Equidistant Surfaces in $\mathbf{H}^{2} \times \mathbf{R}$ Space

Equidistant Surfaces in $\mathbf{H}^{2} \times \mathbf{R}$ Space

Abstract

After having investigated the equidistant surfaces ("perpendicular bisectors" of two points) in $\mathbf{S}^{2} \times \mathbf{R}$ space (see [6]) we consider the analogous problem in $\mathbf{H}^{2} \times \mathbf{R}$ space from among the eight Thurston geometries. In [10] the third author has determined the geodesic curves, geodesic balls of $\mathbf{H}^{2} \times \mathbf{R}$ space and has computed their volume, has defined the notion of the geodesic ball packing and its density. Moreover, he has developed a procedure to determine the density of the geodesic ball packing for generalized Coxeter space groups of $\mathbf{H}^{2} \times \mathbf{R}$ and he has applied this algorithm to them. In this paper we introduce the notion of the equidistant surface to two points in $\mathbf{H}^{2} \times \mathbf{R}$ geometry, determine its equation and we shall visualize it in some cases. The pictures have been made by the Wolfram Mathematica software.

Key words: non-Euclidean geometries, geodesic curve, geodesic sphere, equidistant surface in $\mathbf{H}^{2} \times \mathbf{R}$ geometry

MSC 2010: 53A35, 51M10, 51M20, 52C17, 52C22

Ekvidistantne plohe u prostoru $\mathbf{H}^{2} \times \mathbf{R}$
 SAŽETAK

Nakon istraživanja ekvidistanthih ploha ("okomitih simetrala" dviju točaka) u prostoru $\mathbf{S}^{2} \times \mathbf{R}$ (vidi [6]), razmatramo analogni problem u prostoru $\mathbf{H}^{2} \times \mathbf{R}$ iz osam Thurstonovih geometrija. U radu [10] treći je autor odredio geodetske krivulje i kugle prostora $\mathbf{H}^{2} \times \mathbf{R}$ te definirao pojam popunjavanja geodetskim kuglama i njegovu gustoću. Pored toga, razvio je metodu određivanja gustoće popunjavanja geodetskim kuglama za generalizirane Coxeterove grupe prostora $\mathbf{H}^{2} \times \mathbf{R}$ i primijenio taj algoritam na njih. U ovom radu uvodimo pojam ekvidistantne plohe dviju točaka u geometriji $\mathbf{H}^{2} \times \mathbf{R}$, određujemo njihovu jednadžbu i vizualiziramo neke slučajeve. Slike su napravljene u Wolframovom programu Mathematica.

Ključne riječi: neeuklidske geometrije, geodetska krivulja, geodetska sfera, ekvidistantna ploha u $\mathbf{H}^{2} \times \mathbf{R}$ geometriji

