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Hans-Peter Schröcker: Orthologic Tetrahedra with Intersecting Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Georg Glaeser, Karlheinz Schott: Geometric Considerations About Seemingly Wrong Tilt of Crescent Moon . . . . 19

Sonja Gorjanc: Pedal Surfaces of First Order Congruences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Norman John Wildberger: Chromogeometry and Relativistic Conics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

PROFESSIONAL PAPERS
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Gunter Weiss, Ana Sliepčević: Oskulacijske kružnice konika u Cayley-Klein-ovim ravninama . . . . . . . . . . . . . . . . . . . 7
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VLASTA ŠČURIĆ-ČUDOVAN

Ljerka Dočkal-Krsnik

(1922. - 2009.)

Dr. sc. LJERKA DOČKAL-KRSNIK, umirovljena redovita
profesorica Nacrtne geometrije na Geodetskom fakultetu
Sveučilišta u Zagrebu i počasna članica našeg HDGG-a,
preminula je 10. srpnja 2009. godine u Zagrebu.

Rod-ena je 16. travnja 1922. godine u Zlataru. Osnov-
nu školu i gimnaziju polazila je u Karlovcu, a
na Prirodoslovno-matematičkom fakultetu u Zagrebu
diplomirala je 1946. godine grupu Nacrtna geometrija i
Teorijska matematika. Na istom je fakultetu 1971. godine
doktorirala na temi Plohe specijalnih krivulja u linearnim
sistemima pravčastih ploha 2. reda, disertacija.

Od 1946. do 1947. godine radila je kao profesor-
ica Nacrtne geometrije na Industrijskoj, a od 1947. do
1949. na Tehničkoj školi u Karlovcu. Godine 1949.
izabrana je za asistenticu na Katedri Nacrtna geometrija
pod vodstvom prof. dr. Vilka Ničea na Tehničkom,
kasnije Arhitektonsko-grad-evinsko-geodetskom fakultetu
u Zagrebu. Godine 1961. birana je u zvanje predavača
Nacrtne geometrije na Geodetskom odjelu AGG-a, a po-
tom na Geodetskom fakultetu u Zagrebu. Na tom fakultetu
1968. godine postaje docenticom, izvanrednom profesori-
com 1973., a redovitom profesoricom 1978. godine.

Područje znanstvenog rada Ljerke Dočkal-Krsnik bila
je geometrija i to projektivna geometrija obrad-ena sin-
tetičkim metodama, područje u kojem je akademik Niče
bio svjetski poznati stručnjak. Iako sam s Ljerkom
radila od 1961. godine pa sve do njenog umirovljenja
1983., nisam bila upoznata (vjerojatno zbog njene skrom-
nosti) koliko ju je akademik Niče cijenio kao nastavnicu

i znanstvenicu, već od početnih radova. Pri njezinom
napredovanju u zvanjima Geodetski je fakultet svaki put
izabrao akademika Ničea u komisiju za ocjenu radova
pa se originali njegovih izvješća mogu naći u arhivi
fakulteta. U ovoj tužnoj prilici, kad sam pripremala In
Memoriam za Ljerku Dočkal-Krsnik, pročitala sam ta
izvješća i zaključila kako je u prikazu njenog znanstvenog
i nastavnog rada najprimjerenije citirati upravo njezinog
učitelja, akademika Vilka Ničea.

“....Od 1949. g. do danas radi Ljerka Dočkal kao
asistent kod već spomenute katedre. Na ovom mjestu
pokazala je ona vrlo lijepe uspjehe u svom radu, unatoč
poznatom velikom opterećenju asistenta kod ove katedre.
Radi ovog velikog opterećenja u nastavnom radu nije se
mogla sistematski baviti i naučnim radom. No unatoč
tome bavila se, a i danas se uspješno bavi u granicama
fizičkih mogućnosti, nekim naučnim problemima na po-
dručju projektivne i nacrtne geometrije...” (Iz izvješća
Vijeću Arhitektonsko-grad-evinsko-geodetskog fakulteta u
Zagrebu, rujan 1961. godine.)

S posebnim zadovoljstvom upoznajem čitatelje KOG-a s
dijelovima Ničeovih ocjena i prikaza znanstvenih radova
Ljerke Dočkal-Krsnik, u nadi da će se med-u njima naći i
čitatelj koji će posegnuti za literaturom u tom području te
nastaviti njezina zanimljiva istraživanja.

Na temelju svog prvog znanstvenog rada [1] primljena je
Ljerka Dočkal-Krsnik za člana Naučnog vijeća Instituta za
matematiku Sveučilišta u Zagrebu. U prijedlogu da joj se
taj rad prihvati kao habilitacijski akademik Niče piše:
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“... Prolazeći u takvom svom pripremnom radu geo-
metrijska područja na kojima je zapeo njen interes,
pronašla je niz problema koji do danas nisu riješeni
u postojećoj literaturi, jer na njih nitko do danas nije
naišao. Ti se problemi pojavljuju kao geometrijska mjesta
raznovrsnih transverzala izmed-u zraka raznih pravčastih
tvorevina, kao što su npr. pravčaste plohe, te kolinearno
pridruženi snopovi zraka. Jedan takav dosad neriješen
problem riješen je u predloženoj radnji, u kojoj se istražuje
geometrijsko mjesto najkraćih transverzala od po dviju
izvodnica jedne racionalne vitopere pravčaste plohe, ko-
jima je geometrijsko mjesto nožišta poznato pod imenom
”strikciona linija” takvih ploha. Geometrijsko mjesto naj-
kraćih transverzala od bilo kojih dviju izvodnica takve vi-
topere pravčaste plohe dosad nije istraženo, a taj problem
riješila je Ljerka Dočkal u predloženom radu.
Budući da svaka pravčasta ploha ima ∞1 izvodnica, a
svaka od njih sa svakom ima najkraću transverzalu, to
takvih neprekinuto složenih najkraćih transverzala u pro-
storu ima ∞2, te one čine istraženu, u naslovu radnje
spomenutu, kongruenciju Ljerke Dočkal. Poznata ploha
tangenata strikcione linije takve pravčaste plohe čini samo
jedan singularni sastavni dio ovakve kongruencije.
U svom radu Ljerka Dočkal najprije izvodi red takve kon-
gruencije, koji je za vitoperu pravčastu plohu n-tog stup-
nja jednak (2n− 1)(n − 1). Budući da se pod redom
razumijeva broj njenih zraka koje prolaze jednom točkom
prostora, postavlja Ljerka Dočkal jednom točkom prostora
dirni stožac na takvu plohu, te odred-uje nožišnu krivulju te
pravčaste plohe za ovu točku kao pol. Zajedničke izvod-
nice unisekanata te nožišne krivulje koje prolaze tim polom
daju zrake istraživane kongruencije, a njihov je broj (2n−
1)(n− 1) njen red. Pri odred-ivanju razreda te kongruen-
cije, dakle broja njenih zraka u svakoj ravnini prostora,
služi se Ljerka Dočkal konoidalnom pravčastom plohom
onih zraka takve kongruencije, koje su usporedne s jednom
ravninom prostora (direkciona ravnina tog konoida), jer
stupanj tog konoida daje onda broj zraka ovakve kongru-
encije u po volji odabranoj ravnini prostora, a prema tome
i njen razred. Posluživši se duhovito teorijom pravčastih
ploha, prenesenom na takve plohe konoidalnog sustava,
dobiva ona najprije stupanj g = (2n− 1)(n− 1) takvog
konoida, a pomoću njega i razred m njene kongruencije,

koji je jednak
(n−1)(3n−2)

2
.

Odredivši ovako red i razred opisane kongruencije kod
racionalne vitopere pravčaste plohe bilo kojeg n-tog
stupnja, prelazi Ljerka Dočkal na takvu kongruenciju
pravčastih ploha 2. stupnja, tj. jednoplošnog hiperboloida
i hiperboličkog paraboloida.
Med-u jednoplošnim hiperboloidima promatra Ljerka
Dočkal napose jednoplošni rotacioni hiperboloid, jer
opisana kongruencija baš toj plohi, koja je potpuno istra-
žena i poznata, daje nekoliko zanimljivih novih osobina.

U ovim razmatranjima služi se Ljerka Dočkal i konstruk-
tivnim postupcima za lakše ilustrativne svrhe u ortogonal-
noj i centralnoj projekciji, pomoću koje neizmjerno daleke
elemente razmatra u konačnosti. Kao markantan rezultat
tih razmatranja pojavljuje se ovdje činjenica, da najkraće
transverzale jedne izvodnice sa svim ostalim izvodnicama
istog sistema takvog hiperboloida čine poznati Plückerov
konoid, koji je u matematičkoj literaturi poznat kao je-
dina pravčasta ploha uopće, kojoj su nožišne krivulje za
bilo koji pol u prostoru krivulje 2. stupnja (elipse). Ci-
jela istraživana kongruencija sastoji se prema tome ovdje
iz sistema takvih Plückerovih konoida, koji nastaju rotaci-
jom jednog od njih oko osi tog rotacionog hiperboloida. O
kutu što ga čine izvodnice tog hiperboloida s njegovom osi
ovise položaji kuspidalnih točaka i torzalnih pravaca tih
konoida, koji svi zajedno čine geometrijska mjesta, koja
Ljerka Dočkal u svojoj radnji istražuje. Kako Plückerov
konoid osim realnih izvodnica ima i konjugirano imagi-
narne izvodnice, koje su od realnih odijeljene torzalnim
pravcem te plohe, Ljerka Dočkal u svojoj radnji potanko
istražuje i geometrijsko mjesto takvih konjugirano imagi-
narnih zraka njene kongruencije u okviru jednog takvog
hiperboloida.
Na eliptičkom i paraboličkom hiperboloidu sva se ovakva
razmatranja prilično kompliciraju, tako da će nastavak
takvih razmatranja u okviru tih dviju ploha biti sadržaj ko-
jeg daljnjeg naučnog rada. Prof. dr. Walter Wunderlich u
Beču, danas jedan od prvih geometričara sintetičkog smje-
ra u svijetu, u svom referatu o ovom radu Ljerke Dočkal
u poznatom svjetskom matematičkom referatnom časopisu
”Zentralblatt für mathematische Wissenschaften”, dao je
o njemu vrlo povoljno mišljenje, osvrnuvši se naročito na
već opisane Plückerove konoide, smatrajući ih markant-
nim novim naučnim rezultatom na području matematičkih
nauka...
...U svojim radovima ulazi Ljerka Dočkal u dosad
neobrad-eno geometrijsko područje, u kojemu pronalazi
zanimljive probleme koje rješava na način i sredstvima
koja su na punoj visini suvremenog matematičkog naučnog
rada. Iz referata i diskusija Ljerke Dočkal u okviru
naučnog seminara Instituta za matematiku Sveučilišta u
Zagrebu vidi se, kako se u području njenog naučnog rada
pojavljuju sve noviji i noviji problemi koje treba riješiti,
a koje Ljerka Dočkal ima i namjeru rješavati i riješiti.
Odavle se može očekivati da će se njen naučni rad nasta-
viti i donositi i dalje nove i lijepe rezultate...
..Na temelju svega izloženog čast nam je predložiti,
da se naučni rad [1] primi kao habilitaciona rad-
nja...” (Iz izvješća Vijeću Geodetskog fakulteta, svibanj
1967. godine)

Godine 1971., obranivši disertaciju [3] na PMF-u, pro-
movirana je u doktora matematičkih znanosti. O toj radnji
i znanstvenim radovima koji su ju slijedili Niče piše:
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“... U disertaciji se ona posvetila istraživanjima dosad
neriješenih problema u području linearnih sistema ploha
2. stupnja i njihovih polarnih prostora. Problemi glavnih
krivulja, simetralnih ravnina, strikcionih linija, asim-
ptotskih stožaca itd., koji neprekinuto povezani sa svih
ploha takvog sistema čine nove geometrijske tvorevine,
plohe i torze, koje Lj. Dočkal u svojoj disertaciji razmatra
povezano u jednoj cjelini, ne ulazeći u specijalne detalje.
Podrobnijim pojedinačnim razmatranjima tih tvorevina
bavi se ona kasnije u specijalnim radovima, koje ćemo
odmah spomenuti. U tim svojim radovima posvetila je
Lj. Dočkal naročitu pažnju onim sistemima ploha 2.
stupnja, koji u dosadašnjoj matematičkoj literaturi nisu
obrad-ivani. Sva svoja istraživanja izvodi Lj. Dočkal sin-
tetičkom metodom projektivne geometrije, koja je u mate-
matici najbliža Nacrtnoj geometriji.
Osim ovih problema razmatrala je i riješila Lj. Dočkal
i vrlo zanimljive probleme u vezi s dva i tri kolinearno
pridružena svežnja. Za ove je probleme u najmanju ruku
čudno, da u dosadašnjoj matematičkoj literaturi nisu niti
zapaženi, a još manje riješeni.
Prva radnja Lj. Dočkal koja je objavljena nakon njenog
izbora u zvanje docenta je [4]. U ovoj se radnji Lj.
Dočkal poslužila poznatom činjenicom, da svaka ravni-
na prostora dira tri plohe pramena ploha 2. stupnja,
te da svakom točkom prostora prolazi samo jedna ploha
takvog pramena. Dubljim istraživanjem ovakovih trojki
točaka u prostoru, otkriva Lj. Dočkal zanimljivo prostor-
no preslikavanje 6. reda. Na temelju i u okviru tog pre-
slikavanja izvodi ona u ovoj radnji prostorne krivulje 6.
reda pridružene točkama jednog pravca, te opće plohe 6.
reda pridružene točkama jedne ravnine.
U radnji [5] razmatrane su najkraće transverzale parova
pridruženih zraka dvaju kolinearnih svežnjeva. Sve te
transverzale čine kongruenciju 6. reda i 5. razreda.
Nožišta tih transverzala na zrakama svakog snopa čine
opću plohu 4. reda, a otkrivene su i neke druge osobine
ove dosad nepoznate kongruencije.
U Glasnik matematički predana je u štampu radnja [6].
Kako svaka pravčasta ploha 2. stupnja ima svoju strik-
cionu liniju, istraživala je Lj. Dočkal u ovoj radnji geo-
metrijsko mjesto strikcionih linija svih pravčastih ploha 2.
stupnja jednog sistema takvih ploha. Ovo je geometrijsko
mjesto opća ploha 16. reda, koja je otkrivena i istraživana
u ovoj radnji. Istraženi su i specijalni slučajevi takvih
ploha, naročito degeneriranih, kao i njihove važnije oso-
bine, jer do sada takve plohe nigdje nisu razmatrane.
Daljnja radnja dr. Lj. Dočkal [7] predana je u štampu
za Rad JAZU. Svaka ploha 2. stupnja ima tri simetralne
ravnine, koje tu plohu sijeku u glavnim krivuljama. Sve
takve glavne krivulje ploha jednog sistema ploha 2. stup-
nja čine opću plohu 16. reda. Istraženi su i ovdje specijalni
slučajevi kao i neke osobine.
Kao posljednja, nedavno završena i za štampu u Radu

JAZU predana radnja Lj. Dočkal je [8]. Postavljamo
li nekom točkom prostora ravnine okomite na izvodnice
neke pravčaste plohe, čine nožišta tih izvodnica na tim
ravninama nožišnu prostornu krivulju tog, obzirom na tu
pravčastu plohu odabranog, pola. Lj. Dočkal uzima
takve polove u središtima pravčastih ploha nekog pramena
ploha 2. stupnja, te istražuje sistem tako nastalih nožišnih
krivulja, koje tvore jednu opću plohu 15. reda. Istraživani
su i ovdje specijalni slučajevi kao i važnije osobine...”
(Iz izvješća Znanstveno-nastavnom Vijeću Geodetskog
fakulteta Sveučilišta u Zagrebu, svibanj 1973. godine)

U svom posljednjem izvješću o radu Ljerke Dočkal-
Krsnik, nakon kojeg je izabrana u zvanje redovitog profe-
sora, akademik Niče daje sljedeći prikaz dvaju posljednjih
Ljerkinih radova:

”... Kompleks normala ploha 2. stupnja u jednom pra-
menu takvih ploha poznat je i do sada temeljito istražen.
Med-utim, takav kompleks u nizu ploha 2. stupnja, dakle na
dualnoj tvorevini pramena ploha 2. stupnja, kompleks nor-
mala je do danas nepoznat i neistražen. U radu [9] zaba-
vila se je dr. Lj. Dočkal tim kompleksom u takovom nizu.
Njen referat o tom radu na Austrijskom matematičkom kon-
gresu u Salzburgu izazvao je veliki interes i živu diskusiju
najistaknutijih matematičara.
U radu [10] otkrila je i istražila dr. Lj. Dočkal
jedan do sada nezapažen problem, odnosno, geometrijsku
tvorevinu, koja se, kao i kod pramena i niza, sastoji iz ∞1

neprekinuto povezanih pravčastih ploha 2. stupnja, ali te
plohe ne čine niti poznati pramen niti poznati niz. Ovaj
kontinuirani linearni niz ili sistem ploha 2. stupnja tek je
otkriven i obrad-en u tom radu. Odaberemo li u prosto-
ru po volji tri med-usobno projektivna pramena pravaca,
tada je svakoj zraci jednog pramena jedno-jednoznačno
pridružena po jedna zraka drugog. Transverzale svake
ovakove trojke pridruženih pravaca čine jedan sistem
izvodnica neke pravčaste plohe 2. stupnja. Sama trojka
tako pridruženih pravaca spada u drugi sistem takve plohe.
Sa svih ∞1 ovakovih pridruženih neprekinuto povezanih
trojki zraka tih triju pramenova odred-eno je ∞1 nepreki-
nuto povezanih pravčastih ploha 2. stupnja, koji čine nov
do sada nepoznat neprekinut sistem, kojim se je zabavila
dr. Lj. Dočkal u toj radnji.
U ovom je radu dokazano da jedna ravnina dira tri plohe, a
svakom točkom prolaze tri plohe takvog sistema. Pomoću
ovog je izvedeno da i svaki pravac dira tri plohe takvog
sistema. Konjugirane polare nekom pravcu obzirom na sve
plohe ovakovog sistema čine pravčastu plohu 3. stupnja.
Uz taj sistem ploha povezan je i kompleks njihovih nor-
mala, koji je 12. stupnja. I u ovom sistemu istražene su
ploha glavnih krivulja, ploha strikcionih linija i ploha cen-
tralnih nožišnih krivulja, tako da je time zaokružen potpun
prikaz ovog novootkrivenog sistema ploha 2. stupnja...”
(Iz izvješća Znanstveno-nastavnom Vijeću Geodetskog
fakulteta Sveučilišta u Zagrebu, listopad 1978. godine)
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Tijekom niza godina Ljerka Dočkal-Krsnik bila je
voditeljica nekoliko znanstvenih projekata. O svojim je
znanstvenim radovima redovito izvještavala na kongre-
sima, savjetovanjima i drugim skupovima. Navodim ovdje
neke od njih: Austrijski kongres matematike (Linz 1968.,
Beč 1973., Salzburg 1977., Insbruck 1982.), Balkanski
kongres matematičara (Ohrid 1970., Beograd 1974.), Ju-
goslavensko savjetovanje za nacrtnu geometriju nastav-
nika tehničkih fakulteta (Beograd 1961., Split 1963, Sara-
jevo 1965., Skopje-Ohrid 1967., Ljubljana 1969., Zagreb
1971., Novi Sad 1973., Niš 1975., Herceg Novi 1977,
Arand-elovac 1979., Osijek 1981., Zagreb 1990.).

Bila je članica Društva matematičara i fizičara Jugosla-
vije, Austrijskog matematičkog društva, Jugoslavenskog
udruženja za nacrtnu geometriju i inženjersku grafiku te
počasna članica Hrvatskog društva za geometriju i grafiku.

