli (1743-1816) Traité
de Trigonométrie Rectiligne et Sphérique, Contenant des
Méthodes et des Formules Nouvelles, avec des Applica-
tions à la Plupart des Problêmes de l’astronomie (1786)
which contains the formulas. However, the formulas go
back to Isaac Newton, or even earlier, but there is no doubt
that Mollweide’s discovery was made independently of
this earlier work (URL1).

2 Mollweide Map Projection Equations

Pseudocylindrical map projections have in common
straight parallel lines of latitude and curved meridians. Un-
til the 19th century the only pseudocylindrical projection
with important properties was the sinusoidal or Sanson-
Flamsteed. The sinusoidal has equally spaced parallels
of latitude, true scale along parallels, and equivalency or
equal-area. As a world map, it has disadvantage of high
distortion at latitudes near the poles, especially those far-
thest from the central meridian (Fig. 2).

Figure 2: Sanson or Sanson-Flamsteed or Sinusoidal pro-
jection

In 1805, Mollweide announced an equal-area world map
projection that is aesthetically more pleasing than the si-
nusoidal because the world is placed in an ellipse with
axes in a 2:1 ratio and all the meridians are equally spaced

semiellipses. The Mollweide projection was the only new
pseudocylindrical projection of the nineteenth century to
receive much more than academic interest (Fig. 3).

Figure 3: Mollweide projection

Mollweide presented his projection in response to a new
globular projection of a hemisphere, described by Georg
Gottlieb Schmidt (1768-1837) in 1803 and having the
same arrangement of equidistant semiellipses for merid-
ians. But Schmidt’s curved parallels do not provide
the equal-area property that Mollweide obtained (Snyder,
1993).
O’Connor and Robertson (URL1) stated that Mollweide
produced the map projection to correct the distortions in
the Mercator projection, first used by Gerardus Mercator
in 1569. While the Mercator projection is well adapted for
sea charts, its very great exaggeration of land areas in high
latitudes makes it unsuitable for most other purposes. In
the Mercator projection the angles of intersection between
the parallels and meridians, and the general configuration
of the land, are preserved but as a consequence areas and
distances are increasingly exaggerated as one moves away
from the equator. To correct these defects, Mollweide drew
his elliptical projection; but in preserving the correct rela-
tion between the areas he was compelled to sacrifice con-
figuration and angular measurement. The Mollweide pro-
jection lay relatively dormant until J. Babinet reintroduced
it in 1857 under the name homalographic. The projection
has been also called the Babinet, homalographic, homolo-
graphic and elliptical projection. It is discussed in many
articles, see for example Boggs (1929), Close (1929), Fee-
man (2000), Philbrick (1953), Reeves (1904) and Sny-
der (1977) and books or textbooks by Fiala (1957), Graur
(1956), Kavrajskij (1960), Kuntz (1990), Maling (1980),
Snyder (1987, 1993), Solov’ev (1946) and Wagner (1949).
The well known equations of the Mollweide projections
read as follows:

x =
√

2Rsinβ (1)

y =
2
√

2
π

Rλcosβ (2)

2β + sin2β = πsinϕ. (3)
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In these formulas x and y are rectangular coordinates in
the plane of projection, ϕ and λ are geographic coordi-
nates of the points on the sphere and R is the radius of
the sphere to be mapped. The angle β is an auxiliary an-
gle that is connected with the latitude ϕ by the relation (3).
For given latitude ϕ, the equation (3) is a transcendental
equation in β. In the past, it was solving by using tables
and interpolation method. In our days, it is usually solved
by using some iterative numerical method, like bisection
or Newton-Raphson method.