1 Basic notions of $\mathbf{H}^{2} \times \mathbf{R}$ geometry

The $\mathbf{H}^{2} \times \mathbf{R}$ geometry is one one of the eight simply connected 3-dimensional maximal homogeneous Riemannian geometries. This Seifert fibre space is derived by the direct product of the hyperbolic plane \mathbf{H}^{2} and the real line \mathbf{R}. The points are described by (P, p) where $P \in \mathbf{H}^{2}$ and $p \in \mathbf{R}$.
In [2] E. Molnár has shown, that the homogeneous 3-spaces have a unified interpretation in the projective 3 -sphere $\mathcal{P} \mathcal{S}^{3}\left(\mathbf{V}^{4}, V_{4}, \mathbf{R}\right)$. In our work we shall use this projective model of $\mathbf{H}^{2} \times \mathbf{R}$ and the Cartesian homogeneous coordinate simplex $E_{0}\left(\mathbf{e}_{0}\right), E_{1}^{\infty}\left(\mathbf{e}_{1}\right), E_{2}^{\infty}\left(\mathbf{e}_{2}\right), E_{3}^{\infty}\left(\mathbf{e}_{3}\right)$, $\left(\left\{\mathbf{e}_{i}\right\} \subset \mathbf{V}^{4}\right.$ with the unit point $\left.E\left(\mathbf{e}=\mathbf{e}_{0}+\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}\right)\right)$ which is distinguished by an origin E_{0} and by the ideal points of coordinate axes, respectively. Moreover, $\mathbf{y}=c \mathbf{x}$ with $0<c \in \mathbf{R}$ (or $c \in \mathbb{R} \backslash\{0\}$) defines a point $(\mathbf{x})=(\mathbf{y})$ of the projective 3 -sphere $\mathcal{P} S^{3}$ (or that of the projective space \mathcal{P}^{3} where opposite rays (\mathbf{x}) and ($-\mathbf{x}$) are identified). The dual system $\left\{\left(e^{i}\right)\right\} \subset V_{4}$ describes the simplex planes, especially the plane at infinity $\left(e^{0}\right)=E_{1}^{\infty} E_{2}^{\infty} E_{3}^{\infty}$, and generally, $v=u \frac{1}{c}$ defines a plane $(u)=(v)$ of $\mathcal{P} \mathcal{S}^{3}$ (or that of \mathcal{P}^{3}, respectively). Thus $0=\mathbf{x} u=\mathbf{y} v$ defines the incidence of point $(\mathbf{x})=(\mathbf{y})$ and plane $(u)=(v)$, as $(\mathbf{x}) \mathrm{I}(u)$ also denotes it. Thus $\mathbf{H}^{2} \times \mathbf{R}$ can be visualized in the affine 3 -space \mathbf{A}^{3} (so in \mathbf{E}^{3}) as well.
The point set of $\mathbf{H}^{2} \times \mathbf{R}$ in the projective space \mathcal{P}^{3}, are the following open cone solid (see Fig. 1-2):

$$
\begin{aligned}
& \mathbf{H}^{2} \times \mathbf{R}:= \\
& \left\{X\left(\mathbf{x}=x^{i} \mathbf{e}_{i}\right) \in \mathcal{P}^{3}:-\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}<0<x^{0}, x^{1}\right\} .
\end{aligned}
$$

Figure 1: Projective model of $\mathbf{H}^{2} \times \mathbf{R}$ geometry

Figure 2: The connection between Cayley-Klein model of the hyperbolic plane and the "base plane" of the model of $\mathbf{H}^{2} \times \mathbf{R}$ geometry.
In this context E. Molnár [2] has derived the infinitesimal arc-length square at any point of $\mathbf{H}^{2} \times \mathbf{R}$ as follows

$$
\begin{align*}
(d s)^{2}= & \frac{1}{-x^{2}+y^{2}+z^{2}} \cdot\left[\left(x^{2}+y^{2}+z^{2}\right)(d x)^{2}+\right. \\
& 2 d x d y(-2 x y)+2 d x d z(-2 x z)+ \\
& \left(x^{2}+y^{2}-z^{2}\right)(d y)^{2}+ \\
& \left.2 d y d z(2 y z)\left(x^{2}-y^{2}+z^{2}\right)(d z)^{2}\right] . \tag{1}
\end{align*}
$$

By introducing the new (t, r, α) coordinates in (2), our formula becomes simplier in (3): $-\pi<\alpha \leq \pi$ and $r \geq 0$ with $t \in \mathbf{R}$ the fibre coordinate. The proper points can be described by the following equations:
$x^{0}=1, x^{1}=e^{t} \cosh r$,
$x^{2}=e^{t} \sinh r \cos \alpha, x^{3}=e^{t} \sinh r \sin \alpha$.
We apply the usual Cartesian coordinates for the visualization and further computations, i.e. $x=x^{1} / x^{0}, y=$ $x^{2} / x^{0}, z=x^{3} / x^{0}$. So the infinitesimal arc length square with coordinates (t, r, α) at any proper point of $\mathbf{H}^{2} \times \mathbf{R}$ and the symmetric metric tensor $g_{i j}$ obtained from it - are the following:
$(d s)^{2}=(d t)^{2}+(d r)^{2}+\sinh ^{2} r(d \alpha)^{2}$,
$g_{i j}:=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \sinh ^{2} r\end{array}\right)$.
By the usual method of the differential geometry we have obtained the equation system of the geodesic curves [5]:

$$
\begin{align*}
x(\tau) & =e^{\tau \sin v} \cosh (\tau \cos v), \\
y(\tau) & =e^{\tau \sin v} \sinh (\tau \cos v) \cos u, \\
z(\tau) & =e^{\tau \sin v} \sinh (\tau \cos v) \sin u, \tag{5}\\
& -\pi<u \leq \pi, \quad-\frac{\pi}{2} \leq v \leq \frac{\pi}{2} .
\end{align*}
$$

Remark 1.1 The starting point of our geodesics can be chosen at $(1,1,0,0)$ by the homogeneity of $\mathbf{H}^{2} \times \mathbf{R}$.