Cijeli je radni vijek Ljerke Dočkal-Krsnik bio posvećen
Nacrtnoj geometriji čiji je program prilagodila potrebama
Geodetskog fakulteta. Kao mlada asistentica aktivno
se uključila u sastavljanje zadataka za poznati Ničeov
udžbenik Deskriptivna geometrija, te na njihovo nado-

punjavanje u svakom daljnjem izdanju. Ljerka Dočkal-
Krsnik bila je vrlo cijenjena nastavnica i uzorna kolegica.
U razdoblju 1968–73. obnašala je dužnost voditeljice Ka-
tedre za opće teoretske predmete, 1975–79. prodekanice
za nastavu Geodetskog fakulteta, a od 1981. do 1983. bila
je predstojnica Zavoda za višu geodeziju.

Bila je pravi profesor, smireno je predavala znanja na na-
jbolji mogući način i brinula da se to znanje učvrsti. Stu-
denti su na konstrukcijskim vježbama trebali pokazati da
u potpunosti razumiju materiju, da ju mogu objasniti, na-
crtati i vidjeti. Da bi to postigla bila je zajedno sa surad-
nikom (asistentom) na svim konstrukcijskim vježbama.
Ljerka kao redoviti profesor i ja, takod-er već kao profesor,
provodile smo mnoge sate u individualnom radu sa studen-
tima. Tako smo postizavale svoj glavni cilj – znanje stude-
nata. Zato mi je danas, kad se susretnem s nekadašnjim
studentima, drago čuti kako se vidjelo koliko nam je bilo
važno da studenti shvate i nauče.

S Ljerkom raditi bilo je prelijepo, jer je ona bila čovjek u
najplemenitijem smislu te riječi.

Popis radova

[1] LJ. DOČKAL, Kongruenz der Gemeinlote von Erzeu-
genden einer rationalen windschiefen Regelfläche
n-ten Grades, Glasnik Mat. fiz. i astr. 17 (1962),
No.3–4, 205–222.

[2] LJ. DOČKAL, Transversalenkomplex der zugeord-
neten Strahlentripe dreier kollinearzugeordneten
Strahlenbündel, Glasnik Matematički 2 (22) (1967),
No.2, 245–263.

[3] LJ. DOČKAL, Plohe specijalnih krivulja u linearnim
sistemima pravčastih ploha 2. reda, disertacija, PMF
Zagreb, 1971.

[4] LJ. DOČKAL, Über eine Abbildung sechster Ord-
nung, Glasnik Matematički 6 (26) (1971), No.1,
113–120.

[5] LJ. DOČKAL, Kongruenz der Gemeinlote, Glasnik
Matematički 8 (28) (1973), No. 2, 273–284.

[6] LJ. DOČKAL, Die Striktionslinienfläche eines
linearen Regelflächensystems 2. Ordnung, Glasnik
Matematički 9 (29) (1974), No.1, 109–124.

[7] LJ. DOČKAL, Die Hauptkurvenfläche in linearen
Flächensystems 2. Ordnung, Rad JAZU 370 (1975),
107–115.

[8] LJ. DOČKAL, Die Flächen der zentrischen Fus-
spunktkurven in linearen Regelflächensystems 2.
Ordnung, Rad JAZU 370 (1975), 93–106.
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[10] LJ. DOČKAL, Über einen Regelflächensystem 2.
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ABSTRACT

In the Euclidean plane there are several well-known meth-
ods of constructing an osculating (Euclidean) circle to a
conic. We show that at least one of these methods can
be “translated” into a construction scheme of finding the
osculating non-Euclidean circle to a given conic in a hyper-
bolic or elliptic plane. As an example we will deal with the
Klein-model of these non-Euclidean planes, as the projec-
tive geometric point of view is common to the Euclidean
as well as to the non-Euclidean cases.

Key words: Cayley-Klein plane, elation, pencil of conics,
osculating circle, curvature centre

MSC 2010: 51N30, 51M15, 53A35

Oskulacijske kružnice konika u Cayley-Klein-ovim
ravninama

SAŽETAK

U euklidskoj ravnini postoji nekoliko dobro poznatih
metoda konstrukcija oskulacijske kružnice konike. Cilj
je te konstrukcije “translatirati” u neke od neeuklid-
skih ravnina. U članku se daje opća konstrukcija osku-
lacijske kružnice konike zadane s pet elemenata u euklid-
skoj ravnini. Pokazuje se da je konstruktivna metoda pri-
mjenjiva u hiperboličkoj i eliptičkoj ravnini. Budući da je
projektivno geometrijsko gledǐste zajedničko euklidskom i
neeuklidskim slučajevima, analogne se konstrukcije koriste
na Klein-ovim modelima neeuklidskih ravnina.

Ključne riječi: Cayley-Klein-ova ravnina, elacija, pramen
konika, oskulacijska kružnica, sredǐste zakrivljenosti

1 Preliminary Remark

Although the problem of constructing an osculating circle
at a point of a conic seems to be anachronistic in times
of numerical approximation tools, knowledge about ex-
act constructive methods is not at all obsolete, particularly
since these methods are uniformly applicable. Beyond
that, with the following projective geometric constructions
of osculating circles, we place particular emphasis on syn-
thetic argumentation, which is typically for geometry. Un-
fortunately Projective Geometry and Non-Euclidean Ge-
ometry in the sense of F. Klein does not have much space
in nowadaysMathematics education such that valuable Ge-
ometry culture is in danger of vanishing. Our article might
perhaps help to counteract these facts. The paper is also
to be posed into the series of articles of classical Projec-
tive and Non-Euclidean Geometry initiated by the second
author, see [5] - [8].

It is hard to say, how “well-known” the presented consid-
erations are; they could be for example exercise material to
lectures on classical Projective Geometry and not consid-
ered to be valuable enough to be published. To our knowl-
edge lectures with related content still exist in Vienna (H.

Stachel, H. Havlicek) and Graz (J. Wallner, O. Röschel),
where they still belong to the syllabus in teachers educa-
tion in Descriptive Geometry.

2 Euclidean Osculating Circles of Conics

We start with “permissible standard givens” of a conic in
the Euclidean plane, i.e. from pair of conjugate diameters
AC , BD of an ellipse, from a pair of line elements (A,tA),
(B,tB) of a parabola and from a pair of asymptotes (r,s)
and a point A of a hyperbola. The problem is to find the
osculating circle at the given point A.

In geometry courses for engineers one usually presents the
construction recipe for the hyperosculating circles at the
vertex of the conic; in lectures on differential geometry
for Mathematicians this recipe is also presented and the
analytic equality of 4thorder is proved by calculation in
each of the three cases. But for all three cases there is a
uniform projective geometric idea for the solution of this
(more general) problem. This idea uses properties of oscu-
lating resp. hyperosculating pencils of conics. This unified
explanation of elementary construction of hyperosculating
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circles at vertices of a conic might be not new, but it is,
in our opinion, not at all so well-known as it is worthy to
note.

In addition, the construction principle deduced from it can
be used for all Cayley-Klein geometries, as it is shown in
the following chapter only for the hyperbolic and the quasi-
hyperbolic geometry (which is the dual geometry to the
pseudo-Euclidean geometry) as an example.

Specifically, the construction follows two steps:

Step 1: Transform the given conic c by the standard shear
transformation σ1 : c→ c′ into another conic c′, which os-
culates c at the point A, and has A as a vertex. The axis of
the shear therefore is the tangent tA in A. As all elations
with the center N on tA, this shear σ1 maps the given conic
c into c′ which osculates the conic c at A. The osculating
circle of one is also osculating circle for the other one.

Step 2: Construct the hyperosculating circle kA of the conic
c′ at A = A′. For this one can use an additional elation σ2
which also has tA as its axis, but the center A and it should
map c′ into a hyperosculating conic c′′. By demanding
c′ �→ kA the transformation σ2 is uniquely defined; σ2
transforms the point B′ of the osculating conic c′ (in the
case of an ellipse this is a “neighbouring” vertex, in case
of a hyperbola one of the asymptote’s ideal point “at infin-
ity”, in the case of a parabola it is the additionally given
point) into the point B′′ of kA. The normal from the (fixed)
point T = T ′ = T ′′ ∈ tA (T = tA∩ tB = tB′ ∩ tB) to the chord
AB′′ = AB′ of circle kA therewith passes through the center
MA of kA.

The following figures (Figures 1-3) show the construction
costs, which in each of the three cases needs only a few
lines.

Elliptic case (Figure 1)
The point A is transformed into the vertex of an ellipse
c′ by the shear σ1 : c → c′ (tangent tA at A is the axis of
σ1). Furthermore, σ2 : c′ → kA with the same axis, but
with center A, transforms a “neighbouring” vertex B′ of c′

into the point B′′ of kA. The line through the fixed point
T = T ′ = T ′′ on tA perpendicular to the chord AB′′ = AB′

of the osculating circle kA intersects the normal n of the
conic c given at the point A in the centerMA of kA.

Parabolic case (Figure 2)
The shear σ1 : c→ c′ (axis is the tangent tA at A) transforms
the point A into the vertex of a parabola c′, which osculates
c. The midpointH of the chord AB, together with the point
T := tA∩ tB, defines the diameter direction of the conic c,
and therefore is mapped into the point H ′ on the line nor-
mal to tA at T . For σ2 : c′ → kA (the center is A) the line
AH ′ is a fixed line; it contains the point B′′ = σ2(B′) of the
hyperosculating conic kA. The line through the fixed point
T = T ′ = T ′′ perpendicular to the chord AB′′ = AH ′ of kA
passes through the sought-after curvature centerMA.

Hyperbolic case (Figure 3)
At first we construct the tangent tA at the point A, (A is the
midpoint of the tangent segment between the asymptotes).
By a suitable shear σ1 one can transform the point A into
the vertex of the hyperbola c′ whose asymptotes are r′ and
s′ and the center isM′. The elation σ2 : c′ → kA with center
A transforms the ideal point R′ = B′ of the asymptote r′ of
the conic c′ into the point B′′ of the hyperosculating conic
kA. Therefore, the line through the fixed point T on the
tangent tA perpendicular to AB′′ = AB′ passes through the
common curvature centerMA of the conics kA, c′ and c. As
AB′ is parallel to r′, one only needs to draw the perpendic-
ular line to the asymptote r′ =M′T at the point T .

MA

B’’

B’ H’

kA

C

DHB

n

AT=T’=T’’ tA

Bt

N

MA

B’

H’
H

B

n

A T=T’=T’’tA

Bt

N

s’

r’

M’
MA

s

r

R’=B’

M

nA

T=T’=T’’

tA

N

R

Figure1: Construction of the center
MA of the osculating circle kA at the
endpoint A of one of the given con-
jugate diameters of the ellipse c.

Figure 2: Construction of the center
MA of the osculating circle kA at the
point A of the parabola c given by
two line elements (A,tA), (B,tB).

Figure 3: Construction of the cur-
vature center MA at the point A of
the hyperbola cgiven by the pair of
asymptotes (r,s) and the point A.
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Remark 1 Of course, there are other nice constructions
of the Euclidean curvature circle at the point of a conic,
too. We want to mention the one found in [1], which is
based on the differential geometric investigations and goes
as follows:

“Choose two points P,Q on tangent tA symmetric to A,
draw the tangents from P and Q to the given conic c, re-
ceive the contact points P′ and Q′. The normals p and q
to the cords AP′ and AQ′ intersect the normal n in A in the
points MP andMQ. Then MA is the midpoint of the segment
(MP,MQ). Also this construction could be transformed to
CK-planes.”

3 Curvature Centres of Conics which are
Given by General Data in CK-planes

In the preceding chapter we started with affine-special
given data of a conic. Now we choose a projective-
geometric system of data defining a conic:

Let a conic c be given by two line elements (A,a), (B,b)
and a point C in a (real) projective plane π equipped with
an “absolute (regular or degenerated) polarity” π⊥. (The
plane π together with π⊥ is therewith a Cayley-Klein plane,
in short a CK-plane.)

These specifications of the conic c can easily be derived
from all other given data, which define conic uniquely, by
applying the theorems of Pappus-Pascal and Brianchon,
see [2]. These givens are also appropriate for the analytic
treatment of the conic, as they can be interpreted as a pro-
jective coordinate system.

Via π⊥ the place of action is a projective plane with an or-
thogonality structure “⊥” and a concept of circles in the
sense of Cayley-Klein; it is therefore a “projectively ex-
tended non-Euclidean plane”, a CK-plane, see e.g. [3].
Among these CK-planes we want to exclude the so-called
isotropic planes (see e.g. [4]) from further considerations,
because their orthogonality structure⊥ is too degenerated.
These CK-planes are treated separately in [7]. It turns out
that for degenerated absolute polarity π⊥ one could “swap”
the two steps described in chapter 2: At first one constructs
the hyperosculating parabola c′ at the point A of the given
conic c in the isotropic plane π with absolute point I at the
ideal line u. This can be done with an elation with center
A and axis a. Next, the parabola c′ is transformed into the
isotropic circle k with ideal point I using the shear with
axis a.

In the last chapter, it will be shown that in some cases of
CK-planes with degenerate absolute polarity one can easily
find simplier constructions using one single elation alone.

The problem is to construct the curvature center MA at the
point A of the given conic c. (For the sake of simplicity we

visualise again the Euclidean case in Figure 4, i.e. “⊥ ” and
“circles” allow an elementary geometric interpretation.)

Step 1: determine the normal n of the conic c at the point A
with respect to ⊥; i.e. one needs to construct the “absolute
conjugate line” n to the given tangent a of the conic c at A
with respect to π⊥. The absolute pole N of the normal n is
a point of a and it has to be used as the center of an elation
σ1 : c → c′ with axis a. One still needs a related pair of
points to define elation σ1 uniquely.

Step 2: the construction of a conic point D on the (fixed)
collineation ray on BN using the theorem of Pappus-
Pascal. (Naturally, it would be the same, if we constructed
the point E ∈ c on the collineation ray CN.) In Figure 4 the
necessary lines are shown:

D :=BN∩AP, whereby, P :=BC∩(
(a∩b)∨(BN∩AC)

)
.

Step 3: determination of the 4th harmonic point H to N
with respect to the pair (B,D) on line BN. This point H
shall be related to H ′ := n∩BN in σ1 and now σ1 : c→ c′
is uniquely determined.

Step 4: corresponds to step 2 in chapter 2 to get σ2 : c′ →
kA. Explicitly, one only needs the center A of elation σ2
and the fact that the point B′′ := σ2(B′) on kA belongs to
the chord AB′′ = AB′ of kA, which is fixed under σ2 where
B′ := σ1(B). Therewith the wanted curvature center MA is
the intersection point of the normal n with the line s, which
is the absolute-conjugate line to AB′ through a∩b.

H H’
B’

s n

MA

C

D

P

AaT=T’=T’’

b

B

N

Figure 4: Construction of the curvature center MA in a
point A of a conic c, which is given by two line elements
(A,a), (B,b) and an additional point C in the (projective
extended) elementary geometric plane. (Explanation of the
construction see above.)
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4 h-Curvature Circles of a Conic in the Pro-
jective Model of a Hyperbolic Plane

As an example for the construction of the osculating circle
in a non-Euclidean plane with regular absolute polarity π⊥
the complete solution will be given in a hyperbolic plane,
see Figure 5.

According to the projective geometric background of the
idea of the construction, it is somehow natural to use the
classical projective model of such a h-plane, (c.f. also [2]).
This means that the place of action is essentially the inner
domain of a (real) “absolute conic” u, which can be taken
as an ordinary circle in elementary geometric sense. Given
a conic c, the problem is to construct the h-curvature center
MA to the arbitrarily given point A (with tangent a).

It is expedient and practical to use a perspective
collineation κ1 : u → c to construct the conic c as
collinearly related image to the absolute conic u. (In Fig-
ure 5 collineation κ1 is defined with the center S and the
axis s, and the related pair of points (A1,A).) Note, that if
s is absolute polar of S, the obtained conic c would be a
circle.

Step 1: The osculating h-circle k of c at A has its center
M on the h-normal n to a through A. So as a first step one
needs to construct this n.

Step 2: Make A to a vertex of the conic c′, which osculates
c at A. For this we use a “projective shear”, i.e. an elation
σ1 with axis a and centre N ∈ a, which is the absolute pole
of n.

Step 3: Construct the hyperosculating circle of c′ accord-
ing to the description to Figure 4. In Figure 5 we used the
points Q and Q′ =: σ1(Q) to get c′ from c and the special
point B′ and its tangent b. Finally we connect A with B′

and erect the h-normal line to AB′ through T := a∩ b, it
intersects n in the h-curvature centerM.

Step 4: If we do not use a graphics software like “Cin-
derella”, where we can directly draw h-circles in a h-
plane, we still have to construct the h-osculating circle k.
This again can be done using a perspective collineation
κ2 : u→ k; it has the center M and the axis m := π⊥(M)
and the related pair of points (A ∈ c,A2 ∈ u). Because of

κ1 σ1 σ2 κ−12
u −→ c −→ c′ −→ k −→ u

The product of these perspective collineations must act as
a projectivity β on u. So the mapping β : c→ u→ k is de-
termined by three pairs of points on u, among them A1,A2
and Q1,Q2.

N

m

kq

a

s

n

u

c
c’

Q
2 Q

1

Q Q’

S M U
B’

BO

T
A

A2
A1

Figure 5: Osculating h-circle at the point A of the conic c. (Construction in the classical projective model of a h-plane.)
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5 Curvature Circles of a Conic in the CK-Planes with Singular Absolute Polarity

To start with, we give an overview over those CK-planes, c.f. [3]:

π⊥ acting in “Absolute figure” Name

elliptic involutoric (ideal) line u pair of imaginary Euclidean plane,
projectivity points I,J ∈ u e− plane
hyperb. involutoric (ideal) line u pair of real pseudo-Euclid. plane,
projectivity points I,J ∈ u pe− plane
elliptic involutoric a pencil of lines u pair of imaginary dual Euclid. plane,
projectivity through (ideal) lines i, j throughU quasi-elliptic plane

pointU qe− plane
hyperb. involutoric a pencil of lines u pair of real dual pseudo-Euclid. plane,
projectivity through (ideal) lines i, j throughU quasi-hyperbolic plane,

pointU qh− plane
degenerate inv. (ideal) line u pointU and line u isotropic plane,
projectivity (self-dual figure) Galilean plane,

i− plane

We treated the Euclidean case in Chapter 2 aiming at a
unifying interpretation of the classical and well-known el-
ementary constructions. We will now present constructions
of osculating circles by using one single elation alone. Let
us begin with

1) Pseudo-Euclidean case

Figure 6 shows the projective model of a pe-plane and the
construction of a pe-circle osculating a conic c at the point
A.
Explanation to Figure 6:
The conic c and its line element (A,a) in the pe-plane with
absolute points I,J ∈ u are given. Now we choose A as the
center of an elation κ and construct its axis z: (Also this
type of elations is osculation preserving!) With center A
project I,J onto c getting I′, J′. Intersect u with the line
u′ = I′J′, get a fixed point F and AF =: z. Now κ is well-
defined and κ(c) =: k is the desired osculating pe-circle.

I u J F

I’

J’

c
u’

z

a

A

Figure 6: Osculating pe-circle at the point A of the conic c.
(Construction in a projective model of a pe-plane.)

Remark 2 The same construction principle can be per-
formed also in the Euclidean case. The imaginary rays AI
and AJ are defined by the orthogonal-involution in the pen-
cil with vertex A and this orthogonal involution induces in
c an elliptic involutoric projectivity ρ with involution cen-
ter R. Now we had to construct the polar line r to R with
respect to c; r connects the imaginary points I′ and J′ and
therefore is parallel to the elation axis z.

