Original scientific paper Accepted 18. 12. 2011. JÁNOS PALLAGI, BENEDEK SCHULTZ, JENÖ SZIRMAI

Equidistant Surfaces in H²×R Space

Equidistant Surfaces in $\mathbf{H}^2 \times \mathbf{R}$ Space

ABSTRACT

After having investigated the equidistant surfaces ("perpendicular bisectors" of two points) in $S^2 \times R$ space (see [6]) we consider the analogous problem in $H^2 \times R$ space from among the eight Thurston geometries. In [10] the third author has determined the geodesic curves, geodesic balls of $H^2 \times R$ space and has computed their volume, has defined the notion of the geodesic ball packing and its density. Moreover, he has developed a procedure to determine the density of the geodesic ball packing for generalized Coxeter space groups of $H^2 \times R$ and he has applied this algorithm to them.

In this paper we introduce the notion of the equidistant surface to two points in $\mathbf{H}^2\times\mathbf{R}$ geometry, determine its equation and we shall visualize it in some cases. The pictures have been made by the Wolfram Mathematica software.

Key words: non-Euclidean geometries, geodesic curve, geodesic sphere, equidistant surface in $H^2 \times R$ geometry

MSC 2010: 53A35, 51M10, 51M20, 52C17, 52C22

Ekvidistantne plohe u prostoru $\mathbf{H}^2 \times \mathbf{R}$ SAŽETAK

Nakon istraživanja ekvidistanthih ploha ("okomitih simetrala" dviju točaka) u prostoru $\mathbf{S}^2 \times \mathbf{R}$ (vidi [6]), razmatramo analogni problem u prostoru $\mathbf{H}^2 \times \mathbf{R}$ iz osam Thurstonovih geometrija. U radu [10] treći je autor odredio geodetske krivulje i kugle prostora $\mathbf{H}^2 \times \mathbf{R}$ te definirao pojam popunjavanja geodetskim kuglama i njegovu gustoću. Pored toga, razvio je metodu određivanja gustoće popunjavanja geodetskim kuglama za generalizirane Coxeterove grupe prostora $\mathbf{H}^2 \times \mathbf{R}$ i primijenio taj algoritam na njih. U ovom radu uvodimo pojam ekvidistantne plohe dviju točaka u geometriji $\mathbf{H}^2 \times \mathbf{R}$, određujemo njihovu jednadžbu i vizualiziramo neke slučajeve. Slike su napravljene u Wolframovom programu Mathematica.

Ključne riječi: neeuklidske geometrije, geodetska krivulja, geodetska sfera, ekvidistantna ploha u $\mathbf{H}^2\times\mathbf{R}$ geometriji

1 Basic notions of $H^2 \times R$ geometry

The $\mathbf{H}^2 \times \mathbf{R}$ geometry is one one of the eight simply connected 3-dimensional maximal homogeneous Riemannian geometries. This Seifert fibre space is derived by the direct product of the hyperbolic plane \mathbf{H}^2 and the real line \mathbf{R} . The points are described by (P, p) where $P \in \mathbf{H}^2$ and $p \in \mathbf{R}$.

