Željko Gjuranić

Konike i grafovi nekih polinoma pomoću NURBS krivulja

Conics and Graphs of Some Polynomials by Using NURBS Curves

ABSTRACT

This paper presents the definition of conics and the graphs of the 3rd and 4th degree polynomials by using NURBS curves, with a special description of the beam deflection line. The usage in AutoCAD is presented.

MSC 2010: 14Q05, 74B05, 65D17

1 Uvod

Potreba za crtanjem konika (elipsa, parabola, hiperbola) javlja se u gotovo svim tehničkim strukama, a naročito u građevinskoj. Iako su konike matematički jednostavno definirane, većina CAD alata sadrži naredbe za crtanje samo kružnice i elipse. Ostale konike i druge krivulje mogu se, pomoću CAD alata, aproksimativno prikazati provlačenjem glatke krivulje kroz niz točaka.

Ovaj rad objašnjava drukčije određivanje konika, te nešto složenijih krivulja višeg reda, s posebnim osvrtom na AutoCAD kao najrašireniji CAD alat.

2 NURBS krivulje

Zadani interval $[t_0, t_m]$ podijelimo na *m* dijelova i djelišne točke, koje nazivamo *čvorovima*, označimo (t_0, t_1, \ldots, t_m) . Bazne *B-Spline* funkcije $N_{i,j}$ $(i + j \le m)$ definirane su na sljedeći način:

• Ako je j = 1, tada vrijedi

$$N_{i,1}(t) = \begin{cases} 1, & t \in [t_i, t_{i+1}) \\ 0, & t \notin [t_i, t_{i+1}) \end{cases}, \quad t \in [t_0, t_m).$$
(1)

Naravno, ova relacija vrijedi ako je $t_i \neq t_{i+1}$, u protivnom je $N_{i,1} = 0$.

Konike i grafovi nekih polinoma pomoću NURBS krivulja

SAŽETAK

U radu se prikazuje način zadavanja konika i grafova polinoma trećeg i četvrtog stupnja pomoću NURBS krivulja, s posebnim osvrtom na prikaz progibne linije elastičnog nosača. Prikazana je upotreba u AutoCAD-u.

Ključne riječi: konike, NURBS krivulje, AutoCAD, progibna linija

• Ako je j > 1 tada se funkcije $N_{i,j}$ računaju rekurzivno pomoću formule

$$N_{i,j}(t) = N_{i,j-1} \cdot \frac{t - t_i}{t_{i+j-1} - t_i} + N_{i+1,j-1} \cdot \frac{t_{i+j} - t}{t_{i+j} - t_{i+1}}, \qquad (2)$$

gdje je $t \in [t_0, t_m\rangle$.

Ako među čvorovima ima jednakih, neki od gornjih pribrojnika biti će oblika 0/0. Takve ćemo pribrojnike smatrati jednakim nuli. [3], [2]

NURBS = Non Uniform Rational B-Spline je parametarski definirana krivulja, najčešće kvadratna ili kubna. NURBS krivulja je zadana kontrolnim točkama, od kojih svaka ima koordinate i "težinu". Laički rečeno, krivulja se ponaša kao elastična nit, gdje kontrolne točke predstavljaju magnete čiji intenzitet ovisi o težini kontrolne točke (slika 1).

Slika 1: NURBS krivulja

Neka je P_0, P_1, \ldots, P_n skup kontrolnih točaka, a $w = (w_0, w_1, \ldots, w_n)$ vektor težina tih točaka. Tada se NURBS krivulja definira izrazom:

$$C_{k}(t) = \frac{\sum_{i=0}^{n} w_{i} \cdot P_{i} \cdot N_{i,k}(t)}{\sum_{i=0}^{n} w_{i} \cdot N_{i,k}(t)},$$
(3)

gdje je $t \in [t_0, t_m)$ i m = n + k.

