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ABSTRACT

After having investigated the equidistant surfaces (”per-
pendicular bisectors” of two points) in S2

×R space (see
[6]) we consider the analogous problem in H2

×R space
from among the eight Thurston geometries. In [10] the
third author has determined the geodesic curves, geodesic
balls of H2

×R space and has computed their volume, has
defined the notion of the geodesic ball packing and its
density. Moreover, he has developed a procedure to de-
termine the density of the geodesic ball packing for gener-
alized Coxeter space groups of H2

×R and he has applied
this algorithm to them.

In this paper we introduce the notion of the equidistant
surface to two points in H2

×R geometry, determine its
equation and we shall visualize it in some cases. The
pictures have been made by the Wolfram Mathematica
software.
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Ekvidistantne plohe u prostoru H2
×R

SAŽETAK

Nakon istraživanja ekvidistanthih ploha (“okomitih sime-
trala” dviju točaka) u prostoru S2

×R (vidi [6]), raz-
matramo analogni problem u prostoru H2

×R iz osam
Thurstonovih geometrija. U radu [10] treći je autor
odredio geodetske krivulje i kugle prostora H2

×R te
definirao pojam popunjavanja geodetskim kuglama i nje-
govu gustoću. Pored toga, razvio je metodu odred-ivanja
gustoće popunjavanja geodetskim kuglama za generali-
zirane Coxeterove grupe prostora H2

×R i primijenio taj
algoritam na njih. U ovom radu uvodimo pojam ekvidi-
stantne plohe dviju točaka u geometriji H2

×R, odred-ujemo
njihovu jednadžbu i vizualiziramo neke slučajeve. Slike su
napravljene u Wolframovom programu Mathematica.

Ključne riječi: neeuklidske geometrije, geodetska krivu-
lja, geodetska sfera, ekvidistantna ploha u H2

×R geo-
metriji

1 Basic notions of H2
×R geometry

The H2
×R geometry is one one of the eight simply con-

nected 3-dimensional maximal homogeneous Riemannian
geometries. This Seifert fibre space is derived by the direct
product of the hyperbolic plane H2 and the real line R. The
points are described by (P, p) where P ∈ H2 and p ∈ R.
In [2] E. Molnár has shown, that the homogeneous
3-spaces have a unified interpretation in the projective
3-sphere PS3(V4,V 4,R). In our work we shall use this
projective model of H2

×R and the Cartesian homoge-
neous coordinate simplex E0(e0),E∞

1 (e1),E∞
2 (e2), E∞

3 (e3),
({ei} ⊂ V4 with the unit point E(e = e0 + e1 + e2 + e3))
which is distinguished by an origin E0 and by the ideal
points of coordinate axes, respectively. Moreover, y = cx
with 0 < c ∈ R (or c ∈ R \ {0}) defines a point (x) = (y)
of the projective 3-sphere PS3 (or that of the projective
space P3 where opposite rays (x) and (−x) are identified).
The dual system {(ei)} ⊂V 4 describes the simplex planes,
especially the plane at infinity (e0) = E∞

1 E∞
2 E∞

3 , and gen-
erally, v = u 1

c defines a plane (u) = (v) of PS3 (or that of
P3, respectively). Thus 0 = xu = yv defines the incidence
of point (x) = (y) and plane (u) = (v), as (x)I(u) also de-
notes it. Thus H2

×R can be visualized in the affine 3-space
A3 (so in E3) as well.
The point set of H2

×R in the projective space P3, are the
following open cone solid (see Fig. 1-2):

H2
×R :=

{

X(x = xiei) ∈ P3 : −(x1)2 +(x2)2 +(x3)2 < 0 < x0, x1}.
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Figure 1: Projective model of H2
×R geometry
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Figure 2: The connection between Cayley-Klein model of
the hyperbolic plane and the ”base plane” of the
model of H2

×R geometry.
In this context E. Molnár [2] has derived the infinitesimal
arc-length square at any point of H2

×R as follows

(ds)2 =
1

−x2 + y2 + z2 ·

[

(x2 + y2 + z2)(dx)2+

2dxdy(−2xy)+ 2dxdz(−2xz)+

(x2 + y2
− z2)(dy)2+

2dydz(2yz)(x2
− y2 + z2)(dz)2

]

. (1)

By introducing the new (t,r,α) coordinates in (2), our for-
mula becomes simplier in (3): −π < α ≤ π and r ≥ 0 with
t ∈ R the fibre coordinate. The proper points can be de-
scribed by the following equations:

x0 = 1, x1 = et coshr,

x2 = et sinhr cosα, x3 = et sinhr sin α. (2)

We apply the usual Cartesian coordinates for the visu-
alization and further computations, i.e. x = x1/x0,y =
x2/x0,z = x3/x0. So the infinitesimal arc length square
with coordinates (t,r,α) at any proper point of H2

×R -
and the symmetric metric tensor gi j obtained from it - are
the following:

(ds)2 = (dt)2 +(dr)2 + sinh2 r(dα)2, (3)

gi j :=





1 0 0
0 1 0
0 0 sinh2 r



 . (4)

By the usual method of the differential geometry we have
obtained the equation system of the geodesic curves [5]:

x(τ) = eτsinv cosh(τcosv),

y(τ) = eτsinv sinh(τcosv)cosu,

z(τ) = eτsinv sinh(τcosv) sinu, (5)

−π < u ≤ π, −

π
2
≤ v ≤

π
2
.

Remark 1.1 The starting point of our geodesics can be
chosen at (1,1,0,0) by the homogeneity of H2

×R.

Definition 1.2 The distance d(P1,P2) between the points
P1 and P2 is defined by the arc length s = τ in (5) of the
geodesic curve from P1 to P2.