2) Quasi-hyperbolic case

Without loss of generality, let the absolute figure of the
quasi-hyperbolic plane be a pair of parallel lines i, j. The
conic c and its line element (A,a) are given. A qh-circle
k is a conic k touching both absolute lines i and j. The
construction is now dual to the one of Figure 6, see Figure
7.

i
I

a i’c

n
A I’

k

J

U

j

Z
J’ j’ U’

Figure 7: Osculating qh-circle at the point A of the conic
c. (Construction in a qh - plane with an absolute figure
{U ; i, j}.)
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Explanation to Figure 7:
Intersect the absolute lines i and j with the tangent a of
the conic c at A. The tangents i′, j′ from these intersec-
tion points to c intersect at the pointU ′ which corresponds
to the absolute point U in the desired elation κ with axis
a. Line UU ′ intersects a at the center Z of κ such that
κ is well-defined by {Z,a,(U,U ′)} and k := κ(c) is the
desired osculating qh-circle. Note that UA represents the
qh-normal n of the c at A.

Remark 3 The same construction principle can be per-
formed also in the quasi-elliptic case. The construction
“dualises” that of the Euclidean case. In the isotropic
case, because of self-duality, one can use both, the prin-
ciple of the “qh-construction” as well as that of the “pe-
construction” to find the needed elation. As the construc-
tion is obvious, it can be left to the reader to practice.
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Orthologic Tetrahedra with
Intersecting Edges

Orthologic Tetrahedra with Intersecting Edges

ABSTRACT

Two tetrahedra are called orthologic if the lines through
vertices of one and perpendicular to corresponding faces of
the other are intersecting. This is equivalent to the orthog-
onality of non-corresponding edges. We prove that the
additional assumption of intersecting non-corresponding
edges (“orthosecting tetrahedra”) implies that the six in-
tersection points lie on a sphere. To a given tetrahedron
there exists generally a one-parametric family of orthosect-
ing tetrahedra. The orthographic projection of the locus of
one vertex onto the corresponding face plane of the given
tetrahedron is a curve which remains fixed under isogo-
nal conjugation. This allows the construction of pairs of
conjugate orthosecting tetrahedra to a given tetrahedron.

Key words: orthologic tetrahedra, orthosecting tetrahe-
dra, isogonal conjugate

MSC 2010: 51M04

Ortologni tetraedri s bridovima koji se sijeku

SAŽETAK

Dva tetraedra nazivamo ortolognim ako se pravci koji pro-
laze vrhovima jednog i okomiti su na odgovarajuće stranice
drugog med-usobno sijeku. Ovo je ekvivalentno ortogo-
nalnosti ne-odgovarajućih bridova. Mi dokazujemo kako
dodatna pretpostavka da se ne-odgovarajući bridovi si-
jeku (”ortopresječni tetraedar”) povlači da šest sjecǐsta
leži na jednoj kugli. Za dani tetraedar postoji općenito
jednoparametarska familija ortopresječnih tetraedara. Or-
togonalna projekcija geometrijskog mjesta jednog vrha na
pripadajuću ravninu danog tetraedra je krivulja koja os-
taje fiksnom pod djelovanjem izogonalne konjugacije. Ovo
dopušta konstrukciju parova konjugiranih ortopresječnih
tetraedara za dani tetraedar.

Ključne riječi: ortologni tetraedar, ortopresječni tetra-
edar, izogonalno konjugiranje

1 Introduction

Ever since the introduction of orthologic triangles and
tetrahedra by J. Steiner in 1827 [10] these curious pairs
have attracted researchers in elementary geometry. The
characterizing property of orthologic tetrahedra is concur-
rency of the straight lines through vertices of one tetrahe-
dron and perpendicular to corresponding faces of the sec-
ond. Alternatively, one can say that non-corresponding
edges are orthogonal. Proofs of fundamental properties
can be found in [7] and [8]. Quite a few results are known
on special families of orthologic triangles and tetrahedra.
See for example [5, 6, 9, 11] for more information on or-
thologic tetrahedra (or triangles) which are also perspec-
tive or [3] for a generalization of a statement on families of
orthologic triangles related to orthopoles.

In this article we are concerned with orthosecting tetrahe-
dra—orthologic tetrahedra such that non-corresponding

edges intersect orthogonally. The concept as well as a
few basic results will be introduced in Section 2. In Sec-
tion 3 we show that the six intersection points of non-
corresponding edges necessarily lie on a sphere (or a
plane). While the computation of orthosecting pairs re-
quires, in general, the solution of a system of algebraic
equations, conjugate orthosecting tetrahedra can be con-
structed from a given orthosecting pair. This is the topic
of Section 4. Our treatment of the subject is of elemen-
tary nature. The main ingredients in the proofs come from
descriptive geometry and triangle geometry.

A few words on notation: By A1A2A3 we denote the trian-
gle with vertices A1, A2, and A3, by A1A2A3A4 the tetrahe-
dron with vertices A1, A2, A3, and A4. The line spanned
by two points A1 and A2 is A1 ∨A2, the plane spanned by
three points A1, A2, and A3 is A1 ∨A2 ∨A3. Furthermore,
In denotes the set of all n-tuples with pairwise different
entries taken from the set {1, . . . ,n}.
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2 Preliminaries

Two triangles A1A2A3 and B1B2B3 are called orthologic, if
the three lines

ai : Ai ∈ ai, ai ⊥ Bj ∨Bk; (i, j,k) ∈ I3 (1)

intersect in a point OA, the orthology center of A1A2A3
with respect to B1B2B3. In this case, also the lines

bi : Bi ∈ bi, bi ⊥ Aj ∨Ak; (i, j,k) ∈ I3 (2)

intersect in a pointOB, the orthology center ofB1B2B3 with
respect to A1A2A3. The concept of orthologic tetrahedra is
similar. Two tetrahedraA= A1A2A3A4 and B= B1B2B3B4
are called orthologic, if the four lines

ai : Ai ∈ ai, ai ⊥ Bj ∨Bk∨Bl; (i, j,k, l) ∈ I4 (3)

intersect in a point OA, the orthology center of A with re-
spect to B. In this case, also the lines

bi : Bi ∈ bi, bi ⊥ Aj ∨Ak∨Al; (i, j,k, l) ∈ I4 (4)

intersect in a OB, the orthology center of B with respect
to A. Orthologic triangles and tetrahedra have been intro-
duced by J. Steiner in [10]; proofs of fundamental proper-
ties can be found in [7, 8] or [1, pp. 173–174].

The symmetry of the two tetrahedra in the definition of or-
thology is a consequence of the following alternative char-
acterization of orthologic tetrahedra. It is well-known but
we give a proof which introduces concepts and techniques
that will frequently be employed throughout this paper.

Proposition 1 The two tetrahedra A and B are orthologic
if and only if non-corresponding edges are orthogonal:

Ai∨Aj ⊥ Bk ∨Bl, (i, j,k, l) ∈ I4. (5)

Proof. We only require that the lines ai through Ai and or-
thogonal to the plane Bj ∨Bk ∨Bl intersect in a point OA.
The plane Ai ∨ Aj ∨OA contains two lines orthogonal to
the line Bk ∨Bl , (i, j,k, l) ∈ I4. Therefore, all lines in this
plane, in particular Ai∨Aj, are orthogonal to Bk ∨Bl.
Assume conversely that the orthogonality conditions (5)
hold. Clearly, any two perpendiculars ai intersect. We have
to show that all intersection points Ai j = ai ∩ a j coincide.
Using our freedom to translate the tetrahedron A without
destroying orthogonality relations we can ensure, without
loss of generality, the existence of the intersection points

V12 := (A1∨A2)∩ (B3∨B4),
V13 := (A1∨A3)∩ (B2∨B4),
V23 := (A2∨A3)∩ (B1∨B4).

(6)

Consider now the orthographic projection onto the plane
A1 ∨ A2 ∨ A3 (Figure 1). We denote the projection of a
point X by X ′. By the Right-Angle Theorem of descriptive
geometry,1 the points B′1, B

′
2 and B

′
3 lie on the perpendicu-

lars through B′4 onto the sides of the triangle A= A1A2A3.
Moreover, since the plane V12 ∨V13 ∨V23 appears in true
size, the lines ai through Ai and orthogonal to the respec-
tive face planes of A have projections a′1, a

′
2, a

′
3 orthogonal

to the edges of the triangle V=V23V13V12. The trianglesV
and A are orthologic. Therefore the lines a′i intersect in a
point O′

A which is necessarily the projection of a common
point OA of the lines a1, a2, and a3. �

Figure 1: Orthographic projection onto a face plane

3 The six intersection points

The new results in this paper concern pairs of orthologic
tetrahedra A = A1A2A3A4 and B = B1B2B3B4 such that
non-corresponding edges are not only orthogonal but also
intersecting. That is, in addition to (5) we also require ex-
istence of the points

Vi j := (Ai∨Aj)∩ (Bk∨Bl) �= ∅, (i, j,k, l) ∈ I4. (7)

Definition 1 We call two tetrahedra A and B orthosect-
ing if their vertices can be labelled as A1A2A3A4 and
B1B2B3B4, respectively, such that (5) and (7) hold.

Theorem 1 If two tetrahedra are orthosecting, the six
intersection points of non-corresponding edges lie on a
sphere (or a plane, if flat tetrahedra are permitted). The
sphere center is the midpoint between the orthology cen-
ters.

1In an orthographic projection the right angle between two lines appears as right angle if and only if one line is in true size (parallel to the image plane)
and the other is not in a point-view (orthogonal to the image plane).
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Proof. Denote the two tetrahedra by A = A1A2A3A4 and
B= B1B2B3B4 such that the lines Ai∨Aj and Bk∨Bl inter-
sect orthogonally in Vi j for (i, j,k, l) ∈ I4. As in the proof
of Proposition 1 we consider the orthographic projection
onto the plane A1∨A2∨A3 (Figure 1). Clearly, B′4 equals
the projection O′

B of the orthology center OB of B with re-
spect to A. If it lies on the circumcircle of A1A2A3, all per-
pendiculars from B′4 onto the sides of A1A2A3 are parallel.
In this case the tetrahedron B1B2B3B4 is flat and the theo-
rem’s statement holds. Otherwise, the points V12, V13, and
V23 define a circle c4 — the pedal circle of the pointB′4 with
respect to the triangle A1A2A3. By the Right-Angle Theo-
rem the projectionO′

A of the orthology centerOA ofAwith
respect to B is the orthology center of the triangle A1A2A3
with respect to the triangleV23V13V12. Moreover, from ele-
mentary triangle geometry it is known that the centerM′ of
c4 halves the segment between B′4 and O

′
A [4, pp. 54–56].

Hence all circles ci drawn in like manner on the faces of
A have axes which intersect in the midpointM of the two
orthology centers OA and OB. Moreover, any two of these
circles share one of the points Vi j. Hence, these circles are
co-spherical and the proof is finished. �
The proof of Theorem 1 can also be applied to a slightly
more general configurationwhere only five of the six edges
intersect orthogonally. We formulate this statement as a
corollary:

Corollary 1 If A = A1A2A3A4 and B = B1B2B3B4 are
two orthologic tetrahedra such that five non-corresponding
edges intersect, the five intersection points lie on a sphere
(or a plane).

4 The one-parametric family of solution
tetrahedra

So far we have dealt with properties of a pair of ortho-
secting tetrahedra but we have left aside questions of ex-
istence or computation. In this section A = A1A2A3A4 is
a given tetrahedron to which an orthosecting tetrahedron
B= B1B2B3B4 is sought.

4.1 Construction of orthologic tetrahedra

At first, we consider the simpler case of orthologic pairs.
Clearly, translation of the face planes of B will transform
an orthologic tetrahedron into a like tetrahedron (unless all
planes pass through a single point). Therefore, we consider
tetrahedra with parallel faces as equivalent.

The maybe simplest construction of an equivalence class
of solutions consists of the choice of the orthology center
OA. This immediately yields the face normals ni of B as
connecting vectors of OA and Ai. The variety of solution
classes is of dimension three, one solution to every choice
of OA. Since five edges determine two face planes of a
tetrahedron and, in case of suitable orthogonality relations,
also the orthology center OA, we obtain

Theorem 2 If the vertices of two tetrahedra can be la-
belled such that five non-corresponding pairs of edges are
orthogonal then so is the sixth.

The variety of all solution classes contains a two-
parametric set of trivial solutions n1 = n2 = n3 = n4. They
correspond to orthology centers at infinity, the solution
tetrahedra are flat. Note that the possibility to label the
edges such that non-corresponding pairs are orthogonal is
essential for the existence of non-flat solutions. If, for ex-
ample, corresponding edges are required to be orthogonal
only flat solutions exist.

4.2 Conjugate pairs of orthosecting tetrahedra

Establishing algebraic equations for solution tetrahedra is
straightforward. Six orthogonality conditions and six in-
tersection condition result in a system of six linear and
six quadratic equations in the twelve unknown coordinates
of the vertices of B. Because of Theorem 2, only five
of the six linear orthogonality conditions are independent.
Therefore, we can expect a one-dimensional variety of so-
lution tetrahedra. This expectation is generically true, as
can be confirmed by computing the dimension of the ideal
spanned by the orthosecting conditions by means of a com-
puter algebra system.

The numeric solution of the system induced by the ortho-
secting conditions poses no problems. We used the soft-
ware Bertini,2 for that purpose. Symbolic approaches are
feasible as well. One of them will be described in Subsec-
tion 4.3. It is based on a curious conjugacy which can be
defined in the set of all tetrahedra that orthosect the given
tetrahedron A.

Assume that B = B1B2B3B4 is a solution tetrahedron and
denote the orthographic projection of Bi onto the face plane
Aj ∨Ak ∨ Al by B�

i , (i, j,k, l) ∈ I4. By the Right-Angle
theorem the pedal points of all points B�

i on the edges of
AjAkAl are precisely the intersection points defined in (7).
Three intersection points on the same face of A form a
pedal triangle. This observation gives rise to:

2D. J. Bates, J. D. Hauenstein, A. J. Sommese, Ch. W. Wampler: Bertini: Software for Numerical Algebraic Geometry,
http://www.nd.edu/ sommese/bertini/.
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Definition 2 A pedal chain on a tetrahedron is a set of four
pedal triangles, each with respect to one face triangle of
the tetrahedron, such that any two pedal triangles share
the vertex on the common edge of their faces (Figure 2). If
all vertices of pedal triangles lie on a sphere (or a plane),
we speak of a spherical pedal chain.

Figure 2: A pedal chain

If A1A2A3A4 and B1B2B3B4 are orthosecting, the proof of
Theorem 1 shows that six intersection points are the ver-
tices of a spherical pedal chain. The converse is also true:

Theorem 3 Given the vertices Vi j of a spherical pedal
chain on a tetrahedronA=A1A2A3A4 there exists a unique
orthosecting tetrahedron B = B1B2B3B4 such that Ai ∨
Aj ∩Bk ∨Bl =Vi j for all (i, j,k, l) ∈ I4.

Proof. If a solution tetrahedron B exists at all it must be
unique since its faces lie in the planes βi := Vi j ∨Vik ∨Vil
(i, j, k ∈ {1,2,3,4} pairwise different).3

Figure 3: Proof of Theorem 3

In order to prove existence, we have to show that the lines
Ai ∨ Aj and βi ∩ β j are, indeed, orthogonal for all pair-
wise different i, j ∈ {1,2,3,4}. We denote the point from

which the pedal triangle on the face AiA jAk originates (the
“anti-pedal point”) by B�

l and show orthogonality between
A1∨A2 and β1∩β2 for (i, j,k, l) ∈I4. Relabelling accord-
ing to

P00 :=V13, P01 := A1, P02 :=V14,

P10 := B�
4, P11 :=V12, P12 := B�

3,

P20 :=V23, P21 := A2, P22 :=V24

(8)

(Figure 3) we obtain a net of points Pi j. In every elemen-
tary quadrilateral the angle measure at two opposite ver-
tices equals π/2. Thus, the net is circular. Such structures
are extensively studied in the context of discrete differen-
tial geometry [2]. Our case is rather special since two pairs
of quadrilaterals span the same plane. This does, however,
not hinder application of [2, Theorem 4.21] which states
that our assumptions on the co-spherical (or co-planar) po-
sition of the points P00, P02, P11, P20, and P22 is equivalent
to the fact that the net Pi j is a discrete isothermic net. These
nets have many remarkable characterizing properties. One
of them, stated in [2, Theorem 2.27], says that the planes
P00∨P11 ∨P02, P10∨P11 ∨P12, and P20∨P11 ∨P22 have a
line in common. In our original notation this means that
the line β1∩β2 intersects the face normal of A1 ∨A2∨A3
through B�

4 and the face normal of A1∨A2∨A4 through B�
3.

Therefore, it is orthogonal to A1∨A2. �
As a consequence of Theorem 3 it can be shown that tetra-
hedra which orthosect A come in conjugate pairs: Given
A and an orthosecting tetrahedron B it is possible to con-
struct a second orthosecting tetrahedronC. The same con-
struction with C as input yields the tetrahedron B. This
conjugacy is related to the pedal chain originating from B.
The key ingredient is the following result from elementary
triangle geometry [4, pp. 54–56]:

Figure 4: Pedal circles in a triangle

Proposition 2 If P is a point in the plane of the triangle
A1A2A3 and c its pedal circle, the reflection Q of P in the
center M of c has the same pedal circle c (Figure 4).

3The case of collinear or coinciding points Vi j leads to degenerate solution tetrahedra whose faces contain one vertex of A.
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A1

A2

A3

A4

Figure 5: A conjugate pair B, C of orthosecting tetrahedra.

Suppose that A and B are orthosecting tetrahedra. The or-
thographic projections B�

i of the vertices of B onto corre-
sponding face planes of A are points whose pedal triangles
form a spherical pedal chain. By reflecting B�

i in the cen-
ters of the pedal circles on the faces of A we obtain points
C�
i which, according to Proposition 2, give rise to a second
spherical pedal chain (with the same sphere of vertices)
and, by Theorem 3, can be used to construct a second or-
thosecting tetrahedron C (Figure 5).

The points P and Q of Proposition 2 are called isogonal
conjugateswith respect to the triangle A1A2A3. The above
considerations lead immediately to

Theorem 4 Given a tetrahedron A = A1A2A3A4, the or-
thographic projection of all vertices B�

i of orthosect-
ing tetrahedra onto the face plane Aj ∨ Ak ∨ Al of A
(with (i, j,k, l) ∈ I4) is a curve which is isogonally self-
conjugate with respect to the triangle A jAkAl.

4.3 Computational issues

We continue with a few remarks on the actual computation
of the isogonal self-conjugate curves of Theorem 4 with
the help of a computer algebra system. Our first result con-
cerns the construction of pedal chains.

Theorem 5 Consider a tetrahedron A = A1A2A3A4 and
six points Vi j ∈ Ai∨Aj, (i, j,k, l) ∈ I4. If three of the four
triangles Vi jVjkVki, with (i, j,k) ∈ I3, are pedal triangles
with respect to the triangle AiA jAk then this is also true for
the fourth.

Proof. Assume that the trianglesV12V24V14,V23V24V34, and
V13V34V14 are pedal triangles of their respective face trian-
gles. We have to show that V12V23V13 is a pedal triangle
of A1A2A3. As usual, the anti-pedal points are denoted by
B�
1, B

�
2, and B

�
3. Clearly, we have B

�
i ∨B�

j ⊥ Ak ∨A4 for
(i, j,k,4) ∈ I4. Denote by B◦4 a point in the intersection
of the three planes incident with Vi j and perpendicular to
Ai ∨Aj, (i, j,k) ∈ I3. By Proposition 1 the tetrahedra A
and B�

1B
�
2B

�
3B

◦
4 are orthologic. Therefore, the face normals

nl of Ai ∨Aj ∨Ak through B�
l have a point B4 in common

(l �= 4, (i, j,k, l) ∈ I4). By the Right-Angle Theorem, the
intersection point B�

4 of the orthographic projections of n1,
n2, and n3 onto A1∨A2∨A3 has V12V23V13 as its pedal tri-
angle. �
In order to construct a pedal chain on a tetrahedron
A= A1A2A3A4 on can proceed as follows:

1. Prescribe an arbitrary pedal triangle, say V12V23V13.

2. Choose one anti-pedal point, say B�
3, on a neigh-

bouring face. It is restricted to the perpendicular to
A1∨A2 troughV12.