Red krivulje k iznosi minimalno 2 (linearna krivulja). Krivulja drugog reda je neprekinuta, ali izlomljena, kontrolne točke su spojene ravnim linijama. Krivulja trećeg reda (kvadratna) je neprekinuta i glatka, te može točno predstaviti koniku. Najčešće je u upotrebi krivulja četvrtog reda (kubna), koja je neprekinuta, glatka, s kontinuiranom zakrivljenošću. Krivulje reda većeg reda od 6 općenito se izbjegavaju zbog numeričkih problema. [1], [2]

Većina CAD alata (uključujući AutoCAD) ne dozvoljava manipulaciju vektorom čvorova, koji je automatski generiran. Tako generiran vektor ima oblik $\{0,1,2,3,...\}$ s tim da se prvi i zadnji član ponavljaju *k* puta. Broj elemenata vektora čvorova iznosi *red krivulje* + *broj kontrolnih točaka*.

Primjeri vektora čvorova:

- 3. red, 3 kontrolne točke $t_i = \{0, 0, 0, 1, 1, 1\},\$
- 3. red, 4 kontrolne točke $t_i = \{0, 0, 0, 1, 2, 2, 2\},\$
- 4. red, 4 kontrolne točke $t_i = \{0, 0, 0, 0, 1, 1, 1, 1\},\$
- 4. red, 5 kontrolnih točaka $t_i = \{0, 0, 0, 0, 1, 2, 2, 2, 2\}$.

Iz navedenog proizlaze određena svojstva NURBS krivulja:

- minimalni broj kontrolnih točaka jednak je redu krivulje,
- krivulja prolazi kroz prvu i zadnju kontrolnu točku,
- tangenta u prvoj točki prolazi drugom kontrolnom točkom,
- tangenta u zadnjoj točki prolazi predzadnjom kontrolnom točkom,
- više kontrolnih točaka s istim koordinatama smanjuje glatkoću krivulje, npr. ako kvadratna krivulja ima 2 kontrolne točke s istim koordinatama, krivulja će proći kroz te točke i na će tom mjestu postojati lom.

3 Konike

Sve konike su algebarske krivulje drugog stupnja, te se mogu odrediti pomoću NURBS krivulja zadanih baznim funkcijama drugog stupnja, odnosno NURBS krivuljama trećeg reda. Pošto u CAD alatima općenito nije moguće nacrtati beskonačnu krivulju, ovdje prikazujemo kako odrediti dio konike. Za određivanje dijela konike dovoljne su 3 kontrolne točke, osim za neke slučajeve kružnice i elipse.

3.1 Parabola

Od svih konika, pomoću NURBS krivulje, najjednostavije se određuje parabola (nazivnik u izrazu (3) jednak je 1). Prva i zadnja točka su rubne točke dijela parabole koji želimo prikazati, srednja točka je sjecište tangenata u prvoj i zadnjoj točki, a težine svih kontrolnih točaka moraju biti jednake 1.

U AutoCAD-u nije moguće direktno zadati kontrolne točke krivulje, stoga moramo koristiti slijedeći postupak:

- 1. Nacrtamo polyline kroz kontrolne točke (slika 2).
- 2. Odredimo red krivulje pomoću sistemske varijable SPLINETYPE -- moguće vrijednosti su 5 (bazne funkcije 2. stupnja) ili 6 (bazne funkcije 3. stupnja) (slika 3).
- 3. Pretvorimo polyline u segmentiranu krivulju pomoću naredbe PEDIT↔L↔S↔↔ (PEDIT, enter, slovo L, enter, slovo S, enter, enter) (slika 4).
- Pretvorimo segmentiranu krivulju u spline pomoću naredbe SPLINE ↔ 0 ↔ (slika 5).

Slika 2: Polyline kroz kontrolne točke

V AutoCAD 2009 Help VIII ↔ ↔ AutoCAD 2009 Help VIII ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔	gations
Contents Index Search Type in the keyword to find: polinetype	System Variables > S System Variables > SPLINETYPE > SPLINETYPE Concept Procedure Quick Reference
SPLNETYPE system vanable * spooling pick joka SPOTILGHT command spotlights antificial lighting atternution rates beam angle field angle field angle hotspot angle	Type: Integer Saved In: Drawing Initial value: 6 Sets the type of curve generated by the Spline option of the PEDIT command.
overview rapid decay area supadsheets	5 Quadratic B-spline
accessing data from attribute extraction data files configuring external data sources extracting data to including in data extractions SOI (Sinctured Query Lenguisce)	6 Cubic B-spline
Display	Please send us your comment about this page

Slika 3: Varijabla SPLINETYPE

Kružnica i elipsa 3.2

Kružni i eliptički lukovi u gotovo svim CAD alatima mogu se nacrtati bez pomoći NURBS krivulja, međutim, u nekim slučajevima potrebno ih je definirati kao NURBS krivulje, npr. crtanje nekih vrsta spirala.