2.1 First approach

A half of the sphere with the radius R should be mapped
onto the disk with the radius ρ (adopted from Borčić,
1955). If we request that the area of the hemisphere is
equal to the area of the disk, than there is the following
relation:

2R2π = ρ2π (4)

from where we have

ρ =
√

2R. (5)

Let the circle having the radius ρ be the image of the merid-
ians with the longitudes λ = ±

π
2 . From Fig. 4 we see that

the rectangular coordinates x0 and y0 of any point T0 be-
longing to this circle can be written like this:

x0 = ρsinβ (6)

y0 = ρcosβ. (7)

Due to the request that the projection should be pseudo-
cylindrical, the abscise x = x0 for any point with the same
latitude regardless of the longitude the relation (1) holds.

Figure 4: Derivation of Mollweide projection equations

On the other hand, the ordinate y will depend on the lati-
tude and longitude. According to the equal-area condition,
the following relation exists:

y0 : y =
π
2

: λ. (8)

By using (8) and (5), the relation (7) goes into (2). In or-
der to finish the derivation, we need to find the relation
between the auxiliary angle β, and the latitude ϕ. Accord-
ing to the equal-area condition, the area SEE1T0 should
be equal to the area of the spherical segment between the
equator and the parallel of latitude ϕ, which is mapped as
the straight-line segment ST0:

∆OST0 + 2OT0E1 = R2πsinϕ,

that is

ρ2

2
sin(π−2β)+

2ρ
2

βρ = R2πsinϕ (9)

from where we have (3).

2.2 Second approach

Given the earth’s radius R, suppose the equatorial aspect of
an equal-area projection with the following properties:

• A world map is bounded by an ellipse twice broader
than tall

• Parallels map into parallel straight lines with uni-
form scale

• The central meridian is a part of straight line; all
other ones are semielliptical arcs.

Figure 5: Second approach to derivation of Mollweide
projection equations

Suppose an earth-sized map; let us define two regions, S1
on the map and S2 on the earth, both bounded by the equa-
tor and a parallel (URL2). The equal-area property can
be used to calculate x for given ϕ. Given x and λ, y can
be calculated immediately from the ellipse equation, since
horizontal scale is constant.
Equation of ellipse centred in origin, with major axis on
y-axis is:

x2

a2 +
y2

b2 = 1 or

y2 = b2
(

1−
x2

a2

)

.
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For 0 ≤ x ≤ a

y =
b
a

√

a2
− x2.

Area between y-axis and parallel mapped into x = x1 is

S1 = 2
∫ x1

0
ydx = 2

b
a

∫ x1

0

√

a2
− x2dx

Let x = asinβ, 0 ≤ x ≤ a, 0 ≤ β ≤
π
2 , dx = acosβdβ, then

∫

√

a2
− x2dx =

∫ √

a2(1− sin2 β) acosβdβ =

a2
∫

cos2 βdβ.

Since cos2 α = 1+cos2α
2

a2
∫

cos2 βdβ = a2
∫ 1 + cos2β

2
dβ =

=
a2

2

(

∫

dβ +

∫

cos2βdβ
)

=
a2

2

(

β +
sin2β

2

)

+C

S1 = 2
b
a

(

a2

2

(

β +
sin2β

2

)

+C
)β

0
=

=
ab
2

(2β + sin2β) = 2R2(2β + sin2β)

for some 0 ≤ β ≤
π
2 , corresponding to x1 = asinβ and be-

cause of abπ = 4R2π.
On a sphere, the area between the equator and parallel ϕ is

S2 = 2πRh = 2πR2 sinϕ

S1 = S2 ⇒ 2R2(2β + sin2β) = 2πR2 sinϕ, i.e. (3).

The auxiliary angle β must be found by interpolation or
successive approximation. Finally, since horizontal scale
is uniform, and abπ = 4R2π, b = 2a and a =

√

2R we have
(1). Due to the relation

y : λ =
b
a

√

a2
− x2 : π

y =
2λ
π

√

2R2
− x2 = 2

√

2R2
−2R2 sin2 β

λ
π

, i.e. (2) holds.