3. The remaining pedal points are determined. Theo-
rem 5 guarantees that the final completion of V34 is
possible without contradiction.

In order to construct a spherical pedal chain, the choice
of B�

4 and B
�
3 needs to be appropriate. A simple computa-

tion shows that there exist two possible choices (in alge-
braic sense) for B�

3 such that the points V12, V13, V23, V14,
and V24 are co-spherical (or co-planar). Demanding that
the remaining vertex V34 lies on the same sphere yields
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an algebraic condition on the coordinates of B�
4 — the al-

gebraic equation of the isogonally self-conjugate curve i4
from Theorem 4. We are currently not able to carry out the
last elimination step in full generality. Examples suggest,
however, that i4 is of degree nine. Once a point on i4 is
determined, the computation of the corresponding ortho-
secting tetrahedron is trivial.

5 Conclusion and future research

We introduced the concept of orthosecting tetrahedra and
presented a few results related to them. In particular we
characterized the six intersection points as vertices of a
spherical pedal chain on either tetrahedron. This charac-
terization allows the construction of conjugate orthosect-
ing tetrahedra to a given tetrahedron A.

In general, there exists a one-parametric family of tetra-
hedra which orthosect A. The orthographic projection of
their vertices on the plane of a face triangle ofA is an isog-
onally self-conjugate algebraic curve. Maybe it is worth to
study other loci related to the one-parametric family of or-
thosecting tetrahedra. Since every sphere that carries ver-
tices of one pedal chain also carries the vertices of a second

pedal chain, the locus of their centers might have a reason-
able low algebraic degree.

Moreover, other curious properties of orthosecting tetra-
hedra seem likely to be discovered. For example, the re-
peated construction of conjugate orthosecting tetrahedra
yields an infinite sequence 〈Bn〉n∈Z of tetrahedra such that
Bn−1 and Bn+1 form a conjugate orthosecting pair with re-
spect to Bn for every n ∈ Z. All intersection points of non-
corresponding edges lie on the same sphere and only two
points serve as orthology centers for any orthosecting pair
Bn, Bn+1. General properties and special cases of this se-
quence might be a worthy field of further study.

Finally, we would like to mention two possible extensions
of this article’s topic. It seems that, with exception of
Steiner’s result on orthologic triangles on the sphere, lit-
tle is known on orthologic triangles and tetrahedra in non-
Euclidean spaces. Moreover, one might consider a relaxed
“orthology property” as suggested by the anonymous re-
viewer: It requires that the four lines a1, a2, a3, a4 defined
in (3) lie in a regulus (and not necessarily in a linear pen-
cil). This concept is only useful if the regulus position of
the lines ai also implies regulus position of the lines b j of
(4). We have some numerical evidence that this is, indeed,
the case.
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Geometric Considerations About Seemingly
Wrong Tilt of Crescent Moon

ABSTRACT

The following phenomenon is well-known and again and
again appears as an unanswered question in literature and
on internet platforms: If you see moon and sun in the sky
at the same time, then the (bisector of the) crescent moon
in most cases does not seem to be precisely directed at the
sun. Particularly at sunset, when you would expect the bi-
sector of the crescent moon to be horizontal, it mostly
points upwards. To “prove” that, photos that seem to
support this view are displayed. In this paper it is shown
by means of geometry what the “wrong moon tilt” is all
about and that an explanation is to be found in the nature
of central or normal projections (photography is basically
a central projection, at an extremely long focal length it is
approximately a normal projection). The paper also deals
with the reason why the seemingly wrong tilt is subjectively
felt. The path of the light from the sun to the moon is in
any case displayed straight (apart from minor deviations
due to refraction close to the horizon), except one takes
photos with a fish-eye lens.

Key words: Moon tilt, Terminator, Normal Projection
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Geometrijska razmatranja o naizgled krivom
nagibu polumjeseca

SAŽETAK

Sljedeći je fenomen dobro poznat i često se u literaturi
i na internetu pojavljuje kao pitanje bez odgovora: Ako
na nebu istovremeno vidite mjesec i sunce, onda sime-
trala polumjeseca u većini slučajeva ne izgleda usmjerena
točno prema suncu. Posebno u doba sunčeva zalaska,
kad očekujete da simetrala polumjeseca bude horizon-
talna, ona je uglavnom usmjerena prema gore. Da bismo
to ”dokazali” prikazujemo fotografije koje podržavaju
takav pogled. U ovom se članku posredstvom geometrije
objašnjava pojava ”krivog nagiba mjeseca”, a rješenje se
nalazi u prirodi centralnog ili ortogonalnog projiciranja
(naime, fotografija je temeljno centralna projekcija, ali kod
izuzetno velike žarǐsne duljine priblǐzno je ortogonalna pro-
jekcija). U članku se takod-er razmatra razlog zašto se
naizgled krivi nagib subjektivno osjeća. Svjetlosna putanja
od sunca do mjeseca u svakom se slučaju prikazuje ravno
(osim kod malih odstupanja koja se javljaju zbog loma
svjetlosti u blizini horizonta), i osim kod fotografija slikanih
sa širokokutnim objektivom.

Ključne riječi: nagib mjeseca, ograničenje, ortogonalna
projekcija

1 Introduction, Motivation

Figure 1: Three different close-ups of the crescent moon.
The outer edge appears circular, the border of the shadow
(the picture of the terminator) elliptical.

The crescent moon is composed (with an approximately
equal share) of the outline of the part illuminated by the

sun and the picture of the bordering line between shadow
and illuminated area (in astronomy also called terminator
[9]) (Fig. 1 left). In this paper we will (for the sake of sim-
plicity) also call the more than half full moon as “crescent
moon”, even though the crescent is only noticeable when
the moon is less than half full (in this case either the illumi-
nated or the dark part form a crescent, see Fig. 1 middle).
Roughly speaking, it is a geometrical figure, whose out-
line (at normal or central projection, when the center of
the moon is aimed at) is approximately made out of a half
circle or half ellipse (mountain ranges on the moon do not
play a vital role with regard to the outline, regarding the
bordering line between shadow and illuminated area they
lead – due to the flatly incoming light – to noticeable devi-
ations). This is why the following applies:
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Figure 2: Tele-photo of a fresco from the 14th century (St. Lawrence’s church, Požega, Croatia). The yellow dashed line
and the arrows were added.

Lemma: When having a normal or central projection with
the center of the moon on the principal projection ray, the
minor axis of the picture ellipse of the terminator of the
moon is the line of symmetry of the moon crescent. As we
intuitively focus on the center of the moon when looking at
it with the naked eye, we always see the crescent symmet-
rical with regard to this axis.

So it makes sense to take the minor axis of the ellipse in
order to be able to fix with it or to measure the tilt of the
crescent moon (Fig. 1 right).

Probably everyone who gazes in admiration at the waxing
moon in the afternoon or at sunset or at the waning moon
at sunrise, at one time asks himself whether this bisector
when extended runs through the sun point.

Let us have a closer look at Fig. 2, where sun and moon
are displayed next to each other. Apart from the fact that
strictly speaking a waning and not a waxing moon should
have been painted, this over 600-year-old painting is out-
standing in various respects: First the outline of moon and
sun are not exactly circular but actually elliptical (in par-
ticular the outline of the moon), secondly the moon cres-
cent is not exactly symmetrical and thirdly the illumination
caused by the sun does not seem to come from one side.
The crescent is – as often described – slightly tilted. Addi-
tionally one could add that the painting is produced on an
approximately spherical ceiling so that the distortion in the
original is even stronger than it seems on the photo. In the
course of this paper we will show that all these phenom-

ena are surprisingly linked to the “wrong tilt” of the moon
crescent1.

2 Photographs on which sun and moon are
shown at the same time

Sun and moon have both a diameter of half a degree on the
firmament.This is an optical angle that can be completely
captured by our eyes – the “external branch” of our brain –
without moving the eye apple. In order to be able to photo-
graph sun and moon in a way that they both fill the picture,
one needs a focal length of about 2000 mm. The angular
distance sun - moon is now always at least several degrees
(otherwise there is new moon or the crescent of the moon
is so thin that it cannot be seen with the naked eye). At half
moon the deviation is 90°, which already requires a distinct
wide-angle lens (20 mm focal length). Until the full moon
is reached the angle increases up to 180°, so that both sun
and moon can only be photographed at the same time with
special fish eye lenses that are definitely not linear.

The in geometry common perspective projection is a cen-
tral projection of the space onto a plane. The same process
is relevant for photography, where the projection center is
the center of the lens system and the projection plane is
the light sensitive sensor plane. The central projection is
linear, which means straight lines – for example light rays
– are portrayed straight. This also applies to wide-angle
photography in good approximation (The quality of wide-
angle lenses is often determined by this criterion).

1Let us mention in passing: The face of the moon seems to be rather female, the face of the sun rather male. That is for someone who is a native
speaker of English or Romance language obvious. In Germanic languages, however, the moon is male and the sun female.
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Figure 3: “Photograph” showing sun and moon, simulated
by means of the computer, so that the moon diameter could
be enlarged. Two ellipses form the boundary of the moon
crescent. The minor axis of the picture ellipse of the ter-
minator (black with arrow) is directed above the sun point.
The blue frame symbolizes the sensor plane.

Figure 4: Another “photo” of the same situation, this time
with a different camera tilt. The minor axis of the picture
of the terminator is now directed below the sun point.

The outline of a sphere that fully lies in front of the ob-
server is – under the condition of such a projection – gen-
erally an ellipse whose main axis runs through the main
point H (the intersection of the optical axis with the sen-
sor plane, hence planimetrically speaking the intersection
of the diagonals of the chips) (Fig. 3 and 4, [8],[1]).

A general circle in front of the observer (in our case the ter-
minator) is displayed as an ellipse whose axes in general do
not go through the main point. There is just the following
exception: If the axis of the circle (the perpendicular of the
circular plane in the circle’s center point) hits the principal
ray (the optical axis), the minor axis of the picture ellipse
runs through H ([3]) for reasons of symmetry. As the axis
of the terminator is the direction of the light rays, the fol-
lowing applies

Figure 5: If you want to enlarge details taken from a wide-
angle photo even more, it becomes even more obvious: The
two ellipses (the outline of the sphere and the picture of the
terminator) generally have no common axis of symmetry.
If the picture of the connecting straight line to the sun runs
through the main point H of the picture, the crescent is
however symmetrical and is directed at the sun indeed.

Theorem 1: In a photograph where not the center of the
moon is focused at, the moon crescent has an elliptical
boundary on both sides and is in general not symmetrical.
Only if the light ray goes through the center point of the
moon in the picture through the main point H (the center
point of the sensor), both ellipses have a common line of
symmetry (the minor axis of the terminator and the main
axis of the outline ellipse). The direction of the minor axis
of the picture of the terminator therefore is not directed at
the sun point in general. If H lies below the connecting
line of moon point and sun point, the minor axis is directed
above the sun point; is H above, the minor axis is directed
below the sun point.

As clear as this theorem seems to be in geometry: On the
wide-angle photo of the moon it can hardly be noticed that
we are dealing with a double elliptical crescent, because
the crescent appears naturally so small that this circum-
stance does not become obvious in the photo.

If one photographs sun and moon simultaneously with a
wide angle lens, one should consider that the connect-
ing straight line between sun point and moon point runs
through the center of the picture, for example by position-
ing the moon point in one corner and the sun point in the
opposite corner (Fig. 6).

If one photographs under the condition of a bigger distance
between sun and moon point with a fish eye lens (Fig. 7),
we get a distortion of straight lines: fish eye lenses are not
linear and in general increase the above mentioned devi-
ations upwards or downwards. Yet, due to rotation sym-
metry of the lenses around the optical axis, straight lines,
which meet the optical axis, are portrayed as straight radial
rays. Circles are portrayed oval but not elliptical. There-
fore the following applies:
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Figure 6: Photo with 20 mm focal length (optical an-
gle about 90°). Despite extremely high resolution (22
megapixel) the moon (top, right) also appears blurred in
the magnification (framed white) due to the small size in
the picture, but obviously elliptically distorted.

Theorem 2: If taking photos with a fish eye lens and if
it is not explicitly the moon center focused at, the moon
crescent appears as being framed by not elliptical ovals on
both sides. The crescent is only then symmetrical and aims
at the sun point if the connecting line between sun point
and moon point is a radial ray through the middle of the
picture.

In Fig. 7 sun and moon were photographed in a way that
sun point and moon point are approximately on a picture
diagonal. The (natural not visible) sun ray through the
moon center is colored red and is also displayed straight
in the fish eye picture. The crescent that is limited by two
ovals has the red line as a line of symmetry. (Note: In the
picture also the vapor trail of a plane is visible. This va-
por plane is displayed – in contrast to the horizon – almost
straight, because it is approximately radial.)

Figure 7: Similar situation, but a few days later when the
angle distance between sun and moon point has extremely
increased. That is why a fish eye lens (15mm) had to be
used.

3 Close-up of the moon and the seemingly
wrong tilt of the crescent

We now deal with close-ups of the moon, which can only
be produced by means of an efficient telephoto lens. Here
the moon center is automatically moved into the center of
the picture. The respective representation is an extreme
magnification of the center of an ordinary perspective and
in good approximation a normal projection. The outline
of the moon sphere is circular, the terminator elliptical.
The center of this ellipse is the projection of the moon
center. The vertices of the image ellipse lie diametral on
the sphere’s outline: The connecting line of these points in
space has “principal position”, hence is parallel to the sen-
sor plane. The minor axis is orthogonal to the connection
of the two vertices (Fig.1 right) and according to the theo-
rem of the right angle normal projection of the circle axis
([7], [2], [17]). Hence, the following applies:
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Theorem 3: When dealing with close-ups of the moon, we
almost have a normal projection. The minor axis of the
picture ellipse of the terminator is the normal projection
of the light ray through the moon center. The points of in-
tersection of the circum-circle and the terminator (the end
points of the crescent) are the vertices in the picture.

Figure 8: Normal projection of the moon onto the sensor
plane π. The sun rays direction s turns into direction sn,
the outline c of the moon turns into the circle cn, the termi-
nator t into the crescent edge tn. sn is the minor axis of the
ellipse tn.

Figure 9: The same crescent tilt ϕ as in Fig. 8, yet at
3/4-moon or half moon (sun rays parallel to the picture
plane π).

If you photograph the moon in a way that the lower part or
frame of the camera (and hence the border of the rectangu-
lar sensor) is horizontal, then one can measure the rotation
angle of the picture ellipse well. According to Theorem 3
this angle can practically have any size between -90° and
+90° and can only be determined when the length of the
minor axis (half minor axis b), hence indirectly the “thick-
ness” of the crescent, is taken into consideration as well:

Theorem 4: Only the simultaneous interpretation of di-
rection and length of the minor axis of the picture ellipse
of the terminator makes it possible to reconstruct the light
rays in space.

For better understanding, some special cases are to bemen-
tioned (here b again defines the length of the half minor
axis and r defines the moon radius):

• Having a half moon (b = 0) the sun rays are neces-
sarily parallel to the sensor plane (Fig. 9 right). At
sunrise or sunset the line of symmetry of the cres-
cent is therefore horizontal, no matter how high the
moon is in the sky.

• At new or full moon (b = r) the sun rays have the
direction of the optical axis (= direction of the pro-
jection). The tilt of the circle that has mutated into
an ellipse is undefined.

• If one defines the quarter and three quarter moon a
week after full moon or newmoon, then b= r/

√
2≈

0,7r. One comes from the picture to the direction to
the sun by imagining the minor axis as normal pro-
jection of an axis tilted by 45° (Fig. 8 or Fig. 9 left).

Now we want to derive a formula for the tilt of the minor
axis or “bulbousness” of the ellipse (a comparable formula
can also be found in [5]). Imagine the lens center is the ori-
gin of a Cartesian coordinate system. For matters of sim-
plicity we define the optical axis as x-axis, the horizontal
direction of the sensor plane as y-direction and the line of
steepest slope of the sensor plane as z-direction. The direc-
tion to the moon is also given through �m= (1,0,0), the one
to the sun is defined by the direction vector�s = (sx,sy,sz).
Its normal projection onto the sensor plane has the compo-
nents�sn = (0,sy,sz). We measure the angle ϕ to the y-axis
by scaling / normalizing�sn andmultiplying by�y=(0,1,0):

cosϕ =�sn ·�y= sy/
√
s2y + s2z (1)

Moon and sun coordinates (in horizontal polar coordinates
given through their azimuth angles α, α∗ or their differ-
ence δ = α∗ −α and elevation angle ε and ε∗) may be at
disposal (for example by means of relevant software). Let
us look at the Cartesian coordinates in a coordinate sys-
tem which has the same y-axis, whose z-axis is however
vertical: There the direction vector to the sun has the com-
ponents

�s∗ = (s∗x ,s
∗
y ,s

∗
z ) = (cosε∗ · cosδ, cosε∗ · sinδ,sinε∗) (2)

Relative to the coordinate system that is twisted around the
elevation angle ε the following applies:

�s= (s∗x cosε+ s∗z sinε,s
∗
y , −s∗x sinε+ s∗z cosε) (3)
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If we again insert (2) in (3), ϕ can be calculated directly by
inserting

sy = cosε∗ sinδ, sz = −cosε∗ cosδsinε+ sinε∗ cosε (4)

in (1). The tilt ψ of the sun rays to the picture plane is
equivalent to the complementary angle to the negativ x-
axis −�m, determined through

cosψ = −�s ·�m= −sx/
√
s2y + s2z (5)

with sx = cosε∗ cosδcosε+ sinε∗ sinε.

This cosine value is also a measure for the thickness of the
picture of the terminator.

4 Human perception of the direction of light
rays from sun to moon

In order to be able to perceive sun and moon at the same
time, human beings have to move their head (or at least
roll the eyes balls when keeping the head stiff). After it was
proved through various experiments that human beings can
only perceive quite small optical angles in one complete
picture (and then almost perceives a normal projection),
the brain has to do the job of gathering all the individual
impressions gained by moving the eye balls. Here only
a limited “impression similar to a photo” can be created:
One cannot fix together individual photos showing single
parts of an object without manipulation2. Most likely a
spherical picture develops which must be interpreted by
the brain by comparing optical angles. Looking at straight
lines (without any other straight line as a reference) is in
particular at optical angles of over 90° a rather deceitful
venture. One cannot even compare the simultaneous ob-
servation of sun and moon with observing a vapor trail of
an airplane about which one knows that it runs parallel to
the base plane (which is rarely the case considering the
sun-moon condition, most likely at moonrise and simul-
taneous sunset but then one cannot notice any tilt of the
moon crescent).

If one wants to assess the tilt of the crescent, one auto-
matically and necessarily refers to the picture of the moon,
which one gets through direct sighting, and this is – ac-
cording to the considerations made in Section 3 – tilted
like the normal projection of the sun rays.

In the following we want to deal with frequent claims and
questions arising in connection with the moon tilt:

1. A simple but didactically helpful animation about
the “development” of the moon crescent can be
found on [13]. Pictures and animations that are
much more demanding and only comprehensible
with some previous knowledge can be found on [14].

2. The so-called AUBERT’s phenomenon claims that
one must turn and instinctively swing the head when
trying to perceive larger angle areas. This is some-
times used as the only explanation for the phe-
nomenon of the “wrong tilt” of the moon crescent
([11]). According to what we have heard so far, this
is however not true.

3. In [4] it is assumed that the direction of the normal
projection of the sun rays is equivalent to the tangent
on the great circle in the sky that connects moon M
and sun S and that has the observer Z as the center.
This is – planimetrically speaking – correct, because
the mentioned great circle obviously lies in the opti-
cal plane MSZ and appears projective, hence in the
picture it cannot be differentiated from the sun ray
SM at that moment. Having a normal projection on
the picture plane, the optical plane is projective and
the great circle always appears as a straight line. One
could therefore apply the following trick in order to
estimate the tilt of the projection of the terminator:
One points with the stretched arm at the moon cres-
cent and turns the arm to the sun in the optical plane.
The direction in which the index finger starts indi-
cates the tilt. This trick makes us suppose that the
light ray in the sky is crooked, which is, however,
not true. As mentioned it can only be compared to
the situation in the beginning.