Postupak crtanja kružnog luka sličan je postupku za crtanje parabole, međutim, težina srednje točke P_1 mora biti $w_1 = \cos(\alpha/2)$, a udaljenosti točke P_1 od točaka P_0 i P_2 moraju biti jednake (slika 6).

Slika 6: Kružni luk

Zbog jednostavnosti se obično koristi kut α od 90°, pri čemu w_1 iznosi $\sqrt{2}/2$. Ukoliko je potreban manji kut, nacrtana se krivulja može skratiti pomoću naredbe TRIM.

Postupak promjene težine srednje točke:

$$\texttt{SPLINEDIT} {\leftarrow} \texttt{L} {\leftarrow} \texttt{R} {\leftarrow} \texttt{W} {\leftarrow} {\leftarrow} (\texttt{nova težina}) {\leftarrow} \texttt{X} {\leftarrow} \texttt{X} {\leftarrow} \texttt{X}$$

Mali trik: u AutoCAD-u se umjesto brojke može upisati LISP izraz, tako da se vrijednost $\sqrt{2}/2$ može unijeti kao: (/ (sqrt 2.0) 2.0)

3.3 Hiperbola

Može se vidjeti da je težina srednje kontrolne točke između 0 i 1 za elipsu, točno 1 za parabolu, i veća od 1 za hiperbolu.

Ako je hiperbola zadana izrazom

$$\frac{x^2}{A^2} - \frac{y^2}{B^2} = 1 \tag{4}$$

i želimo ju prikazati na segmentu $x \in [A, X_1]$, najprije moramo pronaći sjecište njezinih tangenata u točkama P_0 , P_2 kojima je 1. koordinata jednaka X_1 (slika 7). Pošto je hiperbola, dana jednadžbom (4), simetrična s obzirom na os x, sjecište tangenata nalazi se na x osi. Tangenta hiperbole u točki (X_1, Y_1) ima koeficijent smjera $S = \frac{B^2 \cdot X_1}{A^2 \cdot Y_1}$, iz čega proizlazi x koordinata sjecišta tangenata:

$$X_0 = X_1 - \frac{Y_1}{S} = X_1 - \frac{A^2 \cdot Y_1^2}{B^2 \cdot X_1}.$$

Težina srednje kontrolne točke određuje se prema izrazu $w_1 = \frac{X_1}{A}.$

Slika 7: Hiperbola

Krivulje 4. i 5. reda 4

Pri statičkim proračunima često je potrebno prikazati dijagrame momenata savijanja, kuteve zaokreta i progibne linije nosača. Ukoliko na nosač djeluje jednoliko kontinuirano opterećenje, momentni dijagram je kvadratna parabola, odnosno NURBS krivulja 3. reda, dijagram kuteva zaokreta je krivulja 4. reda, a progibna linija krivulja 5. reda (slika 8).

Slika 8: Opterećenje, poprečne sile, momenti savijanja, kutevi zaokreta i progibna linija proste grede.

Slika 9: Krivulja 4. reda

Slika 10: Kvadratna parabola prikazana kao NURBS krivulja 3. i 4. reda

Budući da su sve navedene krivulje grafovi polinoma y = f(x), NURBS krivulje koje predstavljaju te funkcije imaju sljedeća svojstva:

- broj kontrolnih točaka je jednak redu krivulje,
- red krivulje je jednak redu polinoma + 1,
- sve kontrolne točke imaju težinu 1,
- *x* koordinate kontrolnih točaka su na jednakim razmacima.

Dakle, postupak crtanja krivulja 4. reda je vrlo jednostavan. Prva i zadnja kontrolna točka su krajevi krivulje, a preostale dvije kontrolne točke leže na tangentama u prvoj odnosno zadnoj točki (slika 9).

Naravno, pomoću krivulje 4. reda moguće je prikazati i kvadratnu parabolu (slika 10).