2.3 Third approach

From the theory of map projections we know that general
equations of pseudocylindrical projections have the form:

x = x(ϕ) (10)

y = y(ϕ,λ) (11)

Furthermore, for equal-area pseudocylindrical projection
holds (Borčić, 1955)

y =
R2 cosϕ

dx
dϕ

λ (12)

Let us suppose that a half of the sphere has to be mapped
onto a disc with the boundary

x2 + y2 = ρ2.

In order to have an equal-area mapping of the half of the
sphere with the radius R onto a disc with the radius ρ we
should have

2R2π = ρ2π

from where

ρ2 = 2R2.

That implies

x2 + y2 = 2R2.

Taking into account (12) for λ = ±
π
2

y = ±

R2π
2

cosϕ
dx
dϕ

x2 +
R4π2

4
cos2 ϕ
(

dx
dϕ

)2 = 2R2.

That is a differential equation that could be solved by the
method of separation of variables:

2
√

2R2
− x2dx = R2πcosϕdϕ

where the sign + has been chosen. After integration we can
get

2
∫

√

2R2
− x2dx = R2πsinϕ+C

By the appropriate substitution in the integral on the left
side, or just looking to any mathematical manual we can
get the following:

2 ·
1
2

(

x
√

2R2
− x2 + 2R2 arcsin

x
R
√

2

)

= R2πsinϕ+C

For ϕ = 0, x = 0 and C = 0.
Therefore we have

x
√

2R2
− x2 + 2R2 arcsin

x
R
√

2
= R2πsinϕ. (13)
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By substitution (1), (13) goes to (3), while (12) can be writ-
ten as

y =
2λ
π

√

2R2
− x2, which is equivalent to (2).

Remark 1
Although the applied condition was that a half of the sphere
has to be mapped onto a disc, the final projection equations
hold for the whole sphere and give its image situated into
an ellipse.
Remark 2
In references, the Mollweide projection is always defined
by equations (1)-(3), which means by using an auxiliary
angle or parameter. My equation (13) shows that there is
no need to use any auxiliary parameter. There exists the
direct relation between the x-coordinate and the latitude ϕ.
Remark 3
The method applied in this chapter can be applied in
derivation of other pseudocylindrical equal-area projec-
tions, as are e.g. Sanson projection, Collignon projection
or even cylindrical equal-area projection.

3 Generalization of Mollweide Projection

Let us consider the shape of the Mollweide projection of
the whole sphere. From the equations (1) and (2), by elim-
ination of β it is easy to obtain the equation of a meridian
in the projection
(

x
√

2R

)2
+

(

πy
2
√

2Rλ

)2
= 1. (14)

It is obvious that for a given λ (14) is the equation of an el-
lipse. It follows that the semiaxis a is constant, while b de-
pends on the longitude λ. If we take λ = π, than b = 2

√

2R,
and

a : b = 1 : 2 (15)

and that is the ratio of semiaxes in the Mollweide projec-
tion. The question arises: is it possible to find out a pseu-
docylindrical equal-area projection that will give the whole
word in an arbitrary ellipse satisfying any given ratio a : b
or b : a? The answer is yes, and we are going to proof it.
Let us denote µ = b : a. First of all, the area of an ellipse
with the semiaxes a and b = µa should be equal to the area
of the whole sphere:

abπ = µa2π = 4R2π.

This is equivalent with

b =
4R2

a
,µ =

4R2

a2 or a = 2R
√µ. (16)

Now, the equation of the ellipse with the centre in the ori-
gin and with the semiaxes a and b reads

x2

a2 +
y2

µ2a2 = 1, or

y2 = µ2(a2
− x2). (17)

Furthermore, the projection should be cylindrical and
equal-area, which is generally expressed by (12). If we
substitute (12) into (17), taking into account that λ = π,
after some minor transformation we can get the following
differential equation with separated variables

R2πcosϕdϕ = µ
√

a2
− x2dx. (18)

Integral of the left side of the equation is elementary, while
for that on the right side we need a substitution

x = asinβ. (19)

This leads to the equation

πcosϕdϕ = 4cos2 βdβ.