Unfortunately many participants in internet discus-
sions are often “tempted to rely on the crooked line”.
Didactically speaking, it therefore does not seem
useful to introduce the great circle at the beginning
of the explanation of this phenomenon: The tilt is
only to be determined by the effect of the central
and normal projections and by considering various
preconditions. Consequently the explanation of the
moon tilt given in [16] is not correct as far as it relies
on the crooked line, whereas the explanation in [6] is
wrong due to the fact that the effect of the perspec-
tive is not taken into consideration.

2For example for a “panorama photo” stripes that actually come from the picture centers of various photos are usually fixed together. The margins of
these stripes must be contracted in order to compensate for the perspectively caused enlargement. After having fixed the stripes together, the picture that
is framed by various crooked lines is cut into a rectangle ([2]).

24



KoG•13 (2009), 19–26. G. Glaeser, K. Schott: Geometric Considerations About Seemingly Wrong Tilt of Crescent Moon

Figure 10: “True” and “expected” tilt of the moon
crescent.

4. On internet pages people differentiate between
“true” and “expected” moon tilt, which is explained
by a figure comparable to Fig. 3. There the expected
tilt is seen as a projection of the connection moon
- sun on a vertical plane which owns – as a nor-
mal – the angle bisector of the outlines of moon
and sun ([5], [16]). If one agrees on certain require-
ments (e.g. that the connecting line of sun and moon
runs through the center of the picture and both points
have the same distance from the margin of the pic-
ture; additionally that the picture plane is tilted if the
moon is not quite low), this “expected” tilt can be
defined mathematically and can be compared with
the tilt at normal projection (there called “true tilt”)
(Fig. 10). The difference of the angles can then be
named “supposed mistake”.

5. It would be tempting to assume that the line of sym-
metry of the moon crescent indicates the motion di-
rection of the crescent. This is however at least not
the case if the path of the moon is steeper or less
steep than the one of the sun.

Is, for example, as in Fig. 11 (moonset in Vienna on
the 25th of October 2009, at about 10pm) the moon
path flatter by about 10° than the sun path, then due
to the different heights of the paths e.g. at half moon
a clear deviation downwards is noticable3.

In order to test our Formula (4) and the respective
formula in [5] (there “Formel 2”) 4, we insert the
values δ= 83,1◦, ε= 2,6◦ and ε∗ =−47,5◦ and get
according to both formulas ϕ≈−48◦. This value is
determined graphically correct to one degree for the
middle position of the moon in Fig. 11.

Figure 11: Set of the waxing half moon. On that day
the path of the moon was flatter than the path of the
sun. That is why the crescent is directed more down-
ward.

The fact that the moon does not always culminate
at the same elevation angle as the sun can be easily
realized with the educational (and simplified) simu-
lation [10]. Here we do not deal with small devia-
tions (as the one of the path planes of the earth or
the moon, which is at the most ±5◦), but with enor-
mous differences: The full moon moves in the win-
ter so high as the sun in the summer and the other
way round (difference in the elevation angle approx-
imately 47°). At equinox we have a deviation of
about ±23,5◦ at half moon, whereas new and full
moon culminate approximately as high as the sun.

5 Summary

When having a close-up or when a human being is the ob-
server, the moon crescent appears as a symmetrical object
which is restricted by a half circle and a half ellipse with
the moon center point as center. The minor axis of the half
ellipse shows into the direction of the normal projection of
the sun rays on the projection plane – and therefore gen-
erally not “to the sun”. Only when also considering the
length of the minor axis, the position of the sun can be de-
termined. If you photograph sun and moon at the same
time with a wide-angle lens, then the moon crescent is in
general restricted by two ellipses that have no shared line

3In Fig. 11 two peculiarities are worth mentioning: First, the moon – such as the sun – is colored red briefly before reaching the horizon and secondly,
the usually circle shaped outline appears flatter. Both are consequences of the refraction of the flatly incoming light into the gradually becoming more
dense atmosphere of the earth.

4To determine the equatorial coordinates [15] was used, which – by means of [12] – were changed into horizontal coordinates.
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of symmetry. That is why we cannot speak of a direction
of the moon crescent in case of a wide-angle photograph.

If sun point andmoon point are on one straight line through
the center of the photo, the moon crescent is symmetrical
and the line of symmetry is directed at the sun point. Some-
thing similar applies to photographs with fisheye lenses.
Theories which want to explain the phenomenon of the
“wrong moon tilt” with crooked light rays are incorrect.
Exclusively geometrical characteristics of different kinds
of projections are involved.
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ABSTRACT

This paper is an overview of the pedal surfaces P n+2
n for

first order line congruences. We describe their construc-
tion, prove their algebraic properties, derive parametric
and implicit equations and visualize these new resulting
surfaces with the program Mathematica in seven examples.
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Nožǐsne plohe kongruencija prvog reda

SAŽETAK

U radu je dan pregled nožǐsnih ploha P n+2
n za kongruen-

cije prvog reda. Opisana je njihova konstrukcija, dokazana
su njihova algebarska svojstva, izvedene su parametarske
i implicitne jednadžbe za opći slučaj, a za sedam primje-
ra, pomoću programa Mathematica, vizualizirani su njihovi
oblici.

Ključne riječi: kongruencija, nožǐsna ploha kongruencije,
kuspidalna točka, singularna točka

1 Introduction

Congruence C is a set of lines in a three-dimensional space
(projective, affine or Euclidean) depending on two param-
eters [3]. The line l ∈ C is said to be a ray of the congru-
ence. The order of an algebraic congruence is the number
of its rays passing through an arbitrary point; the class of
a congruence is the number of its rays lying in an arbitrary
plane. Cm

n denotes an mth order nth class congruence. A
point is a singular point of a congruence if ∞1 rays pass
through it. A plane is a singular plane of a congruence if
it contains ∞1 rays.
In Euclidean space E

3, the pedal surface of a congruence
Cm
n with respect to a pole P is the locus of the foot points
of perpendiculars from the point P to the rays of the con-
gruence Cm

n . The order of the pedal surface of Cm
n for the

pole P is 2m+n [11].

2 First order line congruences

According to [16, p. 64], [22, pp. 1184-1185], [19, p. 32],
there are only two types of first order line congruences di-
rected by loci of points. Their rays intersect two curves or
the same curve twice.
The first type is the type of nth class congruences C 1n , their
rays are transversals of one straight line d and one nth or-
der curve cn which cuts this straight line at n− 1 points.
These curves are called the directing lines of C 1n . The in-

tersection points of d and cn can be multiple points of cn

with the highest multiplicity n− 2 for a space curve and
n− 1 for a plane curve. Some of these points can coin-
cide, and there are cases when d is the tangent line of cn,
the tangent at inflection, etc. If cn is a plane curve, it must
contain an (n−1)-ple point which is the intersection point
of d and the plane of cn. All singular points of C 1n lie on its
directing lines cn and d, and all singular planes of C 1n are
the planes of the pencil [d] (see Fig. 1).

a b c

Figure 1: The directing lines of C 1n are shown in figure a.
For a point C ∈ cn, the rays of C 1n form a pencil of lines in
the plane through d (figure b) and for N ∈ d they form an
nth degree cone with the vertex N (figure c).
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The second type of first order line congruences consists
only of 3rd class congruences and their rays are bisectors
of a twisted cubic k3. Unlike the first type congruence C 13 ,
this type will be denoted by K 1

3 .

The properties of the first order congruences (the construc-
tion of their rays, singular points and planes, focal proper-
ties, etc.) can be found in [2].

3 Pedal surfaces of C 1n

In [1] the authors define one transformation of three-
dimensional projective space where corresponding points
lie on the rays of the 1st order, nth class congruence C 1n
and are conjugate with respect to a proper quadricΨ. This
transformation, called (n+ 2)-degree inversion, maps a
straight line to an (n+2)-order space curve, and a plane to
an (n+ 2)-order surface which contains an n-ple straight
line.

Proposition 1 The pedal surface of the first type congru-
ence C 1n with respect to a pole P is an (n+2)-order surface
with n-ple straight line d containing the curve cn and the
absolute conic of E

3.

PROOF: Orthogonality in Euclidean space E
3 means con-

jugacy with respect to the absolute conic. The plane
through a point A is orthogonal to a line l iff it is the polar
plane of the point at infinity on the line l with respect to
any sphere with the center A. Thus, the pedal surface of a
congruence C 1n with respect to a pole P is the image of the
plane at infinity given by the (n+2)-degree inversion with
respect to C 1n and any sphere with the center P. According
to [1], it is an (n+ 2)-order surface with an n-ple straight
line d containing the curve cn and the absolute conic of E3.
�
In the following, P n+2

n denotes the pedal surface of C 1n .

Proposition 2 If the directing line d lies in the plane at in-
finity, the pedal surface P n+2

n splits into an (n+ 1)-order
surface with the (n−1)-ple line d and the plane at infinity.

PROOF: This proposition follows from the property of the
(n+ 2)-degree inversion which is given in theorem 4 [1]
(see examples 4.5.). �

Proposition 3 If the directing curve cn lies in the plane
at infinity, the pedal surface P n+2

n splits into an (n+ 1)-
degree ruled surface with the n-ple line d and the plane at
infinity.

PROOF: This proposition follows from the property of the
(n+ 2)-degree inversion which is given in theorem 3 [1]
(see examples 4.6.). �

3.1 Construction of the pedal surface P n+2
n

It is clear that any plane through the n-ple line of an (n+2)-
order surface intersects this surface at its n-ple line and one
conic. If the surface contains the absolute conic, this inter-
section conic is a circle.

In any plane δ through the directing straight line d, the rays
of C 1n form the pencil of lines (C), where the pointC /∈ d is
the intersection of the plane δ and the directing curve cn. If
a pole P is in the general position with respect to the direct-
ing lines of the congruence C 1n , the feet of perpendiculars
from P to the rays of the pencil (C) form a circle c with
the diameter CP′, where P′ is the orthogonal projection of
P onto δ. For a given pole P, the path of the point P′ is
the circle k lying in the plane through P perpendicular to
d. The diameter of k is PPd , where Pd is the orthogonal
projection of P onto d.

Thus, we can regard the pedal surface P n+2
n as the system

of circles in the planes through the n-ple line d with the
end points of diameters on the curve cn and the circle k
(see Fig. 2). The diameters of the circles c lie on the rul-
ings of one (n+2)-degree ruled surface with the directing
lines cn, d and k [14, p. 186], [16, p. 90].

Figure 2: One system of the curves on P n+2
n can be con-

structed as circles in the planes through d with the end
points of the diameters on cn and k.

3.2 Singularities of P n+2
n

The highest singularity which a properP n+2
n can possess is

an (n+1)-ple point. If such a point exists, it must lie on its
n-ple line. Namely, if P n+2

n had an (n+1)-ple point A out
of d, every line through A which cuts d would cut P n+2

n at
2n+ 1 points. This is possible only in the case if this line
lies entirely on P n+2

n , but then the surface must break up
into the plane through A and d and one ruled surface of the
degree n+1.
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Proposition 4 An (n+ 1)-ple point exists on P n+2
n iff a

pole P lies on d. The highest number of such points on
P n+2
n is two only if cn lies in the plane perpendicular to d.

PROOF: If a pole P lies on d, then every circle c passing
through P, and it is the (n+ 1)-ple point of P n+2

n because
every straight line through P (except d) intersects P n+2

n at
P and only one additional point on c. Inversely, if Nn+1 ∈ d
is an (n+1)-ple point, every circle c must pass through it.
Namely, if some circle c did not pass through Nn+1, every
line in the plane of c passing throughNn+1 would cut P n+2

n
at n+ 3 points, which is impossible. It is possible only if
Nn+1 = P, because the circle k must break up into a pair of
isotropic lines with the double point P. If there exists one
more (n+1)-ple pointO on d, it must lie on cn because all
circles c pass through P and O. It is possible only if cn is a
planar curve with an (n− 1)-ple point O. It is elementary
that in such a case cn lies in the plane perpendicular to d
(Thales’ theorem). �

Any other point N ∈ d is an n-planar point – the tangent
cone at N splits into n planes through d. Namely, n cir-
cles c pass through N ∈ d and the planes of these circles
form the splitting tangent cone ST n

N of P n+2
n at N. If some

of these tangent planes coincide, the touching point is the
pinch-point of P n+2

n . The tangent planes at an n-planar
point can be real or imaginary. Depending on the number
of real and imaginary tangent planes, as well as the num-
ber of coinciding planes, we distinguish different types of
n-planar points. To calculate the number of these types we
use the partition function1 p :N∪{0}→ N [21].

Proposition 5 The number of types of the splitting tangent
cones ST n at n-planar points is

s=� n2 �
∑
s=0

p(s) · p(n−2s).

PROOF: Any cone ST n consists of s (0 ≤ s ≤ � n2�) pairs
of imaginary planes and n− 2s real planes. The number
of different multiplicities of these planes equals the sum of
the corresponding partitions. �

Proposition 6 The number of types of pinch-points on
P n+2
n is

−1−�n
2
�+

s=� n2 �
∑
s=0

p(s) · p(n−2s).

PROOF: The number of possibilities that no planes of ST n

coincide is 1+ � n2�. In all other cases, at least two tangent
planes coincide and the touching point is the pinch-point
of P n+2

n . �

Proposition 7 On the pedal surface P n+2
n exist 4(n−1)

pinch-points.

PROOF: Every plane δ of the pencil [d] cuts P n+2
n at the

n-ple line d and one circle c. The intersection points N1,
N2 of d and c are the touching points of δ and P n+2

n . But,
through each of the points N1 and N2 other n− 1 tangent
planes pass. The correspondence between the planes of
the pencil [d], where corresponding planes have the same
touching point, is an involution of the order 2(n−1). This
involution has 4(n−1) double elements [13, p. 48] which
are the coinciding tangent planes through the points on the
n-ple line, and their touching points are the pinch-points of
P n+2
n [18, p. 317]. These points can be real or imaginary.

�

Except for the points on the n-ple line d, the highest singu-
larity which P n+2

n can possess is a double point.

Proposition 8 The maximal number of real double points
on P n+2

n is:

n, if cn is a space curve,

n+1, if cn is a planar curve.

PROOF: If D is the double point of P n+2
n , it is a double

point for every section of P n+2
n throughD. Thus, the circle

c in the plane through D and the line d splits into a pair of
isotropic lines through D. This is the case when the end
points of the diameter CP′ coincide, i.e. circle k intersects
the curve cn at the pointD. Therefore, if cn is a space curve,
P n+2
n can possess at most n double points in the plane of
the circle k. But if cn is a plane curve in the plane of k, then
cn and k can possess n+1 intersection points which do not
lie on d. �

3.3 Parametric equations of P n+2
n

Let the directing lines of C 1n be the axis z and the curve cn
given by the following parametrization:

rcn(ϕ) = (xcn(ϕ),ycn(ϕ),zcn(ϕ)), xcn ,ycn ,zcn : [0,π) → R.

(1)

Let (px, py, pz) be the coordinates of the pole P.
1A partition of a positive integer n is a way of writing n as a sum of positive integers. The number of partitions of n is given by the partition function

p(n) where p(0) = 1 by convention. The partition function is implemented in Mathematica as PartitionP[n] or NumberOfPartitions[n] in the
Mathematica package Combinatorica’.
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Let (r,z), where |r| =
√
x2+ y2, be the coordinates in the

plane δ(ϕ) given by the equation y = x tanϕ if ϕ ∈ [0,π),
ϕ 	= π/2, and x= 0 if ϕ = π/2 (see Fig. 2).

The coordinates of the pointsC,P′ ∈ δ(ϕ) are

rC(ϕ) =
√
xcn(ϕ)2+ ycn(ϕ)2, zC(ϕ) = zcn(ϕ)

rP′(ϕ) = px cosϕ+ py sinϕ, zP′(ϕ) = pz. (2)

R(ϕ) is the radius and S(rS(ϕ),zS(ϕ)) is the center of the
circle c in the plane δ(ϕ):

R(ϕ) =

√
(rC(ϕ)− rP′(ϕ))2+(zC(ϕ)− pz)2

2

rS(ϕ) =
rC(ϕ)+ rP′(ϕ)

2

zS(ϕ) =
zC(ϕ)+ pz

2
(3)

Since the parametric equations of the circle c in the plane
δ(ϕ) are

r(θ) = R(ϕ)sinθ+ rS(ϕ)
z(θ) = R(ϕ)cosθ+ zS(ϕ), θ ∈ [0,2π), (4)

the parametric equations of the surface P n+2
n are the fol-

lowing:

x(θ,ϕ) = cosϕ(R(ϕ)sinθ+ rS(ϕ))
y(θ,ϕ) = sinϕ(R(ϕ)sinθ+ rS(ϕ))
z(θ,ϕ) = R(ϕ)cosθ+ zS(ϕ), (5)

ϕ ∈ [0,π), θ ∈ [0,2π).

3.4 Implicit equation of P n+2
n

According to [1], the plane at infinity cuts P n+2
n at the ab-

solute conic and n rays of C 1n . These rays pass through the
point at infinity of the directing line d and can be real or
imaginary. Therefore, the polynomial of the highest degree
in the implicit equation of P n+2

n can be written in the form
(x2+ y2+ z2)Hn(x,y), where Hn(x,y) is the homogeneous
polynomial of degree n.

Theorem 1 If an nth order surface in E
3 which passes

through the origin is given by the equation

F(x,z,y) = fm(x,y,z)+ fm+1(x,y,z)+ · · ·+ fn(x,y,z) = 0,

where fk(x,y,z) (1≤ k ≤ n) are homogeneous polynomials
of degree k, then the tangent cone at the origin is given by
the equation fm(x,y,z) = 0.

The proof of this theorem is given in [9, p. 251].

Thus, since the axis z is the n-ple line of P n+2
n , the implicit

equation of P n+2
n takes the following form:

(x2+ y2+ z2)Hn
1 (x,y)+Hn+1(x,y,z)+Hn

2 (x,y) = 0, (6)

where Hi
j are homogeneous polynomials of degree i.

From eq. (4), by using the standard coordinate transfor-
mation formulas for Cartesian and cylindrical coordinates,
it is possible to determine the polynomials Hi

j for every

P n+2
n .

4 Examples of P n+2
n

4.1 P 31 – pedal surfaces of linear congruences

The pedal surfaces of linear congruences C 11 are cubics
which contain the absolute conic. It was shown in [11]
that in the general case if C 11 is a hyperbolic linear con-
gruence, seven real straight lines exist on the pedal surface
P 31 ; if C 11 is elliptic, three real straight lines exist on P 31 ;
if C 11 is parabolic, then P 31 contains one double point and
five real straight lines and two of them are counted twice.
Figure 3 shows three types of parabolic cyclides obtained
as the pedal surfaces of the hyperbolic linear congruence.

4.2 P 42 – pedal surfaces of 1st order 2nd class congru-
ences

A complete classification of the pedal surfaces of C 12 is
given in [6]. If there are no directing lines of C 12 in the
plane at infinity, the pedal surface P 42 is a quartic with a
double straight line. These surfaces are classified in five
types depending on the number of real straight lines on
them. According to propositions 4 and 8, there are at most
two triple points (see Fig. 4) and at most three real double
points (see Fig. 5c) on the pedal surfaces P 42 .

The points on the double line d are bi-planar points – tan-
gent cones split into two planes through d. These points
can be isolated (two tangent planes are imaginary), binodal
(the tangent planes are real and different) or pinch-points
(coinciding tangent planes). The pinch-points of P 42 sepa-
rate the intervals with isolated and binodal points on d and
there are at most four real pinch-pints on d (see Fig. 5a).