In [2] E. Molnár has shown, that the homogeneous 3-spaces have a unified interpretation in the projective 3-sphere $\mathcal{PS}^3(\mathbf{V}^4, V_4, \mathbf{R})$. In our work we shall use this projective model of $\mathbf{H}^2 \times \mathbf{R}$ and the Cartesian homogeneous coordinate simplex $E_0(\mathbf{e}_0), E_1^{\infty}(\mathbf{e}_1), E_2^{\infty}(\mathbf{e}_2), E_3^{\infty}(\mathbf{e}_3),$ $({\mathbf{e}_i} \subset {\mathbf{V}}^4 \text{ with the unit point } E({\mathbf{e}} = {\mathbf{e}}_0 + {\mathbf{e}}_1 + {\mathbf{e}}_2 + {\mathbf{e}}_3))$ which is distinguished by an origin E_0 and by the ideal points of coordinate axes, respectively. Moreover, $\mathbf{y} = c\mathbf{x}$ with $0 < c \in \mathbf{R}$ (or $c \in \mathbb{R} \setminus \{0\}$) defines a point $(\mathbf{x}) = (\mathbf{y})$ of the projective 3-sphere \mathbb{PS}^3 (or that of the projective space \mathcal{P}^3 where opposite rays (**x**) and (-**x**) are identified). The dual system $\{(e^i)\} \subset V_4$ describes the simplex planes, especially the plane at infinity $(e^0) = E_1^{\infty} E_2^{\infty} E_3^{\infty}$, and generally, $v = u\frac{1}{c}$ defines a plane (u) = (v) of \mathcal{PS}^3 (or that of \mathcal{P}^3 , respectively). Thus $0 = \mathbf{x}u = \mathbf{y}v$ defines the incidence of point $(\mathbf{x}) = (\mathbf{y})$ and plane (u) = (v), as $(\mathbf{x})\mathbf{I}(u)$ also denotes it. Thus $\mathbf{H}^2 \times \mathbf{R}$ can be visualized in the affine 3-space \mathbf{A}^3 (so in \mathbf{E}^3) as well.

The point set of $\mathbf{H}^2 \times \mathbf{R}$ in the projective space \mathcal{P}^3 , are the following open cone solid (see Fig. 1-2):

$$\begin{aligned} \mathbf{H}^2 \times \mathbf{R} &:= \\ \big\{ X(\mathbf{x} = x^i \mathbf{e}_i) \in \mathcal{P}^3 : -(x^1)^2 + (x^2)^2 + (x^3)^2 < 0 < x^0, \ x^1 \big\}. \end{aligned}$$

Figure 1: Projective model of $\mathbf{H}^2 \times \mathbf{R}$ geometry

Figure 2: The connection between Cayley-Klein model of the hyperbolic plane and the "base plane" of the model of $\mathbf{H}^2 \times \mathbf{R}$ geometry.

In this context E. Molnár [2] has derived the infinitesimal arc-length square at any point of $\mathbf{H}^2 \times \mathbf{R}$ as follows

$$(ds)^{2} = \frac{1}{-x^{2} + y^{2} + z^{2}} \cdot \left[(x^{2} + y^{2} + z^{2})(dx)^{2} + 2dxdy(-2xy) + 2dxdz(-2xz) + (x^{2} + y^{2} - z^{2})(dy)^{2} + 2dydz(2yz)(x^{2} - y^{2} + z^{2})(dz)^{2} \right].$$
(1)

By introducing the new (t, r, α) coordinates in (2), our formula becomes simplier in (3): $-\pi < \alpha \le \pi$ and $r \ge 0$ with $t \in \mathbf{R}$ the fibre coordinate. The proper points can be described by the following equations:

$$x^{0} = 1, \ x^{1} = e^{t} \cosh r,$$

$$x^{2} = e^{t} \sinh r \cos \alpha, \ x^{3} = e^{t} \sinh r \sin \alpha.$$
(2)

We apply the usual Cartesian coordinates for the visualization and further computations, i.e. $x = x^1/x^0$, $y = x^2/x^0$, $z = x^3/x^0$. So the infinitesimal arc length square with coordinates (t, r, α) at any proper point of $\mathbf{H}^2 \times \mathbf{R}$ and the symmetric metric tensor g_{ij} obtained from it - are the following:

$$(ds)^{2} = (dt)^{2} + (dr)^{2} + \sinh^{2} r (d\alpha)^{2},$$
(3)

$$g_{ij} := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \sinh^2 r \end{pmatrix}.$$
 (4)

By the usual method of the differential geometry we have obtained the equation system of the geodesic curves [5]:

$$\begin{aligned} x(\tau) &= e^{\tau \sin v} \cosh(\tau \cos v), \\ y(\tau) &= e^{\tau \sin v} \sinh(\tau \cos v) \cos u, \\ z(\tau) &= e^{\tau \sin v} \sinh(\tau \cos v) \sin u, \\ &-\pi < u \le \pi, \quad -\frac{\pi}{2} \le v \le \frac{\pi}{2}. \end{aligned}$$
(5)

Remark 1.1 *The starting point of our geodesics can be chosen at* (1,1,0,0) *by the homogeneity of* $\mathbf{H}^2 \times \mathbf{R}$.