The application of the trigonometric identity

cos2 β =
1 + cos2β

2

gives us the following differential equation that is ready for
integration:

πcosϕdϕ = 2(1 + cos2β)dβ.

After integration, we obtain

πsinϕ = 2β + sin2β +C, (20)

where C is an integration constant. By using the natural
conditions ϕ = 0, x = 0 and β = 0 we obtain C = 0. In that
way, the final form of (5.8) is again the known relation (3).
From (18) and (19) we have

dx
dϕ

=
a2πcosϕ

4
√

a2
− x2

=
aπcosϕ
4cosβ

=
R
√µ

πcosϕ
2cosβ

and taking into account (12)

y =
4R2

aπ
λcosβ = µa

λ
π

cosβ = 2R
√

µ
λ
π

cosβ,

while

x = asinβ =
2R
√µ

sinβ.
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Let us summarize:

x =
2R
√µ

sinβ.

y = 2R
√

µ
λ
π

cosβ.

2β + sin2β = πsinϕ.

These are equations defining the generalized Mollweide
projection onto an ellipse of any given ratio µ = b : a of
its semiaxes.

Example 1.
Let us take µ = 1, that is a = b, which means that we have
a bounding circle. According to (16) a = b = 2R.

Figure 6: Generalized Mollweide projection onto a disc

Example 2.
Let us take µ = 2, that is b = 2a. According to (16)
a =

√

2R, b = 2
√

2R, and we are able to recognize the clas-
sic Mollweide projection (Fig. 3).

Example 3.
Let us define the ratio µ, by the condition that the linear
scale along the equator equals 1. From the theory of map
projections it is known that the linear scale along parallels
is given by

n =

√

G
Rcosϕ

,

where

G =

(

∂x
∂λ

)2
+

(

∂y
∂λ

)2
.

In our case x = x(ϕ), which means that

∂x
∂λ

= 0.

The condition

n = 1 for ϕ = 0

goes to

∂y
∂λ

= Rcosϕ = R.

Now,

∂y
∂λ

=
2R√µ

π
cosβ = R.

and from there and β = 0 due to ϕ = 0 we have

√

µ =
π
2
, or µ = π2

4 .

Finally, a = 4R
π , b = Rπ and

x =
4
π

Rsinβ

y = Rλcosβ

2β + sin2β = πsinϕ.

It is easy to see that the linear scale in the direction of
meridian is also 1 throughout the equator in this version of
Mollweide projection (Fig. 7). See also Bromley (1965).

Figure 7: Generalized Mollweide projection without lin-
ear distortions along the equator

Remark 4
The same approach can be applied to find a generalized
Mollweide projection satisfaying the condition n = 1 for
ϕ = ϕ0, where 0 ≤ ϕ0 ≤

π
2 .
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4 Inverse Equations ofMollweide Projection

The inverse equations of any map projections read as fol-
lows:

ϕ = ϕ(x,y)

λ = λ(x,y).

The computation of ϕ and λ from given x and y in Moll-
weide projection is straightforward. In fact, for the given x
from (1) we can get the auxiliary angle β

sinβ =
x

√

2R

Then, from (3) we have

sinϕ =
1
π

(2β + sin2β)

and from (2)

λ =
πy

2
√

2Rcosβ
.

5 Distribution of Distortions in Mollweide
Projection

For the Mollweide projection given by equations (1)–(3) it
can be derived in the straightforward manner:

tanε =
2tanβ

π
λ

m =
πcosϕ

2
√

2cosβcosε

n =
2
√

2cosβ
πcosϕ

2tan
ω
2

=
√

m2 + n2
−2,

where

ε is defined by ε = θ−
π
2 , and θ is the angle between a

meridian and a parallel in the plane of projection
m is a linear scale along meridian
n is a linear scale along parallel
ω is a maximal angular distortion at a point.
The scale of the area p = 1 by definition.
The distribution of distortion of Mollweide projection has
been investigated and represented in tabular and/or graph-
ical form by several authors (Behrmann, 1909, Solov’ev,
1946, Graur, 1956, Fiala, 1957, Maling 1980).