If one directing line d or c2 lies in the plane at infinity, the
pedal surface P 42 splits into the plane at infinity and into a
cubic surface.
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a b c

Figure 3: The directing orthogonal lines of C 11 are the axis z, placed in the horizontal plane, and the line parallel to the
axis y in the plane x = 1. For three different positions of the pole P on the axis x (xP = 1

2 , 1, 2), the pedal surface is the
ring, spindle and horn parabolic cyclide [4, pp. 371-373] in the case a, b and c, respectively.

a b c

Figure 4: P 42 with triple points and 3rd order tangent cones. The directing elements are: figure a – c
2(x2+4y2−2x+4y= 0,

z= 0), P(0,0,2); figure b – c2(x2−y2−2x= 0, z= 0), P(0,0,2); figure c – c2(x2+y2+2x+4y= 0, x−y+z= 0), P(0,0,8).
Except the triple points, all points on the double line are isolated in the case a, and binodal in the case b. In the case c, two
pinch-points separate the segments with isolated and binodal points on the double line.

a b c

Figure 5: P 42 with four real pinch-points is shown in figure a. The directing elements are c2 (x2 + 0.5y2 + x+ y = 0,
x+ y+ z = 0) and P(1,1,5). The pedal surface in figure b has no real pinch-points and its directing elements are c2

(yz = 1, x = 1) and P(2.5,2.− 0.3). The directing elements for P 42 in figure c are c
2 (x2 + 6y2− x− 4y = 0, z = 0) and

P(1,1,0). Three conical points of this surface are the intersection points (different from the origin) of c2 and the circle k.
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4.3 Special P 64 directed by Viviani’s curve

Special sextics with a quadruple line P 64 are elaborated in
detail in [5]. They are obtained as the pedal surfaces of
one special first order fourth class congruence C 14 directed
by the axis z and Viviani’s curve – the intersection of the
sphere (x+

√
2)2 + y2 + (z+

√
2)2 = 4 and the cylinder

(x+ z+
√
2)2 + 2y2 = 2 (see Fig. 6). Viviani’s curve is

given by the following parametrization:

r(ϕ) = 4
√
2
1+3cos2ϕ
(3+cos2ϕ)2

(
−2(cosϕ)2,−sin2ϕ,(sinϕ)2

)
,

ϕ ∈ [0,π). (7)

Figure 6: The origin is the double point of Viviani’s curve
c4 (the intersection of a sphere and cylinder) and the axis
z cuts c4 at one more regular point z0 = −2√2.

The highest singularity which P 64 can possess is a quintuple
point. According to the type of its 5th degree tangent cone,

we distinguish six types of quintuple points on P 64 [5].
Three of them are shown in Figure 7. The points on the axis
z are quadri-planar points of P 64 , their tangent cones split
into four planes through z. These tangent planes can be real
and different, real and coinciding or imaginary. According
to proposition 5, we distinguish nine types of quadri-planar
points: type 1 – four real and different tangent planes;
type 2 – two real and different planes and a pair of imag-
inary planes; type 3 – two different pairs of imaginary
planes; type 4 – one double plane and two different single
real planes; type 5 – one double plane and a pair of imagi-
nary planes; type 6 – a pair of double real planes; type 7 – a
double pair of imaginary planes; type 8 – one triple plane
and one single plane; type 9 – one quadruple plane. On
the axis z the intervals with quadri-planar points of types
1–3 are bounded by the points of the types 4–9 which are
the pinch-points of P 64 . Since four rays of C 14 in the plane
at infinity are given by the equation (2x2 + y2)2 = 0, the
point at infinity on the axis z is the pinch-point of type 7.
The type of a quadri-planar point depends on the factoriza-
tion of the homogeneous 4th degree polynomial in x and y
which represents its cone. Based on the conditions given in
[20], we made a program in Mathematica 6 (available on-
line: www.grad.hr/sgorjanc/pinch points.nb) which calcu-
lates the coordinates z0 of the pinch-points of P 64 for every
choice of pole P. According to proposition 7, the highest
number of real pinch-points of P 64 is twelve. Three exam-
ples are shown in Fig. 8.
The following is shown in [5]: iff a pole P lies on the part
of one parabola, P 64 has two real conical points; iff P lies
on one 5th degree ruled surface, P 64 has at least one real
conical point.

a b c

Figure 7: If P = O, the tangent cone at P splits into two planes and one 3rd degree cone (a). If P = (0,0,−2√2), the
tangent cone at P splits into a 4th degree cone and one plane (b). For all other positions of a pole P ∈ z, the tangent cones
at P are proper 5th degree cones with a quadruple line z. Such a cone with an isolated quadruple line is shown in figure c.
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a b c

Figure 8: The surfaces P 64 with 12, 10 and 8 real pinch-points are shown in figures a, b and c, respectively. The pinch-
points counted twice (types 6 and 7) are indicated by red color. Other pinch-points (types 4 and 5) are black. Besides
the highlighted pinch-points, every surface P 64 has a pinch-point of type 7 at infinity. The segments on the axis z contain
quadruple points of type 1 (black), type 2 (red) and type 3 (dashed red).

4.4 Special P 2k+22k directed by roses

Roses or rhodonea are curves which can be expressed by
the following polar equations:

r(ϕ) = cos nϕ or r(ϕ) = sin nϕ, n ∈ R. (8)

If n = 2k− 1, k ∈ N, the curves close at a polar angle π
and have n petals. They are algebraic curves of the or-
der n+ 1, with only one singular point – an n-ple point in
the origin [12, pp. 358-369]. According to the multiple-

angle formula cos nϕ = ∑
� n2 �
i=0(−1)i

(n
2i

)
(cosϕ)n−2i(sinϕ)2i

and the standard coordinate transformation formulas, their
implicit equation is

(x2+ y2)k− τ2k−1 = 0, where (9)

τ2k−1 =
k

∑
i=0

(−1)i
(
2k−1
2i

)
x2k−1−2iy2i. (10)

It is clear ([9, p. 251], [17, p. 27]) that 2k−1 tangent lines
at the origin are given by

τ2k−1 = 0. (11)

Some examples are shown in Fig. 9.

Let the axis z and the curve c2k given by equations

(x2+ y2)k− τ2k−1 = 0, ax+by+ z= 0, (12)

be the directing lines of a congruence C 12k. The curve c
2k

is the intersection of one 2k-order cylinder and a plane
through the origin (see Fig. 10a). The singular points of
C 12k lie on its directing lines c

2k and z (see Fig. 10b and
Fig. 10c). The rays of C 12k through the origin O form the
pencil of lines (O) in the plane ax+ by+ z = 0, and the
other lines through O are not regarded as the rays of C 12k.
The pedal surface P 2k+22k of C 12k with respect to a pole P is
a (2k+2)-order surface with 2k-ple line z (see Fig. 10d).

a b c d

Figure 9: The curves r(ϕ) = cos nϕ for n equal to 1, 3, 5 and 7 are shown in figures a, b, c and d, respectively.
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a b c d

Figure 10: c2k is the intersection of one 2k-degree cylinder with a (2k− 1)-ple line z and a plane through the origin (a).
The rays of C 12k through a point on z form a 2k-degree cone with a (2k−1)-ple line z (b). The rays of C 12k through a point
C ∈ c2k form the pencil of lines (C) in the plane though z and C (c). The pedal surface P 2k+22k is a system of circles in the
planes through z, with the end points of its diameters on c2k and k. These diameters lie on the rulings of one (2k+2)-degree
ruled surface (d).

In every plane through z, the coordinates of C ∈ c2k are
given by

(rC(ϕ),zC(ϕ)) = cosnϕ(1,−acosϕ−bsinϕ). (13)

From (13) and eqs. (2) – (5), we obtain the parametric
equations of P 2k+22k which enable them to be visualized us-
ing the programMathematica. Some examples are shown
in Fig. 11.

Since every plane through the axis z cuts P 2k+22k at the cir-
cle c and the 2k-ple line z, the equation of P 2k+22k in the
cylindrical coordinates (r,ϕ,z) is

r2k · ((r− rS(ϕ))2+(z− zS(ϕ))2−R2(ϕ)) = 0. (14)

From (14), by using eqs. (13), (2), (3) and the standard co-
ordinate transformation formulas, we obtain the following
implicit equation of P 2k+22k :

(x2+ y2+ z2)(x2+ y2)k +H2k+1(x,y,z)+H2k(x,y) = 0,

(15)

where

H2k+1(x,y,z) = −(pxx+ pyy+ pzz)(x2+ y2)k

− (x2+ y2−axz−byz)τ2k−1

H2k(x,y) = (pxx+ pyy−apzx−bpzy)τ2k−1. (16)

The plane at infinity cuts P 2k+22k at the absolute conic and
the pair of isotropic lines counted k times. These isotropic
lines are the rays of C 12k and also the rulings of the rose-
cylinder given by the first equation in (12). Thus, the point
at infinity on the axis z is the pinch-point of P 2k+22k .

If we translate the origin into Z0(0,0,z0), then (from
eq. (15) and according to theorem 1) we obtain the fol-
lowing equation of the splitting tangent cone at Z0:

(z20− pzz0)(x2+ y2)k +(x(px+az0−apz)

+y(py+bz0−bpz))τ2k−1 = 0. (17)

The surface P 2k+22k has a (2k+1)-ple point iff P lies on the
axis z. In this case, all coefficients in eq. (17) are equal to
zero, and the tangent cone at P, in the coordinate system
with the origin P, is given by the following equation:

pzz(x2+ y2)k− (x2+ y2−axz−byz)τ2k−1 = 0. (18)

If P = O, the tangent cone at P splits into one 2nd degree
cone and (2k−1) planes through the axis z

(x2+ y2−axz−byz)τ2k−1 = 0. (19)

Three examples are shown in Fig 12.
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a b c

Figure 11: The pedal surfaces P 2k+22k for the poles P(−1,1,−2), P(−1,1,1) and k= 2,3,4 are shown in figures a, b and c,
respectively.

a b c

Figure 12: The surface P 86 , directed by the 5-petalled curve in the plane x+ y+ z= 0 and the pole P(0,0,2), and its 7th
degree tangent cone at P, are shown in figure a. The pedal surfaces, directed by the 5-petalled and 7-petalled curves in the
plane x+ y+ z= 0 and P= O, are shown in figures b and c, respectively.

According to proposition 8, P 2k+22k possesses the highest
number of real double points if the directing curve c2k

and the circle k lie in the same plane. It is the case that
a= b= pz = 0 when c2k and k have 4k intersection points.
But 2k−1 points coincide with O, two points are the abso-
lute points of the plane z= 0, thus only 2k−1 intersection
points can lie besides the axis z and be real. Since 2k− 1

is an odd number, at least one real double point exists on

P 2k+22k if a= b= pz=0.

The pedal surfaces directed by the roses in the plane z= 0

are elaborated in detail in [7]. Some examples are shown

in Fig. 13.

In this case (a = b = 0), if a pole P lies on the axis z, the
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equation (15) takes the form

(x2+ y2)P2k(x,y,z) = 0, (20)

where

P2k(x,y,z) = (x2+y2)k−1(x2+y2+z2− pzz)−τ2k−1. (21)

Thus, the pedal surface splits into a pair of isotropic planes
through the axis z and one 2k-order surface given by
P2k(x,y,z) = 0. The line z is a (2k− 2)-ple line of these
surfaces with two (2k−1)-ple points, the origin O and the
pole P (see Fig. 14).

Especially, if P=O, the tangent cone at P splits into 2k−1
planes given by equation τ2k−1 = 0 (see Fig. 15).

a b c

Figure 13: The pedal surfaces for the pole P(1,0,2) and 3, 5 and 7-petalled roses in the plane z= 0 are shown in figures a,
b and c, respectively.

a b c

Figure 14: The pedal surfaces for the pole P(0,0,2) and 3, 5 and 7-petalled roses in the plane z= 0 with 3, 5 and 7-degree
tangent cones at P and O are shown in figures a, b and c, respectively.

a b c

Figure 15: The pedal surfaces for the pole P= O and 3, 5 and 7-petalled roses in the plane z= 0 are shown in figures a, b
and c, respectively.
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4.5 P n+2
n of C 1n (cn,d) with d at infinity

If the directing line d lies in the plane at infinity (α∞),
then α∞ is the singular plane of C 1n (cn,d∞). Thus, its im-
age given by the (n+ 2)-degree inversion with respect to
C 1n (cn,d∞) and any sphere with the center P splits into α∞

and the image Dn+1
n−1 of the singular line d

∞ which is an
(n+1)-order surface with the (n−1)-ple line d∞ (see theo-
rem 4 [1]). In this case the circle k splits into a line through
P perpendicular to the pencil of planes [d∞] and one line at
infinity. The planes through d∞ cut Dn+1

n−1 into the circles
with the end points of diameters on k and cn. Three exam-
ples are shown in Fig. 16.

4.6 P n+2
n of C 1n (cn,d) with cn at infinity

If the directing curve cn lies in the plane α∞, the intersec-
tion pointD∞ =α∞∩d must be the (n−1)-ple point of cn∞.
In this case α∞ is the singular plane of C 1n (cn∞,d) and its
image given by the (n+ 2)-degree inversion with respect
to C 1n (cn∞,d) and any sphere with the center P splits into
α∞ and the image R n+1

n of cn∞ which is one (n+1)-degree
ruled surface with the n-ple line d (see theorem 3 [1]). In
the plane δ ∈ [d] the ruling of R n+1

n is perpendicular to the
rays of C 1n and passes through P′, i. e. the circle c splits
into this ruling and the line at infinity. Three examples are
shown in Fig. 17.

a b c

Figure 16: a − D3
1 defined by d

∞ in the plane y= 0, c2 given by equations x= 0 and z= y2

2 and P(2,1.5,1).
b − D3

1 defined by d
∞ in the plane y= 0, c2 given by equations x= 0 and y2− yz+1= 0 and P(3,−4,1).

c − D4
2 defined by d

∞ in the plane x= 0, c3 given by equations y= x2
5 and z= x3

10 and P(3,−4,2).

a b c

Figure 17: The pedal ruled surfaces for the pole P(2,0,0), axis z and 1, 3 and 5-petalled roses in the plane at infinity are
shown in figures a, b and c, respectively. These directing roses are the curves at infinity of the highlighted red cones.
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5 Pedal surfaces of K 1
3

5.1 Congruence K 1
3

Twisted cubics k3 may be divided into four types accord-
ing to the different sections of the curve by the plane at
infinity. These are the cubical parabola, cubical hyper-
bolic parabola, cubical ellipse and cubical hyperbola if the
plane at infinity meets the curve at three coincident points,
at two coincident points and one real point, at one real and
two imaginary points and at three real and different points,
respectively [15, p. 353].

Below we will use the following canonical form of a
twisted cubic k3 = (k1(t),k2(t),k3(t))

k(t) = (
a1t
k

,
a2t+b2t2

k
,
a3t+b3t2+ c3t3

k
), t ∈ R, (22)

where k equals 1, 1− t, 1+ t2 or 1− t2 which specify a
cubical parabola, cubical parabolic hyperbola, cubical el-
lipse or cubical hyperbola, respectively [4, pp. 69-76], [8,
p. 928]. Specially, for k = 1+ t2, a1 = b2, a2 = b3 = 0,
a3 = c3, eq. (22) represents a cubical circle.

These curves for a1 = b2 = c3 = 1 and a2 = a3 = b3 = 0,
lying on the corresponding 2nd degree cones, are shown in
Fig. 18.

The union of the tangent and secant lines of a twisted cubic
k3 fill up the projective space P

3 and the lines are pairwise
disjoint, except at the points of the curve itself [10, p. 90].
Thus, the system of lines meeting a twisted cubic twice is
the 1st order 3rd class congruence K 1

3 with the singular
points on the directing curve k3. The rays of K 1

3 can be

expressed by the following equations:

x− k1(u)
k1(v)− k1(u)

=
y− k2(u)

k2(v)− k2(u)
=

z− k3(u)
k3(v)− k3(u)

, (23)

(u,v) ∈ R
2.

5.2 Pedal surface PK 5
2

Let P be any finite point in E
3 and k3 the directing curve

of K 1
3 . The pedal surface of K 1

3 with respect to the pole P
is denoted PK 5

2. The rays of K 1
3 through any point K ∈ k3

form a 2nd degree cone ζK with the vertexK (see Fig. 19a).
The feet of the perpendiculars from P on the rulings of ζK
lie on the sphere σK with the diameter PK. Thus, we can
regard the pedal surfaces PK 5

2 as the system of the 1st
kind of quartic curves – the intersection curves of ζK and
σK (see Fig. 19b).

a b

Figure 19: The rays of K 1
3 through K ∈ k3 form a 2nd de-

gree cone ζK with the vertex K (a). σK is a sphere with the
diameter PK. The intersection curve of ζK and σK lies on
the pedal surface PK 5

3 (b).

a b c d

Figure 18: The cubical parabola, parabolic hyperbola, ellipse and hyperbola are shown in figures a, b, c and d, respectively.
Their points at infinity are: (0:0 :1 :0) counted three times in case a, (1:1 :1 :0) and (0:0 :1 :0) counted twice in case b,
(0:0 :1 :0) and the pair of imaginary points (±i :−1:∓i :0) in case c and (±1 :1 :±1 :0), (0 :0 :1 :0) in case d, where the
points are expressed in standard homogeneous Cartesian coordinates.
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Proposition 9 The pedal surface PK 5
2 is a 5th order sur-

face passing through the pole P and the absolute conic.

PROOF: The proof of this proposition is given in [11]. �

Proposition 10 The twisted cubic k3 is the double curve
of PK 5

2 and ten pinch-points exist on it.

PROOF: For every point K ∈ k3, the intersection curve of
ζK and σK is a 4th order space curve with the double point
K. The tangent lines of this curve at K are the intersection
rulings of the cone ζK and the plane through K perpendic-
ular to PK. Thus, there are two tangent planes of PK 5

2 at
K ∈ k3, determined by the tangent line of k3 at K and two
tangent lines of the curve ζK ∩σK at K. If the two tangent
lines of ζK ∩σK at K are real and different, coinciding or
imaginary, K is the binodal point, pinch-point or isolated
point of PK 5

2, respectively (see Fig. 20). The proof that on
a 5th order surface with a double twisted cubic ten pinch-
points can exist is given in [18, p. 312]. These points can
be real or imaginary. �

a b c

Figure 20: On the twisted cubic the intersection curve of σ
and ζ has a node, cusp or isolated double point shown in
figure a, b and c, respectively.

Proposition 11 If the pole P lies on the directing curve k3,
P is the triple point of PK 5

2.

PROOF: It is clear that if P ∈ k3, then every curve ζK ∩σK ,
K ∈ k3 passes through P. The tangent lines of ζK ∩σK at P
are the result of an (1,1) correspondence between one sec-
ond degree envelope cone with the vertex P and one pencil
of planes through the line passing throughP. Thus, accord-
ing to the Chasles formula [13, p. 40], these tangent lines
form a third degree cone with a vertex P. Namely, every
tangent line of ζK ∩σK at P is the intersection of the plane
through P perpendicular to PK (the tangent plane of σK at
P), and the tangent plane of ζK at P. The planes through
P perpendicular to PK, K ∈ k3 form a second degree enve-
lope cone with a vertex P. Since the tangent planes of ζK
at P are determined by the lines PK and tP, where tP is the
tangent line of k3 at P, they form the pencil of planes [tP].
�

Proposition 12 The ray at infinity of K 1
3 lies on the pedal

surface PK 5
3.

PROOF: Orthogonality in Euclidean space means polarity
with respect to the absolute conic – a line l with the point at
infinity L∞ is perpendicular to a plane π with the line at in-
finity p∞ iff L∞ is the pole of p∞ with respect to the absolute
conic. Every ray of K 1

3 cuts PK 5
3 at two double points on

k3 and the intersection point with the corresponding plane
through P perpendicular to this ray. Since the ray at infin-
ity corresponds with the pencil of planes, every point on it
lies on PK 5

3. �
According to the straight lines at infinity, we divide the
pedal surfaces PK 5

3 into the following four types:

Type I PK 5
3 has one real straight line counted three times at

infinity. The directing curve k3 is a cubical parabola.