Definition 1.2 *The distance* $d(P_1, P_2)$ *between the points* P_1 *and* P_2 *is defined by the arc length* $s = \tau$ *in* (5) *of the geodesic curve from* P_1 *to* P_2 .

Definition 1.3 The geodesic sphere of radius ρ (denoted by $S_{P_1}(\rho)$) with center at the point P_1 is defined as the set of all points P_2 in the space with the condition $d(P_1, P_2) = \rho$. We also require that the geodesic sphere is a simply connected surface without selfintersection in $\mathbf{H}^2 \times \mathbf{R}$ space (see Fig. 3).

Figure 3: Geodesics with varying parameters and the "base-hyperboloid" in the cone and a geodesic sphere with radius $\frac{2}{3}$ centered at (1,1,0,0).

1.1 Equidistant surfaces in $H^2 \times R$ geometry

One of our further goals is to visualize and examine the Dirichlet-Voronoi cells of $\mathbf{H}^2 \times \mathbf{R}$ where the faces of the DV-cells are equidistant surfaces. The definition below comes naturally.

Definition 1.4 The equidistant surface $S_{P_1P_2}$ of two arbitrary points $P_1, P_2 \in \mathbf{H}^2 \times \mathbf{R}$ consists of all points $P' \in \mathbf{H}^2 \times \mathbf{R}$, for which $d(P_1, P') = d(P', P_2)$. Moreover, we require that this surface is a simply connected piece without selfintersection in $\mathbf{H}^2 \times \mathbf{R}$ space.

It can be assumed by the homogeneity of $\mathbf{H}^2 \times \mathbf{R}$ that the starting point of a given geodesic curve segment is $P_1(1,1,0,0)$. The other endpoint will be given by its homogeneous coordinates $P_2(1,a,b,c)$. We consider the geodesic curve segment $\mathcal{G}_{P_1P_2}$ and determine its parameters (τ, u, v) expressed by a, b, c. We obtain by equation system (5) the following identity :

$$\sqrt{a^2 - b^2 - c^2} = e^{\tau \sin \nu} \tag{6}$$

If we substitute this into (5), the equation system can be solved for (τ, u, v) .

$$\tau = \frac{\log \sqrt{a^2 - b^2 - c^2}}{\sin v}, \quad \text{if } v \neq 0.$$
(7)

$$v = \arctan\left(\frac{\log\sqrt{a^2 - b^2 - c^2}}{\operatorname{arccosh}\left(\frac{a}{\sqrt{a^2 - b^2 - c^2}}\right)}\right),\tag{8}$$

if $P_2(a,b,c)$ does not lie on the axis [x] i.e. $(b,c) \neq (0,0)$.

$$\tan u = \frac{z(\tau)}{y(\tau)} = \frac{c}{b} \Rightarrow u = \arctan\left(\frac{c}{b}\right).$$
(9)

Figure 4: Touching geodesic spheres of radius $\frac{1}{10}$ centered on the geodesic curve with starting point (1,1,0,0) and parameters $u = \frac{\pi}{4}, v = \frac{\pi}{3} \neq 0$.

Remark 1.5 If $P_2 \in [x]$, then $v = \frac{\Pi}{2}$ and u = 0, and the geodesic curve is an Euclidean line segment between P_1 and P_2 . If v = 0, then $\tau = \arccos ha$ and the two points are on the same hyperboloid surface. These special cases will be discussed in section 3 in terms of the equidistant surfaces belonging to them.