The linear scale along parallels depends on latitude only.
The linear scale along meridians depends both on latitude
and longitude. The only standard parallels are 40◦44’12”N
and S. The only two points with no distortion are the inter-
sections of the central meridian and standard parallels.

Figure 8: The Mollweide projection with Tissot’s indica-
trices of deformation (URL5)

Figure 9: Mollweide projection for the whole word, show-
ing isograms for maximum angular deformation
at 10◦, 20◦, 30◦, 40◦ and 50◦. Parts of the world
map where ω > 80◦ are shown in black (Maling,
1980; Canters and Crols, 2011).

6 Some Applications of Mollweide
Projection

For those who would like to research the Mollweide pro-
jection in more detail, I would recommend the following
web-sites: URL2, URL3 and URL6. Although, due it care-
fully, due to some incorrect statements occurring on the
Internet.
Mollweide’s projection has been extremely influential. Be-
sides the developments by Goode (URL7), derived works
include the interrupted Sinu-Mollweide projection by A.
K. Philbrick (1953), other aspect maps like Bartholomew’s
Atlantis, and simple rescaling by reciprocal factors which
preserve its features - e.g., making the equator a standard
parallel free of distortion (Bromley, 1965), or making the
whole map circular instead of elliptical as indicating in the
Chapter 3.
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Figure 10: Oblique aspect of the Mollweide projection
(Solov’ev, 1946, Kavrajskij, 1960

Figure 11: The Atlantis Map (Bartholomew, 1948),
Transversal aspect of the Mollweide projection
(URL3)

Figure 12: Inferred contours of the geoid (in metres) for
the whole word, based upon Kuala’s analysis of
variations in gravity potential with both latitude
and longitude (Maling 1980)

Figure 13: Sea-surface freon levels measured by the Global
Ocean Data Analysis Project. Projected using
the Mollweide projection (URL5).

Figure 14: The Map Room - A weblog about maps (URL8)

Figure 15: Full-sky image of Cosmic Microwave Back-
ground as seen by the Wilkinson Microwave
Anisotropy Probe (URL5).

Remark 5
The Mollweide and Hammer projections are occasionally
confused, since they are both equal-area and share the el-
liptical boundary; however, the latter design has curved
parallels and is not pseudocylindrical (Fig. 16).
The logo of the International Cartographic Associtaion
(ICA) has the world in Mollweide projection in its central
part (Fig. 17). The mission of the ICA is to promote the
discipline and profession of cartography in an international
context.
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Figure 16: Hammer projection (URL 9)

Figure 17: ICA logo (URL4)

7 Conclusions

German mathematician and astronomer Karl Brandan
Mollweide (1774-1825) is known for trigonometric formu-
lae and map projections named after him. It is possible
to derive his projection equations in different ways. One
can choose the classic approach without using calculus,
another using integrals or the third one, which consists of
establishing and solving a differential equation.

Furthermore, it is possible to generalize the Mollweide
projection in order to provide pseudocylindrical equal-area
projections which represent the entire Earth in an ellipse
with any prescribed ratio of its semiaxes. The original
Mollweide projection has the ratio of 2:1. Inverse equa-
tions of Mollweide projection also exist.

The paper also provides the formulae and illustrations
of the distortion distribution in the Mollweide projection.
Considering several applications of Mollweide projections
represented in the paper, it is obvious that even though the
map projection is more than 200 years old, it still has nu-
merous applications. For example, the International Car-
tographic Association has used it in its logo since it was
founded 50 years ago.
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