Definition 1.2 The distance $d\left(P_{1}, P_{2}\right)$ between the points P_{1} and P_{2} is defined by the arc length $s=\tau$ in (5) of the geodesic curve from P_{1} to P_{2}.

Definition 1.3 The geodesic sphere of radius ρ (denoted by $\left.S_{P_{1}}(\rho)\right)$ with center at the point P_{1} is defined as the set of all points P_{2} in the space with the condition $d\left(P_{1}, P_{2}\right)=\rho$. We also require that the geodesic sphere is a simply connected surface without selfintersection in $\mathbf{H}^{2} \times \mathbf{R}$ space (see Fig. 3).

Figure 3: Geodesics with varying parameters and the "base-hyperboloid" in the cone and a geodesic sphere with radius $\frac{2}{3}$ centered at $(1,1,0,0)$.

1.1 Equidistant surfaces in $\mathbf{H}^{2} \times \mathbf{R}$ geometry

One of our further goals is to visualize and examine the Dirichlet-Voronoi cells of $\mathbf{H}^{2} \times \mathbf{R}$ where the faces of the DV-cells are equidistant surfaces. The definition below comes naturally.

Definition 1.4 The equidistant surface $S_{P_{1} P_{2}}$ of two arbitrary points $P_{1}, P_{2} \in \mathbf{H}^{2} \times \mathbf{R}$ consists of all points $P^{\prime} \in$ $\mathbf{H}^{2} \times \mathbf{R}$, for which $d\left(P_{1}, P^{\prime}\right)=d\left(P^{\prime}, P_{2}\right)$. Moreover, we require that this surface is a simply connected piece without selfintersection in $\mathbf{H}^{2} \times \mathbf{R}$ space.

It can be assumed by the homogeneity of $\mathbf{H}^{2} \times \mathbf{R}$ that the starting point of a given geodesic curve segment is $P_{1}(1,1,0,0)$. The other endpoint will be given by its homogeneous coordinates $P_{2}(1, a, b, c)$. We consider the geodesic curve segment $\mathcal{G}_{P_{1} P_{2}}$ and determine its parameters (τ, u, v) expressed by a, b, c. We obtain by equation system (5) the following identity :
$\sqrt{a^{2}-b^{2}-c^{2}}=e^{\tau \sin v}$

If we substitute this into (5), the equation system can be solved for (τ, u, v).
$\tau=\frac{\log \sqrt{a^{2}-b^{2}-c^{2}}}{\sin v}, \quad$ if $v \neq 0$.
$v=\arctan \left(\frac{\log \sqrt{a^{2}-b^{2}-c^{2}}}{\operatorname{arccosh}\left(\frac{a}{\sqrt{a^{2}-b^{2}-c^{2}}}\right)}\right)$,
if $P_{2}(a, b, c)$ does not lie on the axis $[x]$ i.e. $(b, c) \neq(0,0)$.
$\tan u=\frac{z(\tau)}{y(\tau)}=\frac{c}{b} \Rightarrow u=\arctan \left(\frac{c}{b}\right)$.

Figure 4: Touching geodesic spheres of radius $\frac{1}{10}$ centered on the geodesic curve with starting point $(1,1,0,0)$ and parameters $u=\frac{\pi}{4}, v=\frac{\pi}{3} \neq 0$.