Definition 1.3 The geodesic sphere of radius ρ (denoted
by SP1(ρ)) with center at the point P1 is defined as the set of
all points P2 in the space with the condition d(P1,P2) = ρ.
We also require that the geodesic sphere is a simply con-
nected surface without selfintersection inH2

×R space (see
Fig. 3).

Figure 3: Geodesics with varying parameters and the
”base-hyperboloid” in the cone and a geodesic
sphere with radius 2

3 centered at (1,1,0,0).

1.1 Equidistant surfaces in H2
×R geometry

One of our further goals is to visualize and examine the
Dirichlet-Voronoi cells of H2

×R where the faces of the
DV-cells are equidistant surfaces. The definition below
comes naturally.

Definition 1.4 The equidistant surface SP1P2 of two arbi-
trary points P1,P2 ∈ H2

×R consists of all points P′
∈

H2
×R, for which d(P1,P′) = d(P′,P2). Moreover, we re-

quire that this surface is a simply connected piece without
selfintersection in H2

×R space.

It can be assumed by the homogeneity of H2
×R that

the starting point of a given geodesic curve segment is
P1(1,1,0,0). The other endpoint will be given by its
homogeneous coordinates P2(1,a,b,c). We consider the
geodesic curve segment GP1P2 and determine its parame-
ters (τ,u,v) expressed by a,b,c. We obtain by equation
system (5) the following identity :
√

a2
−b2

− c2 = eτsinv (6)
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If we substitute this into (5), the equation system can be
solved for (τ,u,v).

τ =
log

√

a2
−b2

− c2

sinv
, if v �= 0. (7)

v = arctan









log
√

a2
−b2

− c2

arccosh
(

a
√

a2
−b2

−c2

)









, (8)

if P2(a,b,c) does not lie on the axis [x] i.e. (b,c) �= (0,0).

tanu =
z(τ)
y(τ)

=
c
b
⇒ u = arctan

( c
b

)

. (9)

Figure 4: Touching geodesic spheres of radius 1
10 cen-

tered on the geodesic curve with starting point
(1,1,0,0) and parameters u = π

4 , v = π
3 �= 0.

Remark 1.5 If P2 ∈ [x], then v = Π
2 and u = 0, and the

geodesic curve is an Euclidean line segment between P1
and P2. If v = 0, then τ = arccosha and the two points
are on the same hyperboloid surface. These special cases
will be discussed in section 3 in terms of the equidistant
surfaces belonging to them.
It is clear that X ∈ SP1P2 iff d(P1,X) = d(X ,P2) ⇒

d(P1,X) = d(XF,PF

2 ), where F is a composition of isome-
tries which maps X onto (1,1,0,0), and then by (7) the
length of the geodesic (e.g. the distance between the two
points) is comparable to d(P1,X). This method leads to the
implicit equation of the equidistant surface of two proper
points P1(1,a,b,c) and P2(1,d,e, f ) in H2

×R:

SP1P2(x,y,z) ⇒

4arccosh2

(

ax−by− cz
√

a2
−b2

− c2
√

x2
− y2

− z2

)

+

log2
(a2

−b2
− c2

x2
− y2

− z2

)

=

= 4arccosh2

(

dx− ey− f z
√

d2
− e2

− f 2
√

x2
− y2

− z2

)

+

log2
(d2

− e2
− f 2

x2
− y2

− z2

)

. (10)

Figure 5: Equidistant surfaces with P1(1,1,0,0) and
P2(1,2,1,1), and the two special cases.

Figure 6: Equidistant surfaces to points
P1(1,

√

2,0,0), P2(1,
√

2, 1
2 ,

√

3
2 ) and

P1(1,
√

2,0,0), P3(1,
√

2,− 1
2 ,

√

3
2 ).

1.2 Some observations

We introduce the next denotations to simplify the equation
(10): a =

−−→

OP1, b =
−−→

OP2 and x =
−→

OX . We define the scalar
product for all vectors u(u1,u2,u3) and v(v1,v2,v3) by the
following equation:

〈u,v〉 = −u1v1 + u2v2 + u3v3,

moreover, we introduce the denotation |v| =
√

−〈v,v〉
similarly to the S2

×R space (see [6]).

With these denotations, the equation of the surface be-
comes shorter and gives important informations about
equidistant surfaces:

arccosh2
(

−〈a,x〉
|a||x|

)

+ log2
(

|a|
|x|

)

=

arccosh2
(

−〈x,b〉
|x||b|

)

+ log2
(

|b|
|x|

)

.
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The last step is to notice that arccosh
(

−〈a,x〉
|a||x|

)

is the hy-
perbolic disance between points a and x in the projective
model of the hyperbolic plane. So let ε = dh(a,x) and
δ = dh(x,b). The final form of the equation is the follow-
ing:

ε2 + log2(|a||x|−1) = δ2 + log2(|b||x|−1) (11)

Remark 1.6 This formula also describes the equidistant
surface of S2

×R with the usual Euclidean scalar product,
vector length and angle formula (see [6]).

It is now easy to examine some special cases: when |a| =
|b|, the equidistant surface consists of those points of an

Euclidean plane in our model, which are inner points of
the cone (e.g. proper point of H2

×R). Another special
case appears when a and b are on the same fibre. In this
case (δ = ε) the equidistant surface is the ”positive side”
of a hyperboloid of two sheets.

Our projective method gives us a way of investigation the
H2

×R space, which suits to study and solve similar prob-
lems (see [10]). In this paper we have examined only some
problems, but analogous questions in H2

×R geometry or,
in general, in other homogeneous Thurston geometries are
timely (see [11], [8], [9]).
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