It is clear that $X \in S_{P_1P_2}$ iff $d(P_1,X) = d(X,P_2) \Rightarrow d(P_1,X) = d(X^{\mathcal{F}},P_2^{\mathcal{F}})$, where \mathcal{F} is a composition of isometries which maps X onto (1,1,0,0), and then by (7) the length of the geodesic (e.g. the distance between the two points) is comparable to $d(P_1,X)$. This method leads to the implicit equation of the equidistant surface of two proper points $P_1(1,a,b,c)$ and $P_2(1,d,e,f)$ in $\mathbf{H}^2 \times \mathbf{R}$:

$$\begin{split} & \$_{P_1P_2}(x, y, z) \Rightarrow \\ & 4 \mathrm{arccosh}^2 \left(\frac{ax - by - cz}{\sqrt{a^2 - b^2 - c^2} \sqrt{x^2 - y^2 - z^2}} \right) + \\ & \log^2 \left(\frac{a^2 - b^2 - c^2}{x^2 - y^2 - z^2} \right) = \\ & = 4 \mathrm{arccosh}^2 \left(\frac{dx - ey - fz}{\sqrt{d^2 - e^2 - f^2} \sqrt{x^2 - y^2 - z^2}} \right) + \\ & \log^2 \left(\frac{d^2 - e^2 - f^2}{x^2 - y^2 - z^2} \right). \end{split}$$
(10)

Figure 5: Equidistant surfaces with $P_1(1,1,0,0)$ and $P_2(1,2,1,1)$, and the two special cases.

Figure 6: Equidistant surfaces to points

$$P_1(1,\sqrt{2},0,0), P_2(1,\sqrt{2},\frac{1}{2},\frac{\sqrt{3}}{2})$$
 and
 $P_1(1,\sqrt{2},0,0), P_3(1,\sqrt{2},-\frac{1}{2},\frac{\sqrt{3}}{2}).$

1.2 Some observations

We introduce the next denotations to simplify the equation (10): $\mathbf{a} = \overrightarrow{OP_1}, \mathbf{b} = \overrightarrow{OP_2}$ and $\mathbf{x} = \overrightarrow{OX}$. We define the scalar product for all vectors $\mathbf{u}(u_1, u_2, u_3)$ and $\mathbf{v}(v_1, v_2, v_3)$ by the following equation:

$$\langle \mathbf{u},\mathbf{v}\rangle = -u_1v_1 + u_2v_2 + u_3v_3,$$

moreover, we introduce the denotation $|\mathbf{v}| = \sqrt{-\langle \mathbf{v}, \mathbf{v} \rangle}$ similarly to the S²×**R** space (see [6]).

With these denotations, the equation of the surface becomes shorter and gives important informations about equidistant surfaces:

$$\begin{aligned} &\operatorname{arccosh}^{2}\left(\frac{-\langle \mathbf{a}, \mathbf{x} \rangle}{|\mathbf{a}||\mathbf{x}|}\right) + \log^{2}\left(\frac{|\mathbf{a}|}{|\mathbf{x}|}\right) = \\ &\operatorname{arccosh}^{2}\left(\frac{-\langle \mathbf{x}, \mathbf{b} \rangle}{|\mathbf{x}||\mathbf{b}|}\right) + \log^{2}\left(\frac{|\mathbf{b}|}{|\mathbf{x}|}\right). \end{aligned}$$

The last step is to notice that $\operatorname{arccosh}\left(\frac{-\langle \mathbf{a}, \mathbf{x} \rangle}{|\mathbf{a}||\mathbf{x}|}\right)$ is the hyperbolic disance between points \mathbf{a} and \mathbf{x} in the projective model of the hyperbolic plane. So let $\varepsilon = d_h(\mathbf{a}, \mathbf{x})$ and $\delta = d_h(\mathbf{x}, \mathbf{b})$. The final form of the equation is the following:

$$\epsilon^{2} + \log^{2}(|\mathbf{a}||\mathbf{x}|^{-1}) = \delta^{2} + \log^{2}(|\mathbf{b}||\mathbf{x}|^{-1})$$
(11)

Remark 1.6 This formula also describes the equidistant surface of $S^2 \times R$ with the usual Euclidean scalar product, vector length and angle formula (see [6]).