Remark 1.5 If $P_{2} \in[x]$, then $v=\frac{\Pi}{2}$ and $u=0$, and the geodesic curve is an Euclidean line segment between P_{1} and P_{2}. If $v=0$, then $\tau=$ arccosha and the two points are on the same hyperboloid surface. These special cases will be discussed in section 3 in terms of the equidistant surfaces belonging to them.
It is clear that $X \in \mathcal{S}_{P_{1} P_{2}}$ iff $d\left(P_{1}, X\right)=d\left(X, P_{2}\right) \Rightarrow$ $d\left(P_{1}, X\right)=d\left(X^{\mathcal{F}}, P_{2}^{\mathcal{F}}\right)$, where \mathcal{F} is a composition of isometries which maps X onto ($1,1,0,0$), and then by (7) the length of the geodesic (e.g. the distance between the two points) is comparable to $d\left(P_{1}, X\right)$. This method leads to the implicit equation of the equidistant surface of two proper points $P_{1}(1, a, b, c)$ and $P_{2}(1, d, e, f)$ in $\mathbf{H}^{2} \times \mathbf{R}$:

$$
\begin{align*}
& \mathcal{S}_{P_{1} P_{2}}(x, y, z) \Rightarrow \\
& 4 \operatorname{arccosh}^{2}\left(\frac{a x-b y-c z}{\sqrt{a^{2}-b^{2}-c^{2}} \sqrt{x^{2}-y^{2}-z^{2}}}\right)+ \\
& \log ^{2}\left(\frac{a^{2}-b^{2}-c^{2}}{x^{2}-y^{2}-z^{2}}\right)= \\
& =4 \operatorname{arccosh} \\
& 2\left(\frac{d x-e y-f z}{\sqrt{d^{2}-e^{2}-f^{2}} \sqrt{x^{2}-y^{2}-z^{2}}}\right)+ \tag{10}\\
& \log ^{2}\left(\frac{d^{2}-e^{2}-f^{2}}{x^{2}-y^{2}-z^{2}}\right)
\end{align*}
$$

Figure 5: Equidistant surfaces with $P_{1}(1,1,0,0)$ and $P_{2}(1,2,1,1)$, and the two special cases.

Figure 6: Equidistant surfaces to points

$$
\begin{aligned}
& P_{1}(1, \sqrt{2}, 0,0), P_{2}\left(1, \sqrt{2}, \frac{1}{2}, \frac{\sqrt{3}}{2}\right) \text { and } \\
& P_{1}(1, \sqrt{2}, 0,0), P_{3}\left(1, \sqrt{2},-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) .
\end{aligned}
$$

1.2 Some observations

We introduce the next denotations to simplify the equation (10): $\mathbf{a}=\overrightarrow{O P_{1}}, \mathbf{b}=\overrightarrow{O P_{2}}$ and $\mathbf{x}=\overrightarrow{O X}$. We define the scalar product for all vectors $\mathbf{u}\left(u_{1}, u_{2}, u_{3}\right)$ and $\mathbf{v}\left(v_{1}, v_{2}, v_{3}\right)$ by the following equation:

$$
\langle\mathbf{u}, \mathbf{v}\rangle=-u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3},
$$

moreover, we introduce the denotation $|\mathbf{v}|=\sqrt{-\langle\mathbf{v}, \mathbf{v}\rangle}$ similarly to the $\mathbf{S}^{2} \times \mathbf{R}$ space (see [6]).
With these denotations, the equation of the surface becomes shorter and gives important informations about equidistant surfaces:
$\operatorname{arccosh}^{2}\left(\frac{-\langle\mathbf{a}, \mathbf{x}\rangle}{|\mathbf{a}||\mathbf{x}|}\right)+\log ^{2}\left(\frac{|\mathbf{a}|}{|\mathbf{x}|}\right)=$
$\operatorname{arccosh}^{2}\left(\frac{-\langle\mathbf{x}, \mathbf{b}\rangle}{|\mathbf{x}||\mathbf{b}|}\right)+\log ^{2}\left(\frac{|\mathbf{b}|}{|\mathbf{x}|}\right)$.

The last step is to notice that $\operatorname{arccosh}\left(\frac{-\langle\mathbf{a}, \mathbf{x}\rangle}{|\mathbf{a}| \mathbf{x} \mid}\right)$ is the hyperbolic disance between points \mathbf{a} and \mathbf{x} in the projective model of the hyperbolic plane. So let $\varepsilon=d_{h}(\mathbf{a}, \mathbf{x})$ and $\delta=d_{h}(\mathbf{x}, \mathbf{b})$. The final form of the equation is the following:
$\varepsilon^{2}+\log ^{2}\left(|\mathbf{a}||\mathbf{x}|^{-1}\right)=\delta^{2}+\log ^{2}\left(|\mathbf{b}||\mathbf{x}|^{-1}\right)$
Remark 1.6 This formula also describes the equidistant surface of $\mathbf{S}^{2} \times \mathbf{R}$ with the usual Euclidean scalar product, vector length and angle formula (see [6]).