Type II PK 5
3 has two real straight lines at infinity, and one

of them is counted twice. The directing curve k3 is a
cubical hyperbolic parabola.

Type III PK 5
3 has one real and a pair of imaginary straight

lines at infinity. The directing curve k3 is a cubical
ellipse.

Type IV PK 5
3 has three real and different straight lines at in-

finity. The directing curve k3 is a cubical hyperbola.

5.3 Parametric and implicit equations of PK 5
2

Let the pole P be given by the vector p= (px, py, pz), and
let the directing line k3 of K 1

3 be the twisted cubic given
by the vector function (22). The ray ofK 1

3 passing through
the points K(u), K(v) ∈ k3 can be expressed by the follow-
ing equation:

r1(u,v) = k(u)+ sd(u,v), s ∈ R, (24)

where d(u,v) is the direction vector of the line K(u)K(v),
i.e. d(u,v) = k(v)−k(u).
The plane through the pole P, perpendicular to the ray
K(u)K(v), is given by the following vector equation:

(r2(u,v)−p) ·d(u,v) = 0. (25)

Since the point on the pedal surface PK 5
2 is the intersec-

tion of the ray (24) and the plane (25), for this point the
parameter s satisfies the following equation:

s(u,v) =
(p−k(u)) ·d(u,v)

‖d(u,v)‖2 . (26)

Thus, the parametric equations of PK 5
2 are:

x(u,v) = k1(u)+d1(u,v) · s(u,v)
y(u,v) = k2(u)+d2(u,v) · s(u,v)
z(u,v) = k3(u)+d3(u,v) · s(u,v), (u,v) ∈ R

2. (27)
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This parametrization does not yield satisfactoryMathemat-
ica visualizations of PK 5

2. Therefore, to draw figures 21
and 22 we used the implicit equations of PK 5

2 which can
be derived from the equations of corresponding spheres σ
and cones ζ.

For any point K(t) ∈ k3, t ∈ R, the implicit equation of the
sphere σK(t) is the following:

(
x− px+k1(t)

2

)2
+

(
y− py+k2(t)

2

)2
+

(
z− pz+k3(t)

2

)2
=

1
4

(
(px−k1(t))2+(py−k2(t))2+(pz−k3(t))2

)
. (28)

The implicit equation of the cone ζK(t) can be derived by
eliminating parameters u and v from the following para-
metric equations:

x= k1(t)+u ·d1(t,v)
y= k2(t)+u ·d2(t,v)
z= k3(t)+u ·d3(t,v) (u,v) ∈ R

2. (29)

Now, if we eliminate the parameter t from the correspond-
ing implicit equations of ζK(t) and σK(t), we obtain the im-

plicit equation of PK 5
3. According to propositions 9, 12

and theorem 1 this equation takes the following form:

(x2+ y2+ z2)H31 (x,y,z)+H4(x,y,z)

+H32 (x,y,z)+H2(x,y,z) = 0, (30)

where Hi(x,y,z) are homogeneous polynomials of degree
i. The equation H31 (x,y,z) = 0 represents three rays of K 1

3
at infinity and H2(x,y,z) = 0 represents the tangent cone
of PK 5

3 at the origin.

Equation (30) depends on nine parameters (a1,a2,a3,
b2,b3,c3, px, py, pz) and it is incongruously to write them

here even for the special cases. As an appendix to
this paper, the reader can download one Mathematica
notebook available on-line: http://www.grad.hr/sgorjanc/
pedalsKP53.nb.

5.4 Examples of PK 5
2

We consider PK 5
2 where the directing twisted cubic is

given by eq. (22) for

a1 = b2 = c3 = 1, a2 = a3 = b3 = 0. (31)

Type I – the directing curve k3 is a cubical parabola given
by eqs. (22) and (31) for k = 1. The pedal surface has a
real line at infinity counted three times. In the standard
Cartesian coordinates (x :y : z :w), this line is given by the
equations x3 = 0, w= 0. See Fig. 21a and Fig. 22a.

Type II – the directing curve k3 is a cubical hyperbolic
parabola given by eqs. (22) and (31) for k = 1− t. The
pedal surface has two real lines, one of them counted twice,
at infinity. They are given by the equations x(x− y)2 =
0, w= 0. See Fig. 21b and Fig. 22b.

Type III – the directing curve k3 is a cubical ellipse given
by eqs. (22) and (31) for k = 1+ t2. The pedal surface has
one real and a pair of imaginary lines at infinity. They are
given by the equations (x2 + y2)(x+ z) = 0, w = 0. See
Fig. 21c and Fig. 22c.

Type IV – the directing curve k3 is a cubical hyperbola
given by eqs. (22) and (31) for k = 1− t2. The pedal sur-
face has three real lines at infinity. They are given by the
equations (x− y)(x+ y)(x− z) = 0, w = 0. See Fig. 21d
and Fig. 22d.

a b c d

Figure 19: PK 5
3 of types I, II, III and IV, for P(0,0,0), are shown in figures a, b, c and d, respectively. The 3rd degree

tangent cone at P has a cuspidal edge.
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a b c d

Figure 22: Figure a – PK 5
3 type I for P(4,4,0); figure b – PK 5

3 type II for P(2,−1,3); figure c – PK 5
3 type III for P(1,2,0);

figure d – PK 5
3 type IV for P(5,−1,3).
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ABSTRACT

This paper shows how a recent reformulation of the basics
of classical geometry and trigonometry reveals a three-fold
symmetry between Euclidean and non-Euclidean (relativis-
tic) planar geometries. We apply this chromogeometry to
look at conics in a new light.
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Kromogeometrija i relativistǐcke konike

SAŽETAK

U radu se pokazuje kako novija formulacija osnova klasične
geometrije i trigonometrije otkriva trostruku simetriju
izmed-u euklidske i neeuklidskih (relativističkih) ravninskih
geometrija. Primjenjujemo kromogeometriju kako bismo
konike vidjeli u novom svjetlu.

Ključne riječi: kromogeometrija, konike, relativistička ge-
ometrija

Pythagoras, area and quadrance

To measure a line segment in the plane, the ancient
Greeks measured the area of a square constructed on
it. Algebraically, the parallelogram formed by a vector
v=

−−→
A1A2 = (a,b) and its perpendicularB(v) = (−b,a) has

area

Q= det

(
a b
−b a

)
= a2+b2. (1)

The Greeks referred to building squares as ‘quadrature’,
and so we say that Q is the quadrance of the vector v, or
the quadrance Q(A1,A2) between A1 and A2. This notion
makes sense over any field.

A

A

1

2

A3

25 5

20

Figure 1: Pythagoras’ theorem: 5+20= 25

If Q1 = Q(A2,A3), Q2 = Q(A1,A3) and Q3 = Q(A1,A2)
are the quadrances of a triangle A1A2A3, then Pythagoras’

theorem and its converse can together be stated as: A1A3 is
perpendicular to A2A3 precisely when

Q1+Q2 = Q3.

Figure 1 shows an example where Q1 = 5, Q2 = 20 and
Q3 = 25.As indicated for the large square, these areas may
also be calculated by subdivision and (translational) rear-
rangement, followed by counting cells.

There is a sister theorem—the Triple quad formula—that
Euclid did not know, but which is fundamental for rational
trigonometry, introduced in [2]: A1A3 is parallel to A2A3
precisely when

(Q1+Q2+Q3)
2 = 2

(
Q21+Q22+Q23

)
.

Figure 2 shows an example where Q1 = 5, Q2 = 20 and
Q3 = 45.

A

A

1

2

A3

20

45

5

y

x

Figure 2: Triple quad formula:
(5+20+45)2 = 2

(
52+202+452

)
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In terms of side lengths d1 =
√
Q1,d2 =

√
Q2 and

d3 =
√
Q3, and the semi-perimeter s = (d1+d2+d3)/2,

observe that

(Q1+Q2+Q3)
2−2

(
Q21+Q22+Q23

)

= 4Q1Q2− (Q1+Q2−Q3)
2 = 4d21d

2
2 −

(
d21 +d22 −d23

)2

=
(
2d1d2−

(
d21 +d22 −d23

))(
2d1d2+

(
d21 +d22 −d23

))

=
(
d23 − (d1−d2)

2
)(

(d1+d2)
2−d23

)

= (d3−d1+d2) (d3+d1−d2)(d1+d2−d3)(d1+d2+d3)

= 16(s−d1)(s−d2) (s−d3)s.

Thus Heron’s formula in the usual form

area=
√
s(s−d1) (s−d2) (s−d3)

may be restated in terms of quadrances as

16 area2 = (Q1+Q2+Q3)
2−2(

Q21+Q22+Q23
)

≡ A(Q1,Q2,Q3) .

This more fundamental formulation deserves to be called
Archimedes’ theorem, since Arab sources indicate that
Archimedes knew Heron’s formula. The Triple quad for-
mula is the special case of Archimedes’ theorem when the
area is zero. The function A(Q1,Q2,Q3) will be called
Archimedes’ function.

In Figure 3 the quadrances are Q1 = 13, Q2 = 25 and
Q3 = 26, so 16 area2 = 1156, giving area2 = 289/4 and
area= 17/2.

A

A

1

2

A3

13
25

26

Figure 3: 16 area2 = (13+25+26)2−2(
132+252+262

)

= 1156

Irrational side lengths are not needed to determine the area
of a rational triangle, and in any case when we move to
more general geometries, we have no choice but to give up
on distance and angle.

Blue, red and green geometries

Euclidean geometry will here be called blue geometry.
We now introduce two relativistic geometries, called red
and green, which arise from Einstein’s theory of relativity.

These rest on alternate notions of perpendicularity, but they
share the same underlying affine concept of area as blue ge-
ometry, and indeed the same laws of rational trigonometry,
as will be explained shortly.

Figure 4: Red Pythagoras’ theorem and Triple quad
formula

Define the vector v=
−−→
A1A2 = (a,b) to be red perpendicu-

lar to R(v) = (b,a) . This mapping is easily visualized: it
corresponds to Euclidean reflection in a line of slope 1 or
−1. A red square is then a parallelogram with sides v and
R(v), and hence (signed) area

Q(r) = det

(
a b
b a

)
= a2−b2 (2)

which we call the red quadrance between A1 and A2.
Figure 4 illustrates that both Pythagoras’ theorem and the
Triple quad formula hold also using red quadrances and
red perpendicularity, where the areas of the red squares
can be computed as before by subdivisions, (translational)
rearrangement and counting cells—or by applying the al-
gebraic formula for the red quadrance.

In a similar fashion the vector v =
−−→
A1A2 = (a,b) is green

perpendicular toG(v) = (−a,b). This corresponds to Eu-
clidean reflection in a vertical or horizontal line. A green
square is a parallelogramwith sides v and R(v), and hence
(signed) area

Q(g) = det

(
a b
−a b

)
= 2ab (3)

which we call the green quadrance between A1 and A2.
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Figure 5: Green Pythagoras’ theorem and Triple quad
formula

Figure 5 shows Pythagoras’ theorem and the Triple quad
formula in the green context. This version of relativistic
geometry corresponds to a basis of null vectors in red ge-
ometry.

All three geometries can be defined over a general field,
not of characteristic two.

Spreads and rational trigonometry

The three quadratic forms

Q(b) (a,b) = a2+b2

Q(r) (a,b) = a2−b2

Q(g) (a,b) = 2ab

have corresponding dot products

(a1,b1) ·b (a2,b2) ≡ a1a2+b1b2
(a1,b1) ·r (a2,b2) ≡ a1a2−b1b2
(a1,b1) ·g (a2,b2) ≡ a1b2+a2b1.

Together with a1b2−a2b1 = 0 describing parallel vectors,
these are the four simplest bilinear expressions in the four
variables.

In rational trigonometry, one wants to work over general
fields, so the notion of angle is not available, but it is im-
portant to realize that the dot product is not necessarily the
best replacement. Instead we introduce the related notion
of spread between two lines (not between rays), which in
the blue framework is the square of the sine of the angle
between the lines (there are actually many such angles, but
the square of the sine is the same for all).

The blue, red and green spreads between lines l1 and l2
with equations

a1x+b1y+ c1 = 0 and a2x+b2y+ c2 = 0

are respectively the numbers

s(b) (l1, l2) =
(a1b2−a2b1)

2

(
a21+b21

)(
a22+b22

)

s(r) (l1, l2) = − (a1b2−a2b1)
2

(
a21−b21

)(
a22−b22

)

s(g) (l1, l2) = − (a1b2−a2b1)
2

4a1b1a2b2
.

These quantities are undefined when the denominators are
zero. The negative signs in front of s(r) and s(g) insure that,
for each of the colours, the spread at any of the three ver-
tices of a right triangle (one with two sides perpendicular)
is the quotient of the opposite quadrance by the hypotenuse
quadrance. See [3] for a proof of this, and other facts about
rational trigonometry, in a wider context.

In Figure 1 the spreads at A1 and A2 are 1/5 and 4/5 re-
spectively, in the upper diagram of Figure 4 the spreads at
A1 and A2 are−4/5 and 9/5 respectively, and in the upper
diagram of Figure 5 the spreads at A1 and A2 are−1/3 and
4/3 respectively. In each case the spread at the right vertex
is 1, and the other two spreads sum to 1.

A A A

A A A

1 1 1

2 2 2

A A A3 3 3
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650

289
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-289
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289

325

-289

35

289

288

289

338

289

120

289

120

13 -5 -12
25 -7 24

26 24 10

y

xBlue Red Green

Figure 6: Blue, red and green quadrances and spreads

Figure 6 allows you to compare the various quadrances and
spreads of a fixed triangle in each of the three geometries.
Note the common numerators of the spreads, arising be-
cause A(Q1,Q2,Q3) = ±4×289 is up to sign the same in
each geometry, with a plus sign in the blue situation and a
negative sign in the red and green ones.

Aside from Pythagoras’ theorem and the Triple quad for-
mula, the main laws of rational trigonometry are: for a
triangle with quadrancesQ1,Q2 and Q3, and spreads s1,s2
and s3 :

s1
Q1

=
s2
Q2

=
s3
Q3

(Spread law)

(Q1+Q2−Q3)
2 = 4Q1Q2 (1− s3) (Cross law)

(s1+ s2+ s3)
2 = 2

(
s21+ s22+ s23

)
+4s1s2s3 (Triple spread formula).
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As shown in [2], these laws are derived using only
Pythagoras’ theorem and the Triple quad formula. Since
these latter two results hold in all three geometries, the
Spread law, Cross law and Triple spread formula also hold
in all three geometries.

For any points A1 and A2 the square of Q(b) (A1,A2) is the
sum of the squares of Q(r) (A1,A2) and Q(g) (A1,A2), and
for any lines l1 and l2

1

s(b) (l1, l2)
+

1

s(r) (l1, l2)
+

1

s(g) (l1, l2)
= 2.

The first statement follows from the Pythagorean triple
identity
(
x2+ y2

)2
=

(
x2− y2

)2
+(2xy)2

while the latter follows from the identity
(
a21+b21

)(
a22+b22

)− (
a21−b21

)(
a22−b22

)−4a1b1a2b2
= (a1b2−a2b1)

2 .

So in Figure 6 there are three linked (signed)
Pythagorean triples, namely (13,−5,−12), (25,−7,24)
and (26,24,10), and three triples of harmonically related
spreads.
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Figure 7: Three altitudes from a point to a line

Figure 7 shows the three coloured altitudes from a point A
to a line l, and the feet of those altitudes. Note that the blue
and red altitudes are green perpendicular and similarly for
the other colours. The three triangles formed by the four
points are each triple right triangles, containing each a
blue, red and green right vertex.

Most theorems of planar Euclidean geometry have univer-
sal versions, valid in each of the three geometries. This is
a large claim that deserves further investigation. In the red
and green geometries, circles and rotations become rectan-
gular hyperbolas and Lorentz boosts. There are no equi-
lateral triangles in the red and green geometries, so results
like Napoleon’s theorem orMorley’s theoremwill not have
(obvious) analogs.

To see some chromogeometry in action, let’s have a look
at conics in this more general framework.

The ellipse as a grammola

In the real number plane, one usually defines an ellipse
as the locus of a point X whose ratio of distance from a
fixed point (focus) to distance from a fixed line (directrix)
is constant and less than one, and hyperbolas and parabolas
similarly with eccentricities greater than one and equal to
one. By squaring this condition, we can discuss the locus
of a point whose ratio of quadrance from a fixed point to
a fixed line is constant. By quadrance from a point X to
a line l we mean the obvious: construct the altitude line n
from X to l, find its foot F and measure Q(X ,F). Let’s
call such a locus a conic section. Over a general field we
cannot distinguish ‘ellipses’ from ‘hyperbolas’, although
parabolas are always well defined.

Figure 8: Two views of the ellipse 2x2−4xy+5y2 = 6

The upper diagram in Figure 8 shows the central ellipse

2x2−4xy+5y2 = 6

with foci at F1 = [2,1] and F2 = [−2,−1], corresponding
directrices d1 and d2 with respective equations 2x−y+6=
0 and 2x− y− 6= 0, and eccentricity e =

√
5/6. The fa-

miliar reflection property may be recast as: spreads be-
tween a tangent and lines to the foci from a point on the
ellipse are equal.
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The lower diagram in Figure 8 illustrates a (perhaps?)
novel definition of an ellipse. It is motivated by the fact
that a circle is the locus of a point X whose quadrances to
two fixed perpendicular lines add to a constant. Define a
grammola to be the locus of a point X such that the sum of
the quadrances from X to two fixed non-perpendicular in-
tersecting lines l1 and l2 is constant. This definition works
for each of the three colours. It turns out that the lines l1
and l2 are unique; we call them the diagonals of the gram-
mola (see [2, Chapter 15]). The corners of the grammola
are the points where the diagonal lines intersect it, and de-
termine the corner rectangle. In the blue setting over the
real numbers a grammola is always an ellipse, while in the
red and green settings a grammola might be an ellipse, or
it might be a hyperbola.

The ellipse of Figure 8 is a blue grammola with blue diag-
onals
(
14+5

√
6
)
x−23y= 0 and

(
14−5√6

)
x−23y= 0.

The blue quadrances of the sides of the corner rectangle
are 12 and 2, whose product 24 is the squared area. The
lower diagram in Figure 8 shows the usual foci and direc-
trices of the grammola and its diagonals and corners. The
quadrances from any point on the conic to the two diago-
nals sum to 6. The blue spread between the two diagonals
is an invariant of the ellipse—in this case sb = 24/49.

Figure 9: Ellipse as red and green grammola

The ellipse can also be described as a red grammola, as in
the upper diagram of Figure 9. The red diagonals are
(√
22+2

)
x−9y= 0 and

(√
22−2

)
x+9y= 0

and the red corner rectangle has sides parallel to the
red axes of the ellipse, and red quadrances 3+

√
33 and

3−√
33, whose product is −24. The four red corners have

rather complicated expressions in this case. The red spread
between the red diagonals is sr = −8/3.
The same ellipse may also be viewed as a green grammola,
as in the lower diagram of Figure 9. The green diagonals
are
(
−5+

√
15

)
x+5y= 0 and

(
−5−√

15
)
x+5y= 0

and the green corner rectangle has sides parallel to the
green axes of the ellipse, and green quadrances 4+ 2

√
10

and 4− 2√10, whose product is again −24. Except for a
sign, the three squared areas of the blue, red and green cor-
ner rectangles are the same. The green spread between the
green diagonals is sg = −3/2.
The relationship between the blue, red and green spreads
of an ellipse is

1
sb

+
1
sr

+
1
sg

= 1.