It is now easy to examine some special cases: when $|\mathbf{a}| = |\mathbf{b}|$, the equidistant surface consists of those points of an

References

- [1] A. M. MACBEATH, The classification of non-Euclidean plane crystallographic groups. *Can. J. Math.*, **19** (1967), 1192–1295.
- [2] E. MOLNÁR, The projective interpretation of the eight 3-dimensional homogeneous geometries. *Beiträge zur Algebra und Geometrie*, **38** (1997) No. 2, 261–288.
- [3] E.MOLNÁR, I. PROK, J. SZIRMAI, Classification of tile-transitive 3-simplex tilings and their realizations in homogeneous spaces. *Non-Euclidean Geometries*, *János Bolyai Memorial Volume*, Ed. A. PREKOPA and E. MOLNÁR, Mathematics and Its Applications 581, Springer (2006), 321–363.
- [4] E. MOLNÁR, J. SZIRMAI, Symmetries in the 8 homogeneous 3-geometries. Symmetry: Culture and Science, Vol. 21 No. 1-3 (2010), 87-117.
- [5] E. MOLNÁR, B. SZILÁGYI, Translation curves and their spheres in homogeneous geometries. *Publicationes Math. Debrecen*, Vol. **78/2** (2011), 327–346.
- [6] J. PALLAGI, B. SCHULTZ, J. SZIRMAI, Visualization of geodesic curves, spheres and equidistant surfaces in $S^2 \times R$ space. *KoG* 14, (2010), 35-40.
- P. SCOTT, The geometries of 3-manifolds. *Bull. Lon*don Math. Soc., 15 (1983) 401–487. (Russian translation: Moscow "Mir" 1986.)

Euclidean plane in our model, which are inner points of the cone (e.g. proper point of $\mathbf{H}^2 \times \mathbf{R}$). Another special case appears when **a** and **b** are on the same *fibre*. In this case ($\delta = \varepsilon$) the equidistant surface is the "positive side" of a hyperboloid of two sheets.

Our projective method gives us a way of investigation the $\mathbf{H}^2 \times \mathbf{R}$ space, which suits to study and solve similar problems (see [10]). In this paper we have examined only some problems, but analogous questions in $\mathbf{H}^2 \times \mathbf{R}$ geometry or, in general, in other homogeneous Thurston geometries are timely (see [11], [8], [9]).

- [8] J. SZIRMAI, The optimal ball and horoball packings to the Coxeter honeycombs in the hyperbolic dspace. *Beiträge zur Algebra und Geometrie*, **48** No. 1 (2007), 35–47.
- [9] J. SZIRMAI, The densest geodesic ball packing by a type of **Nil** lattices. *Beiträge zur Algebra und Geometrie*, **48** No. 2 (2007), 383–398.
- [10] SZIRMAI, J. Geodesic ball packings in $\mathbf{H}^2 \times \mathbf{R}$ space for generalized Coxeter space groups. *Mathematical Communications*, to appear (2011).
- [11] J. SZIRMAI, Geodesic ball packings in $S^2 \times R$ space for generalized Coxeter space groups. *Beiträge zur Algebra und Geometrie*, **52**(2011), 413–430.
- [12] W. P. THURSTON (and S. LEVY, editor), *Three-Dimensional Geometry and Topology*. Princeton University Press, Princeton, New Jersey, Vol 1 (1997).

János Pallagi

e-mail: jpallagi@math.bme.hu

Benedek Schultz

e-mail: schultz.benedek@gmail.com

Jenö Szirmai

e-mail: szirmai@math.bme.hu

Budapest University of Technology and Economics, Institute of Mathematics, Department of Geometry H-1521 Budapest, Hungary

Acknowledgement: We thank Prof. Emil Molnár for helpful comments to this paper.