It is now easy to examine some special cases: when $|\mathbf{a}|=$ $|\mathbf{b}|$, the equidistant surface consists of those points of an

References

[1] A. M. Macbeath, The classification of nonEuclidean plane crystallographic groups. Can. J. Math., 19 (1967), 1192-1295.
[2] E. Molnár, The projective interpretation of the eight 3-dimensional homogeneous geometries. Beiträge zur Algebra und Geometrie, 38 (1997) No. 2, 261-288.
[3] E .Molnár, I. Prok, J. Szirmai, Classification of tile-transitive 3 -simplex tilings and their realizations in homogeneous spaces. Non-Euclidean Geometries, János Bolyai Memorial Volume, Ed. A. Prekopa and E. MolnÁr, Mathematics and Its Applications 581, Springer (2006), 321-363.
[4] E. Molnár, J. Szirmai, Symmetries in the 8 homogeneous 3-geometries. Symmetry: Culture and Science, Vol. 21 No. 1-3 (2010), 87-117.
[5] E. Molnár, B. SZilÁGyi, Translation curves and their spheres in homogeneous geometries. Publicationes Math. Debrecen, Vol. 78/2 (2011), 327-346.
[6] J. Pallagi, B. Schultz, J. Szirmai, Visualization of geodesic curves, spheres and equidistant surfaces in $\mathbf{S}^{2} \times \mathbf{R}$ space. $K o G \mathbf{1 4}$, (2010), 35-40.
[7] P. Scott, The geometries of 3-manifolds. Bull. London Math. Soc., 15 (1983) 401-487. (Russian translation: Moscow "Mir" 1986.)

Euclidean plane in our model, which are inner points of the cone (e.g. proper point of $\mathbf{H}^{2} \times \mathbf{R}$). Another special case appears when \mathbf{a} and \mathbf{b} are on the same fibre. In this case $(\delta=\varepsilon)$ the equidistant surface is the "positive side" of a hyperboloid of two sheets.

Our projective method gives us a way of investigation the $\mathbf{H}^{2} \times \mathbf{R}$ space, which suits to study and solve similar problems (see [10]). In this paper we have examined only some problems, but analogous questions in $\mathbf{H}^{2} \times \mathbf{R}$ geometry or, in general, in other homogeneous Thurston geometries are timely (see [11], [8], [9]).
[8] J. SZirmai, The optimal ball and horoball packings to the Coxeter honeycombs in the hyperbolic dspace. Beiträge zur Algebra und Geometrie, $\mathbf{4 8}$ No. 1 (2007), 35-47.
[9] J. Szirmai, The densest geodesic ball packing by a type of Nil lattices. Beiträge zur Algebra und Geometrie, 48 No. 2 (2007), 383-398.
[10] Szirmai, J. Geodesic ball packings in $\mathbf{H}^{2} \times \mathbf{R}$ space for generalized Coxeter space groups. Mathematical Communications, to appear (2011).
[11] J. Szirmai, Geodesic ball packings in $\mathbf{S}^{2} \times \mathbf{R}$ space for generalized Coxeter space groups. Beiträge zur Algebra und Geometrie, 52(2011), 413-430.
[12] W. P. Thurston (and S. Levy, editor), ThreeDimensional Geometry and Topology. Princeton University Press, Princeton, New Jersey, Vol 1 (1997).

János Pallagi

e-mail: jpallagi@math.bme.hu
Benedek Schultz
e-mail: schultz.benedek@gmail.com
Jenö Szirmai
e-mail: szirmai@math.bme.hu
Budapest University of Technology and Economics, Institute of Mathematics, Department of Geometry H-1521 Budapest, Hungary

Acknowledgement: We thank Prof. Emil Molnár for helpful comments to this paper.