Ukoliko želimo nacrtati progibnu liniju nosača potrebna nam je NURBS krivulja 5. reda, koju je u AutoCAD-u nemoguće direktno nacrtati pa koristimo slijedeći postupak:

- 1. Nacrtamo polyline sa minimalnim brojem kontrolnih točaka (4) za krivulju 4. reda.
- 2. Odredimo 4. red krivulje pomoću sistemske varijable SPLINETYPE (6).
- 3. Pretvorimo polyline u segmentiranu krivulju pomoću naredbe PEDIT $\leftrightarrow L \leftrightarrow S \leftrightarrow \leftrightarrow$
- Pretvorimo polyline u spline pomoću naredbe SPLINE↔0↔L↔
- 5. Pretvorimo krivulju 4. reda u krivulju 5. reda SPLINEDIT $\leftrightarrow R \leftrightarrow E \leftrightarrow 5 \leftrightarrow X \leftrightarrow X \leftrightarrow$
- 6. Pomoću hvataljki pomaknemo kontrolne točke na potrebne pozicije (slika 11).

Slika 11: Upotreba hvataljki u AutoCAD-u

Ako krivulju zadanu izrazom

$$y = a \cdot x^4 + b \cdot x^3 + c \cdot x^2 + d \cdot x + e$$
 (5)

želimo prikazati na intervalu $x \in [0, 1]$, tada su koordinate kontrolnih točaka određene na sljedeći način:

$$P_0 = (0, e), \quad P_1 = (\frac{1}{4}, e + \frac{d}{4}), \quad P_2 = (\frac{1}{2}, \frac{c}{6} + \frac{d}{2} + e),$$
$$P_3 = (\frac{3}{4}, \frac{b}{4} + \frac{c}{2} + \frac{3d}{4} + e), \quad P_4 = (1, a + b + c + d + e).$$

Ukoliko promatramo elastični nosač, tada prema [4] za koeficijente iz jednadžbe (5) vrijedi sljedeće:

e = pomak u prvom čvoru,

d = kut zaokreta u prvom čvoru,

c =moment savijanja u prvom čvoru $/(2 \cdot E \cdot I)$,

 $b = \text{poprečna sila u prvom čvoru } / (6 \cdot E \cdot I),$

a =opterećenje /(24 · E · I),

gdje je E modul elastičnosti, a I tromost poprečenog presjeka.

Odnosno, u lokalnom koordinatnom sustavu nosača, koordinate kontrolnih točaka su:

$$P_{0} = (0, w_{0}), \quad P_{1} = (\frac{L}{4}, w_{0} + \frac{\varphi_{0} \cdot L}{4})$$

$$P_{2} = (\frac{L}{2}, \frac{M_{0} \cdot L^{2}}{12 \cdot E \cdot I} + \frac{\varphi_{0} \cdot L}{2} + w_{0}),$$

$$P_{3} = (\frac{3}{4} \cdot L, w_{1} - \frac{\varphi_{1} \cdot L}{4}),$$

$$P_{4} = (L, w_{1}).$$

PRIMJER 1: Slobodno oslonjena greda

Budući da je $M_0 = 0$, srednja kontrolna točka P_2 nalazi se u sjecištu tangenata u točkama P_0 i P_4 , a y koordinata kontrolne točke P_2 iznosi $\frac{q \cdot L^4}{48 \cdot E \cdot I}$.

Slika 12: Progibna linija slobodno oslonjene grede

PRIMJER 2: Obostrano upeta greda

y koordinata srednje kontrolne točke
$$P_2$$
 iznosi $\frac{q \cdot L^4}{144 \cdot E \cdot I}$.

Slika 13: Progibna linija obostrano upete grede

PRIMJER 3: Jednostrano upeta greda (slika 14)

y koordinata srednje kontrolne točke P_2 iznosi $\frac{q \cdot L^4}{96 \cdot E \cdot I}$.

Slika 14: Progibna linija jednostrano upete grede

References

- [1] http://web.cs.wpi.edu/~matt/courses/cs563/talks/ nurbs.html
- [2] http://www.cs.mtu.edu/ shene/COURSES/cs3621/ NOTES/
- [3] http://www.ibiblio.org/e-notes/Splines/Basis.htm
- [4] V. SIMOVIĆ, Građevna statika I, Građevinski institut, Zagreb, 1988.

Željko Gjuranić

Emerson d.o.o., Selska cesta 93, 10000 Zagreb e-mail: Zeljko.Gjuranic@Emerson.com