The ellipse as a quadrola

Another well known definition of an ellipse is as the lo-
cus of a point X whose sum of distances from two fixed
points F1 and F2 is a constant k. To determine a universal
analog of this, we consider the locus of a point X such
that the quadrances Q1 = Q(F1,X) and Q2 = Q(F2,X),
together with a number K, satisfy Archimedes formula
A(Q1,Q2,K) = 0. This is the quadratic analog to the equa-
tion d1+d2 = k, just as the Triple quad formula is the ana-
log to a linear relation between three distances.

Such a locus we call a quadrola. This algebraic formula-
tion applies to the relativistic geometries, and also extends
to general fields. The notion captures both that of ellipse
and hyperbola in the Euclidean setting, and while it is in
general a different concept than a grammola, it is possi-
ble for a conic to be both, as is the case of an ellipse in
Euclidean (blue) geometry.

The upper diagram in Figure 10 shows that in the red ge-
ometry, a new phenomenon occurs: our same ellipse as a
quadrola has two pairs of foci {F1,F2} and {G1,G2}. Each
of these points is also a focus in the context of a conic
section, and there are two pairs of corresponding directri-
ces {d1,d2} and {h1,h2}. Directrices are parallel or red
perpendicular, and intersect at points on the ellipse, and
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tangents to these directrix points pass through two foci,
forming a parallelogram which is both a blue and a green
rectangle. It turns out that the red spreads between a tan-
gent and lines to a pair of red foci are equal, as shown at
points A and B.

Figure 10: Red and green foci and directrices

The lower diagram in Figure 10 shows the same ellipse as
a green quadrola, with again two pairs of green foci, two
pairs of corresponding green directrices (which are parallel
or green perpendicular), and the tangents at directrix points
forming a blue and red rectangle.

The red and green directrix points are easy to find: they
are the limits of the ellipse in the null and the coordinate
directions. So the red and green directrices and foci are
also then simple to locate geometrically. This is not the
case for the usual (blue) foci and directrices, and suggests
that considering ellipses from the relativistic perspectives
can be practically useful. In algebraic geometry the ‘other’
pair of blue foci are not unknown; they require complexi-
fication and a projective view (see for example [1, Chapter
12]).

When we put all three coloured pictures together, as shown
in Figure 11, another curious phenomenon appears—there
are three pairs of coloured foci that appear to be close to
the intersections of directrices of the opposite colour. The
reason for this will become clearer later when we consider
parabolas.

310-1-2-3
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1
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Figure 11: Three sets of foci and directrices

Hyperbolas

Over the real numbers some of what we saw with ellipses
extends also to hyperbolas, although there are differences.
The central hyperbola shown in Figure 12 with equation

7x2+6xy−17y2 = 128

is a red quadrola with red foci F1 = [3,1] and
F2 = [−3,−1], meaning that it is the locus of a point
X = [x,y] such that

A
(
(x−3)2− (y−1)2 ,(x+3)2− (y+1)2 ,64

)
= 0.
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Figure 12: A hyperbola as red quadrola and green
grammola

As a conic section the corresponding directrices have equa-
tions 3x− y− 16 = 0 and 3x− y+ 16 = 0. This hyper-
bola also has another pair of red foci G1 = [1,3] and
G2 = [−1,−3], with associated directrices x− 3y+ 8 = 0
and x−3y−8= 0.

As in the case of the ellipse we considered earlier, in each
case the focus is the pole of the corresponding directrix,
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meaning that it is the intersection of the tangents to the hy-
perbola at the directrix points. These tangents pass through
two foci at a time, and are parallel to the red null direc-
tions. The parallelogram formed by the four foci is a blue
and green rectangle.

So we could have found the red foci and directrices purely
geometrically, by finding those points on the hyperbola
where the tangents are parallel to the red null directions,
and then forming intersections between these points. This
is again quite different from finding the usual blue foci and
directrices. Note that if we try to find green foci, verti-
cal tangents are easy to find, but there are no horizontal
tangents, thus the situation will necessarily be somewhat
different.

Is the hyperbola also a grammola? It cannot be a blue
grammola, since these are all ellipses, and it turns out not
to be a red grammola either. But it is a green grammola
with equation

((
119+8

√
238

)
x+51y

)2

2
(
119+8

√
238

)
51

+

((
119−8√238)x+51y

)2

2
(
119−8√238)51

=
128
3

.

The green diagonals are shown in Figure 12.

The parabola

From the viewpoint of universal (affine) geometry, the
most interesting conic is the parabola. Given a point F and
a generic line l not passing through F , the locus of a point
X such that Q(X ,F) = Q(X , l) is what we usually call a
parabola, independent of which geometry we are consider-
ing. The generic parabola has a distinguished blue, red and
green focus, and also a blue, red and green directrix.
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Figure 13: Three foci and directrices of a parabola

Figure 13 shows a parabola in the Cartesian plane and all
three foci and directrices. A remarkable phenomenon ap-
pears: Fb is the intersection of lr and lg, Fr is the inter-
section of lb and lg, and Fg is the intersection of lb and lr.
Furthermore lr and lg are blue perpendicular, lb and lg are
red perpendicular, and lb and lr are green perpendicular—
in other words we get a triple right triangle of foci. This
means that once we know one of the focus/directrix pairs,
the other two can be found simply by constructing the ap-
propriate altitudes from the focus to the directrix together
with their feet.
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Figure 14: Reflection properties of a parabola

Although the various directrices are in different directions,
the axis direction, defined as being perpendicular to the di-
rectrix, is common to all. Figure 14 shows the familiar
reflection property of the parabola, where a particle P ap-
proaching the parabola along the axis direction and reflect-
ing off the tangent (in either a blue, red or green fashion)
always then passes through the corresponding focus.

The Figure 15 shows some interesting collinearities asso-
ciated to a parabola, involving coloured vertices V (inter-
sections of axes with the parabola), bases X (intersections
of axes with directrices) and points Y formed by tangents
to vertices.

Finally we show the three parabolas which have a given fo-
cusF and a given directrix l, both in black, each interpreted
in one of the three geometries. Each of the three parabolas
that share this focus and directrix have a focal triangle con-
sisting of F and two of the feet of the altitudes from F to
l, labelled Fb,Fr and Fg. The dotted line passes through the
intersections of the red and green parabolas. Various ver-
tices and axes are shown, and we leave the reader to notice
interesting collinearities, and to try to prove them.
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Figure 15: Collinearities for a chromatic parabola
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Figure 16: Three parabolas with a common focus and
directrix

In conclusion, there may very well be other useful metri-
cal definitions of conics; there are certainly still many rich
discoveries to be made about these fascinating and most

important geometric objects. Chromogeometry extends to
many other aspects of planar geometry, for example to tri-
angle geometry in [4].
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Konike i grafovi nekih polinoma pomoću NURBS
krivulja

SAŽETAK

U radu se prikazuje način zadavanja konika i grafova poli-
noma trećeg i četvrtog stupnja pomoću NURBS krivulja,
s posebnim osvrtom na prikaz progibne linije elastičnog
nosača. Prikazana je upotreba u AutoCAD-u.

Ključne riječi: konike, NURBS krivulje, AutoCAD,
progibna linija

1 Uvod

Potreba za crtanjem konika (elipsa, parabola, hiperbola)
javlja se u gotovo svim tehničkim strukama, a naročito
u gradevinskoj. Iako su konike matematički jednostavno
definirane, većina CAD alata sadrži naredbe za crtanje
samo kružnice i elipse. Ostale konike i druge krivulje
mogu se, pomoću CAD alata, aproksimativno prikazati
provlačenjem glatke krivulje kroz niz točaka.
Ovaj rad objašnjava drukčije odred-ivanje konika, te nešto
složenijih krivulja višeg reda, s posebnim osvrtom na Au-
toCAD kao najrašireniji CAD alat.

2 NURBS krivulje

Zadani interval [t0,tm] podijelimo na m dijelova i djelišne
točke, koje nazivamo čvorovima, označimo (t0,t1, . . . ,tm).
Bazne B-Spline funkcije Ni, j (i+ j ≤ m) definirane su na
sljedeći način:

• Ako je j = 1, tada vrijedi

Ni,1(t) =
{
1, t ∈ [ti,ti+1〉
0, t �∈ [ti,ti+1〉 , t ∈ [t0, tm〉. (1)

Naravno, ova relacija vrijedi ako je ti �= ti+1, u protivnom
je Ni,1 = 0.

• Ako je j > 1 tada se funkcije Ni, j računaju rekurzivno
pomoću formule

Ni, j(t) = Ni, j−1 · t− ti
ti+ j−1− ti

+Ni+1, j−1 · ti+ j− t
ti+ j− ti+1

, (2)

gdje je t ∈ [t0, tm〉.
Ako med-u čvorovima ima jednakih, neki od gornjih pri-
brojnika biti će oblika 0/0. Takve ćemo pribrojnike sma-
trati jednakim nuli. [3], [2]

NURBS = Non Uniform Rational B-Spline je parametarski
definirana krivulja, najčešće kvadratna ili kubna. NURBS
krivulja je zadana kontrolnim točkama, od kojih svaka ima
koordinate i ”težinu”. Laički rečeno, krivulja se ponaša
kao elastična nit, gdje kontrolne točke predstavljaju ma-
gnete čiji intenzitet ovisi o težini kontrolne točke (slika 1).

Slika 1: NURBS krivulja
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Neka je P0,P1, . . . ,Pn skup kontrolnih točaka, a w =
(w0,w1, . . . ,wn) vektor težina tih točaka. Tada se NURBS
krivulja definira izrazom:

Ck(t) =
∑n
i=0wi ·Pi ·Ni,k(t)
∑n
i=0wi ·Ni,k(t)

, (3)

gdje je t ∈ [t0, tm〉 i m= n+ k.

Red krivulje k iznosi minimalno 2 (linearna krivulja).
Krivulja drugog reda je neprekinuta, ali izlomljena, kon-
trolne točke su spojene ravnim linijama. Krivulja trećeg
reda (kvadratna) je neprekinuta i glatka, te može točno
predstaviti koniku. Najčešće je u upotrebi krivulja četvrtog
reda (kubna), koja je neprekinuta, glatka, s kontinuiranom
zakrivljenošću. Krivulje reda većeg reda od 6 općenito se
izbjegavaju zbog numeričkih problema. [1], [2]

Većina CAD alata (uključujući AutoCAD) ne dozvoljava
manipulaciju vektorom čvorova, koji je automatski gener-
iran. Tako generiran vektor ima oblik {0,1,2,3,...} s tim da
se prvi i zadnji član ponavljaju k puta. Broj elemenata vek-
tora čvorova iznosi red krivulje + broj kontrolnih točaka.

Primjeri vektora čvorova:
3. red, 3 kontrolne točke ti = {0,0,0,1,1,1},
3. red, 4 kontrolne točke ti = {0,0,0,1,2,2,2},
4. red, 4 kontrolne točke ti = {0,0,0,0,1,1,1,1},
4. red, 5 kontrolnih točaka ti = {0,0,0,0,1,2,2,2,2}.
Iz navedenog proizlaze odredena svojstva NURBS
krivulja:

• minimalni broj kontrolnih točaka jednak je redu
krivulje,

• krivulja prolazi kroz prvu i zadnju kontrolnu točku,
• tangenta u prvoj točki prolazi drugom kontrolnom
točkom,

• tangenta u zadnjoj točki prolazi predzadnjom kon-
trolnom točkom,

• više kontrolnih točaka s istim koordinatama smanju-
je glatkoću krivulje, npr. ako kvadratna krivulja ima
2 kontrolne točke s istim koordinatama, krivulja će
proći kroz te točke i na će tom mjestu postojati lom.

3 Konike

Sve konike su algebarske krivulje drugog stupnja, te se
mogu odrediti pomoću NURBS krivulja zadanih baznim
funkcijama drugog stupnja, odnosno NURBS krivuljama
trećeg reda. Pošto u CAD alatima općenito nije moguće
nacrtati beskonačnu krivulju, ovdje prikazujemo kako
odrediti dio konike. Za odred-ivanje dijela konike dovoljne
su 3 kontrolne točke, osim za neke slučajeve kružnice i
elipse.

3.1 Parabola

Od svih konika, pomoću NURBS krivulje, najjednostavije
se odred-uje parabola (nazivnik u izrazu (3) jednak je 1).
Prva i zadnja točka su rubne točke dijela parabole koji
želimo prikazati, srednja točka je sjecište tangenata u pr-
voj i zadnjoj točki, a težine svih kontrolnih točaka moraju
biti jednake 1.

U AutoCAD-u nije moguće direktno zadati kontrolne
točke krivulje, stoga moramo koristiti slijedeći postupak:

1. Nacrtamo polyline kroz kontrolne točke (slika 2).

2. Odredimo red krivulje pomoću sistemske varijable
SPLINETYPE -– moguće vrijednosti su 5 (bazne
funkcije 2. stupnja) ili 6 (bazne funkcije 3. stupnja)
(slika 3).

3. Pretvorimo polyline u segmentiranu krivulju
pomoću naredbe PEDIT←↩L←↩S←↩←↩ (PEDIT, en-
ter, slovo L, enter, slovo S, enter, enter) (slika 4).

4. Pretvorimo segmentiranu krivulju u spline pomoću
naredbe SPLINE←↩O←↩L←↩ (slika 5).

Slika 2: Polyline kroz kontrolne točke

Slika 3: Varijabla SPLINETYPE
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Slika 4: Segmentirana krivulja

Slika 5: Parabola

3.2 Kružnica i elipsa

Kružni i eliptički lukovi u gotovo svim CAD alatima mogu
se nacrtati bez pomoći NURBS krivulja, medutim, u nekim
slučajevima potrebno ih je definirati kao NURBS krivulje,
npr. crtanje nekih vrsta spirala.

Postupak crtanja kružnog luka sličan je postupku za cr-
tanje parabole, medutim, težina srednje točke P1 mora biti
w1 = cos(α/2), a udaljenosti točke P1 od točaka P0 i P2
moraju biti jednake (slika 6).

Slika 6: Kružni luk

Zbog jednostavnosti se obično koristi kut α od 90◦, pri
čemu w1 iznosi

√
2/2. Ukoliko je potreban manji kut,

nacrtana se krivulja može skratiti pomoću naredbe TRIM.

Postupak promjene težine srednje točke:
SPLINEDIT←↩L←↩R←↩W←↩←↩(nova težina)←↩X←↩X←↩X←↩

Mali trik: u AutoCAD-u se umjesto brojke može upisati
LISP izraz, tako da se vrijednost

√
2/2 može unijeti kao:

(/ (sqrt 2.0) 2.0)

3.3 Hiperbola

Može se vidjeti da je težina srednje kontrolne točke izmedu
0 i 1 za elipsu, točno 1 za parabolu, i veća od 1 za hiper-
bolu.

Ako je hiperbola zadana izrazom

x2

A2
− y2

B2
= 1 (4)

i želimo ju prikazati na segmentu x ∈ [A,X1], najprije
moramo pronaći sjecište njezinih tangenata u točkama P0,
P2 kojima je 1. koordinata jednaka X1 (slika 7). Pošto je
hiperbola, dana jednadžbom (4), simetrična s obzirom na
os x, sjecište tangenata nalazi se na x osi. Tangenta hiper-

bole u točki (X1,Y1) ima koeficijent smjera S =
B2 ·X1
A2 ·Y1 , iz

čega proizlazi x koordinata sjecišta tangenata:

X0 = X1− Y1
S

= X1− A2 ·Y 21
B2 ·X1 .

Težina srednje kontrolne točke odreduje se prema izrazu

w1 =
X1
A
.

Slika 7: Hiperbola

4 Krivulje 4. i 5. reda

Pri statičkim proračunima često je potrebno prikazati di-
jagrame momenata savijanja, kuteve zaokreta i progibne
linije nosača. Ukoliko na nosač djeluje jednoliko kon-
tinuirano opterećenje, momentni dijagram je kvadratna
parabola, odnosno NURBS krivulja 3. reda, dijagram
kuteva zaokreta je krivulja 4. reda, a progibna linija
krivulja 5. reda (slika 8).
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Slika 8: Opterećenje, poprečne sile, momenti savijanja,
kutevi zaokreta i progibna linija proste grede.

Slika 9: Krivulja 4. reda

Slika 10: Kvadratna parabola prikazana kao NURBS
krivulja 3. i 4. reda

Budući da su sve navedene krivulje grafovi polinoma
y= f (x), NURBS krivulje koje predstavljaju te funkcije
imaju sljedeća svojstva:

• broj kontrolnih točaka je jednak redu krivulje,
• red krivulje je jednak redu polinoma + 1,
• sve kontrolne točke imaju težinu 1,
• x koordinate kontrolnih točaka su na jednakim raz-
macima.

Dakle, postupak crtanja krivulja 4. reda je vrlo jednosta-
van. Prva i zadnja kontrolna točka su krajevi krivulje, a
preostale dvije kontrolne točke leže na tangentama u prvoj
odnosno zadnoj točki (slika 9).

Naravno, pomoću krivulje 4. reda moguće je prikazati i
kvadratnu parabolu (slika 10).

Ukoliko želimo nacrtati progibnu liniju nosača potrebna
nam je NURBS krivulja 5. reda, koju je u AutoCAD-u
nemoguće direktno nacrtati pa koristimo slijedeći postu-
pak:

1. Nacrtamo polyline sa minimalnim brojem kontrol-
nih točaka (4) za krivulju 4. reda.

2. Odredimo 4. red krivulje pomoću sistemske vari-
jable SPLINETYPE (6).

3. Pretvorimo polyline u segmentiranu krivulju
pomoću naredbe PEDIT←↩L←↩S←↩←↩

4. Pretvorimo polyline u spline pomoću naredbe
SPLINE←↩O←↩L←↩

5. Pretvorimo krivulju 4. reda u krivulju 5. reda
SPLINEDIT←↩L←↩R←↩E←↩5←↩X←↩X←↩

6. Pomoću hvataljki pomaknemo kontrolne točke na
potrebne pozicije (slika 11).

Slika 11: Upotreba hvataljki u AutoCAD–u

54
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Ako krivulju zadanu izrazom

y= a · x4+b · x3+ c · x2+d · x+ e (5)

želimo prikazati na intervalu x ∈ [0,1], tada su koordinate
kontrolnih točaka odred-ene na sljedeći način:

P0 = (0,e), P1 = (
1
4
,e+

d
4
), P2 = (

1
2
,
c
6

+
d
2

+ e),

P3 = (
3
4
,
b
4

+
c
2

+
3d
4

+ e), P4 = (1,a+b+ c+d+ e).

Ukoliko promatramo elastični nosač, tada prema [4] za
koeficijente iz jednadžbe (5) vrijedi sljedeće:

e= pomak u prvom čvoru,

d = kut zaokreta u prvom čvoru,

c= moment savijanja u prvom čvoru /(2 ·E · I),
b= poprečna sila u prvom čvoru /(6 ·E · I),
a= opterećenje /(24 ·E · I),
gdje je E modul elastičnosti, a I tromost poprečenog pre-
sjeka.

Odnosno, u lokalnom koordinatnom sustavu nosača, koor-
dinate kontrolnih točaka su:

P0 = (0,w0), P1 = (
L
4
,w0+

ϕ0 ·L
4

),

P2 = (
L
2
,
M0 ·L2
12 ·E · I +

ϕ0 ·L
2

+w0),

P3 = (
3
4
·L,w1− ϕ1 ·L

4
),

P4 = (L,w1).

PRIMJER 1: Slobodno oslonjena greda

Budući da je M0 = 0, srednja kontrolna točka P2 nalazi se
u sjecištu tangenata u točkama P0 i P4, a y koordinata kon-

trolne točke P2 iznosi
q ·L4
48 ·E · I .

Slika 12: Progibna linija slobodno oslonjene grede

PRIMJER 2: Obostrano upeta greda

y koordinata srednje kontrolne točke P2 iznosi
q ·L4

144 ·E · I .

Slika 13: Progibna linija obostrano upete grede

PRIMJER 3: Jednostrano upeta greda (slika 14)

y koordinata srednje kontrolne točke P2 iznosi
q ·L4
96 ·E · I .

Slika 14: Progibna linija jednostrano upete grede
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